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Abstract

The Nikolaevskiy equation is an example of a pattern forming system with marginally stable long modes. 
It has the unusual property that the typical Ginzburg–Landau scaling ansatz for the description of propagat-
ing patterns does not yield asymptotically consistent amplitude equations. Instead, another scaling proposed 
by Matthews and Cox can be used to formally derive a consistent system of modulation equations. We give a 
rigorous proof that this system makes correct predictions about the dynamics of the Nikolaevskiy equation.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

The Nikolaevskiy partial differential equation, given by

∂tu + u∂xu = −∂2
x

[
r − (1 + ∂2

x )2
]
u,

(x ∈ R, t ≥ 0, u(x, t) ∈ R) was proposed as a one-dimensional model for seismic waves in 
viscoelastic media, see [1]. It also serves as a paradigmatic model for a pattern forming system 
with Galilean invariance, see [4]. For our multiscale analysis near the onset of pattern formation, 
i.e., in the case 0 < r � 1, it is convenient to introduce a small parameter ε > 0, such that r = ε2, 
and write the Nikolaevskiy equation as
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Fig. 1. Linear dispersion relation for the Nikolaevskiy equation: Turing instability with marginally stable long modes.

∂tu = Lεu − 1

2
∂x(u

2), where Lε = ∂2
x (1 + ∂2

x )2 − ε2∂2
x . (1)

Looking at the linear dispersion relation,

λ = −k2(1 − k2)2 + ε2k2,

for modes u(x, t) = eikx+λt , we see that for ε > 0 the spatially homogeneous steady state u = 0
becomes linearly unstable via a short wave instability. In addition to the classical Turing instabil-
ity we also have a curve of eigenvalues touching the imaginary axis at the wave number k = 0, see 
Fig. 1. Hence, we have a spectral situation as considered in [3,9]. There, we derived amplitude 
equations for the propagation of small spatially periodic patterns using the typical Ginzburg–
Landau scaling X = εx, T = ε2t for the large spatial and temporal scale, respectively, an O(ε)

amplitude scaling for the pattern modes and an O(ε2) amplitude scaling for the long modes.
In [4], Matthews and Cox pointed out that for the Nikolaevskiy equation such a scaling leads 

to amplitude equations that are asymptotically inconsistent in the sense that they contain O(1/ε)

coefficients. Instead, they proposed an O(ε3/2) amplitude scaling of the pattern mode. Using the 
ansatz

ε3/2ψMC(x, t) = ε3/2A1(εx, ε2t)eix + c.c. + ε2A0(εx, ε2t),

where “c.c.” denotes the complex conjugate of the terms to the left, they derived the following 
system of amplitude equations for (1):

∂T A1 = 4∂2
XA1 + A1 − iA1A0,

∂T A0 = ∂2
XA0 − ∂X(|A1|2).

(2)

While it is reasonable to assume that ε3/2ψMC with A1 and A0 given as solutions of (2) is 
a good approximation to a true solution of (1), it is not obvious. In fact, there are cases where 
approximations based on formally correctly derived amplitude equations make wrong predictions 
about the original system, see, e.g., [6–8].

In case of the Nikolaevskiy equation, so far, the question of validity has been tackled by 
numerical investigations only. While in [4,10] the simulations seem to verify the unusual scaling 
by Matthews and Cox, more recent results raise doubts, see [11].

In this paper we give a rigorous proof that the Matthews–Cox approximation is indeed valid 
and that all the dynamics of the Matthews–Cox system (2) in the respective phase spaces can be 
found in the Nikolaevskiy equation as well. For the proof of validity we apply methods that have 
already proven useful in the context of the justification of the Ginzburg–Landau approximation. 
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It turns out that the justification of the Matthews–Cox approximation is even simpler than its 
analogues in [3,9] due to the unusual scaling.

Notation. Throughout this paper, many different constants are denoted with the same symbol C, 
as long as they are independent of the small parameter 0 < ε � 1.

2. Preliminaries

In [3,9] we worked in Sobolev spaces, which had the disadvantage that the approximation 
results did not cover spatially periodic solutions or fronts, etc. In order to include such types of 
solutions, we choose to work in the spaces of functions that are uniformly locally Sobolev. The 
abstract theory for these spaces has been developed in [5] for the application to hydrodynamical 
problems. Our situation is much simpler, which facilitates the presentation.

2.1. Basics and notation

Let L2 and L2
loc denote the spaces of (equivalence classes of almost everywhere equal) func-

tions u : R → C that are square-integrable on R or any compact subset of R, respectively. 
Furthermore, let Hm, m ∈ N, be the space of functions in L2 whose first m weak derivatives 
∂

j
x u, j = 1, . . . , m, lie in L2.

We introduce weighted Sobolev spaces.

Definition 1. Let n, m ∈N0 and ρ(x) := (1 + x2)1/2. Then we define

Hm(n) := {u ∈ Hm | ‖u‖Hm(n) = ‖uρn‖Hm < ∞}.

We write L2(n) instead of H 0(n).

Let S be the space of rapidly decreasing functions on R. For any u ∈ S we define the Fourier 
transform F : S → S by

Fu(k) := û(k) := 1√
2π

∫
R

u(x)e−ikx dx.

It is easy to see that F extends to an isomorphism F : Hm(n) → Hn(m) with inverse F−1, 
formally given by

F−1u(x) := 1√
2π

∫
R

u(k)eikx dk.

Definition 2. Let

L2
u,l :=

{
u ∈ L2

loc(R,C) | ‖u‖L2
u,l

< ∞
}

,

where the norm ‖ · ‖L2 is defined by

u,l
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‖u‖L2
u,l

:= sup
ξ∈R

⎛
⎜⎝

ξ+1∫
ξ

|u(x)|2 dx

⎞
⎟⎠

1/2

.

Furthermore, for m ∈N0 we define

Hm
u,l := {u ∈ L2

u,l | ‖u‖Hm
u,l

< ∞}
,

where the norm ‖ · ‖Hm
u,l

is defined by

‖u‖Hm
u,l

:= max
j=0,...,m

‖∂j
x u‖L2

u,l
.

We note that the Hm
u,l spaces are Banach algebras for m ≥ 1 and that they are no Hilbert 

spaces.

2.2. Multipliers

Given M̂ ∈ L∞(R, C), we can define M̂, M ∈ L (L2, L2) by

M̂û = (k 	→ M̂(k) · û(k))

Mu = F−1(M̂Fu),

with ‖M‖L (L2,L2) ≤ C‖M̂‖L∞ .
In a similar way we can define bounded operators on Hm

u,l-spaces. Since any u ∈ L2
u,l induces 

a tempered distribution Tu ∈ S ′, by

Tu(φ) =
∫
R

u(x)φ(x)dx, ∀φ ∈ S,

the Fourier transform Fu :=F(Tu) ∈ S ′ is well defined for any u ∈ L2
u,l in the sense of distribu-

tions. Since for any u ∈ Hm
u,l we have

|(Fu)φ| = |Tu(Fφ)| = |Tuρ−2

(
(Fφ)ρ2)|

≤ ‖uρ−2‖L2 · ‖Fφ‖L2(2) ≤ C
( ∞∑

j=1

1

j2

)
‖u‖L2

u,l
‖φ‖H 2,

the multiplication M̂ · (Fu), where M̂ · (Fu)(φ) = (Fu)(M̂φ), is well defined for all M̂ ∈ C2
b . 

More generally, the following result holds.

Lemma 3. Let n ∈ Z and (ρnM̂) ∈ C2
b . Then Mu,l := F−1(M̂ · (Fu)) is a bounded operator 

from Hq to Hq+n for all q ∈N0 with q + n ≥ 0 and it holds
u,l u,l
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‖Mu,l‖L (H
q
u,l ,H

q+n
u,l )

≤ C(q,n)‖ρnM̂‖C2
b

with a constant C(q, n) independent of M̂ . We call Mu,l the multiplier corresponding to M̂ .

Proof. See [5, Lemma 5]. �
Remark 4. With the help of Lemma 3 the local well-posedness of the Nikolaevskiy equation in 
Hm

u,l follows. To see this, we consider the associated stationary problem

(λ − Lε)u = f.

For Reλ ≥ 1, we obtain in Fourier space the solution

û = 1

λ − λε

f̂ , where λε(k) = −k2(1 − k2)2 + ε2k2.

By direct calculations it follows that there exist constants C, C1 > 0 such that∣∣∣∣ 1

λ − λε(k)

∣∣∣∣≤ C

|λ + C1k6| , sup
k∈R,

Re λ≥1

∣∣∣∣ λ′
ε(k)

λ − λε(k)

∣∣∣∣≤ C, sup
k∈R,

Re λ≥1

∣∣∣∣ λ′′
ε (k)

λ − λε(k)

∣∣∣∣≤ C.

Hence, we have due to Lemma 3 that for all λ in the half-plane {Reλ ≥ 1} the operator (λ − Lε)

has a bounded inverse from Hm
u,l to Hm

u,l and satisfies

∥∥∥(λ − Lε)
−1
∥∥∥

L (Hm
u,l ,H

m
u,l )

≤ C

∥∥∥(λ − λε(·))−1
∥∥∥

C2
b

≤ C

|λ| .

Hence, it follows that Lε : Hm
u,l → Hm

u,l is sectorial for any m ≥ 0, such that the analytic semi-

group eLεt is well defined. Then standard semigroup theory yields the local well-posedness of (1)
in C([0, T1], Hm

u,l) for m ≥ 6 and some T1 > 0, see, e.g., [2]. An analogous argument gives the 
local well-posedness of the Matthews–Cox system (2) in C([0, T0], (Hm

u,l)
2) for all m ≥ 2. �

In order to estimate terms coming from the approximation, we investigate how multipliers act 
on scaled functions with unscaled modulation. To this end, we introduce the scaling operator Sε

by (Sεu)(x) := u(εx) and the modulation operator mκ by (mκu)(x) := u(x) · eiκx .

Lemma 5. Let n ∈ N and ρ−nM̂ ∈ C2
b and Mu,l be the corresponding multiplier as defined in 

Lemma 3. Then (Mu,lmκSε) : Hq
u,l → H

q−r
u,l is a bounded operator for all q ≥ r ≥ n with

‖Mu,lmκSε‖L (H
q
u,l ,H

q−r
u,l )

≤ C(q,n, r)‖ρ−nM̂(ε · +κ)‖C2
b
· ‖Sε‖L (H

q−n
u,l ,H

q−r
u,l )

,

where the constant C(q, n, r) is independent of M̂ , ε and κ .
If additionally, M̂(k + κ) = O(ks) for k → 0 and s ≤ n, then

‖ρ−nM̂(ε · +κ)‖C2
b
=O(εs).
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Proof. See [5, Section 3.3]. �
Remark 6 (Scaling properties). Note that the operator norm of the scaling operator Sε depends 
qualitatively on the exponents of the considered Hm

u,l-spaces. For example, the best estimate we 
can get for Sε : L2

u,l → L2
u,l is

‖Sε‖L (L2
u,l ,L

2
u,l )

≤ Cε−1/2,

since ‖Sεu‖L2
u,l

= ε−α‖u‖L2
u,l

for u(x) = |x|−α , α ∈ [0, 1/2).

However, we have for n ≥ 1

‖Sεu‖L2
u,l

≤ ‖u‖L∞ ≤ C‖u‖Hn
u,l

,

such that for q ≥ n we have ‖Sε‖L (H
q
u,l ,H

q−n
u,l )

≤ C. Together with the second statement of 

Lemma 5 this implies that for s ≤ q we have

‖∂s
xSε‖L (H

q
u,l ,H

q−s
u,l )

=O(εs).

This makes the formal calculation ∂x[u(ε·)] = ε(∂Xu)(ε·) rigorous, i.e., derivatives w.r.t. x gain 
one order in ε. Thus, we conclude that for q ∈ N we have

‖Sεu‖H
q
u,l

≤ C
(‖Sεu‖

H
q−1
u,l

+ ‖∂q
x Sεu‖L2

u,l

)≤ C
(‖u‖H

q
u,l

+ εq‖u‖H
q
u,l

)
.

Hence, for q ∈ N the scaling operator Sε : H
q
u,l → H

q
u,l has norm bounded independently of 

ε > 0. �
3. The approximation results

We are now able to state our main result.

Theorem 7. Let mA ≥ 12, mA − 6 ≥ m ≥ 6 and (A1, A0) ∈ C([0, T0], (HmA

u,l )2) be a solution 
of the Matthews–Cox system (2). Then there exist constants ε0 > 0 and C > 0, such that for all 
ε ∈ (0, ε0) there exist solutions u ∈ C([0, T0/ε

2], Hm
u,l) of the Nikolaevskiy equation (1) satisfying

sup
t∈[0,T0/ε

2]

∥∥u(·, t) − (ε3/2A1(ε·, ε2t)ei· + c.c.
)∥∥

Hm
u,l

≤ Cε2.

We give the proof of this result in the next section. There, it will become clear that the ap-
proximation result can be refined in order to include the approximate evolution of the long modes 
associated to wave numbers around k ≈ 0.

Corollary 8. With the same assumptions as in Theorem 7 the following holds.
There exist constants ε0 > 0 and C > 0 such that for all ε ∈ (0, ε0) there exist solutions 

u ∈ C([0, T0/ε
2], Hm ) of the Nikolaevskiy equation (1) satisfying
u,l
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sup
t∈[0,T0/ε

2]

∥∥u(·, t) − (ε3/2A(ε·, ε2t)ei· + ε2A0(ε·, ε2t) + c.c.
)∥∥

Hm
u,l

≤ Cε5/2.

Due to Sobolev’s embeddings, the Hm
u,l-norm in the estimates of Theorem 7 and Corollary 8

can be replaced by the more common Cm−1
b -Norm.

Remark 9. With the same method of proof – even simpler in many respects – it is possible to 
obtain analogous approximation results for the usual Sobolev spaces Hm. Due to the scaling 
properties of Hm, we have to make the formal error smaller than in the case of Hm

u,l, which 
leads to the stronger regularity conditions mA ≥ 14, mA − 8 ≥ m ≥ 6. Otherwise, the assertion 
of the approximation results remain almost the same. In fact, we only have to replace Hm

u,l by 
Hm and decrease the order of ε in the respective estimates by 1/2 due to the scaling properties 
of Hm. �
4. Controlling the error

The assertions of Theorem 7 and Corollary 8 follow if we can show that there exist solutions u

of (1) of the form

u = ε3/2ψ + ε5/2R

with

sup
t∈[0,T0/ε

2]
‖R(t)‖Hm

u,l
=O(1)

sup
t∈[0,T0/ε

2]
‖ε3/2ψ − (ε3/2A1(ε·, ε2t)eix + c.c. + ε2A0(ε·, ε2t))‖Hm

u,l
=O(ε5/2).

It will turn out that we even have O(ε3) in the last equation.
As a necessary condition, the approximation ε3/2ψ has to be chosen in such a way that the 

formal error, the so-called residual, Res(ε3/2ψ), defined by

Resv := −∂tv + Lεv + 1

2
∂x(u

2)

is sufficiently small.
As in [5,9] we use mode filters to split the error R and the approximation ψ into different 

parts corresponding to modes in Fourier space with different growth rates. Finally, an argument 
based on Gronwall’s inequality will give the desired result.

4.1. Mode filters and splitting

Let δ = 0.05 and χ̂0 ∈ C∞
0 (R, [0, 1]) with supp χ̂0 ∈ [−2δ, 2δ] and χ̂0(k) = 1 for all k ∈

[−δ, δ]. We define the following multipliers E0, E±1, Ec, Es by
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E0u := F−1(χ̂0û),

E±1u := F−1(χ̂0(· ∓ 1)̂u),

Ecu := E−1 + E1,

Esu := 1 − E0 − Ec.

Due to the compact support of χ0 it follows from Lemma 3 that E0 and Ec are bounded linear 
mappings from Hq

u,l to Hq+m
u,l for any m ≥ 0.

The mode filters defined above are no projections. Hence, we proceed as in [5] and introduce 
auxiliary mode filters Eh

0 , Eh
±1, Eh

c , Eh
s . The mode filters Eh

0 and Eh
c are defined in the same 

way as above, with χ̂0 replaced by χ̂h
0 := S1/2χ̂0. The mode filter Eh

s is defined by

Eh
s u =F−1((1 − S2χ̂0 − (S2χ̂0)(· − 1) − (S2χ̂0)(· + 1))̂u

)
Thus, we have

Ej = EjE
h
j = Eh

j Ej , j = 0,±1, c, s.

Furthermore, we have ∂tEj = Ej∂t , LεEj = EjLε as well as ∂tE
h
j = Eh

j ∂t , LεE
h
j = Eh

j Lε for 
j = 0, ±1, c, s.

Now we split the approximation ε3/2ψ and the error ε2R in the following way,

ε3/2ψ = ε3/2ψc + ε2ψ0 + ε3ψs,

ε5/2R = ε5/2Rc + ε3R0 + ε4Rs,

where ψc = Ecψ , ε1/2ψ0 = E0ψ , ε3/2ψs = Esψ , Rc = EcR, ε1/2R0 = E0R, ε3/2Rs = EsR. 
Since ψ0, ψc, R0, Rc have compact support in Fourier space (in the sense of distributions), the 
convolution ψ̂i ∗ R̂j is well defined for i, j ∈ {0, c}. Hence, it is easy to prove that

E0(ψ0Rc) = E0(ψcR0) = E0(RcR0) = E0(ψcψ0) = 0,

Ec(ψ0R0) = Ec(ψcRc) = Ec(R
2
c ) = 0,

due to disjoint supports in Fourier space. Thus, we obtain the following system for the different 
parts of the error

∂tRc = LεRc + ε2Nc(ψ,R) + ε3gc(ψ,R) + ε−5/2Resc,

∂tRs = LεRs + Ns(ψc,Rc) + ε1/2gs(ψ,R) + ε−4Ress ,

∂tR0 = LεR0 + ε∂xN0(ψc,Rc) + ε3/2∂xg0(ψ,R) + ε−3Res0,

(3)

where
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Nc(ψ,R) = Ec

(
∂x(ψcR0 + ψ0Rc)

)
,

gc(ψ,R) = 1

2
Ec

(
∂x

[
2(ψcRs + ψsRc + RcR0) + ε1/2(ψ0Rs + ψsR0)

)
+ 2εRcRs + 2ε3/2(ψsRs + R0Rs) + ε5/2R2

s

]
,

Ns(ψc,Rc) = Es(∂x(ψcRc)),

gs(ψ,R) = 1

2
Es

(
∂x

[
2(ψcR0 − ψ0Rc) + ε1/2(R2

c + 2ψ0R0) + 2ε(ψcRs + ψsRc)

+ ε3/2(R2
0 + 2ψ0Rs + 2ψsR0) + 2ε2RcRs

+ ε5/2(ψsRs + R0Rs) + ε7/2R2
s

])
,

N0(ψc,Rc) = E0(ψcRc),

g0(ψ,R) = 1

2
E0

([
2(ψcR0 − ψ0Rc) + ε1/2(R2

c + 2ψ0R0) + 2ε(ψcRs + ψsRc)

+ ε3/2(R2
0 + 2ψ0Rs + 2ψsR0) + 2ε2RcRs

+ ε5/2(ψsRs + R0Rs) + ε7/2R2
s

])
.

4.2. The long-time estimates

For the long-time estimates, we first construct an approximation that lies close to ε3/2ψMC

and makes the residual sufficiently small.

Lemma 10. Let mA ≥ 12, mA − 6 ≥ m ≥ 6. There exists an approximation ε3/2ψ such that

sup
t∈[0,T0/ε

2]
‖ψj‖Hm

u,l
=O(1), for j = 0, c, s,

sup
t∈[0,T0/ε

2]
‖ε3/2ψMC − ε3/2ψ‖Hm

u,l
=O(ε3),

sup
t∈[0,T0/ε

2]
‖ε−5/2Resc‖Hm

u,l
=O(ε2),

sup
t∈[0,T0/ε

2]
‖ε−3Res0‖Hm

u,l
=O(ε2),

sup
t∈[0,T0/ε

2]
‖ε−4Ress‖Hm

u,l
=O(1).

Proof. We refine the ansatz ε3/2ψMC by adding a higher order correction term:

εψ(x, t) = ε3/2A1(X,T )eix + c.c.

+ ε2A0(X,T )

+ ε3A2(X,T )e2ix + c.c.

If we choose A1, A0 to satisfy the Matthews–Cox system (2) and
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A2 = − i

36
A2

1, (4)

all terms in Res(ε3/2ψ) have at least a prefactor ε4. Furthermore, we have that terms proportional 
to e0ix have at least a prefactor ε5 and terms proportional to e±ix have at least a prefactor ε9/2.

Using (4) and (2), we can replace the terms A2 and ∂T A2 in the residual, such that Res(ε3/2ψ)

can be written as the sum of products of A1, A0 and the respective derivatives w.r.t. X. Since the 
highest spatial derivative is ∂6

X , we have that Res(ε3/2ψ) ∈ C([0, T0/ε
2], HmA−6). Hence, in 

order to estimate the residual in the Hm
u,l-norm with m ≥ 6, we need mA ≥ 12, mA − 6 ≥ m ≥ 6, 

which gives the regularity conditions of Theorem 7 and Corollary 8.
Since for m ≥ 1 the Hm

u,l spaces are algebras and the scaling operator Sε : Hm
u,l → Hm

u,l has 
norm bounded independently of ε due to Remark 6, any terms in the residual with a prefactor ε4

are also O(ε4) w.r.t. ‖ · ‖C([0,T0/ε
2],Hm

u,l )
. This immediately gives the estimate for Ress as well as 

the estimate

sup
t∈[0,T0/ε

2]
‖ε3/2ψMC − ε3/2ψ‖Hm

u,l
=O(ε3).

That the order of Res0 is not influenced by the lower order terms proportional to e±κix with 
κ = 1, 2, 3, can be seen with the help of Lemma 5. Since χ̂0 vanishes outside a neighbourhood of 
k = 0, we have for κ = 1, 2, 3, that χ̂0(k ± κ) = O(ks) for k → 0 and any s ∈N. Let w ∈ H

mA−�
u,l

stand for the terms proportional to eiκx . Then we have

‖E0mκSεw‖Hm
u,l

≤ C‖ρ−nχ̂0(ε · +j)‖C2
b
· ‖Sε‖L (H

mA−n

u,l ,Hm
u,l )

‖w‖
H

mA−�−n

u,l

≤ Cεn,

if mA − � − n ≥ m due to Lemma 5 and Remark 6. Since the lowest order terms in the residual 
do not contain highest order derivatives, we have that w ∈ H

mA−�
u,l with mA − � ≥ m + 1, such 

that n can be chosen greater than or equal to 1.
Similarly, we see that we only have to consider the terms proportional to e±ix for the order 

of Resc. The same argument also implies that supt∈[0,T0/ε
2] ‖ψj‖Hm

u,l
=O(1) for j = 0, c, s. �

Using that the Hm
u,l spaces are Banach algebras for m ≥ 1 and the fact that E0, Ec are bounded 

mappings from Hm
u,l to Hm+n

u,l for any n ≥ 0, we obtain that there exists a constant C > 0 depend-

ing on ψ but neither on R nor τ ∈ [0, T0/ε
2], such that

‖Nc(ψ,R)(τ)‖Hm
u,l

≤ CR(τ ),

‖gc(ψ,R)(τ )‖Hm
u,l

≤ C(R+R2)(τ ),

‖Ns(ψc,Rc)(τ )‖
Hm−1

u,l
≤ C‖Rc(τ)‖Hm

u,l
,

‖gs(ψ,R)(τ )‖
Hm−1

u,l
≤ C(R+ ε1/2R2)(τ ),

‖N0(ψc,Rc)(τ )‖Hm
u,l

≤ C‖Rc(τ)‖Hm
u,l

,

‖g0(ψ,R)(τ )‖Hm ≤ C(R+ ε1/2R2)(τ ),

(5)
u,l
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for all τ ∈ [0, T0/ε
2], where

R := ‖Rc‖Hm
u,l

+ ‖Rs‖Hm
u,l

+ ‖R0‖Hm
u,l

.

In order to control the error on the O(1/ε2) time scale, we need the following estimates on 
the growth or decay rates for the semigroup acting on critical, neutral and stable Fourier modes.

Lemma 11. Let Sj (t) := eLεtEh
j for j = 0, c, s. Then there exist constants C, σ > 0 such that 

for any m, � ∈N0 the following estimates hold

‖S0(t)‖L (Hm
u,l ,H

m
u,l )

≤ C,

‖S0(t)∂x‖L (Hm
u,l ,H

m
u,l )

≤ Ct−1/2,

‖Sc(t)‖L (Hm
u,l ,H

m
u,l )

≤ Ceε2t ,

‖Ss(t)‖L (Hm
u,l ,H

m+�
u,l )

≤ C min{1, t−�/6}e−σ t .

Remark 12. We see that the semigroups behave in the same way as they would for the usual 
Sobolev spaces Hm. For example, we have

‖Sc(t)u‖Hm ≤ C‖k 	→ eλε(k)tχh
c (k)̂u(k)‖L2(m)

≤ C sup
k∈R

eλε(k)t‖û‖L2(m) ≤ Ceε2t‖u‖Hm.

We cannot transfer the above method to u ∈ Hm
u,l , however, since then in general ̂u is a tempered 

distribution.
Since the semigroups Sj (t) can be seen as t -dependent multipliers, it is tempting to use 

Lemma 3 in order to obtain the desired estimates. However, it turns out that the estimate with 
Lemma 3 is too rough. For example, we would obtain

‖S0(t)‖L (Hm
u,l ,H

m
u,l )

≤ C(m)‖k 	→ eλε(k)tχh
0 (k)‖C2

b
=O(t).

Hence, a more careful study is required. �
Proof of Lemma 11. The multipliers Sj can be expressed with the help of the convolution, since

Sju =F−1(F(Sju)) =F−1(eλε(·)tχh
j û
)= (F−1(eλε(·)tχh

j ) ∗ u
)
. (6)

We note that SjEj = EjSj = Sj for j = 0, c, s. Since E0, Eh
0 , Ec and Eh

c have compact support 
in Fourier space, we have that ‖E0u‖Hm

u,l
≤ C(m)‖u‖L2

u,l
for some constant C(m) > 0 indepen-

dent of u. Therefore, we have

‖Sj (t)u‖Hm = ‖Sj (t)Eju‖Hm = ‖Ej(Sj (t)u)‖Hm ≤ C(m)‖Sj (t)u‖L2

u,l u,l u,l u,l
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for j = 0, c. In order to use representation (6) for an estimate for the Sj , we note that an analogue 
of Young’s inequality holds in L2

u,l as well. More precisely, we have for any u ∈ L1 and any 
v ∈ L

p
u,l , p ∈ [1, ∞] that

‖u ∗ v‖L
p
u,l

≤ ‖u‖L1 · ‖v‖L
p
u,l

.

The proof of this fact goes exactly along the lines of the classical case. Thus, we have for � ∈
{0, 1}

‖Sj (t)∂
�
xu‖Hm

u,l
≤ C(m)‖k 	→ F−1(eλε(k)tχh

j (k)(ik)�)‖L1 · ‖u‖L2
u,l

.

From now on, we consider the case j = 0. Due to the form of the eigenvalue curve λε(k)

near k = 0, we expect diffusive behaviour. First, we note that diffusion acts in Hm
u,l spaces in an 

analogous fashion as in the usual Sobolev spaces. It follows by direct computations that

‖F−1(k 	→ e−k2t )‖L1 =O(1), ‖F−1(k 	→ e−k2t · (ik))‖L1 =O(t−1/2).

Next, we show that applying the cut-off function χh
0 does not change the qualitative behaviour. 

For simplicity we only consider

‖F−1(k 	→ e−k2tχh
0 (k))‖L1

=
−1∫

−∞
|F−1(k 	→ e−k2tχh

0 (k))(x)|dx

︸ ︷︷ ︸
=:I−(t)

+
1∫

−1

| . . . |dx

︸ ︷︷ ︸
=:I0(t)

+
∞∫

1

| . . . |dx

︸ ︷︷ ︸
=:I+(t)

.

Since suppχh
0 ⊂ [−4δ, 4δ], we have

I0(t) =
1∫

−1

1√
2π

∣∣∣∣∣∣
∞∫

−∞
e−k2tχh

0 (k)eikx dk

∣∣∣∣∣∣ dx

≤ 1√
2π

1∫
−1

4δ∫
−4δ

dk dx =O(1).

For |x| ≥ 1 we apply partial integration twice, in order to find

√
2πF−1(k 	→ e−k2t (1 − χh

0 (k)))(x) =
∞∫

−∞
e−k2t (1 − χh

0 (k))eikx dk

= − 2

x2

∞∫
2δ

[
(4k2t2 − 2t)(1 − χh

0 (k)) + 4kt (χh
0 )′(k) − (χh

0 )′′(k)
]

e−k2t cos(kx)dk

=: �(x, t).
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Thus, we have

|�(x, t)| ≤ C

x2
(1 + ‖χh

0 ‖C2
b
) sup

k>0

(
(4k2t + 2 + 4δ)e− k2

2 t

) ∞∫
2δ

te− k2
2 t dk

≤ C

x2

∞∫
2δ

te−δkt dk ≤ C

x2
· e−2δ2t .

This gives the estimate

I±(t) ≤
∞∫

1

|F−1(k 	→ e−k2t )(x)|dx + C

∞∫
1

|�(x, t)|dx

≤ ‖F−1(k 	→ e−k2t )‖L1 + Ce−2δ2t

∞∫
1

1

x2
dx

= O(1) +O(e−2δ2t ).

It is obvious that the above estimates also hold for ‖F−1(k 	→ e−μk2tχh
0 (k))‖L1 for any arbitrary 

but fixed μ > 0.
Now we turn to the estimate of ‖F−1(k 	→ eλε(k)t )‖L1 . We make the decomposition

F−1(k 	→ eλε(k)tχh
c (k)) = F−1(k 	→ e−μk2tχh

c (k))

+F−1(k 	→ (eλε(k)t − e−μk2t )χh
c (k)),

with μ = −λ′′
0(0)/2 > 0. We already showed that the first term is O(1) in the L1 norm. For the 

second term we split the norm into three parts similar to above,

‖F−1(k 	→ (eλε(k)t − e−μk2t )χh
0 (k))‖L1

=
−1∫

−∞
|F−1(k 	→ (eλε(k)t − e−μk2t )χh

0 (k))(x)|dx

︸ ︷︷ ︸
=:Ĩ−(t)

+
1∫

−1

| . . . |dx

︸ ︷︷ ︸
=:Ĩ0(t)

+
∞∫

1

| . . . |dx

︸ ︷︷ ︸
=:Ĩ+(t)

.

The estimate for Ĩ0(t) works as for I0(t) using the compact support of χh
0 .

Then we consider the case |x| ≥ 1. Using partial integration, we get

F−1(k 	→ (
eλε(k)t − e−μk2t

)
χh

0 (k)
)
(x)

= − 1

x2

4δ∫ [(
eλε(k)t (λ′

ε(k))2t2 − e−μk2t (4μ2k2t2)
)
χh

0 (k)
−4δ
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+ (eλε(k)tλ′′
ε (k)t − e−μk2t (−2μt)

)
χh

0 (k)

+ 2
(
eλε(k)tλ′

ε(k)t − e−μk2t (−2μkt)
)
(χh

0 )′(k)

+ (eλε(k)t − e−μk2t
)
(χh

0 )′′(k)
]
eikx dk.

The terms in the integral that are proportional to (χh
0 )′ or (χh

0 )′′ have compact support bounded 
away from k = 0. Hence, these terms can be bounded uniformly by Ce−μ̃t with some μ̃ > 0.

As an example, we show how to estimate the first term in the integral. The estimate for the 
second term works similar. Let k ∈ [−4δ, 4δ]. Then there exists α ∈ (0, μ) with λε(k) < −αk2. 
Furthermore we have

λε(k) = −μk2 + k4ϕε(k),

(λ′
ε(k))2

4μ2k2
= 1 + k2ϕ̃ε(k),

where ϕε , ϕ̃ε are smooth mappings, defined on an open neighbourhood of [−4δ, 4δ] with 
‖ϕε‖C0

b ([−4δ,4δ]), ‖ϕ̃ε‖C0
b ([−4δ,4δ]) =O(1). Hence, we have

∣∣(eλε(k)t (λ′
ε(k))2t2 − e−μk2t (4μ2k2t2)

)
χh

0 (k)
∣∣

≤ 4μ2k2t2‖χh
0 ‖C0

b

∣∣∣eλε(k)t (λ
′
ε(k))2

4μ2k2
− e−μk2t

∣∣∣
≤ Ck2t2e−(μ−α)k2t

(
|e(αk2+λε(k))t − e−(μ−α)k2t | + k2‖ϕ̃ε‖C0

b ([−4δ,4δ])e
(αk2+λε(k))t

)
≤ Ck2t2e−(μ−α)k2t

((
sup
ξ≤0

eξ
) · k4‖ϕε‖C0

b ([−4δ,4δ])t + k2
)

≤ C(k6t3 + k4t2)e−(μ−α)k2t ≤ sup
K∈[0,∞)

C(K3 + K2)e−K2 =O(1).

From this we conclude that Ĩ±(t) = O(1) and thus ‖F−1(k 	→ eλε(k)tχh
c (k))‖L1 = O(1) for 

t → ∞. Similar computations show that ‖F−1(k 	→ eλε(k)tχh
0 (k)(ik))‖L1 =O(t−1/2).

Since λε(k) − ε2 = −λ′′
0(1)

2 (k ∓ 1)2 +O(|k ∓ 1|4) for k → ±1, and χh
c has compact support 

around ±1, we can proceed as for S0(t) and show that

‖F−1(k 	→ eλε(k)tχh
c (k))‖L1 = eε2t‖F−1(k 	→ e(λε(k)−ε2)tχh

c (k))‖L1 ≤ Ceε2t .

The estimate for Ss(t) follows in the same way as in [5, Lemma 10]. �
Now we are ready for the long-time control of the error. We start by reformulating the error 

system (3) with the help of the variation of constants formula. Note that etLεEj = etLεEh
j Ej =

Sj (t)Ej . We obtain
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Rc(t) = Sc(t)Rc(0) +
t∫

0

Sc(t − τ)
(
ε2Nc(ψ,R) + ε3gc(ψ,R) + ε−5/2Resc

)
(τ )dτ,

Rs(t) = Ss(t)Rs(0) +
t∫

0

Ss(t − τ)
(
Ns(ψc,Rc) + ε1/2gs(ψ,R) + ε−4Resc

)
(τ )dτ,

R0(t) = S0(t)R0(0) +
t∫

0

S0(t − τ)
(
ε∂xN0(ψ,R) + ε3/2∂xg0(ψ,R) + ε−3Res0

)
(τ )dτ.

Using the estimates from Lemma 10, Lemma 11, and (5), we get

‖Rc(t)‖Hm
u,l

≤ CRes +
t∫

0

Cε2eε2(t−τ)
(
R+ ε(R+ ε1/2R2)

)
(τ )dτ, (7)

‖Rs(t)‖Hm
u,l

≤ CRes +
t∫

0

Ce−σ(t−τ)(1 + (t − τ)−1/6)

× (‖Rc‖Hm
u,l

+ ε1/2(R+ ε1/2R2)
)
(τ )dτ,

(8)

‖R0(t)‖Hm
u,l

≤ CRes +
t∫

0

Cε(t − τ)−1/2(‖Rc‖Hm
u,l

+ ε1/2(R+ ε1/2R2)
)
(τ )dτ, (9)

provided that Rc(0), Rs(0) and Rc(0) are O(1).
Now, we set

qj (t) = sup
τ∈[0,t]

‖Rj(τ)‖Hm
u,l

, j = 0, c, s,

q = q0 + qs.

We immediately obtain from (9) and (8) that

q(t) ≤ 2CRes + Cqc(t) + Cε1/2[qc(t) + q(t) + ε1/2(qc(t) + q(t))2].
If ε1/2C < 1/2 and ε1/2(qc(t) + q(t)) < 1/2, then there exists a constant Cq > 0 with

q(t) < Cq + Cqqc(t).

Plugging this into (7) yields

qc(t) ≤ C +
t∫
Cε2eε2(t−τ)(qc(τ ) + ε(qc(τ ) + qc(τ )2)dτ.
0
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If ε(1 + qc(t)) ≤ 1, we get

qc(t) ≤ C +
t∫

0

Cε2eT0qc(τ )dτ.

Gronwall’s inequality then gives

qc(t) ≤ CeCT0eT0 =: Mq.

Hence, we see that the above estimates are all valid for every t ∈ [0, T0/ε
2], if we choose ε0 > 0

so small that

ε0(1 + 2Mq) < 1, Cε
1/2
0 <

1

2
, ε

1/2
0 (Cq + 2Mq(Cq + 1)) <

1

2
.

This concludes the proof of Theorem 7.

Remark 13. The fact that the Nikolaevskiy equation (1) possesses solutions that exist on the 
whole time interval [0, T0/ε

2], follows from the local well-posedness of (1) combined with 
the long-time existence of the approximation and the long-time estimates for the error we just 
proved. �
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