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Abstract

This paper is concerned with a diffusive logistic model with advection and a free boundary in a spatially 
heterogeneous and time periodic environment. Such a model may be used to describe the spreading of 
a new or invasive species with the free boundary representing the expanding front. Under more general 
assumptions on the initial data and the function standing for the intrinsic growth rate of the species, sharp 
criteria for spreading and vanishing are established, and estimates for spreading speed when spreading 
occurs are also derived. The obtained results considerably improve and complement the existing ones, 
especially those of [11,25].
© 2017 Elsevier Inc. All rights reserved.

MSC: 35K20; 35R35; 35J60; 92B05

Keywords: Diffusive logistic equation; Free boundary; Advection; Heterogeneous time-periodic environment; 
Spreading-vanishing dichotomy; Spreading speed

✩ W. Ding was supported by the Australian Research Council (No. DP 150101867), and R. Peng was supported by 
NSF of China (No. 11671175, 11571200), the Priority Academic Program Development of Jiangsu Higher Education 
Institutions, Top-notch Academic Programs Project of Jiangsu Higher Education Institutions (No. PPZY2015A013) and 
Qing Lan Project of Jiangsu Province.

* Corresponding author.
E-mail addresses: wding2@une.edu.au (W. Ding), pengrui_seu@163.com (R. Peng), wlxznu@163.com (L. Wei).
http://dx.doi.org/10.1016/j.jde.2017.04.013
0022-0396/© 2017 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jde.2017.04.013
http://www.elsevier.com/locate/jde
mailto:wding2@une.edu.au
mailto:pengrui_seu@163.com
mailto:wlxznu@163.com
http://dx.doi.org/10.1016/j.jde.2017.04.013


JID:YJDEQ AID:8799 /FLA [m1+; v1.257; Prn:24/04/2017; 15:31] P.2 (1-44)

2 W. Ding et al. / J. Differential Equations ••• (••••) •••–•••
1. Introduction

In this paper, we study the diffusive logistic equation with advection and a free boundary:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − duxx − qux = u(α(t, x) − β(t, x)u), t > 0, 0 < x < h(t),

ux(t,0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −μux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0.

(1.1)

Problem (1.1) may be used to describe the evolution of an invasive species in a heterogeneous 
time-periodic environment, in which u(t, x) represents the population density of the single 
species at time t and location x, x = h(t), acting as the spreading front, is the free boundary 
to be determined, and the initial function u0(x) stands for the population density at its early 
stage of introduction. The coefficient functions α and β can be interpreted, respectively, as the 
intrinsic growth rate of the species and its intra-specific competition, and the positive constant 
d is the random diffusion rate and the nonnegative constant q is the coefficient of the term ux

which accounts for the influence of advection from 0 towards the moving front h(t). A deduction 
of these conditions from ecological consideration can be found in [2].

Throughout this paper, we assume that h0, μ, d are positive constants, and u0 ∈ H(h0) with

H(h0) :=
{
φ ∈ C([0, h0]) : φ′(0) = φ(h0) = 0, φ(x) > 0 in (0, h0)

}
.

The functions α and β satisfy the following conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(i) α, β ∈ Cν0/2,ν0(R× [0,∞)) for some ν0 ∈ (0,1);
(ii) there are positive constants κ1, κ2 such that

α(t, x) ≤ κ2, κ1 ≤ β(t, x) ≤ κ2, ∀x ∈ [0,∞), t ∈ R;
(iii) α(t, x), β(t, x) are T -periodic in t for a fixed T > 0, that is,

α(t, x) = α(t + T ,x), β(t, x) = β(t + T ,x), ∀x ∈ [0,∞), t ∈R.

(1.2)

In what follows, let us briefly discuss the motivation of the present work by recalling some 
existing results on problem (1.1). When α and β are positive constants, (1.1) with no advection 
term (i.e., q = 0) was first studied in [9] for the spreading of a new or invasive species. In such a 
case, it is proved that if

u0 ∈ C2([0, h0]), u′
0(0) = u0(h0) = 0, u0(x) > 0 in (0, h0),

(1.1) admits a unique solution (u, h) with u(t, x) > 0 and h′(t) > 0 for all t > 0 and 0 ≤ x < h(t), 
and a spreading–vanishing dichotomy holds; namely, there is a spatial barrier R∗ > 0 such that 
either

• Spreading: the free boundary crosses the barrier at some finite time (i.e., h(t0) ≥ R∗ for 
some t0 ≥ 0), and then goes to infinity as t → ∞ (i.e., limt→∞ h(t) = ∞), and the population 
spreads to the entire space; or
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• Vanishing: the free boundary never crosses the barrier (i.e., h(t) < R∗ for all t > 0), and the 
population vanishes eventually.

Moreover, when spreading occurs, the asymptotic spreading speed of the expanding front can 
be determined, i.e., limt→∞ h(t)/t = c, where c is the unique positive constant such that the 
problem

{
dpxx − cpx + p(α − βp) = 0 for x ∈ (0,∞),

p(x) > 0 for x ∈ (0,∞), p(0) = 0, μpx(0) = c, p(∞) = α/β,
(1.3)

admits a (unique) solution p. Such a solution p(x) is called a semi-wave with speed c.
The above mentioned results have subsequently been extended to more general situations in 

several directions. In the sequel, we only mention a few that are closely related to this work.
We first mention some results when the advection coefficient q = 0. In the case that α and β

are positive bounded functions independent of t , the spreading–vanishing dichotomy was proved 
in [6]. The effects of the diffusion coefficient d on the spreading–vanishing dichotomy were stud-
ied in later work [26]. When spreading occurs, upper and lower bounds for spreading speeds were 
also obtained in these two works by using semi-waves of type (1.3) to construct suitable upper 
and lower solutions for problem (1.1). Indeed, these two bounds coincide when the environment 
is asymptotic homogeneous at infinity, i.e., limx→∞ α(x) and limx→∞ β(x) exist. The paper [8]
derived similar results in the case that the environment is asymptotic periodic at infinity, by first 
showing the existence of semi-wave for problem (1.1) in space-periodic and time autonomous 
environment.

In the general case where α(t, x), β(t, x) are periodic in t and heterogeneous in x, and α(t, x)

allows to change signs, the spreading–vanishing dichotomy was investigated in [25], under the 
assumption that there exist a constant ρ with −2 < ρ ≤ 0, and T -periodic positive functions 
α∞(t), β∞(t), α∞(t), and β∞(t) ∈ Cν0/2([0, T ]) satisfying

⎧⎪⎪⎨
⎪⎪⎩

α∞(t) = lim inf
x→∞

α(t, x)

xρ
, α∞(t) = lim sup

x→∞
β(t, x)

xρ
,

β∞(t) = lim inf
x→∞

α(t, x)

xρ
, β∞(t) = lim sup

x→∞
β(t, x)

xρ
,

uniformly on [0, T ]. (1.4)

Clearly, this assumption requires the functions α(t, x) and β(t, x) to be positive for all large x. 
Moreover, when spreading happens, the upper and lower bounds for spreading speeds were es-
tablished if in addition (1.4) holds with ρ = 0, that is, α(t, x) and β(t, x) are bounded from 
above and below for all large x by positive x-independent functions. Their approach highly re-
lies on the existence of semi-wave solutions for (1.1) in time-periodic and spatially homogeneous 
environment; one may refer to [11] for precise details.

When the advection coefficient q > 0, the issue on the long-time behavior of solutions to 
problem (1.1) is more intricate. To our knowledge, the spreading and vanishing phenomena were 
well studied only in the spatially homogeneous environment, see [12,24]. More precisely, in the 
case where α and β are positive constants, the authors in [12] proved that the spreading–vanishing 
dichotomy holds when q is small and only vanishing occurs when q is large. For the intermediate 
q , besides spreading and vanishing, virtual spreading or virtual vanishing may happen. These 
results were recently extended by [24] to the case where α and β are positive periodic functions 
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in t , independent of x. In spatially heterogeneous media, a reaction–diffusion logistic model with 
a free boundary and a special advection was considered in the recent paper [19].

The current paper investigates the asymptotic behavior of solutions to problem (1.1), by fo-
cusing on a more general case that α(t, x) and β(t, x) are periodic in t and truly depend on x, 
and α(t, x) may change signs for x in the whole half line R+. Nowadays, it has been realized that 
spatial heterogeneity and time-periodicity of the exotic environment are non-negligible factors 
that can substantially affect the dynamics of a species; meanwhile there is considerable evidence 
showing that advection is another significant factor. For more discussions in this regard, one may 
refer to, for instance, [3,16–18] and references therein. Moreover, since the function α stands for 
the intrinsic growth rate of the species, α > 0 means that the living habitat is favorable to the 
invasive species, while α < 0 means that it is unfavorable. Therefore, in the viewpoint of biol-
ogy, allowing α to be sign-changing (especially for large x) seems more reasonable in certain 
situations.

We will derive the spreading–vanishing dichotomy for (1.1) in terms of the diffusion rate d
and the size h0 of initial habitat; estimate the spreading speed when spreading occurs; and also 
investigate the influence of small advection on the long-time behavior of solutions. Our results 
considerably improve and complement the afore-mentioned ones. The remaining parts of this 
paper are organized as follows.

In Section 2, we consider a linear periodic-parabolic eigenvalue problem in one space di-
mension, and investigate various qualitative properties of the principal eigenvalue, including the 
monotonicity with respect to the diffusion rate d and the asymptotic behavior as the diffusion 
rate or the length of space domain is large or small. The obtained results, which are of indepen-
dent interests, will become fundamental in determining the long-time behavior of (1.1) in the 
subsequent sections.

Section 3 is concerned with the spreading–vanishing dichotomy as well as some sharp criteria 
of spreading and vanishing for (1.1) with q = 0. Unlike the assumption (1.4), we assume that 
α(t, x) is bounded from below at infinity by a sign-indefinite space-time periodic function (see 
the assumption (3.3) below). We will also give examples of α, which changes signs even at large 
x, satisfying this assumption but not (1.4).

In Section 4, we improve the estimates on the upper and lower bounds for spreading speeds to 
(1.1) with q = 0, by relaxing the assumptions in [6,25,26] to the case that the functions α(t, x)

and β(t, x) are bounded from above and below by time-space functions at large x (see the as-
sumption (4.1) below). Since whether there exists semi-wave solutions in space-time periodic 
environment is unclear at this moment, it seems that earlier methods can not be adapted to our 
problem. Our approach is inspired by the recent work [4] on the existence of spreading speeds 
without knowing a priori the existence of corresponding semi-wave solutions.

In Section 5, we show that the long-time behavior of solution to problem (1.1) with small 
advection is similar to that of the corresponding problem without advection.

2. A linear periodic-parabolic principal eigenvalue problem

In this section, we consider the following linear periodic-parabolic eigenvalue problem:

⎧⎪⎪⎨
⎪⎪⎩

ϕt − dϕxx − qϕx − α(t, x)ϕ = λϕ, 0 < t < T, 0 < x < L,

ϕx(t,0) = 0, ϕ(t,L) = 0, 0 < t < T,

ϕ(0, x) = ϕ(T , x), 0 < x < L,

(2.1)
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where L > 0 is a given constant. It is well known (see, e.g., [13]) that, given d, L > 0 and 
the Hölder continuous T -periodic function α, problem (2.1) admits a principal eigenvalue λ =
λ1 ∈ R, which is unique in the sense that only such an eigenvalue corresponds to a positive 
eigenfunction ϕ ∈ C1,2(R × [0, L]) (ϕ is also unique up to multiplication). Such a function ϕ
is usually called a principal eigenfunction. To stress the dependence of the principal eigenvalue 
λ1 on d , L and q , we denote λ1 by λ1,q(d, L), and when q = 0, we write λ1 = λ1(d, L) for 
simplicity.

We now study qualitative properties of λ1(d, L) with respect to d . Our first result concerns 
the limiting behaviors of λ1,q(d, L) as d → 0 and d → ∞.

Proposition 2.1. For any given L > 0, the following assertions hold.

(i) For any q ≥ 0, limd→∞ λ1,q (d, L) = ∞;

(ii) If q = 0, then limd→0 λ1(d, L) = − 1
T

maxx∈[0,L]
∫ T

0 α(t, x)dt;
(iii) If q > 0, then limd→0 λ1,q (d, L) = ∞.

Proof. We note that for any given d, L > 0, λ1,q (d, L) ≥ λ1,q,∗(d, L), where λ1,q,∗(d, L) is the 
principal eigenvalue of the elliptic eigenvalue problem

⎧⎨
⎩

−dϕxx − qϕx − ϕ max
[0,T ]×[0,L]

α(t, x) = λϕ, 0 < x < L,

ϕx(0) = 0, ϕ(L) = 0.

Furthermore, it is well known that λ1,q,∗(d, L) → ∞ as d → ∞; indeed, this fact follows from an 
obvious modification of the proof of [26, Theorem 3.1(c)]). Hence, λ1,q (d, L) → ∞ as d → ∞
and (i) holds.

We now assume q = 0 and are going to verify the assertion (ii). Denote by λN1 (d, L) the 
principal eigenvalue of the following problem

⎧⎪⎪⎨
⎪⎪⎩

wt − dwxx − α(t, x)w = λw, 0 < x < L,0 < t < T,

wx(t, x) = 0, x = 0,L, 0 < t < T,

w(0, x) = w(T ,x), 0 < x < L.

Clearly, λ1(d, L) > λN1 (d, L), ∀d > 0. By [14, Lemma 2.4], it is also known that

lim
d→0

λN1 (d,L) = − 1

T
max

x∈[0,L]

T∫
0

α(t, x)dt,

from which we have

lim inf
d→0

λ1(d,L) ≥ − 1

T
max

x∈[0,L]

T∫
0

α(t, x)dt.

Thus, to prove (ii), it remains to show
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lim sup
d→0

λ1(d,L) ≤ − 1

T
max

x∈[0,L]

T∫
0

α(t, x)dt. (2.2)

Since α is continuous on [0, L] × [0, T ], we assume that

− max
x∈[0,L]

T∫
0

α(t, x)dt = −
T∫

0

α(t, x0)dt for some x0 ∈ [0,L].

Without loss of generality, we assume that x0 ∈ (0, L); the case of x0 = 0 or x0 = L can be 
treated similarly with minor obvious changes of the argument below.

For any given small constant ε > 0, we consider the eigenvalue problem⎧⎪⎪⎨
⎪⎪⎩

wt − dwxx + c(t, x)w = λw, 0 < x < L,0 < t < T,

wx(t,0) = w(t,L) = 0, 0 < t < T,

w(0, x) = w(T ,x), 0 < x < L,

(2.3)

where

c(t, x) = −α(t, x) + 1

T

T∫
0

α(t, x0)dt − ε.

Denote by λ1(c; L) the principal eigenvalue of (2.3), and by λD1 (c; L) the principal eigenvalue 
of (2.3) with the boundary condition wx(t, 0) = 0 replaced by w(t, 0) = 0.

Note that

T∫
0

c(t, x0)dt = −εT < 0.

This allows us to choose a small constant 0 < ε0 < min{x0, ε} such that 0 < x0 + ε0 < L and

c̃(t; ε0) := max
x∈[x0−ε0,x0+ε0]

c(t, x), t ∈ [0, T ]

satisfies

T∫
0

c̃(t; ε0)dt < 0. (2.4)

We next look at the Dirichlet eigenvalue problem⎧⎪⎪⎨
⎪⎪⎩

wt − dwxx + c̃(t; ε0)w = λw, x0 − ε0 < x < x0 + ε0,0 < t < T,

w(t, x) = 0, x = x0 − ε0, x0 + ε0, 0 < t < T,

w(0, x) = w(T ,x), x − ε < x < x + ε .

(2.5)
0 0 0 0
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Let λD1 (c̃; ε0) be its principal eigenvalue. Indeed, by a variable separation technique, simple 
computation shows that λD1 (c̃; ε0) has the following explicit expression:

λD1 (c̃; ε0) = 1

T

T∫
0

c̃(t; ε0)dt + π2

4ε2
0

d,

and a corresponding principal eigenfunction can be chosen as

w(t, x) = sin
π(x − x0 + ε0)

2ε0
exp

( t

T 2

T∫
0

c̃(s; ε0)ds − 1

T

t∫
0

c̃(s; ε0)ds
)
.

We also use λD1 (c; ε0) to denote the principal eigenvalue of (2.5) with c̃ replaced by c. As 
c(x, t) ≤ c̃(t; ε0) on [x0 − ε0, x0 + ε0] × [0, T ], we have

λD1 (c; ε0) ≤ λD1 (c̃; ε0) = 1

T

T∫
0

c̃(t; ε0)dt + π2

4ε2
0

d. (2.6)

Because (x0 − ε0, x0 + ε0) is a proper subinterval of (0, L), clearly λ1(c; L) ≤ λD1 (c; L) ≤
λD1 (c; ε0). Therefore, in view of (2.6), it follows that

lim sup
d→0

λ1(c;L) ≤ 1

T

T∫
0

c̃(t; ε0)dt. (2.7)

By recalling the definition of c(x, t) and λ1(c; L), we also have

λ1(d,L) = λ1(c;L) − 1

T

T∫
0

α(t, x0)dt + ε. (2.8)

By sending ε → 0 (and so ε0 → 0 and lim supε→0

∫ T

0 c̃(t; ε0)dt ≤ 0 due to (2.4)), from (2.7) and 
(2.8), we derive (2.2) and (ii) is proved.

Finally, we show the assertion (iii). Since

λ1,q(d,L) ≥ λ1,q (d,L) − max
[0,T ]×[0,L]

α(t, x),

where λ1,q (d, L) stands for the principal eigenvalue of the elliptic eigenvalue problem

−dϕxx − qϕx = λϕ, 0 < x < L; ϕx(0) = ϕ(L) = 0, (2.9)

it suffices to show λ1,q (d, L) → ∞ as d → 0. To do so, we set ϕ = e− q
2d

xw in (2.9), and thus w
solves
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−dwxx + q2

4d
w = λ1,q (d,L)w, 0 < x < L; wx(0) − q

2d
w(0) = w(L) = 0. (2.10)

Then, multiplying the equation of (2.10) by w and integrating the resulting identity over [0, L], 
we easily obtain

λ1,q (d,L)

L∫
0

w2dx = q

2
w2(0) + d

L∫
0

w2
xdx + q2

4d

L∫
0

w2dx ≥ q2

4d

L∫
0

w2dx,

and so λ1,q (d, L) ≥ q2

4d
→ ∞ as d → 0, as we wanted. So far, the proof of Proposition 2.1 is 

complete. �
Proposition 2.1 already implies that λ1,q(d, L) is non-monotone in d > 0 when q > 0. If 

q = 0, it is known that λ1(d, L) is monotone increasing in d in the autonomous case (that is, 
α(t, x) depends only on the spatial variable x). The following result shows that, in sharp con-
trast, in the general periodic-parabolic setting, λ1(d, L) may fail to be monotone with respect 
to d . We should point out that the assertion (ii) of Proposition 2.2 below is an analogue of [14, 
Theorem 2.2], where the homogeneous Neumann boundary condition was considered.

Proposition 2.2. Assume that q = 0. For any given L > 0, the following assertions hold.

(i) If either α(t, x) = α(x) depends on the spatial variable x alone, or α ∈ Cν0/2,1(R × [0, L])
and αx(t, x) ≤ 0, ∀ (t, x) ∈ R × [0, L], then λ1(d, L) is monotone increasing in d > 0;

(ii) If α(t, x) = α1(x) + σα2(t, x), where

α1(x) ≤ 0,

T∫
0

α2(t, x)dt = 0 for all x ∈ [0,L] and

T∫
0

max
x∈[0,L]

α2(t, x)dt > 0,

then for suitably large σ > 0, there exist 0 < d1 < d2 < ∞ such that λ1(d1, L) = λ1(d2, L)

and so λ1(d, L) is not monotone in d > 0.

Proof. We first prove the assertion (i). When α(t, x) depends only on the spatial variable x, the 
monotonicity of λ1(d, L) in d is well known; see, e.g., [26, Theorem 3.1]. It remains to verify 
the conclusion in the second case.

Since λ1(d, L) is a simple eigenvalue of (2.1), by the standard perturbation theory (see, e.g., 
[15]), λ1(d, L) and its corresponding eigenfunction ϕ depend smoothly on d . We first claim that

ϕx < 0, ∀(t, x) ∈ R× (0,L]. (2.11)

To the aim, let us define w(t, x) = ϕx(t, x). In view of the Hopf boundary lemma, we have 
ϕx(t, L) < 0 for t ∈R. Differentiating (2.1) with respect to x yields that w satisfies⎧⎪⎪⎨

⎪⎪⎩
wt − dwxx − αx(t, x)ϕ − α(t, x)w = λ1(d,L)w, 0 < t < T, 0 < x < L,

w(t,0) = 0, w(t,L) < 0, 0 < t < T,

w(0, x) = w(T ,x), 0 < x < L.

(2.12)
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Due to α, αx ∈ C([0, T ] × [0, L]), the standard regularity theory for parabolic equations gives 
w ∈ W

1,2
p ((0, T ) × (0, L)) for any 1 < p < ∞. As αx ≤ 0 on [0, T ] × [0, L], it follows from 

(2.12) that

⎧⎪⎪⎨
⎪⎪⎩

wt − dwxx − (α(t, x) + λ1(d,L))w ≤ 0, 0 < t < T, 0 < x < L,

w(t,0) = 0, w(t,L) < 0, 0 < t < T,

w(0, x) = w(T ,x), 0 < x < L.

(2.13)

On the other hand, 0 is the principal eigenvalue of

⎧⎪⎪⎨
⎪⎪⎩

ϕt − dϕxx − (α(t, x) + λ1(d,L))ϕ = λϕ, 0 < t < T, 0 < x < L,

ϕx(t,0) = 0, ϕ(t,L) = 0, 0 < t < T,

ϕ(0, x) = ϕ(T , x), 0 < x < L.

The well-known monotonicity of the principal eigenvalue to linear periodic-parabolic problem 
with respect to the boundary condition implies that λ1(d, L) > 0, where λ1(d, L) is the principal 
eigenvalue of the eigenvalue problem:

⎧⎪⎪⎨
⎪⎪⎩

ϕt − dϕxx − (α(t, x) + λ1(d,L))ϕ = λϕ, 0 < t < T, 0 < x < L,

ϕ(t,0) = 0, ϕ(t,L) = 0, 0 < t < T,

ϕ(0, x) = ϕ(T , x), 0 < x < L.

Thus, [23, Proposition 2.1], as applied to (2.13), enables us to conclude that −w > 0 in R ×
(0, L]. The claim (2.11) is proved.

Let λ1 := λ1(d, L) and the associated principal eigenfunction ϕ satisfy (2.1). Clearly, λ1 and 
ϕ are C1-functions of d . For simplicity, denote ∂ϕ

∂d
by ϕ′ and ∂λ1

∂d
by λ′

1. Differentiating (2.1)
with respect to d , we have

⎧⎪⎪⎨
⎪⎪⎩

ϕ′
t − dϕ′

xx − ϕxx − α(t, x)ϕ′ = λ′
1ϕ + λ1ϕ

′, 0 < t < T, 0 < x < L,

ϕ′
x(t,0) = 0, ϕ′(t,L) = 0, 0 < t < T,

ϕ′(0, x) = ϕ′(T , x), 0 < x < L.

(2.14)

On the other hand, according to [13, Chapter II], λ1 is also the principal eigenvalue of the 
adjoint eigenvalue problem associated with (2.1):

⎧⎪⎪⎨
⎪⎪⎩

−ψt − dψxx − α(t, x)ψ = λψ, 0 < t < T, 0 < x < L,

ψx(t,0) = 0, ψ(t,L) = 0, 0 < t < T,

ψ(0, x) = ψ(T ,x), 0 < x < L.

(2.15)

Let ψ be the principal eigenfunction corresponding to λ1, which satisfies (2.15). Multiplying the 
first equation of (2.14) by ψ and integrating the resulting equation, we obtain
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T∫
0

L∫
0

(−ψt − dψxx − α(t, x)ψ)ϕ′dxdt =
T∫

0

L∫
0

(ϕxx + λ′
1ϕ + λ1ϕ

′)ψdxdt. (2.16)

Substituting −ψt − dψxx − α(x, t)ψ = λ1ψ to (2.16) yields

λ′
1 = −

T∫
0

L∫
0

ϕxxψdxdt

T∫
0

L∫
0

ϕψdxdt

=

T∫
0

L∫
0

ϕxψxdxdt

T∫
0

L∫
0

ϕψdxdt

. (2.17)

Making use of (2.15), we find that ξ(t, x) = ψ(−t, x) solves

⎧⎪⎪⎨
⎪⎪⎩

ξt − dξxx − α(−t, x)ξ = λ1ξ, 0 < x < L,0 < t < T,

ξx(t,0) = 0, ξ(t,L) = 0, 0 < t < T,

ξ(0, x) = ξ(T , x), 0 < x < L.

Since αx ≤ 0 on R × [0, L], the same reasoning as in deducing (2.11) shows that ξx(t, x) =
ψx(−t, x) < 0 for x ∈ (0, L] and t ∈ [0, T ]. Thus, ψx < 0 on R × (0, L]. This, together with 
(2.11) and (2.17), implies that λ′

1 > 0.
We now prove the assertion (ii). The analysis is similar to that of [14, Theorem 2.2(b)]. We first 

take a0(x) = −α1(x) in the elliptic operator A of [13, pp. 34, 38], and then let σ be sufficiently 
large so that [13, Lemma 15.4] can be applied to conclude that λ1(d, L) < 0. For such fixed σ , 
in light of Proposition 2.1, λ1(d, L) is nonnegative for both small and large d . Therefore, there 
are two different 0 < d1 < d2 < ∞ such that λ1(d1, L) = λ1(d2, L). �

In what follows, we will investigate qualitative properties of λ1(d, L) with respect to L. For 
later purpose, we extend the function α(t, x) to the whole space:

α̃(t, x) =
{

α(t, x) if (t, x) ∈ R× [0,∞),

α(t,−x) if (t, x) ∈ R× (−∞,0).
(2.18)

Clearly, α̃ ∈ Cν0/2,ν0(R × R) and is still T -periodic in t . Moreover, λ1(d, L) is also the unique 
principal eigenvalue of the periodic-parabolic eigenvalue problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕt − dϕxx − α̃(t, x)ϕ = λϕ, 0 < t < T, −L < x < L,

ϕ(t,−L) = 0, ϕ(t,L) = 0, 0 < t < T,

ϕx(t,0) = 0, 0 < t < T,

ϕ(0, x) = ϕ(T , x), −L < x < L.

(2.19)

The following result concerns the limiting behaviors of λ1(d, L) as L → 0 and L → ∞.



JID:YJDEQ AID:8799 /FLA [m1+; v1.257; Prn:24/04/2017; 15:31] P.11 (1-44)

W. Ding et al. / J. Differential Equations ••• (••••) •••–••• 11
Proposition 2.3. For any given d > 0 and q ≥ 0, λ1,q(d, L) is strictly decreasing with respect to 
L > 0, limL→0 λ1,q(d, L) = ∞ and

lim
L→∞λ1,q (d,L) := λ1,q (d,∞) ∈

[
− sup

[0,T ]×[0,∞)

|α|,∞
)

exists.

Moreover, if q = 0, then there is a positive T -periodic function ϕ0 ∈ C1,2(R × R) such that 
(λ1(d, ∞), ϕ0)

1 solves

⎧⎪⎪⎨
⎪⎪⎩

ϕt − dϕxx − α̃(t, x)ϕ = λϕ, 0 < t < T, −∞ < x < ∞,

ϕx(t,0) = 0, 0 < t < T,

ϕ(0, x) = ϕ(T , x), −∞ < x < ∞.

(2.20)

If additionally either α(t, x) = α(x) depends on the spatial variable x alone or α ∈ Cν0/2,1(R ×
[0, ∞)) and αx(t, x) ≤ 0, ∀ (t, x) ∈ R × [0, ∞), then λ1(d, ∞) is nondecreasing in d > 0. Fur-
thermore, when αx(t, x) ≤, 
≡ 0, ϕ0 satisfies (ϕ0)x(t, x) < 0, ∀ (t, x) ∈ R × (0, ∞).

Proof. The strict monotonicity of λ1,q(d, L) with respect to L is well known and λ1,q(d, ∞) ∈[− sup[0,T ]×[0,∞) |α|, ∞)
is obvious. The fact limL→0 λ1,q (d, L) = ∞ is also folklore; for read-

er’s convenience, we provide a proof here. Given small ε0 > 0, for any 0 < L ≤ ε0, consider the 
elliptic eigenvalue problem

⎧⎨
⎩

−dϕxx − qϕx − ϕ max
[0,T ]×[0,ε0]

α(t, x) = λϕ, 0 < x < L,

ϕx(0) = 0, ϕ(L) = 0,

and denote its principal eigenvalue by λ1,q (d, L). Clearly, λ1,q (d, L) ≤ λ1,q (d, L). Furthermore, 

set ϕ = e− q
2d

xw, and then w solves

⎧⎪⎪⎨
⎪⎪⎩

−dwxx + q2

4d
w − w max

[0,T ]×[0,ε0]
α(t, x) = λ1,q (d,L)w, 0 < x < L;

wx(0) = q

2d
w(0), w(L) = 0.

Since q ≥ 0, it is easily checked that λ1,q (d, L) ≥ λ1,q,∗(d, L), where λ1,q,∗(d, L) is the princi-
pal eigenvalue to the following eigenvalue problem

⎧⎪⎨
⎪⎩

−dψxx + q2

4d
ψ − ψ max

[0,T ]×[0,ε0]
α(t, x) = λψ, 0 < x < L;

ψx(0) = 0, ψ(L) = 0.

Therefore, we obtain λ1,q,∗(d, L) ≤ λ1,q (d, L). On the other hand, elementary calculation shows 
that

1 For simplicity of notations here, we denote λ1,q (d, ∞) by λ1(d, ∞) when q = 0.
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λ1,q,∗(d,L) = dπ2

4L2
− max

[0,T ]×[0,ε0]
α(t, x) + q2

4d
,

and its corresponding eigenfunction can be taken as ψ(x) = cos π
2L

x. Sending L → 0, we deduce 
the desired limit.

We now verify that λ1(d, ∞) satisfies (2.20). To do so, we choose ϕL to be the eigenfunction 
corresponding to λ1(d, L) with ϕL(0, 0) = 1, ∀L > 0. Let

ϕ̃L(t, x) =
{

ϕL(t, x) if (t, x) ∈R× [0,L),

ϕL(t,−x) if (t, x) ∈R× (−L,0).

Clearly, (λ1(d, L), ϕ̃L) is an eigenpair to problem (2.19). Since the sequence λ1(d, L) is bounded 
in L > 1 and α̃ is bounded in R ×R, applying the well-known Krylov–Safonov Harnack inequal-
ity to (2.19), for any given L > L0 > 1, we can find a positive constant C(L0) such that

max
[−T ,0]×[−L0,L0]

ϕ̃L(t, x) ≤ C(L0) min[−L0,L0]
ϕ̃L(0, x) ≤ C(L0).

In view of the T -periodicity of ϕ̃L, by a standard parabolic compactness argument, for any 
L0 > 1, we can extract a subsequence of ϕ̃L that converges in C1,2(R × [−L0, L0]) as L → ∞
to a nonnegative function ϕ̂, and ϕ̂ satisfies

⎧⎪⎪⎨
⎪⎪⎩

ϕ̂t − dϕ̂xx − α̃(t, x)ϕ̂ = λ1(d,∞)ϕ̂, 0 < t < T, −L0 < x < L0,

ϕ̂x(t,0) = 0, 0 < t < T,

ϕ̂(0, x) = ϕ̂(T , x), −L0 < x < L0.

Furthermore, a diagonal argument ensures that there is a further subsequence of ϕ̃L converging to 
ϕ̂ in C1,2

loc (R2), and (λ1(d, ∞), ϕ̂) is a solution to problem (2.20). As we have assumed ϕL(0, 0) =
1 for any L > 0, there holds ϕ̂(0, 0) = 1. It then follows from the parabolic maximum principle 
that ϕ̂ > 0 in R ×R. Let ϕ0(t, x) = ϕ̂(t, x) for all (t, x) ∈ R ×R

+. Then (λ1(d, ∞), ϕ0) solves 
(2.20).

Next, we assume that either α(t, x) depends on the spatial variable x alone or α ∈ Cν0/2,1(R ×
[0, ∞)) and αx(t, x) ≤ 0, ∀(t, x) ∈ [0, T ] × [0, ∞). By Proposition 2.2 (i), for any L > 0, 
λ1(d, L) is increasing in d > 0. Hence, λ1(d, ∞) is nondecreasing in d > 0.

If αx ≤ 0, the proof of Proposition 2.2 infers that (ϕ̃L)x < 0 in R × (0, L] for any given L > 0. 
The above analysis implies that ϕ̂x ≤ 0 in R × (0, ∞). If further αx ≤, 
≡ 0, it follows that ϕ̂x < 0
in R × (0, ∞). In fact, define w(t, x) = ϕ̂x(t, x). By differentiating (2.20) with respect to x, for 
any given L > 0, we deduce that w satisfies

⎧⎪⎪⎨
⎪⎪⎩

wt − dwxx − αx(t, x)ϕ − α(t, x)w = λ1(d,∞)w, 0 < t < T, 0 < x < L,

w(t,0) = 0, w(t,L) ≤ 0, 0 < t < T,

w(0, x) = w(T ,x), 0 < x < L,

and w ∈ W
1,2
p ((0, T ) × (0, L)) for any 1 < p < ∞. We recall that λ1(d, ∞) < λ1(d, L). This, 

together with the nonnegativity of w and αx , shows that
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⎧⎪⎪⎨
⎪⎪⎩

wt − dwxx − (α(t, x) + λ1(d,L))w ≤ 0, 
≡ 0, 0 < t < T, 0 < x < L,

w(t,0) = 0, w(t,L) ≤ 0, 0 < t < T,

w(0, x) = w(T ,x), 0 < x < L.

Then, by resorting to [23, Proposition 2.1], similar arguments to those used in obtaining (2.11)
conclude that w < 0 in R × (0, L). Due to the arbitrariness of L, ϕ̂x(t, x) = w(t, x) < 0 for all 
(t, x) ∈ R × (0, ∞). �

Let λ1(d, ∞) be given as in Proposition 2.3. Next we discuss the asymptotic behavior of 
λ1(d, ∞) as d is large or small under certain conditions on α.

Proposition 2.4. Assume that q = 0. Let α̃(t, x) be the symmetric function defined in (2.18). 
Assume that α̃(t, x) is also periodic in x, that is, there is some l > 0 such that

α̃(t, x) = α̃(t, x + l) for all (t, x) ∈R×R.

Then the following assertions hold.

(i) For any given d > 0, there is a positive function ϕ0 ∈ C1,2(R × R) such that the pair 
(λ1(d, ∞), ϕ0) solves

⎧⎪⎪⎨
⎪⎪⎩

ϕt − dϕxx − α̃(t, x)ϕ = λϕ, t ∈ R, x ∈ R,

ϕx(t,0) = 0, t ∈ R,

ϕ(t, x) = ϕ(t + T ,x + l), t ∈ R, x ∈ R.

Moreover, we have

λ1(d,∞) = sup
{
λ ∈R : there exists ϕ ∈ C1,2(R2) such that

ϕ is T -periodic, ϕ > 0 and (Lα̃ − λ)ϕ ≥ 0 in R
2
}
,

with Lα̃ϕ := ϕt − dϕxx − α̃(t, x)ϕ for ϕ ∈ C1,2(R2).
(ii) There holds

lim
d→0

λ1(d,∞) = − 1

T
max

x∈[0,l]

T∫
0

α(t, x)dt, lim
d→∞λ1(d,∞) = − 1

T l

l∫
0

T∫
0

α(t, x)dtdx.

In particular, if α(t, x) = α(t) depends only on the time variable, we have

λ1(d,∞) = − 1

T

T∫
0

α(t)dt for all d > 0.
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Proof. The first assertion follows from a direct application of [20, Theorems 2.7, 2.13 and Propo-
sition 2.14], since α̃(t, x) is a time-space periodic function and is symmetric in x. The second 
one follows from [20, Theorem 3.6]. �
Proposition 2.5. Suppose q = 0. Assume that α(t, x) depends on the spatial variable x alone 
and supx∈[0,∞) α(x) is attainable, or α ∈ Cν0/2,1(R × [0, ∞)) and αx(t, x) ≤ 0 for all (t, x) ∈
R × [0, ∞). Then

lim
d→0

λ1(d,∞) = − 1

T
max

x∈[0,∞)

T∫
0

α(t, x)dt,

and

lim
d→∞λ1(d,∞) := λ∗

1(∞) ∈
[
− 1

T
max

x∈[0,∞)

T∫
0

α(t, x)dt, ∞
]

exists.

Furthermore, we have λ∗
1(∞) ≥ 0 if α ≤ 0 in R ×[0, ∞), and λ∗

1(∞) < 0 if α > c0 in R ×[0, ∞)

for some constant c0 > 0.

Proof. Under our assumptions, according to Proposition 2.3, λ1(d, ∞) is nondecreasing in 
d > 0. Thus the limits limd→0 λ1(d, ∞) and limd→∞ λ1(d, ∞) exist.

We next derive the explicit expression of limd→0 λ1(d, ∞). Under our assumptions on α, in 
either case, clearly there exists x0 ∈ [0, ∞) such that

− 1

T
max

x∈[0,∞)

T∫
0

α(t, x)dt = − 1

T

T∫
0

α(t, x0)dt.

By our notation, λ1(d, ∞) < λ1(d, L) for all L > 0, d > 0. Moreover, Proposition 2.1 infers 
that

lim
d→0

λ1(d,L) = − 1

T
max

x∈[0,L]

T∫
0

α(t, x)dt = − 1

T

T∫
0

α(t, x0)dt, ∀L > x0.

Thus, we get

lim sup
d→0

λ1(d,∞) ≤ lim
d→0

λ1(d,L) = − 1

T

T∫
0

α(t, x0)dt. (2.21)

On the other hand, since α(t, x) ≤ α(t, x0) for all (t, x) ∈ R × [0, ∞), we have λ1(d, L) >
λN1 (d, L) for any d > 0, L > x0, where λN1 (d, L) is the principal eigenvalue of the periodic-
parabolic eigenvalue problem:
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⎧⎪⎪⎨
⎪⎪⎩

ϕt − dϕxx − α(t, x0)ϕ = λϕ, 0 < t < T, 0 < x < L,

ϕx(t,0) = 0, ϕx(t,L) = 0, 0 < t < T,

ϕ(0, x) = ϕ(T , x), 0 < x < L.

It is easily seen that

λN1 (d,L) = − 1

T

T∫
0

α(t, x0)dt, ∀d > 0, L > x0.

This implies that

lim inf
d→0

λ1(d,∞) ≥ − 1

T

T∫
0

α(t, x0)dt. (2.22)

Hence, we obtain from (2.21) and (2.22) that

lim
d→0

λ1(d,∞) = − 1

T

T∫
0

α(t, x0)dt = − 1

T
max

x∈[0,∞)

T∫
0

α(t, x)dt.

The proof of Proposition 2.5 is thus complete. �
As it will be seen in the coming sections, the sign of λ1(d, ∞) will play a crucial role in de-

termining whether spreading or vanishing occurs. Though Propositions 2.4 and 2.5 have already 
provided some information in this regard, in the following we give some sufficient conditions for 
the negativity of λ1(d, ∞).

Proposition 2.6. Assume that q = 0. Let λ1(d, ∞) be given as in Proposition 2.3. Denote α(x) =
mint∈R α(t, x) for x ∈ [0, ∞). Then the following assertions hold.

(i) If either there exist a constant α0 > 0 and two sequences yn > xn > 0 such that yn−xn → ∞
as n → ∞ and α(x) ≥ α0 for x ∈ [xn, yn], or there exist constants α0 > 0, k > 1, 0 ≥ ρ >

−2 and a sequence xn such that xn → ∞ as n → ∞ and α(x) ≥ α0x
ρ for x ∈ [xn, kxn], 

then λ1(d, ∞) < 0 for any given d > 0.
(ii) If there exist a constant α0 > 0 and an interval [x0, y0] ⊂ [0, ∞) such that α(x) ≥ α0 for x ∈

[x0, y0], then λ1(d, ∞) < 0 provided that 0 < d < α0(y0 − x0)
2/π2.

Proof. The assertion (i) is due to Wang [25]. We now show (ii) by slightly modifying the argu-
ments of [25].

Clearly, λ1(d, ∞) ≤ λ̃1(d, ∞) for any given d > 0, where λ̃1(d, ∞) = limL→∞ λ̃1(d, L) and 
λ̃1(d, L) is the principal eigenvalue of the elliptic eigenvalue problem

{ −dϕxx − α(x)ϕ = λϕ, 0 < x < L,

ϕ (0) = 0, ϕ(L) = 0.
x
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As before, we also have λ̃1(d, ∞) < λ̃1(d, L) for any d, L > 0. Furthermore, it is easily seen 
that λ̃1(d, L) enjoys the variational characterization:

λ̃1(d,L) = inf
ϕ∈H 1((0,L)), ϕ(L)=0

d
∫ L

0 (ϕ′(x))2dx − ∫ L

0 α(x)ϕ2(x)dx∫ L

0 ϕ2(x)dx
. (2.23)

Denote λD1 to be the principal eigenvalue of the elliptic eigenvalue problem:

−ϕ′′ = λϕ, x0 < x < y0; ϕ(x0) = ϕ(y0) = 0,

and ϕ0 to be the associated eigenfunction satisfying 
∫ y0
x0

ϕ2
0dx = 1. Clearly, λD1 = π2/(y0 − x0)

2. 
We then extend ϕ0 to R+ by defining ϕ0(x) = 0 for x ∈ [0, x0) ∪ (y0, ∞). It is easily seen that 
such an extended function satisfies ϕ0 ∈ H 1((0, y0)). In view of the variational characterization 
(2.23), we obtain

λ1(d,∞) ≤ λ̃1(d,∞) < λ̃1(d, y0) ≤
y0∫

0

[d(ϕ′
0(x))2 − α(x)ϕ2

0(x)]dx

=
y0∫

x0

[d(ϕ′
0(x))2 − α(x)ϕ2

0(x)]dx ≤
y0∫

x0

[dλD
1 − α0]ϕ2

0(x)dx

= (y0 − x0)
[ dπ2

(y0 − x0)2
− α0

]
< 0,

if 0 < d < α0(y0 − x0)
2/π2. The proof of Proposition 2.6 is thereby complete. �

3. Criteria for spreading and vanishing when q = 0

In the section, we assume that q = 0 and prove the spreading–vanishing dichotomy and some 
criteria of spreading and vanishing for problem (1.1). The arguments in showing these results 
mainly follow from those used in [25] and references therein. In order not to repeat their proofs, 
we only provide the details where considerable changes are required.

3.1. Preliminaries

Before going further, let us give some basic properties on solutions of problem (1.1) with ad-
vection q ≥ 0. We will present the global existence and uniqueness of classical solutions as well 
as the comparison principle. These properties are fundamental to the understanding of long-time 
behavior of solutions in the remaining parts.

Proposition 3.1. For any u0 ∈ H(h0), problem (1.1) admits a unique solution 
(
u(t, x), h(t)

)
defined for all t > 0, that is, h ∈ C1((0, ∞)) ∩C([0, ∞)), u ∈ C1,2(D) ∩C(D) with D = {

(t, x) :
t > 0, 0 ≤ x ≤ h(t)

}
, and h′(t) > 0 for t > 0, u(t, x) > 0 for t > 0 and 0 ≤ x < h(t). Moreover, 

for any T0 > τ > 0,
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∥∥u
∥∥

C1+α/2,2+α(Dτ
T0

)
+ ∥∥h

∥∥
C1+α/2([τ,T0]) ≤ C,

and

h0 ≤ h(t) ≤ h0 + Ht1/2 for 0 ≤ t ≤ T0,

where Dτ
T0

= {
(t, x) : τ ≤ t ≤ T0, 0 ≤ x ≤ h(t)

}
, C and H are positive constants depending 

on τ , T0, q , h0, ‖α, β‖Cν0/2,ν0 (R×[0,∞)) and ‖u0‖C([0,h0]), with H independent of τ ∈ (0, T0) for 
T0 > 0 sufficiently small.

Proof. The result follows from the proof of [5, Theorem 1.1] with some minor modifications, 
and we omit the details. �
Proposition 3.2. For any T0 ∈ (0, ∞), suppose that h̄ ∈ C([0, T0]) ∩ C1((0, T0]) and that ū ∈
C(D∗

T0
) ∩ C1,2(D∗

T0
) with D∗

T0
= {

(t, x) : 0 < t ≤ T0, 0 ≤ x ≤ h̄(t)
}
. If

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ūt ≥ dūxx + qūx + ū(α(t, x) − β(t, x)ū), 0 < t ≤ T0, 0 < x < h̄(t),

ūx(t,0) ≤ 0, 0 < t ≤ T0,

ū(t, h̄(t)) = 0, 0 < t ≤ T0,

h̄′(t) ≥ −μūx(t, h̄(t)), 0 < t ≤ T0,

(3.1)

and

h0 ≤ h̄(0), u0(x) ≤ ū(0, x) in [0, h0],

then the solution (u, h) of problem (1.1) with initial function u0 ∈H(h0) satisfies

h(t) ≤ h̄(t) in (0, T0] and u(t, x) ≤ ū(t, x) for 0 < t ≤ T0, 0 ≤ x ≤ h(t).

Proof. In the case that u0 ∈ C2([0, h0]), u′
0(0) = u0(h0) = 0, u0(x) > 0 in (0, h0), the proof of 

this proposition is the same as that of [9, Lemma 3.5]. As for the general case u0 ∈ H(h0), similar 
approximation arguments to those used in [5, Proposition 2.10] give the desired comparison 
result. �
Remark 3.1. The pair (ū, h̄) in the Proposition 3.2 is often called an upper solution to problem 
(1.1). Moreover, if the second inequality in (3.1) is replaced by ū(t, 0) ≥ u(t, 0) for all 0 < t <

T0, then the corresponding comparison principle still holds.
Analogously, a lower solution can be defined by reversing all the inequalities in (3.1), and we 

also have the corresponding comparison principle for lower solutions.

We should point out that, in Propositions 3.1–3.2, the initial functions are merely continuous. 
These results with such general initial functions are necessary in dealing with the estimates of 
spreading speeds in Section 4.
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3.2. Criteria for spreading and vanishing when h0 is varied

In this subsection, we consider the spreading–vanishing dichotomy for problem (1.1) with 
q = 0, as well as the sharp criteria for spreading and vanishing when d is fixed while h0 is 
varied. Let us first introduce some notation which will be used frequently in the sequel. Let 
(u(t, x), h(t)) be the global solution of (1.1) with initial function u0 ∈ H(h0). It follows from 
Proposition 3.1 that h′(t) > 0 for all t > 0. Then the limit limt→∞ h(t) exists and we denote 
it by h∞. Next, let α̃(t, x) ∈ Cν/2,ν0(R2) be the function extended by α(t, x) as in (2.18), and 
β̃(t, x) ∈ Cν/2,ν0(R2) be extended by β(t, x) in a similar way, that is,

β̃(t, x) =
{

β(t, x) if (t, x) ∈R× [0,∞),

β(t,−x) if (t, x) ∈R× (−∞,0).
(3.2)

Clearly, α̃, β̃ are symmetric in x. Moreover, to express the dependence of the principal eigenval-
ues to problems (2.1) (with q = 0) and (2.20) on α(t, x), we rewrite λ1(d, L) and λ1(d, ∞) by 
λ1(d, L, α) and λ1(d, ∞, α), respectively.

In this subsection, we assume that there exists α ∈ Cν0/2,ν0(R × R) such that α(t, x) is 
T -periodic in t and l-periodic in x, and that

lim inf
x→∞

(
α(t, x) − α(t, x)

) ≥ 0 for all t ∈R; λ∗
1(d,∞, α) < 0. (3.3)

Here λ∗
1(d, ∞, α) is the generalized principal eigenvalue defined by

λ∗
1(d,∞, α) = sup

{
λ ∈ R : there exists ϕ ∈ C1,2(R2) such that

ϕ is T -periodic, ϕ > 0 and (Lα − λ)ϕ ≥ 0 in R
2
}
.

(3.4)

with

Lαϕ := ϕt − dϕxx − α(t, x)ϕ for ϕ ∈ C1,2(R2). (3.5)

It is easily seen that if α(t, x) is a positive time-space periodic function, then λ∗
1(d, ∞, α) < 0. 

But there definitely exists a periodic function α(t, x) which changes signs in x ∈ R
+ and 

λ∗
1(d, ∞, α) < 0. For example, α(t, x) is symmetric in x, and is positive for t ∈ [0, T ] and x in a 

bounded interval. Indeed, for such an α, Proposition 2.4 implies that λ∗
1(d, ∞, α) = λ1(d, ∞, α), 

where λ1(d, ∞, α) is the principal eigenvalue to problem (2.20) with α̃ replaced by α. It then fur-
ther follows from Proposition 2.6 (ii) that λ∗

1(d, ∞, α) < 0 when d is small. Therefore, a function 
α(t, x) satisfying (3.3) allows to change signs in x ∈ R

+. This is different from the assumption 
(1.4) for which the function α(t, x) should be positive at large x.

In what follows, we first consider the existence and uniqueness of positive solution to the 
following periodic-parabolic problem

⎧⎪⎪⎨
⎪⎪⎩

Ut − dUxx = U(α(t, x) − β(t, x)U), 0 ≤ t ≤ T , 0 < x < ∞,

U(0, x) = U(T ,x), 0 ≤ x < ∞,

Ux(t,0) = 0, 0 ≤ t ≤ T .

(3.6)
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Proposition 3.3. Under the assumption (3.3), problem (3.6) admits a unique solution U ∈
C1,2([0, T ] × [0, ∞)) and it satisfies

0 < inf
0≤t≤T , 0≤x<∞U(t, x) ≤ sup

0≤t≤T , 0≤x<∞
U(t, x) ≤ κ2

κ1
, (3.7)

where κ1, κ2 are the positive constants given in (1.2).

Proposition 3.3 plays an important role in determining the asymptotic behavior of u(t, x) as 
t → ∞ when spreading happens. Indeed, once Proposition 3.3 is proved, similar analysis to that 
used in [25, Theorem 4.3] would imply that, if h∞ = ∞, then

lim
n→∞

∣∣u(t + nT ,x) − U(t, x)
∣∣ = 0 locally uniformly in (t, x) ∈R× [0,∞).

Clearly, to prove Proposition 3.3, it suffices to show the existence and uniqueness of positive 
solution to the following problem

{
Ũt − dŨxx = Ũ (α̃(t, x) − β̃(t, x)Ũ ), 0 ≤ t ≤ T , −∞ < x < ∞,

Ũ (T , x) = Ũ (0, x), −∞ < x < ∞,
(3.8)

such that Ũx(t, 0) = 0 for all 0 ≤ t ≤ T , and Ũ(t, x) satisfies

0 < inf
0≤t≤T , −∞<x<∞ Ũ (t, x) ≤ sup

0≤t≤T , −∞<x<∞
Ũ (t, x) ≤ κ2

κ1
, (3.9)

where α̃ and β̃ are the symmetric functions given in (2.18), (3.2). To do this, we shall begin with 
the sign of the principal eigenvalue λ1(d, ∞, α).

Lemma 3.1. Under the assumption (3.3), we have λ1(d, ∞, α) < 0.

Proof. Since λ∗
1(d, ∞, α) < 0, by the definition of λ∗

1(d, ∞, α), we can find some small ε0 > 0
such that

λ∗
1(d,∞, α − ε0) = λ∗

1(d,∞, α) + ε0 ≤ −ε0. (3.10)

Next, for any x0 ∈ R, we denote

αx0(t, x) := α(t, x + x0) for all t ∈ R, x ∈R,

and let λ∗
1(d, L, αx0 − ε0) be the principal eigenvalue of the following periodic-parabolic eigen-

value problem with Dirichlet boundary condition

⎧⎪⎪⎨
⎪⎪⎩

ϕt − dϕxx − (αx0(t, x) − ε0)ϕ = λϕ, 0 < t < T, −L < x < L,

ϕ(t,−L) = 0, ϕ(t,L) = 0, 0 < t < T,

ϕ(0, x) = ϕ(T , x), −L < x < L.

(3.11)
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Since α(t, x) is l-periodic in x, it then follows from [21, Theorem 2.6] that

λ∗
1(d,∞, αx0 − ε0) = lim

L→∞λ∗
1(d,L,αx0 − ε0) uniformly in x0 ∈ R.

Clearly, by the definition, we have λ∗
1(d, ∞, αx0 − ε0) = λ∗

1(d, ∞, α − ε0). This together with 
(3.10) implies that there exists L0 > 0 such that

λ∗
1(d,L0, α

x0 − ε0) < 0 for all x0 ∈ R. (3.12)

On the other hand, since lim infx→∞
(
α(t, x) −α(t, x)

) ≥ 0 for all t ∈ R, for the above ε0 > 0
satisfying (3.10), there exists R0 > 0 sufficiently large such that

α(t, x) ≥ α(t, x) − ε0 for all t ∈ R, x ≥ R0. (3.13)

We now fix an x0 > 0 such that x0 + x ≥ R0 for all −L0 ≤ x ≤ L0. Then we have

α̃x0(t, x) ≥ αx0(t, x) − ε0 for all 0 ≤ t ≤ T , −L0 ≤ x ≤ L0,

where α̃x0(t, x) := α̃(t, x + x0). This implies that

λ∗
1(d,L0, α̃

x0) ≤ λ∗
1(d,L0, α

x0 − ε0) < 0,

where λ∗
1(d, L0, α̃x0) is the principal eigenvalue to problem (3.11) with L = L0 and αx0 − ε0

replaced by α̃x0 . Moreover, it follows from the proof of [21, Theorem 2.6] (see also [20, Propo-
sition 2.3]) that λ∗

1(d, L, α̃x0) is decreasing in L > 0 and that, by denoting λ∗
1(d, ∞, α̃x0) :=

limL→∞ λ∗
1(d, L, α̃x0), there holds

λ∗
1(d,∞, α̃x0) = sup

{
λ ∈R : there exists ϕ ∈ C1,2(R2) such that

ϕ is T -periodic, ϕ > 0 and (Lα̃x0 − λ)ϕ ≥ 0 in R
2
}
,

(3.14)

where Lα̃x0 is defined as in (3.5) with α replaced by α̃x0 . Thus, (3.12) implies that
λ∗

1(d, ∞, α̃x0) < 0. Furthermore, by the property (3.14), it is easily checked that λ∗
1(d, ∞, α̃x0)

is independent of x0 ∈R, and hence

λ∗
1(d,∞, α̃) = λ∗

1(d,∞, α̃x0) < 0.

Finally, it follows from the proof of Proposition 2.3 that there exists a positive T -periodic 
function ϕ̂ ∈ C1,2(R2) such that (λ1(d, ∞, α̃), ϕ̂) solves (2.20). This together with the charac-
terization (3.14) implies that

λ1(d,∞, α̃) ≤ λ∗
1(d,∞, α̃) < 0.

Since λ1(d, ∞, α) and λ1(d, ∞, α̃) denote the same value, the proof of Lemma 3.1 is thereby 
complete. �

The following lemma gives the existence of positive solution to problem (3.8).
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Lemma 3.2. Under the assumption (3.3), problem (3.8) admits a positive solution and any posi-
tive solution Ũ ∈ C1,2([0, T ] ×R) satisfies (3.9).

Proof. For clarity, we divide our proof into three steps.
Step 1: Problem (3.8) admits a positive solution.
To do so, let ϕ̂ ∈ C1,2([0, T ] ×R) be the principal eigenfunction corresponding to the princi-

pal eigenvalue λ1(d, ∞, α̃) of problem (2.20) with ‖ϕ̂‖L∞([0,T ]×R) = 1. Since λ1(d, ∞, α̃) < 0
by Lemma 3.1 and since β(t, x) is bounded, there exists some small κ > 0 such that

(κϕ̂)t − d(κϕ̂)xx = κϕ̂α̃ + λ1(d,∞, α̃)κϕ̂ ≤ κϕ̂α̃ − β̃(κϕ̂)2 for 0 ≤ t ≤ T , −∞ < x < ∞.

Thus, κϕ̂ is a lower solution to problem (3.8). By the assumption (1.2) (ii), clearly, any positive 
constant M with M ≥ κ2/κ1 is an upper solution. Then an iteration method produces a solution 
Ũ ∈ C1,2([0, T ] ×R) of (3.8) such that

0 < κϕ̂(t, x) ≤ Ũ (t, x) ≤ M for 0 ≤ t ≤ T ,−∞ < x < ∞.

Step 2: Any positive solution Ũ of (3.8) satisfies inf0≤t≤T , −∞<x<∞ Ũ (t, x) > 0.
Suppose by contradiction that inf0≤t≤T , −∞<x<∞ Ũ (t, x) = 0. Then there exists a sequence 

{(tn, xn)}n∈N ⊂ [0, T ] ×R such that

Ũ (tn, xn) → 0 as n → ∞. (3.15)

It is easy to see that |xn| → ∞ as n → ∞ (otherwise, it follows from the parabolic strong max-
imum principle that Ũ ≡ 0). Without loss of generality, we assume that xn → ∞ as n → ∞, as 
the case of xn → −∞ can be treated similarly. For each n ∈N, define

Ũn(t, x) = Ũ (t + tn, x + xn) for 0 ≤ t ≤ T , −∞ < x < ∞.

It is straightforward to check that

Ũn
t − dŨn

xx = Ũn(α̃(t + tn, x + xn) − β̃(t + tn, x + xn)Ũ
n), (3.16)

for 0 ≤ t ≤ T , −∞ < x < ∞.
We now construct a lower solution to problem (3.16). On the one hand, let ε0 and R0 be the 

positive constants satisfying (3.10) and (3.13), and let λ∗
1(d, L, αn − ε0) denote the principal 

eigenvalue of the following periodic-parabolic problem

⎧⎪⎪⎨
⎪⎪⎩

ϕt − dϕxx − (α(t + tn, x + xn) − ε0)ϕ = λϕ, 0 < t < T, −L < x < L,

ϕ(t,−L) = 0, ϕ(t,L) = 0, 0 < t < T,

ϕ(0, x) = ϕ(T , x), −L < x < L.

(3.17)

As in the proof of Lemma 3.1, we can conclude that

λ∗
1(d,∞, α − ε0) = λ∗

1(d,∞, αn − ε0) = lim λ∗
1(d,L,αn − ε0) uniformly in n ∈ N.
L→∞
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This together with (3.10) implies that there exists L1 > 0 such that

λ∗
1(d,L1, α

n − ε0) ≤ −ε0

2
for all n ∈N. (3.18)

On the other hand, since xn → ∞ as n → ∞, there exists some n0 ∈ N such that xn −L1 ≥ R0
for all n ≥ n0, hence it follows from (3.13) that

α̃(t + tn, x + xn) ≥ α(t + tn, x + xn) − ε0 for all 0 ≤ t ≤ T , −L1 ≤ x ≤ L1, n ≥ n0. (3.19)

Furthermore, let ϕn
L1

∈ C1,2([0, T ] × [−L1, L1]) be the positive principal eigenfunction to 
problem (3.17) with L = L1 such that ‖ϕn

L1
‖L∞([0,T ]×[−L1,L1]) = 1. Then due to (3.18), we can 

find some small η0 > 0 such that for all 0 < η ≤ η0, there holds

λ∗
1(d,L1, α

n − ε0)ηϕn
L1

(t, x) ≤ −β̃(t + tn, x + xn)(ηϕn
L1

(t, x))2

for all 0 ≤ t ≤ T , −L1 ≤ x ≤ L1 and n ≥ n0. This together with (3.19) implies that, for any 
0 < η ≤ η0,

(ηϕn
L1

)t − d(ηϕn
L1

)xx − ηϕn
L1

(
α̃(t + tn, x + xn) − β̃(t + tn, x + xn)ηϕn

L1

)
≤ (ηϕn

L1
)t − d(ηϕn

L1
)xx − (α(t + tn, x + xn) − ε0)ηϕn

L1
+ β̃(t + tn, x + xn)(ηϕn

L1
)2

= λ∗
1(d,L1, α

n − ε0)ηϕn
L1

+ β̃(t + tn, x + xn)(ηϕn
L1

)2

≤ 0

for all 0 ≤ t ≤ T , −L1 ≤ x ≤ L1 and n ≥ n0. We now extend ϕn
L1

to [0, T ] × R by defining 
ϕn

L1
(t, x) = 0 for (t, x) ∈ [0, T ] × ((−∞, −L1) ∪ (L1, ∞)) so that ϕn

L1
∈ C(R ×R). In addition, 

for each t ∈R,

(ϕn
L1

)x(t,−L1−) = 0 < (ϕn
L1

)x(t,−L1+), (ϕn
L1

)x(t,L1−) < 0 = (ϕn
L1

)x(t,L1+).

Thus, for each 0 < η ≤ η0, and each n ≥ n0, ηϕn
L1

is a lower solution of problem (3.16).
Next we want to prove that, for each n ≥ n0,

Ũn(t, x) ≥ η0ϕ
n
L1

(t, x) for all 0 ≤ t ≤ T , −L1 ≤ x ≤ L1. (3.20)

Assume by contradiction that there exists n1 ≥ n0 such that (3.20) is not true when n = n1. Set

η∗ = sup
{
η > 0 : Ũn1(t, x) > ηϕ

n1
L1

(t, x) for 0 ≤ t ≤ T , −L1 ≤ x ≤ L1

}
.

Then η∗ < η0, and η∗ > 0 since Ũn1 is positive in [0, T ] ×R. Define

w(t, x) = Ũn1(t, x) − η∗ϕn1
L1

(t, x) for 0 ≤ t ≤ T , −L1 ≤ x ≤ L1.

Then w ≥ 0 and there exists some (s, y) ∈ [0, T ] × [−L1, L1] such that w(s, y) = 0. In view of 
η∗ϕn1 (t, ±L1) = 0, y 
= ±L1 and hence y ∈ (−L1, L1). Moreover, as η∗ϕn1 is a lower solution 
L1 L1
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of problem (3.16) with n = n1, it is easily checked that there exists a bounded function b(t, x)

such that w satisfies

wt − dwxx − b(t, x)w ≥ 0 for 0 ≤ t ≤ T , −L1 ≤ x ≤ L1.

Hence, the parabolic strong maximum principle gives w ≡ 0 in [0, s] × [−L1, L1], which is in 
contradiction with the fact that w(t, ±L1) = Ũn1(t, ±L1) > 0 for t ∈ [0, T ]. Thus, (3.20) holds 
for all n ≥ n0.

Finally, (3.20) in particular implies that

Ũ(tn, xn) = Ũn(0,0) ≥ η0ϕ
n
L1

(0,0) for all n ≥ n0.

Since α(t, x) is T -periodic in t and l-periodic in x, by the well-known Krylov–Safonov Har-
nack inequality, we have ϕn

L1
(0, 0) > c0 for some constant c0 > 0 independent of n ∈ N. 

Therefore, we obtain Ũ(tn, xn) ≥ η0c0 for all n ≥ n0. This contradicts with (3.15), and hence 
inf0≤t≤T , −∞<x<∞ Ũ (t, x) > 0.

Step 3: Any positive solution Ũ of (3.8) satisfies sup0≤t≤T , −∞<x<∞ Ũ (t, x) ≤ κ2/κ1.
To the end, for any fixed R > 0, consider the boundary blow-up elliptic problem

−dwxx = w(κ2 − κ1w), −R < x < R; w(x) = ∞, x = ±R, (3.21)

and the boundary value periodic-parabolic problem

⎧⎪⎪⎨
⎪⎪⎩

vt − dvxx = v(α̃(t, x) − β̃(t, x)v), 0 ≤ t ≤ T , −R < x < R,

v(t, x) = Ũ (t, x), 0 ≤ t ≤ T , x = ±R,

v(0, x) = v(T , x), −R < x < R.

(3.22)

In (3.21), by w(−R) = ∞ (or w(R) = ∞) we mean that w(x) → ∞ as x → −R (or x → R). It 
follows from [7] that problem (3.21) has a unique positive solution, denoted by UR,∞. By similar 
analysis to that in the proof of the existence and uniqueness of positive solution to (2.2) in [22], 
one easily sees that problem (3.22) admits a unique positive solution v ≡ Ũ in [0, T ] ×[−R, R]. 
Clearly, due to the assumption (1.2) (ii), UR,∞ is an upper solution to problem (3.22).

On the other hand, we can take a small κ > 0 such that κϕ̂ < UR,∞ in [0, T ] × (−R, R) and 
that κϕ̂ is a lower solution to problem (3.22), where ϕ̂ is given as in Step 1. Due to the uniqueness 
of positive solution to (3.22), the iteration technique of lower–upper solutions implies that, for 
any fixed R > 0,

κϕ̂ ≤ Ũ ≤ UR,∞ in [0, T ] × (−R,R). (3.23)

Moreover, according to the proof of [10, Theorem 1.2], UR,∞ is a strictly decreasing function 
with respect to R, and as R → ∞, UR,∞(t, x) converges locally uniformly in [0, T ] ×R to the 
unique positive solution to problem

−dU ′′ = U∞(κ2 − κ1U∞), −∞ < x < ∞.
∞
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By virtue of [10, Theorem 1.1], U∞ = κ2/κ1. Thus, we obtain the desired result by letting 
R → ∞ in (3.23).

The proof of Lemma 3.2 is complete. �
We are now ready to complete the proof of Proposition 3.3.

Proof of Proposition 3.3. By Lemma 3.2, we know that problem (3.8) admits a positive solution 
and any positive solution Ũ ∈ C1,2([0, T ] ×R) satisfies (3.9). It further follows from the proof of 
[1, Proposition 1.7] that positive solution to problem (3.8) is unique. Since α̃(t, x) and β̃(t, x) are 
even in x, it is easily seen that Ũ(t, −x) is also a positive solution of (3.8). Then the uniqueness 
result implies that Ũ(t, −x) ≡ Ũ(t, x), and hence Ũx(t, 0) ≡ 0. Therefore, any positive solution 
of (3.8) satisfies Ũx(t, 0) ≡ 0. As a consequence, problem (3.6) admits a unique positive solution, 
and it satisfies (3.7). Thus Proposition 3.3 is proved. �

We now state the main result of this subsection. Assume that (3.3) holds. It follows 
from Lemma 3.1 that λ(d, ∞, α) < 0. Since λ(d, L, α) is strictly decreasing in L > 0 and 
limL→0 λ(d, L, α) = ∞ by Proposition 2.3, there exists a unique positive constant L∗ =
L∗(d, α) such that

λ(d,L,α) > 0 for 0 < L < L∗, and λ(d,L,α) < 0 for L > L∗.

Then we have the following theorem.

Theorem 3.1. Suppose that (3.3) is satisfied. Let (u, h) be the solution to problem (1.1) with 
initial function u0 ∈ H(h0). Then the following alternative holds: Either

(i) spreading happens, that is, h∞ = ∞, and

lim
n→∞

∣∣u(t + nT ,x) − U(t, x)
∣∣ = 0 locally uniformly in (t, x) ∈ R× [0,∞),

where U is the unique positive solution of (3.6); Or
(ii) vanishing happens, that is, h∞ ≤ L∗, and limt→∞ max0≤x≤h(t) u(t, x) = 0.

Moreover, if h0 ≥ L∗, then spreading always occurs for any μ > 0; and if h0 < L∗, then there 
exists a unique μ∗ > 0 depending on u0 such that vanishing occurs when 0 < μ ≤ μ∗ and spread-
ing occurs when μ > μ∗.

Proof. Having in hand Propositions 3.1–3.3, we can prove this theorem by following the same 
lines as those used in [25, Theorem 5.3]. So we do not repeat the details here. �
3.3. Criteria for spreading and vanishing when d is varied

In the last part of this section, we present a criterion for spreading and vanishing when h0 is 
fixed while d is varied. We assume that for any given h0 > 0, there exist an interval [x0, y0] ⊂
[0, h0] and a positive constant α0 such that

α(t, x) ≥ minα(t, x) ≥ α0 for x0 ≤ x ≤ y0. (3.24)

t∈R
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It follows from Proposition 2.6 (ii) that λ1(d, h0, α) < 0 if 0 < d < α0(y0 − x0)
2/π2. Set

d∗ := sup
{
d0 > 0 : λ1(d,h0, α) < 0 for all 0 < d < d0

}
.

Then d∗ is well-defined and d∗ > 0. We also set

d∗ := inf
{
d1 > 0 : λ1(d,h0, α) > 0 for all d > d1

}
.

Since λ1(d, h0, α) → ∞ as d → ∞ by Proposition 2.1 (i), d∗ is well-defined and d∗ < ∞. 
It further follows from Proposition 2.2 (i) that d∗ = d∗ if either α(t, x) = α(x) is independent 
of the time variable t or α ∈ Cν0/2,1 and αx(t, x) ≤ 0 for all (t, x) ∈ [0, T ] × [0, h0]. However, 
d∗ = d∗ does not hold for general α(t, x); see the counterexample given in Proposition 2.2 (ii).

Theorem 3.2. Suppose that (3.24) is satisfied. Let (u, h) be the solution to problem (1.1) with 
initial function u0 ∈H(h0). Then there holds

(i) If 0 < d ≤ d∗, then spreading happens for any μ > 0, that is, h∞ = ∞;
(ii) If d > d∗, then there exists μ̄∗ > 0 depending on u0 such that vanishing happens when 

0 < μ ≤ μ̄∗, that is, h∞ < ∞, and spreading happens when μ > μ̄∗.

Moreover, if in addition (3.3) is satisfied, then we have limn→∞
∣∣u(t + nT , x) − U(t, x)

∣∣ = 0
locally uniformly in (t, x) ∈R ×[0, ∞) when spreading happens, where U is the unique positive 
solution of (3.6).

Proof. With the above preparations, the proof of this theorem follows from that of [25, Theo-
rem 5.2] by some slight modifications, and we omit the details. �
4. Estimates of spreading speeds when q = 0

In this section, we investigate the spreading speed for problem (1.1) with q = 0 when spread-
ing happens. We assume that there exist α, α, β , β in Cν0/2,ν0(R2) such that they are all 
T -periodic in t and l-periodic in x, that β, β are positive, and that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) lim
x→∞

(
α(t, x) − α(t, x)

) ≥ 0, lim
x→∞

(
α(t, x) − α(t, x)

) ≤ 0 for all t ∈ [0, T ];
(ii) lim

x→∞
(
β(t, x) − β(t, x)

) ≥ 0, lim
x→∞

(
β(t, x) − β(t, x)

) ≤ 0 for all t ∈ [0, T ];
(iii) λ∗

1(d,∞, α) < 0.

(4.1)

Here λ∗
1(d, ∞, α) is the generalized principal eigenvalue given in (3.4). Under the above as-

sumptions, we immediately obtain from the proof of Lemma 3.1 that, λ1(d, ∞, α) < 0 and 
λ∗

1(d, ∞, α) < 0. In light of the analysis followed by the assumption (3.3), one sees that a func-
tion α(t, x) satisfying (4.1) allows to change sign in x ∈ R

+.
In what follows, under the assumption (4.1), we will establish the upper and lower bounds of 

the asymptotic spreading speeds for (1.1) when spreading happens. We should point out that, our 
approach is different from that used in [6,11,25,26], where α(t, x) is assumed to positive at large 
x, and then the spreading speeds can be bounded by the speeds of suitable semi-wave solutions 
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in spatially homogeneous environments. But when α(t, x) truly depends on t and x, and changes 
signs at large x, the existence of the corresponding semi-wave solutions has not been obtained 
yet.

Our method depends crucially on the existence of spreading speeds for the following problem 
with double free boundaries in space-time periodic media

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ũt = dũxx + ũ(α(t, x) − β(t, x)ũ), g̃(t) < x < h̃(t), t > 0,

ũ(t, g̃(t)) = ũ(t, h̃(t)) = 0, t > 0,

g̃′(t) = −μũx(t, g̃(t)), h̃′(t) = −μũx(t, h̃(t)), t > 0,

g̃(0) = −h0, h̃(0) = h0, ũ(0, x) = ũ0(x), −h0 ≤ x ≤ h0,

(4.2)

where the initial function

ũ0 ∈ H̃(h0) :=
{
φ ∈ C([−h0, h0]) : φ(±h0) = 0, φ > 0 in (−h0, h0)

}
.

Proposition 4.1. Let (ũ, g̃, h̃) be the solution of problem (4.2) with initial function ũ0 ∈ H̃ (h0). 
Suppose that the functions α, β ∈ Cν0/2,ν0(R2) are both T -periodic in t , l-periodic in x, and that 
λ∗

1(d, ∞, α) < 0 where λ∗
1(d, ∞, α) is defined as in (3.4). Then there exist two positive constants 

c∗ = c∗(α, β) and c∗ = c∗(α, β) such that, if − limt→∞ g̃(t) = limt→∞ h̃(t) = ∞, then

lim
t→∞

g̃(t)

t
= −c∗, lim

t→∞
h̃(t)

t
= c∗,

and

lim
t→∞ inf−c2t≤x≤c1t

ũ(t, x) > 0 for − c∗ < −c2 < c1 < c∗.

Proof. Since λ∗
1(d, ∞, α) < 0, a direct application of [21, Corollary 1.2 and Theorem 1.6] im-

plies that the following problem⎧⎪⎪⎨
⎪⎪⎩

Wt − dWxx = W(α(t, x) − β(t, x)W), t ∈ [0, T ], x ∈R,

W(t, x) = W(t, x + l), t ∈ [0, T ], x ∈R,

W(T , x) = W(0, x), x ∈R,

(4.3)

admits a unique positive solution W ∈ C1,2(R2). Moreover, such a solution is globally asymp-
totically stable in the sense that for any nonnegative bounded non-null function v0 ∈ C(R), there 
holds

v(t + s, x;v0) − W(t + s, x) → 0 as s → ∞ locally uniformly in (t, x) ∈ R
2,

where v(t, x; v0) is the unique solution to the Cauchy problem

{
vt = dvxx + v(α(t, x) − β(t, x)v), t > 0, −∞ < x < ∞,

v(0, x) = v (x), −∞ < x < ∞.
0
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Then the desired results follows directly from [4, Theorem 1.1 and Remark 1.2]. This proves 
Proposition 4.1. �

The above proposition indicates that c∗(α, β) (resp. c∗(α, β)) is the rightward (reps. leftward) 
spreading speed for problem (4.2) with space-time periodic coefficients α and β . If we further 
assume that α(t, x) = α(t, −x) and β(t, x) = β(t, −x) for (t, x) ∈ R

2, it is then easily checked 
that c∗(α, β) = c∗(α, β), and that c∗(α, β) is the spreading speed for problem (1.1). Moreover 
generally, as an easy corollary of Theorem 4.1 below (see also Remark 4.1 below), one will see 
that problem (1.1) admits a spreading speed when spreading happens if α, β are merely spatially 
asymptotically periodic.

Assume that α, β satisfy the assumptions in Proposition 4.1. Clearly, problem (4.2) with 
(α, β) replaced by (α − ε, β + ε) (resp. (α + ε, β − ε)) admits a rightward spreading speed 
c∗(α − ε, β + ε) > 0 (resp. c∗(α + ε, β − ε) > 0) for small ε > 0, say ε ≤ ε0. In what follows, 
we will prove that both c∗(α − ε, β + ε) and c∗(α + ε, β − ε) converge to c∗(α, β) as ε → 0.

Before starting the proof, let us recall some existing results on c∗(α, β) given in [4]. Actually, 
the proof of [4, Theorem 1.1] infers that c∗(α, β) is also the rightward spreading speed to the 
following free boundary problem⎧⎪⎪⎨

⎪⎪⎩
wt = dwxx + w(α(t, x) − β(t, x)w), −∞ < x < h(t), t > 0,

w(t, h(t)) = 0, h′(t) = −μwx(t, h(t)), t > 0,

w(0) = h0, w(0, x) = w0(x), −∞ < x ≤ h0,

(4.4)

with initial function w0 ∈ C((−∞, h0]) ∩ L∞((−∞, h0]) satisfying w0(h0) = 0 and w0(x) > 0
for x ∈ (−∞, h0). Next, we define a set M consisting of functions φ(ξ, x) in C(R2) with the 
following properties:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) For each ξ ∈ R, φ(ξ, x) is nonnegative and l-periodic in x;

(b) φ(ξ, x) is uniformly continuous in (ξ, x) ∈R
2;

(c) For each fixed x, φ(ξ, x) is nonincreasing in ξ ;

(d) For any ξ ∈ R, there exists a real number H0 = H0(ξ) such that

φ(ξ + x, x) > 0 for x < H0 and φ(ξ + x, x) = 0 for x ≥ H0;

(e) 0 < φ(−∞, x) < W(0, x) for all x ∈ R,

(4.5)

where W(t, x) is the unique positive solution of problem (4.3).
Let the operator Q+ : M → M generated from the Poincaré map of the solution to problem 

(4.4) (see the definition at the beginning of [4, Section 3] for more details). As the definition (3.3) 
in [4], for any fixed φ ∈ M and any fixed c ∈ R, we define the sequence {ac

n(ξ, x)}n∈N by the 
following recursion

ac
n(ξ, x) = max

{
φ(ξ, x), Q+[ac

n−1](ξ + c, x)
}

with ac
0(ξ, x) = φ(ξ, x). In particular, if we choose φ(ξ, x) ∈ M such that φ(ξ, ·) ≡ 0 if ξ ≥ 0, 

then [4, Lemmas 3.7, 3.8] implies that

c < T c∗(α,β) if and only if ac (0, x) > φ(−∞, x) for some n0 ∈ N and all x ∈ R. (4.6)
n0
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In a similar way, for any ε ∈ (0, ε0] and c ∈R, we can define the sequence {ac
ε,n(ξ, x)}n∈N by the 

following recursion

ac
ε,n(ξ, x) = max

{
φ(ξ, x), Qε,+[ac

ε,n−1](ξ + c, x)
}

with ac
0(ξ, x) = φ(ξ, x). Here Qε,+ : M → M is the operator generated from the Poincaré map 

of the solution to problem (4.4) with (α, β) replaced by (α − ε, β + ε). Then we have

c < T c∗(α − ε,β + ε) if and only if

ac
ε,nε

(0, x) > φ(−∞, x) for some nε ∈N and all x ∈R.
(4.7)

Lemma 4.1. Assume that α, β satisfy the assumptions in Proposition 4.1. Then

lim
ε→0

c∗(α − ε,β + ε) = c∗(α,β).

Proof. Since fε(t, x, u) := u
(
(α(t, x) − ε) − (β(t, x) + ε)u

)
is nonincreasing in ε ∈ (0, ε0] for 

t ∈ R, x ∈ R, u ≥ 0, it is easily checked from the comparison principle (see e.g., [5, Propo-
sition 2.10]) that c∗(α − ε, β + ε) is nonincreasing in ε ∈ (0, ε0], and c∗(α − ε, β + ε) ≤
c∗(α, β) for all ε ∈ (0, ε0]. Therefore, the limit limε→0 c∗(α−ε, β+ε) exists and limε→0 c∗(α−
ε, β + ε) ≤ c∗(α, β).

Assume by contradiction that limε→0 c∗(α − ε, β + ε) < c∗(α, β). Then there exists some 
c′ ∈R such that c∗(α − ε, β + ε) < c′ < c∗(α, β) for all ε ∈ (0, ε0], and hence,

T c∗(α − ε,β + ε) < T c′ < T c∗(α,β) for all ε ∈ (0, ε0].

We now choose c = T c′. It follows from (4.6) that

ac
n0

(0, x) > φ(−∞, x) for some n0 ∈N and all x ∈R. (4.8)

Since the solution to problem (4.4) is continuous with respect to perturbations on α and β , it 
follows that, for any φ ∈ M,

Qε,+[φ](ξ + x, x) → Q+[φ](ξ + x, x) as ε → 0 locally uniformly in (ξ, x) ∈ R
2.

Then, by the definitions of ac
ε,n and ac

n, we have

ac
ε,n0

(ξ + x, x) → ac
n0

(ξ + x, x) as ε → 0 locally uniformly in (ξ, x) ∈R
2.

This together with (4.8) implies that there exists some small ε1 ∈ (0, ε0) such that

ac
ε1,n0

(0, x) > φ(−∞, x) for x in a given bounded subset of R.

Since ac
ε1,n0

, φ ∈ M, the property (a) of (4.5) yields that ac
ε1,n0

(0, x) and φ(−∞, x) are 
l-periodic in x, and hence,

ac
,n (0, x) > φ(−∞, x) for all x ∈ R.
ε1 0
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It then follows from (4.7) that c < T c∗(α − ε1, β + ε1), which is in contradiction with the as-
sumption that c∗(α − ε, β + ε) < c′ for all ε ∈ (0, ε0]. Lemma 4.1 is thus proved. �
Lemma 4.2. Assume that α, β satisfy the assumptions in Proposition 4.1. Then

lim
ε→0

c∗(α + ε,β − ε) = c∗(α,β).

Proof. Let M̃ be a subset of C(R2) consisting of functions φ(ξ, x) with properties (a)–(d) in 
(4.5) and (e) replaced by

(ẽ) φ(−∞, x) > W(0, x) for all x ∈ R.

Then similar analysis to that used in [4, Lemma 3.2] implies that Q+ is also a map from M̃
to M̃. For any fixed φ ∈ M̃ and any fixed c ∈ R, we now define the sequence {bc

n(ξ, x)}n∈N by 
the following recursion

bc
n(ξ, x) = min

{
φ(ξ, x), Q+[bc

n−1](ξ + c, x)
}

with bc
0(ξ, x) = φ(ξ, x). In particular, we choose φ(ξ, x) ∈ M such that φ(ξ, x) > 0 for x ∈ R

if ξ ≤ 0. Due to the property (ẽ), there exists a large positive constant M such that φ(−M, x) >
W(0, x) for all x ∈ R. It then follows from similar arguments to those used in [4, Lemmas 3.7, 
3.8] that

c > T c∗(α,β) if and only if bc
n0

(ξ, x) < φ(ξ, x) for some n0 ∈N and all ξ ∈ [−M,0], x ∈ R.

In view of this property, the rest of the proof of Lemma 4.2 is analogous to that of Lemma 4.1, 
and we omit the details. �

With the above preparations, we are now able to establish the lower and upper bounds for 
the spreading speed of (1.1) when spreading happens. Under the assumption (4.1), it immedi-
ately follows from Proposition 4.1 that problem (4.2) with the pair (α, β) replaced by (α, β)

admits a rightward spreading speed c∗(α, β). Correspondingly, let c∗(α, β) denote the rightward 
spreading speed for (4.2) with (α, β) replaced by (α, β). Then we have the following result.

Theorem 4.1. Suppose that (4.1) holds. Let (u, h) be the solution of problem (1.1) with q = 0
and u0 ∈H(h0). Then when limt→∞ h(t) = ∞, we have

lim inf
t→∞

h(t)

t
≥ c∗(α, β), lim sup

t→∞
h(t)

t
≤ c∗(α, β), (4.9)

and

lim
t→∞ inf

0≤x≤c1t
u(t, x) > 0 for 0 < c1 < c∗(α, β). (4.10)
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Proof. As in (2.18) and (3.2), let α̃(t, x) and β̃(t, x) be the even functions in x ∈ R extended 
by α(t, x) and β(t, x), respectively. Due to the assumption (4.1), it follows from the proof of 
Proposition 3.3 that problem (3.8) admits a unique positive solution Ũ ∈ C1,2([0, T ] × [0, ∞))

satisfying (3.7). Moreover, since λ∗
1(d, ∞, α) < 0 and λ∗

1(d, ∞, α) < 0, and α, α, β , β are all 
space-time periodic functions, we know from [21, Corollary 1.2] that the following two problems

⎧⎪⎪⎨
⎪⎪⎩

Ut − dUxx = U(α(t, x) − β(t, x)U), t ∈ [0, T ], x ∈ R,

U(t, x) = U(t, x + l), t ∈ [0, T ], x ∈ R,

U(T , x) = U(0, x), x ∈ R,

(4.11)

and

⎧⎪⎪⎨
⎪⎪⎩

Ut − dUxx = U(α(t, x) − β(t, x)U), t ∈ [0, T ], x ∈ R,

U(t, x) = U(t, x + l), t ∈ [0, T ], x ∈ R,

U(T , x) = U(0, x), x ∈ R,

(4.12)

admit, respectively, unique positive solutions U ∈ C1,2([0, T ] ×R) and U ∈ C1,2([0, T ] ×R).
For clarity, we divide the following arguments into three steps.

Step 1: The unique positive solution Ũ of (3.8) satisfies

lim inf
x→∞, t∈[0,T ]

(
Ũ (t, x) − U(t, x)

) ≥ 0, lim sup
x→∞, t∈[0,T ]

(
Ũ (t, x) − U(t, x)

) ≤ 0. (4.13)

We only give the proof for the first inequality of (4.13), since that of the second one is similar. 
Let ε0 > 0 be a small constant such that

λ∗
1(d,∞, α − ε0) < 0 and β(t, x) − ε0 > 0 for all (t, x) ∈ R

2. (4.14)

Due to the assumption (4.1), for any ε ∈ (0, ε0], there is R0 = R0(ε) > 1 such that

{
α(t, x) ≥ αε(t, x) := α(t, x) − ε, β(t, x) ≤ β

ε
(t, x) := β(t, x) + ε

α(t, x) ≤ αε(t, x) := α(t, x) + ε, β(t, x) ≥ β
ε
(t, x) := β(t, x) − ε

(4.15)

for all x ≥ R0, t ∈ R.
Clearly, λ1(d, ∞, αε) < 0. Thus, problem (4.11) with (α, β) replaced by the pair (αε, β

ε
) ad-

mits a unique positive solution Uε ∈ C1,2([0, T ] ×R). We now choose a sequence {(tn, xn)}n∈N ⊂
[0, T ] ×R

+ such that xn → ∞ as n → ∞, and

lim inf
x→∞, t∈[0,T ]

(
Ũ (t, x) − Uε(t, x)

) = lim
n→∞

(
Ũ (tn, xn) − Uε(tn, xn)

)
.

Then, on the one hand, for each n ∈N, set

Ũn(t, x) = Ũ (t + tn, x + xn), ∀x ∈R, t ∈ [0, T ].
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This function satisfies

(Ũn)t − d(Ũn)xx = Ũn(α̃(t + tn, x + xn) − β̃(t + tn, x + xn)Ũn), ∀x ∈R, t ∈ [0, T ].

Since α, β ∈ Cν0/2,ν0(R ×[0, ∞)), it is obvious that α̃, β̃ ∈ Cν0/2,ν0(R2). Then one may assume 
that there exists a pair (α∞, β∞) such that, up to extraction of some subsequence,

α̃(t + tn, x + xn) → α∞(t, x), β̃∞(t + tn, x + xn) → β∞(t, x) in C
ν/2,ν
loc (R2) as n → ∞,

for all 0 ≤ ν < ν0. In view of supt∈[0,T ], x∈R Ũ(t, x) ≤ κ2/κ1, the Schauder parabolic estimates 
implies that, up to a further subsequence, there exists Ũ∞ ∈ C1,2(R2) such that

Ũn(t, x) → Ũ∞(t, x) in C
1,2
loc (R2) as n → ∞. (4.16)

Clearly, Ũ∞ solves

{
(Ũ∞)t − d(Ũ∞)xx = Ũ∞(α∞(t, x) − β∞(t, x)Ũ∞), x ∈R, t ∈ [0, T ],
Ũ∞(T , x) = Ũ∞(0, x), x ∈R.

Since inft∈[0,T ], x∈R Ũ (t, x) > 0, we have

inf
t∈[0,T ], x∈R Ũ∞(t, x) > 0.

On the other hand, for each n ∈N, write xn = x′
n + x′′

n with x′
n ∈ lZ and x′′

n ∈ [0, l), and set

Uε,n(t, x) = Uε(t + tn, x + x′
n), for x ∈R, t ∈ [0, T ].

Then since αε(t, x) and βε(t, x) are l-periodic in x, it is easily checked that Uε,n(t, x) satisfies

(Uε,n)t − d(Uε,n)xx = Uε,n(αε(t + tn, x + x′′
n) − βε(t + tn, x + x′′

n)Uε,n), ∀x ∈R, t ∈ [0, T ].

Proceeding similarly as that in deriving (4.16), one may assume that, taking a subsequence if 
necessary, x′′

n → x∞ ∈ [0, l], tn → t∞ ∈ [0, T ], and

Uε,n(t, x) → Uε,∞(t, x) in C
1,2
loc (R2). (4.17)

Clearly, Uε,∞ is positive and it solves

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(Uε,∞)t − d(Uε,∞)xx

= Uε,∞
(
αε(t + t∞, x + x∞) − β

ε
(t + t∞, x + x∞)Uε,∞

)
,

x ∈R, t ∈ [0, T ],

Uε,∞(t, x) = Uε,∞(t, x + l), x ∈R, t ∈ [0, T ],
U (T , x) = U (0, x), x ∈R.
ε,∞ ε,∞
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By the uniqueness of positive solution to the above problem (see e.g., [21, Corollary 1.2]), we 
have

Uε,∞(t, x) = Uε(t + t∞, x + x∞), for x ∈ R, t ∈ [0, T ].
Next, we prove that

Ũ∞(t, x) ≥ Uε(t + t∞, x + x∞), ∀x ∈R, t ∈ [0, T ]. (4.18)

Since xn → ∞ as n → ∞, it follows from (4.15) that

α∞(t, x) ≥ αε(t + t∞, x + x∞), β∞(t, x) ≤ β
ε
(t + t∞, x + x∞), ∀x ∈R, t ∈ [0, T ].

We choose φ ∈ C(R) such that 0 ≤ φ ≤ inft∈[0,T ], x∈R Ũ∞(t, x) and φ 
≡ 0. Then the parabolic 
maximum principle implies that

ṽ(t + mT,x;φ) ≥ v(t + mT,x;φ), ∀x ∈ R, t ∈ [0, T ], m ∈N,

where ṽ(t, x; φ) is the unique solution to the Cauchy problem{
ṽt − dṽxx = ṽ(α∞(t, x) − β∞(t, x)ṽ), x ∈ R, t > 0,

ṽ(0, x) = φ(x), x ∈ R,

and v(t, x; φ) is the unique solution to the Cauchy problem

{
vt − dvxx = v(αε(t + t∞, x + x∞) − β

ε
(t + t∞, x + x∞)v), x ∈R, t > 0,

v(0, x) = φ(x), x ∈R.

Applying the parabolic maximum principle to the equation of ṽ yields that

Ũ∞(t, x) ≥ ṽ(t + mT,x;φ), ∀x ∈R, t ∈ [0, T ], m ∈N.

Moreover, since λ∗
1(d, ∞, αε) < 0, and αε(t + t∞, x + x∞), βε(t + t∞, x + x∞) are T -periodic 

in t and l-periodic in x, a direct application of [21, Theorem 1.6] implies that

v(t + mT,x;φ) − Uε(t + t∞, x + x∞) → 0 as m → ∞ locally uniformly in (t, x) ∈R
2,

which immediately deduces (4.18).
Lastly, we complete the proof of this step. The inequality (4.18) together with the conver-

gences (4.16) and (4.17), in particular, implies that

lim
n→∞

(
Ũ (tn, xn) − Uε(tn, xn)

) ≥ 0,

that is,

lim inf
x→∞, t∈[0,T ]

(
Ũ (t, x) − Uε(t, x)

) ≥ 0.

Since U varies continuously in ε, sending ε → 0, we obtain the first equality of (4.13).
ε
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Correspondingly, the second inequality of (4.13) can be proved by showing that

lim sup
x→∞, t∈[0,T ]

(
Ũ(t, x) − U

ε
(t, x)

) ≤ 0,

where U
ε ∈ C1,2([0, T ] × R) is the unique solution to problem (4.12) with (α, β) replaced by 

the pair (αε, β
ε
).

Step 2: Lower bound in (4.9) and (4.10).
We will construct a suitable lower solution to problem (1.1) in this step. Let us first fix a small 

ε ∈ (0, ε0] with ε0 given in (4.14). Since

{
α(t, x) > αε(t, x), β(t, x) < β

ε
(t, x),

α(t, x) < αε(t, x), β(t, x) > β
ε
(t, x),

∀x ∈R, t ∈ [0, T ],

by similar arguments to those used in deriving (4.18), we have

U(t, x) ≥ Uε(t, x) and U(t, x) ≤ U
ε
(t, x), ∀x ∈ R, t ∈ [0, T ].

Applying the strong parabolic maximum principle to equations of U and Uε , and to equations of 
U and U

ε
, immediately implies that

U(t, x) > Uε(t, x) and U(t, x) < U
ε
(t, x), ∀x ∈R, t ∈ [0, T ].

In light of (4.13), we can find some R1 = R1(ε) ∈ lN sufficiently large and δ0 > 0 such that

{
Ũ (t, x) − δ0 ≥ Uε(t, x),

Ũ (t, x) + δ0 ≤ U
ε
(t, x),

∀x ≥ R1, t ∈ [0, T ]. (4.19)

Without loss of generality, we can assume that R1 ≥ R0, and hence (4.15) holds for all x ≥ R1
and t ∈ R.

Let r1 = r1(ε) be a sufficiently large constant such that

λ∗
1(d, r1, α

y
ε ) < 0, ∀y ∈R, (4.20)

where αy
ε (t, x) := αε(t, x + y) for (t, x, y) ∈ R

3. Indeed, the existence of such r1 follows from 
the facts that λ∗

1(d, r, αy
ε ) → λ∗

1(d, ∞, αε) as r → ∞ uniformly in y ∈ R (see [21, Theorem 2.6]) 
and that λ∗

1(d, ∞, αε) < 0.
By the assumption limt→∞ h(t) = ∞, we have from Theorem 3.1 (i) that

lim
n→∞

∣∣u(t + nT ,x) − U(t, x)
∣∣ = 0 locally uniformly in (t, x) ∈ R

2,

where U is the unique positive solution to problem (3.6). Furthermore, by the proof of Proposi-
tion 3.3, we clearly have Ũ(t, x) = U(t, x) for t ∈ [0, T ], x ∈ [0, ∞). It then follows that there 
exists T1 ∈ TN depending on R1 and r1 such that h(T1) > R1 + r1, and that
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Ũ (t, x) + δ0

2
≥ u(t + T1, x) ≥ Ũ (t, x) − δ0

2
, ∀t ≥ 0, 0 ≤ x ≤ R1 + r1. (4.21)

We now define

η(t) = h(t + T1) − R1, w(t, x) = u(t + T1, x + R1), for t ≥ 0, x ≥ 0.

It is straightforward to check that the pair (w, η) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wt − dwxx = w
(
α(t + T1, x + R1) − β(t + T1, x + R1)w

)
, t > 0, 0 < x < η(t),

w(t,0) = u(t + T1,R1), t > 0,

w(t, η(t)) = u(t + T1, h(t + T1)) = 0, t > 0,

η′(t) = −μwx(t, η(t)), t > 0,

η(0) = h(T1) − R1, w(0, x) = u(T1, x + R1), 0 ≤ x ≤ η(0).

(4.22)

Next, we fix some φ0 ∈ H(r1) such that

φ0(x) ≤ Uε(0, x), for 0 ≤ x ≤ r1.

Let (uε, gε, hε) be the solution to the following free boundary problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(uε)t − d(uε)xx = uε(αε(t, x) − β
ε
(t, x)uε), t > 0, gε(t) < x < hε(t),

uε(t, gε(t)) = 0, uε(t, hε(t)) = 0, t > 0,

h′
ε(t) = −μ(uε)x(t, hε(t)), t > 0,

g′
ε(t) = −μ(uε)x(t, gε(t)), t > 0,

gε(0) = −r1, hε(0) = r1, uε(0, x) = φ0(x), −r1 ≤ x ≤ r1.

(4.23)

Due to (4.20), applying [5, Theorem 1.2] to problem (4.23) implies that − limt→∞ gε(t) =
limt→∞ hε(t) = ∞. Moreover, it follows from the parabolic maximum principle that

uε(t, x) ≤ Uε(t, x), ∀t ≥ 0, gε(t) ≤ x ≤ hε(t).

This together with the first inequality of (4.19) and the facts that Uε(t, x) is l-periodic in x and 
R1 ∈ lN implies that

uε(t, x) ≤ Uε(t, x) = Uε(t, x + R1) ≤ Ũ (t, x + R1) − δ0, ∀t ≥ 0, 0 ≤ x ≤ hε(t).

It then follows from the second inequality of (4.21) that

w(t,0) = u(t + T1,R1) ≥ Ũ(t,R1) − δ0

2
≥ uε(t,0), ∀t ≥ 0,

and
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w(0, x) = u(T1, x + R1) ≥ Ũ (0, x + R1) − δ0

2
≥ uε(0, x), ∀0 ≤ x ≤ r1.

Furthermore, by (4.15) and R1 ≥ R0, R1 ∈ lN, T1 ∈ TN, we have

{
α(t + T1, x + R1) ≥ αε(t + T1, x + R1) = αε(t, x),

β(t + T1, x + R1) ≤ β
ε
(t + T1, x + R1) = β

ε
(t, x),

for t ≥ 0, x ≥ 0.

Thus, we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wt − dwxx ≥ w(αε(t, x) − β
ε
(t, x)w), t > 0, 0 < x < η(t),

w(t,0) ≥ uε(t,0), t > 0,

w(t, η(t)) = 0, t > 0,

g′(t) = −μwx(t, η(t)), t > 0,

and

η(0) = h(T1) − R1 > r1, w(0, x) ≥ uε(0, x), ∀0 ≤ x ≤ r1.

Then the comparison principle Proposition 3.2 (together with Remark 3.1) implies that

η(t) ≥ hε(t) for t > 0, and w(t, x) ≥ uε(t, x), ∀t > 0, 0 ≤ x ≤ hε(t).

Therefore, we have

h(t)

t
= η(t − T1) + R1

t
≥ hε(t − T1) + R1

t
, ∀t > T1,

and

u(t, x) = w(t − T1, x − R1) ≥ uε(t − T1, x − R1), ∀t > T1, R1 ≤ x ≤ hε(t).

Applying Proposition 4.1 to problem (4.23), we obtain limt→∞ hε(t)/t = c∗(αε, β
ε
), and

lim
t→∞ inf

0≤x≤c1t
uε(t, x) > 0, for 0 < c1 < c∗(αε,β

ε
).

It then follows that lim inft→∞ h(t)/t ≥ c∗(αε, β
ε
), and

lim
t→∞ inf

R1≤x≤c1t
u(t, x) > 0 for 0 < c1 < c∗(αε,β

ε
).

This together with Lemma 4.1 and the second inequality of (4.21) immediately gives the first 
inequality of (4.9) and (4.10). The proof of Step 2 is now complete.

Step 3: Upper bound in (4.9).
We will construct a suitable upper solution to problem (1.1) in this step. Let ε, T1, R1 be 

chosen as in Step 2 and let (uε, gε, hε) be the solution to the following free boundary problem
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

uε
t − duε

xx = uε(αε(t, x) − β
ε
(t, x)uε), t > 0, gε(t) < x < hε(t),

uε(t, gε(t)) = 0, uε(t, hε(t)) = 0, t > 0,

(hε)′(t) = −μ(uε)x(t, h
ε(t)), t > 0,

(gε)′(t) = −μ(uε)x(t, g
ε(t)), t > 0,

gε(0) = −h0, hε(0) = h0, uε(0, x) = u0(x), −h0 ≤ x ≤ h0.

(4.24)

Without loss of generality, we can assume that h0 is large enough such that λ∗
1(d, h0, α

y
ε ) < 0 for 

all y ∈ R, where αy
ε (t, x) := αε(t, x + y) for (t, x, y) ∈ R

3. Then applying [5, Theorem 1.2] to 
problem (4.24) implies that − limt→∞ gε(t) = limt→∞ hε(t) = ∞, and

lim
n→∞

∣∣uε(t + nT ,x) − U
ε
(t, x)

∣∣ = 0 locally uniformly in (t, x) ∈R
2.

Then exists T2 ∈ TN such that T2 ≥ T1 and

uε(t + T2, x) ≥ U
ε
(t, x) − δ0

2
, ∀t ≥ 0, 0 ≤ x ≤ h(T1).

This together with the second inequality of (4.19) implies that

uε(t + T2, x) ≥ U
ε
(t, x) − δ0

2
≥ Ũ (t, x) + δ0

2
, ∀t ≥ 0, R1 ≤ x ≤ h(T1). (4.25)

Next, we define

ηε(t) = hε(t + T2) − R1, wε(t, x) = uε(t + T2, x + R1), ∀t ≥ 0, x ≥ 0.

Clearly, (wε, ηε) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

wε
t − dwε

xx = wε(αε(t, x) − β
ε
(t, x)wε), t > 0, 0 < x < ηε(t),

wε(t,0) = uε(t + T2,R1), t > 0,

wε(t, ηε(t)) = uε(t + T2, h
ε(t + T2)) = 0, t > 0,

(ηε)′(t) = −μwε
x(t, η

ε(t)), t > 0,

ηε(0) = h(T2) − R1, wε(0, x) = uε(T2, x + R1), 0 ≤ x ≤ ηε(0).

Let (w, η) be the unique solution to problem (4.22). It then follows from the first inequality of 
(4.21) and (4.25) that

wε(t,0) = uε(t + T2,R1) ≥ Ũ (t,R1) + δ0

2
≥ u(t + T1,R1) = w(t,0), ∀t ≥ 0,

and

wε(0, x) = uε(T2, x + R1) ≥ Ũ (0, x + R1) + δ0

2
≥ u(T1, x + R1) = w(0, x),

∀0 ≤ x ≤ h(T1) − R1.
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Furthermore, as in Step 1, we conclude from (4.15) that

{
α(t + T1, x + R1) ≤ αε(t + T1, x + R1) = αε(t, x),

β(t + T1, x + R1) ≥ β
ε
(t + T1, x + R1) = β

ε
(t, x),

for t ≥ 0, x ≥ 0.

It is then easily checked that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wt − dwxx ≤ w(αε(t, x) − β
ε
(t, x)w), t > 0, 0 < x < η(t),

w(t,0) ≤ wε(t,0), t > 0,

w(t, η(t)) = 0, t > 0,

η′(t) = −μwx(t, η(t)), t > 0,

and

η(0) ≤ ηε(0), and w(0, x) ≤ wε(0, x) for 0 ≤ x ≤ η(0).

The comparison principle Proposition 3.2 (together with Remark 3.1) implies that ηε(t) ≥ η(t)

for t > 0. Therefore, we have

h(t)

t
= η(t − T1) + R1

t
≤ ηε(t − T1) + R1

t
= hε(t − T1 + T2)

t
, for t > T1.

Applying Proposition 4.1 to problem (4.24), we obtain limt→∞ hε(t)/t = c∗(αε, β
ε
), and hence 

lim supt→∞ h(t)/t ≤ c∗(αε, β
ε
). Finally, the second inequality of (4.9) follows from Lemma 4.2

by letting ε → 0. The proof of Theorem 4.1 is thereby complete. �
Remark 4.1. If, in addition to the assumption (4.1), we assume that α(t, x) ≡ α(t, x) and 
β(t, x) ≡ β(t, x), that is, the functions α(t, x) and β(t, x) are spatially asymptotically periodic, 
then a direct application of Theorem 4.1 implies that problem (1.1) with q = 0 admits a spreading 
speed c∗ > 0.

5. Spreading-vanishing dichotomy when q is small

This section is concerned with the influence of advection q on the asymptotic behavior of 
solutions to problem (1.1) under the assumption (3.3). We will show that the spreading–vanishing 
dichotomy still holds when q is small.

For any q ≥ 0, d > 0, L > 0, let λ1,q(d, L, α) denote the principal eigenvalue of the periodic-
parabolic eigenvalue problem (2.1). From Proposition 2.3, we see that λ1,q(d, L, α) is strictly 
decreasing with respect to L and limL→0 λ1,q (d, L, α) = ∞. Moreover, λ1,q(d, L, α) possesses 
the following properties.

Lemma 5.1. Suppose that (3.3) holds. Let q∗ = 2
√−dλ∗

1(d,∞, α), where λ∗
1(d, ∞, α) is 

the generalized principal eigenvalue given in (3.4). If 0 ≤ q < q∗, then there exists L̃∗ =
L̃∗(d, q, α) > 0 such that

λ1,q (d,L,α) < 0 for L > L̃∗, and λ1,q (d,L,α) > 0 for 0 < L < L̃∗.
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Proof. For any q ≥ 0, we denote λ1,q(d, ∞, α) := limL→∞ λ1,q (d, L, α). Since λ1,q(d, L, α) is 
strictly decreasing in L and limL→0 λ1,q(d, L, α) = ∞, to prove this lemma, it suffices to show 
that λ1,q(d, ∞, α) < 0 when 0 ≤ q < q∗.

For any q ≥ 0, let

λ∗
1,q (d,∞, α) = sup

{
λ ∈ R : there exists ϕ ∈ C1,2(R2) such that

ϕ is T -periodic, ϕ > 0 and (L− λ)ϕ ≥ 0 in R
2
}
,

with Lϕ := ϕt − dϕxx − qϕx − α(t, x)ϕ for ϕ ∈ C1,2(R × R). Since α(t, x) is T -time periodic 
in t , l-periodic in x, it follows from [20, Theorems 2.12] that

λ∗
1,q (d,∞, α) = max

θ∈R
k(θ;q), (5.1)

where, for each θ ∈R, k(θ; q) is the principal eigenvalue of the following eigenvalue problem

⎧⎪⎪⎨
⎪⎪⎩

φt − dφxx − 2dθφx − qφx − (
dθ2 + qθ + α(t, x)

)
φ = λφ, (t, x) ∈R

2,

φ(t, x) > 0, (t, x) ∈R
2,

φ(t, x) = φ(t + T ,x + l), (t, x) ∈R
2.

Take φθ ∈ C1,2(R2) to be the principal eigenfunction associated with k(θ; q). It is then straight-
forward to check that

(φθ )t − d(φθ )xx − 2d
(
θ + q

2d

)
(φθ )x −

(
d
(
θ + q

2d

)2 + α(t, x)
)
φθ =

(
k(θ;q) − q2

4d

)
φθ .

Therefore, we have

k(θ;q) − q2

4d
= k

(
θ − q

2d
;0

)
for all θ ∈ R, q ≥ 0.

This together with (5.1) implies that

λ∗
1,q (d,∞, α) = max

θ∈R
k
(
θ − q

2d
;0

) + q2

4d
for q ≥ 0. (5.2)

On the other hand, when q = 0, it follows from (5.1) that λ∗
1(d, ∞, α) = maxθ∈R k(θ; 0). Then 

by (5.2), we obtain

λ∗
1,q (d,∞, α) = max

θ∈R
k
(
θ − q

2d
;0

) + q2

4d
= max

θ∈R
k(θ;0) + q2

4d
= λ∗

1(d,∞, α) + q2

4d
.

Thus, if 0 ≤ q < q∗, then λ∗
1,q(d, ∞, α) < 0, and hence, by similar arguments as those used in 

the proof of Lemma 3.1, we obtain λ1,q(d, ∞, α) < 0. This ends the proof of Lemma 5.1. �
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In what follows, we use the notation (u, h) to denote the solution to problem (1.1) with initial 
function u0 ∈ H(h0) and set h∞ := limt→∞ h(t). We now consider the long-time behavior of 
(u, h). We begin with the following vanishing property.

Lemma 5.2. If h∞ < ∞, then limt→∞ max0≤x≤h(t) u(t, x) = 0.

Proof. Applying parabolic maximum principle to problem (1.1), we immediately obtain that

0 < u(t, x) ≤ max
{κ2

κ1
, ‖u0‖L∞([0,h0])

}
for t > 0, 0 ≤ x < h(t), (5.3)

where κ1 and κ2 are the positive constants given in the assumption (1.2). By Proposition 3.1, for 
any n ∈N, there holds ∥∥u

∥∥
C1+α/2,2+α(Dn)

+ ∥∥h
∥∥

C1+α/2([n+1,n+2]) ≤ C,

where Dn = {
(t, x) : n + 1 ≤ t ≤ n + 2, 0 ≤ x ≤ h(t)

}
, C is a positive constant depending 

on h(n), ‖α‖Cν0/2,ν0 (R×(0,∞)),‖β‖Cν0/2,ν0 (R×(0,∞)) and ‖u(n, ·)‖C([0,h(n)]). Furthermore, due to 
h∞ < ∞ and (5.3), it follows that C is independent of n. So we have 

∥∥h
∥∥

C1+α/2([1,∞))
≤ 2C. 

This together with h∞ < ∞ implies that limt→∞ h′(t) = 0. It then follows from the proof of [25, 
Theorem 4.1] that limt→∞ max0≤x≤h(t) u(t, x) = 0. Lemma 5.2 is thus proved. �

As a corollary of Lemma 5.2, we have the following spreading property.

Lemma 5.3. Suppose (3.3) holds. Let q∗ and L̃∗ be the positive constants determined in 
Lemma 5.1. If 0 ≤ q < q∗ and h0 ≥ L̃∗, then h∞ = ∞ and lim inft→∞ max0≤x≤h(t) u(t, x) > 0.

Proof. Without loss of generality, we can assume that h0 > L̃∗. Otherwise, since h(t) is strictly 
increasing in t > 0, it follows that h(t0) > L̃∗ for some small t0 > 0. Then we can obtain the 
desired result by repeating the same analysis as follows with the initial function u0 ∈ H(h0)

replaced by u(t0, ·) ∈ H(h(t0)).
Let (λ1,q (d, h0, α), �(t, x)) be the principal eigenpair of the periodic-parabolic eigenvalue 

problem ⎧⎪⎪⎨
⎪⎪⎩

�t − d�xx − q�x − α(t, x)� = λ�, 0 < t < T, 0 < x < h0,

�x(t,0) = 0, �(t, h0) = 0, 0 < t < T,

�(0, x) = �(T ,x), 0 < x < h0,

(5.4)

such that � > 0 and ‖�‖L∞([0,T ]×[0,h0]) = 1. Since h0 > L̃∗ and 0 ≤ q < q∗, it follows from 
Lemma 5.1 that λ1,q(d, h0, α) < 0. Set

w(t, x) = δ�(t, x) for t ≥ 0, 0 ≤ x ≤ h0,

where δ is a positive constant such that

δ�(t, x) ≤ −λ1,q (d,h0, α)
for t ≥ 0, 0 ≤ x ≤ h0 and δ�(0, x) ≤ u0(x) for 0 ≤ x ≤ h0.
κ2
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Here κ2 > 0 is the upper bound of β(t, x) given in (1.2). Then a direct calculation yields that

⎧⎪⎪⎨
⎪⎪⎩

wt − dwxx − qwx − w
(
α(t, x) − β(t, x)w

) ≤ 0, t > 0, 0 < x < h0,

wx(t,0) = 0, w(t, h0) = 0, t > 0,

w(0, x) ≤ u0(x), 0 ≤ x ≤ h0.

The parabolic maximum principle asserts that u(t, x) ≥ w(t, x) for t ≥ 0, 0 ≤ x ≤ h0, and hence,

lim inf
t→∞ max

0≤x≤h(t)
u(t, x) ≥ lim inf

t→∞ max
0≤x≤h0

δ�(t, x) > 0.

This together with Lemma 5.2 deduces that h∞ = ∞. The proof of Lemma 5.3 is thereby com-
plete. �

Lemmas 5.2–5.3 immediately imply the spreading–vanishing dichotomy when 0 ≤ q < q∗, 
that is, either h∞ < L̃∗ or h∞ = ∞. Let us now turn to the investigation of the long-time behavior 
of (u, h) when h0 < L̃∗.

Lemma 5.4. Suppose (3.3) holds and 0 ≤ q < q∗, h0 < L̃∗. Then there exists μ0 > 0 such that 
vanishing happens if μ ≤ μ0.

Proof. We will construct a suitable upper solution of problem (1.1), which vanishes when 
μ is small. The proof follows from the arguments used in [11, Lemma 3.10] (see also [25, 
Lemma 5.2]) with some modifications. For the sake of completeness, we include the details 
below.

Set

σ(t) = h0τ(t), τ (t) =
(

1 + δ − δ

2
e−γ t

)
for t > 0,

and

w(t, x) = Me−γ t�
( t∫

0

τ−2(s)ds,
h0

σ(t)
x
)

for t > 0, 0 ≤ x ≤ σ(t),

where M , γ , δ are positive constants to be chosen later, and �(t, x) is the principal eigenfunction 
of problem (5.4) such that � > 0 and ‖�‖L∞([0,T ]×[0,h0]) = 1. Since 0 ≤ q < q∗ and h0 < L̃∗, it 
follows from Lemma 5.1 that λ1,q(d, h0, α) > 0. Moreover, applying Hopf Lemma to problem 
(5.4) implies that �(t, 0) > 0 and �x(t, h0) < 0 for 0 ≤ t ≤ T . Then we can find a positive 
constant C > 0 such that

�x(t, x) ≤ C�(t, x) for (t, x) ∈ [0, T ] × [0, h0]. (5.5)

In the following calculations, we will use the notation ξ = ∫ t

0 τ−2(s)ds and η = xτ−1(t). 
Thus we have w(t, x) = Me−γ t�(ξ, η), and for t > 0, 0 < x < σ(t), there holds
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wt − dwxx − qwx − w
(
α(t, x) − β(t, x)w

)
= Me−γ t

[
− γ� + τ−2(t)�ξ − xτ−2(t)τ ′(t)�η − dτ−2(t)�ηη

− qτ−1(t)�η − �
(
α(t, x) − β(t, x)Me−γ (t,x)t�

)]
≥ Me−γ t

[
− γ� + τ−2(t)λ1,q (d,h0, α)� − xτ−2(t)τ ′(t)�η − q

(
τ−1(t) − τ−2(t)

)
�η

− (
α(t, x) − α(ξ, η)τ−2(t)

)
�

]
.

By (5.5), it then follows that

wt − dwxx − qwx − w
(
α(t, x) − β(t, x)w

)
≥ Me−γ t�

[
− γ + λ1,q (d,h0, α)

1 + δ
− Ch0(1 + δ)γ δ

2
− Cqδ − (

α(t, x) − α(ξ, η)τ−2(t)
)]

.

Since

1 + δ

2
≤ τ(t) ≤ 1 + δ, h0

(
1 + δ

2

)
≤ σ(t) ≤ h0(1 + δ),

we have

(1 + δ)−2t ≤ ξ ≤
(

1 + δ

2

)−2
t, (1 + δ)−1x ≤ η ≤

(
1 + δ

2

)−1
x.

It then follows that 
(
α(t, x) − α(ξ, η)τ−2(t)

) → 0 as δ → 0 uniformly in t > 0, 0 < x < σ(t). 
Furthermore, due to λ1,q(d, h0, α) > 0, we can find δ > 0 and γ > 0 sufficiently small such that

wt − dwxx − qwx − w
(
α(t, x) − β(t, x)w

) ≥ 0, for t > 0, 0 < x < σ(t).

We now can choose M > 0 large enough such that

u0(x) ≤ M�
(

0,
x

1 + δ/2

)
= w(0, x) for 0 ≤ x ≤ h0.

Notice that σ ′(t) = h0γ δe−γ t /2, and

−μwx(t, σ (t)) = μMe−γ t τ−1(t)

∣∣∣�η

( t∫
0

τ−2(s)ds,h0

)∣∣∣ ≤ C̃μM

1 + δ/2
e−γ t for t > 0,

where C̃ = maxη∈[0,T ] �η(η, h0). Then by setting

μ0 = δ(1 + δ/2)γ h0
,

2MC̃



JID:YJDEQ AID:8799 /FLA [m1+; v1.257; Prn:24/04/2017; 15:31] P.42 (1-44)

42 W. Ding et al. / J. Differential Equations ••• (••••) •••–•••
we have

σ ′(t) ≥ −μwx(t, σ (t)) for 0 < μ ≤ μ0, t > 0.

Moreover, it is straightforward to check that

w(t, σ (t)) = 0, wx(t,0) = 0 for t > 0.

Combining the above, we obtain that (w(t, x), σ(t)) is an upper solution to problem (1.1). It 
then follows from Proposition 3.2 that

h(t) ≤ σ(t) for t > 0; u(t, x) ≤ w(t, x) for t > 0, 0 ≤ x ≤ h(t).

This implies that h∞ ≤ h0(1 + δ) < ∞ and limt→∞ max0≤x≤h(t) u(t, x) = 0. �
Lemma 5.5. Suppose (3.3) holds and 0 ≤ q < q∗, h0 < L̃∗. Then there exists μ0 > 0 such that 
spreading happens if μ ≥ μ0.

Proof. Due to (5.3), we can choose some positive constant C > 0 such that

u(t, x)(α(t, x) − β(t, x)u(t, x)) ≥ −Cu(t, x) for t > 0, 0 ≤ x < h(t).

Let (u, h) be the solution of the following free boundary problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ut − duxx − qux = −Cu, t > 0, 0 < x < h(t),

ux(t,0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −μux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0.

It then follows from the comparison principle Proposition 3.2 that

h(t) ≥ h(t) for t > 0; u(t, x) ≥ u(t, x) for t > 0, 0 < x < h(t).

Furthermore, similar analysis to that of [25, Lemma 5.3] yields that there exists μ0 > 0 such 
that if μ ≥ μ0, then h(t0) ≥ L̃∗ for some finite t0, and hence h(t0) ≥ L̃∗. It then follows from 
Lemma 5.3 that h∞ = ∞ and lim inft→∞ max0≤x≤h(t) u(t, x) > 0. This proves Lemma 5.5. �

With the aid of Lemmas 5.4–5.5, we can adapt the same arguments as those used in [6, The-
orem 2.10] to prove the existence of a threshold value μ̃∗ of μ which governs the alternatives in 
the spreading–vanishing dichotomy when h0 < L̃∗.

Summarizing the above results, we are now able to present the main theorem of this section.

Theorem 5.1. Suppose (3.3) holds and 0 ≤ q < q∗. Let (u, h) be the solution to problem (1.1)
with initial function u0 ∈ H(h0). If h0 ≥ L̃∗, then spreading always occurs for any μ > 0; and 
if h0 < L̃∗, then there exists a unique μ̃∗ > 0 depending on u0 such that vanishing occurs when 
0 < μ ≤ μ̃∗ and spreading occurs when μ > μ̃∗.
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Remark 5.1. Theorem 5.1 is an extension of the spreading–vanishing dichotomy given in [24]
for problem (1.1) with small advection and spatially homogeneous coefficients to the spatially 
heterogeneous case. Indeed, when the coefficients α and β depend only on t , it follows from 
Proposition 2.4 and Lemma 5.1 that

q∗ = 2

√√√√√ d

T

T∫
0

α(t)dt.

Then Theorem 5.1 implies that the spreading–vanishing dichotomy holds when 0 ≤ q < q∗, 
which coincides with [24, Theorem 2.1], while it does not holds when q > q∗ (see [24, Theo-
rems 2.2–2.3]).
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