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Abstract

We study a p-Laplacian equation involving a parameter λ and a concave-convex nonlinearity containing a 
weight which can change sign. By using the Nehari manifold and the fibering method, we show the existence 
of two positive solutions on some interval (0, λ∗ + ε), where λ∗ can be characterized variationally. We also 
study the asymptotic behavior of solutions when λ ↓ 0.
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1. Introduction

Consider the following equation

{−�pu = λ|u|q−2u + f |u|γ−2uin �,

u ∈ W
1,p

0 (�),
(Pλ)
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where � ⊂ R
N is a bounded domain with C1 boundary, λ > 0, 1 < q < p < γ < p∗ and p∗ is 

the critical Sobolev exponent, f ∈ L∞(�) and W 1,p

0 (�) is the standard Sobolev space. We say 

that u ∈ W
1,p
0 (�) is a solution of (Pλ) if u is a critical point for �λ : W 1,p

0 (�) → R where

�λ(u) := 1

p

∫
|∇u|p − λ

q

∫
|u|q − 1

γ

∫
f |u|γ .

We denote ‖u‖ = (∫ |∇u|p)1/p as the standard Sobolev norm in W 1,p

0 (�) and consider the 
following extremal value

λ∗ ≡ γ − p

γ − q

(
p − q

γ − q

) p−q
γ−p

inf
u∈W

1,p
0 \{0}

⎧⎨
⎩ ‖u‖p

γ−q
γ−p

‖u‖q
qF (u)

p−q
γ−p

: F(u) > 0

⎫⎬
⎭ ,

where F(u) = ∫ f |u|γ . Let z ∈ W
1,p

0 (�) be the unique positive solution of the Lane–Emden 
equation

{−�pu = |u|q−2u in �,

u ∈ W
1,p

0 (�).

The main result of this work is the following

Theorem 1.1. Assume that f + := max{f (x), 0} �≡ 0. There exists ε > 0 such that for all λ ∈
(0, λ∗ + ε) the problem (Pλ) has two positive solutions wλ, uλ. Moreover

(i) Duu�λ(wλ)(wλ, wλ) < 0, Duu�λ(uλ)(uλ, uλ) > 0;
(ii)

lim
λ↓0

uλ

λ
1

p−q

= z.

When p = 2 and f ≡ 1 the problem (Pλ) was studied by Ambrosetti–Brezis–Cerami in [1]. 
There, among other things, they show the existence of � > 0 such that for all λ ∈ (0, �) the 
problem (Pλ) has at least two positive solutions, while for λ = � it has at least one positive 
solution and for λ > � there is no positive solution for (Pλ). To find the first solution they used 
the sub and super solution method, while for the second solution they used the mountain pass 
theorem. Moreover, from the sub and super solution method, one can easily see that the first 
branch of solutions which bifurcates from 0 satisfies property (ii). Later on, there was some 
improvement in Ambrosetti–Azorero–Peral [2], where the authors proved the existence of some 
� satisfying the above properties, however for p > 1, f ≡ 1 and � a ball. Finally, the result was 
generalized for p > 1 by Azorero–Peral–Manfredi in [3].

More recently, some authors studied the problem (Pλ) by using only variational methods, to 
wit, the Nehari manifold (see Nehari [4,5]) and the fibering method of Pohozaev [6]. Among 
these authors we can cite the work of Il’yasov [7], which considered the problem (Pλ) with 
0 ≤ f ∈ Ld(�) and p > 1. He was able to show the existence of a parameter λ∗ > 0 such that 
for each λ ∈ (0, λ∗) the problem (Pλ) has two positive solutions. In [8] Brown–Wu considered 
the case p = 2 and a indefinite nonlinearity, that is, f change sign in �. By minimizing over the 
Nehari manifold they proved the existence of two positive solutions for small λ.
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On the same direction, in [9] Il’yasov provided a general theory by considering a generaliza-
tion of the Rayleigh quotient, where one is able to show the existence of solutions to nonlinear 
elliptic equations depending on a parameter λ. In the theory, the above mentioned parameter λ∗
is called an extremal value and if Nλ is the Nehari manifold associated with (Pλ) then for all 
λ ∈ (0, λ∗) we have that Nλ is a C1 manifold with codimension one. These extremal values are 
not new and can be found for example in Ouyang [10]. When λ ∈ (0, λ∗), by using standard min-
imization techniques, one can easily minimize the energy functional associated with (Pλ) over 
the Nehari manifold, however when λ ≥ λ∗ things get complicated because Nλ is no longer a 
manifold and a finer investigation has to be done.

Our objective in this work is to study the problem (Pλ) only by variational methods, in 
particular, we use the Nehari manifold and the fibering approach. We analyze the case where 
f + ≡ max{f (x), 0} �≡ 0 and give a contribution on the understanding of the extremal Nehari 
manifold Nλ∗ . By minimizing over a submanifold of the Nehari manifold Nλ we show the exis-
tence of solutions for λ near λ∗. A similar approach has been employed in Il’yasov and Silva [11].

In Section 2 we collect some technical results. In Section 3 we show existence of two pos-
itive solutions for λ ∈ [0, λ∗]. In Section 4 we show existence of two positive solutions for 
λ ∈ (λ∗, λ∗ + ε). In Section 5 we study the asymptotic behavior for one of the branches of 
solutions as λ ↓ 0. In Section 6 we prove the Theorem 1.1. In the Appendix, we prove some 
auxiliary results and we present a table with the main notations which are used throughout the 
work.

In this paper, c, C denotes positive constants which can change from line to line, however 
they depend only on p, q, γ , �, f and its dependence on these parameters are not important for 
the development of the work.

2. Technical results

In this section, we collect some technical results. Consider the Nehari manifold associated to 
the functional �λ (see Nehari [4,5])

Nλ =
{
u ∈ W

1,p

0 (�) \ {0} : Du�λ(u)u = 0
}

.

Observe that all critical points of �λ are contained in Nλ. Moreover, consider the subsets 
N−

λ , N 0
λ , N+

λ ⊂Nλ defined by

N−
λ = {u ∈ Nλ : Duu�λ(u)(u,u) < 0}.

N 0
λ = {u ∈ Nλ : Duu�λ(u)(u,u) = 0}.

N+
λ = {u ∈ Nλ : Duu�λ(u)(u,u) > 0}.

When N−
λ , N+

λ �= ∅, it follows from the implicit function theorem that N−
λ , N+

λ are C1 man-

ifolds of codimension one in W 1,p

0 (�). Moreover, denoting Tu(N−
λ ∪N+

λ ) as the tangent space 
of the manifold N−

λ ∪N+
λ at the point u we have the following results

Proposition 2.1. Take λ > 0 and u ∈N−
λ ∪N+

λ . Then Du�λ(u)v = 0 for all v ∈ W
1,p

0 (�) if and 
only if Du�λ(u)v = 0 for all v ∈ Tu(N−

λ ∪N+
λ ).
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Fig. 1. Fiber map graph for F(u) ≤ 0.

Corollary 2.2. Suppose that � restricted to N−
λ ∪ N+

λ has a critical point u, that is, 
Du�λ(u)v = 0 for all v ∈ Tu(N−

λ ∪ N+
λ ). Then, u is a solution of (Pλ) and u ∈ C1,α(�) for 

some α ∈ (0, 1).

Proof. From the definition of weak solution and the Proposition 2.1, u is a solution of (Pλ). 
For the regularity, note from Tan–Fang [12] that u ∈ L∞(�) (one can also use Moser iteration), 
therefore from Tolksdorf and Lieberman [13,14] the proof is completed. �

Now we consider the fibering approach (see Pohozaev [6]): let φλ,u : [0, ∞) → R be the real 
function defined by

φλ,u(t) := �λ(tu), (1)

where u ∈ W
1,p

0 (�) \ {0}. The understanding of the fibering maps will be of extremely impor-
tance in the next sections.

Proposition 2.3. For each u ∈ W
1,p

0 (�) \{0} and λ > 0, the function φλ,u is of class C∞ over the 
interval (0, ∞). Moreover, if F(u) ≤ 0 then φλ,u has only one critical point at t+λ (u) ∈ (0, ∞), 
which satisfies φ′′

λ,u(t
+
λ (u)) > 0. If F(u) > 0 then there are three possibilities

(I) There are only two critical points for φλ,u. One critical point at t+λ (u) with φ′′
λ,u(t

+
λ (u)) > 0

and the other one at t−(u) with φ′′
λ,u(t

−
λ (u)) < 0. Moreover φλ,u is decreasing over the 

intervals [0, t+λ (u)], [t−λ (u), ∞) and increasing over the interval [t+λ (u), t−λ (u)] (evidently 
0 < t+λ (u) < t−λ (u)).

(II) There is only one critical point for φλ,u, which is a saddle point at t0
λ(u) > 0. Moreover 

φλ,u is decreasing.
(III) The function φλ,u is decreasing and has no critical points.

Proof. The proof is straightforward. �
The following pictures give the possible graphs of the fiber maps. The case F(u) ≤ 0 corre-

sponds to the Fig. 1. The case (I) corresponds to Fig. 2(a), the case (II) corresponds to Fig. 2(b) 
and the case (III) corresponds to Fig. 2(b).

Observe that when F(u) ≤ 0, the graph of φλ,u will be always as in the Fig. 1 for any λ > 0, 
however, when F(u) > 0, this does not happen. Indeed, one can easily see that if F(u) > 0 then, 
for λ > 0 near 0, we have the graph as in the Fig. 2(a). By increasing λ, we can find some λ(u)
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Fig. 2. Fiber map graphs for F(u) > 0.

for which the graph of the fiber map will be as in the Fig. 2(b). After λ(u) the graph will be 
similar to 2(c).

Remark 2.4. If f ≥ 0 then only (I), (II) and (III) may happen.

From the previous discussion, one can see that for each u ∈ W
1,p
0 (�) \ {0} with F(u) > 0, 

there is a unique λ = λ(u) > 0 such that φλ,u satisfies (II). Indeed, this is equivalent to solve the 
system (with respect to the variables t , λ)

{ ‖tu‖p − λ‖tu‖q
q − F(tu) = 0,

p‖tu‖p − λq‖tu‖q
q − γF(tu) = 0.

It follows that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t (u) =
(

p − q

γ − q

‖u‖p

F (u)

) 1
γ−p

,

λ(u) ≡ γ − p

γ − q

(
p − q

γ − q

) p−q
γ−p ‖u‖p

γ−q
γ−p

‖u‖q
qF (u)

p−q
γ−p

=
(

γ − p

γ − q

‖u‖p

‖u‖q
q

)(
p − q

γ − q

‖u‖p

F (u)

) p−q
γ−p

.

(2)

From the construction we conclude that for each u ∈ W
1,p

0 (�) \ {0} with F(u) > 0 and λ ∈
(0, λ(u)) the fiber map φλ,u satisfies (I) while φλ(u),u satisfies (II) and φλ,u satisfies (III) for all 
λ > λ(u). Moreover N 0

λ �= ∅ if and only if there exists u ∈ W
1,p
0 (�) \ {0} such that λ = λ(u). 

Observe that t (u) = t0
λ(u)(u). Define the extremal value (see Il’yasov [7,9])

λ∗ ≡ γ − p

γ − q

(
p − q

γ − q

) p−q
γ−p

inf
u∈W

1,p
0 \{0}

⎧⎨
⎩ ‖u‖p

γ−q
γ−p

‖u‖q
qF (u)

p−q
γ−p

: F(u) > 0

⎫⎬
⎭ . (3)

Proposition 2.5. The following holds true

(i) the function λ, defined in (2), is 0-homogeneous and 0 < λ∗ < ∞;
(ii) N 0

λ∗ �= ∅ and

N 0∗ = {u ∈ Nλ∗ : F(u) > 0, λ(u) = λ∗}.
λ
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Moreover, each u ∈N 0
λ∗ satisfies

−p�pu − λ∗q|u|q−2u − γ |u|γ−2u = 0;
(iii) N 0

λ = ∅ for each λ ∈ (0, λ∗) and N 0
λ �= ∅ for each λ ∈ [λ∗, ∞).

Proof. (i) The first part is obvious and the second is a consequence of the Sobolev embedding.
(ii) Since λ is 0-homogeneous, we have that

λ∗ = γ − p

γ − q

(
p − q

γ − q

) p−q
γ−p

inf
v∈S

⎧⎨
⎩ 1

‖v‖q
qF (v)

p−q
γ−p

: F(v) > 0

⎫⎬
⎭ ,

where S ≡ {u ∈ W
1,p
0 (�) : ‖u‖ = 1}. Let vn ∈ S satisfies F(vn) > 0 and λ(vn) → λ∗. Once 

‖vn‖ = 1, we can assume that vn ⇀ v in W 1,p
0 (�) and vn → v in Lp(�), Lγ (�). Note that 

v �≡ 0 because if not then λ(vn) → ∞. It follows that v/‖v‖ ∈ S and F(v/‖v‖) > 0. We claim 
that vn → v in W 1,p

0 (�). Indeed, if not, by the weak lower semi-continuity of the norm, we 
obtain that

λ

(
v

‖v‖
)

= λ(v) < lim infλ(vn) = λ∗,

which is an absurd, therefore, vn → v in W 1,p

0 (�) and consequently v ∈ S, F(v) > 0 and 
λ(v) = λ∗. Therefore t (v)v ∈ N 0

λ(v)=λ∗ and N 0
λ∗ �= ∅. Once N 0

λ∗ �= ∅, the equality N 0
λ∗ = {u ∈

Nλ∗ : F(u) > 0, λ(u) = λ∗} is obvious.
To prove that any u ∈N 0

λ∗ satisfies

−p�pu − λ∗q|u|q−2u − γ |u|γ−2u = 0,

we note that Duλ(u)w = 0 for all w ∈ W
1,p

0 (�) and therefore

(
γ − q

γ − p

)
‖u‖q

qF (u)
p−q
γ−p ‖u‖p

p−q
γ−p (−p�puw)

− ‖u‖p
γ−q
γ−p

[(
p − q

γ − p

)
‖u‖q

qF (u)
p−q−(γ−p)

γ−p (γ |u|γ−2uw) + F(u)
p−q
γ−p (q|u|q−2uw)

]
= 0.

(4)

From (4) we conclude that

−p�puw −
(

γ − p

γ − q

) ‖u‖p

‖u‖q
q

q|u|q−2uw −
(

p − q

γ − q

) ‖u‖p

F (u)
γ |u|γ−2uw = 0, ∀ w ∈ W

1,p
0 (�).

(5)

Once u ∈N 0
λ∗ , we have that

(
γ − p

γ − q

) ‖u‖p

q = λ∗,
(

p − q

γ − q

) ‖u‖p

F (u)
= 1. (6)
‖u‖q



JID:YJDEQ AID:9289 /FLA [m1+; v1.283; Prn:12/04/2018; 10:29] P.7 (1-28)

K. Silva, A. Macedo / J. Differential Equations ••• (••••) •••–••• 7
From (5) and (6) we infer that u satisfies

−p�pu − λ∗q|u|q−2u − γf |u|γ−2u = 0.

(iii) It is a consequence of the definition of λ∗. �
The following results about the Nehari set N 0

λ∗ will be essential to prove the existence of 
solutions for λ ≥ λ∗.

Corollary 2.6. The set N 0
λ∗ is compact.

Proof. First, observe that u ∈N 0
λ∗ implies

‖u‖p − λ∗‖u‖q
q − F(u) = 0 = p‖u‖p − λ∗q‖u‖q

q − γF(u).

It follows that there exist positive constants c, C such that

c ≤ ‖u‖ ≤ C|λ∗| 1
p−q , ∀ u ∈ N 0

λ∗ . (7)

Let un ∈ N 0
λ∗ for n = 1, 2, . . .. From the Proposition 2.5 we know that

−p�pun − λ∗q|un|q−2un − γf |un|γ−2un = 0, ∀ n = 1,2, . . . (8)

From (7) we can assume that, up to a subsequence, un ⇀ u in W 1,p
0 (�) and un → u

in Lp(�), Lγ (�). From (8) and the S+ property of the p-Laplacian operator (see Drábek–
Milota [15]) we conclude that un → u in W 1,p

0 (�) and consequently N 0
λ∗ is compact. �

For λ > 0 we define

N̂λ = {u ∈ W
1,p
0 (�) \ {0} : F(u) > 0, φλ,u satisfies (I)},

and

N̂+
λ = {u ∈ W

1,p
0 (�) \ {0} : F(u) ≤ 0}.

Remark 2.7. Note that for λ > 0 we have N̂λ �= ∅. Moreover, for λ1, λ2 ∈ (0, λ∗) we also have 
that N̂λ1 = N̂λ2 and N̂+

λ1
= N̂+

λ2
.

Remark 2.8. One can easily see that if u ∈ N̂λ ∪ N̂+
λ then tu ∈ N̂λ ∪ N̂+

λ for all t > 0. It follows 
that N̂λ ∪ N̂+

λ is the positive cone generated by the Nehari manifold N+
λ ∪N−

λ , that is

N̂λ ∪ N̂+
λ = {tu : t > 0, u ∈ N+

λ ∪N−
λ }.

Let N̂λ ∪ N̂+ denotes the closure of N̂λ ∪ N̂+ with respect to the norm topology.
λ λ
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Proposition 2.9. There holds

N̂λ∗ ∪ N̂+
λ∗ = N̂λ∗ ∪ N̂+

λ∗ ∪ {tu : t > 0, u ∈N 0
λ∗} ∪ {0}.

Proof. Let us first show that N+
λ ∪N−

λ =N+
λ ∪N−

λ ∪N 0
λ∗ ∪ {0}.

Case 1: un ∈N−
λ satisfies un → u in W 1,p

0 (�).

We have that

{ ‖un‖p − λ∗‖un‖q
q − F(un) = 0,

p‖un‖p − λ∗q‖un‖q
q − γF(un) < 0,

∀ n = 1,2, · · · (9)

From (9) one can easily see that if F(u) �= 0 then, u ∈ N−
λ∗ ∪ N 0

λ∗ , while if F(u) = 0 then 
u = 0.

Case 2: un ∈N+
λ satisfies un → u in W 1,p

0 (�).

We have

{ ‖un‖p − λ∗‖un‖q
q − F(un) = 0,

p‖un‖p − λ∗q‖un‖q
q − γF(un) > 0,

∀ n = 1,2, · · · (10)

From (10) one can easily see that if F(u) �= 0 then, u ∈ N+
λ∗ ∪ N 0

λ∗ , while if F(u) = 0 then 
u = 0 or u ∈ N+

λ∗ .

It follows that N+
λ ∪N−

λ = N+
λ ∪ N−

λ ∪ N 0
λ∗ ∪ {0} and from the Remark 2.8 the proof is 

completed. �
Define tλ∗ : N̂λ \ {0} →R and sλ∗ : W 1,p

0 (�) \ {0} →R by

tλ∗(w) =
{

t−λ∗(w), if w ∈ N̂λ∗

t0
λ∗(w), otherwise,

(11)

and

sλ∗(u) =
{

t+λ∗(u), if u ∈ N̂λ∗ ∪ N̂+
λ∗

t0
λ∗(u), otherwise.

(12)

Let S ≡ {u ∈ W
1,p

0 (�) : ‖u‖ = 1}.

Proposition 2.10. There holds

(i) tλ∗ is a continuous function. Moreover, the function P − : S ∩ N̂λ → N−
λ∗ ∪ N 0

λ∗ defined by 
P −(v) = tλ∗(v)v is a homeomorphism;
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(ii) sλ∗ is a continuous function. Moreover, the function P + : S → N+
λ∗ ∪ N 0

λ∗ defined by 
P +(v) = sλ∗(v)v is a homeomorphism.

Proof. (i) The continuity follows from the inequalities{
tλ∗(v)p‖v‖p − λ∗tλ∗(v)q‖v‖q

q − tλ∗(v)γ F (v) = 0,

ptλ∗(v)p‖v‖p − λ∗qtλ∗(v)q‖v‖q
q − γ tλ∗(v)γ F (v) ≤ 0.

To prove that P − is a homeomorphism, observe that the continuous function (P −)−1 : N−
λ∗ ∪

N 0
λ∗ → S ∩ N̂λ defined by (P −)−1(u) = u/‖u‖ is the inverse of P −.
(ii) Similar to (i). �

Corollary 2.11. Consider Nλ∗ ⊂ W
1,p

0 (�) with its topology induced by the norm of W 1,p

0 (�). 
Then, the set N 0

λ∗ ⊂Nλ∗ has empty interior.

Proof. Suppose on the contrary that for some v ∈ N 0
λ∗ there is an open neighborhood U ⊂ N 0

λ∗
of v. Define

P(U) =
{

u

‖u‖ : u ∈ U
}

.

From the Proposition 2.10 follows that P(U) ⊂ S is an open neighborhood of v/‖v‖ on the 
sphere. Once P(U) is an open set of the sphere its closure over the sphere is not compact, 
however, this is an absurd because it would imply that the closure of U is not compact, which 
contradicts the Corollary 2.6. �

From now on, for λ > 0, let J−
λ : N̂λ →R and J+

λ : N̂λ ∪ N̂+
λ → R be defined by

J−
λ (u) = �λ(t

−
λ (u)u), and J+

λ (u) = �λ(t
+
λ (u)u).

We consider the following constrained minimization problems

Ĵ−
λ = inf{J−

λ (u) : u ∈N−
λ } and Ĵ+

λ = inf{J+
λ (u) : u ∈N+

λ }.

Remark 2.12. Observe that J−
λ , J+

λ are 0-homogeneous functionals. Moreover, from the implicit 
function theorem they are C1 functionals and from the Proposition 2.1 any minimizer of Ĵ−

λ or 
Ĵ+

λ is a critical point for �λ.

To simplify, when possible we will use the symbols Ĵ∓
λ , t∓λ and so on to indicate Ĵ−

λ , t−λ , 
Ĵ+

λ , t+λ . For the next sections, we will be interested in minimizing the functionals J∓
λ .

Proposition 2.13. Take v ∈ W
1,p
0 (�) \ {0}. Let I ⊂ R be an open interval such that t∓λ (v) are 

well defined for all λ ∈ I . There holds

(i) the functions I � λ �→ t∓λ (v) are C1. Moreover, I � λ �→ t−λ (v) is decreasing while I � λ �→
t+λ (v) is increasing;

(ii) the functions I � λ �→ J∓(v) are continuous and decreasing.
λ
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Fig. 3. Behavior of the fiber maps accordingly with the parameter λ.

Proof. (i) Once t∓λ (v)v ∈ N∓
λ , we have from the implicit function theorem that I � λ �→ t∓λ (v)

are C1 and

∂

∂λ
t∓λ (v) = t∓λ (v)‖t∓λ (v)v‖q

q

p‖t∓λ (v)v‖p − qλ‖t∓λ (v)v‖q
q − γF(t∓λ (v)v)

, ∀λ ∈ I.

Therefore ∂
∂λ

t−λ (v) < 0 and ∂
∂λ

t+λ (v) > 0 for λ ∈ I .
(ii) Indeed, from (i) we have that

∂

∂λ
J∓

λ (v) = −‖t∓λ (v)v‖q
q

q
< 0. �

Fix some w, u ∈ W
1,p
0 (�) \ {0}, λ′ ∈ (0, λ∗) and suppose that w ∈ N̂λ′ , u ∈ N̂λ′ ∪ N̂+

λ′ . Ob-
serve from the Remark 2.7 that t−λ (w) and t+λ (u) are well defined for all λ ∈ (0, λ∗). From the 
Proposition 2.13, we obtain that

Corollary 2.14. If w ∈ N̂λ′ , u ∈ N̂λ′ ∪ N̂+
λ′ for some λ′ ∈ (0, λ∗) then

(i) the functions (0, λ∗) � λ �→ t−λ (w), (0, λ∗) � λ �→ t+λ (u) are C1. Moreover, (0, λ∗) � λ �→
t−λ (w) is decreasing while (0, λ∗) � λ �→ t+λ (u) is increasing;

(ii) the functions (0, λ∗) � λ �→ J−
λ (w), (0, λ∗) � λ �→ J+

λ (u) are continuous and decreasing.

In the next Corollary we study the behavior of the fiber maps when λ ↑ λ∗ (see Fig. 3).

Corollary 2.15. Suppose that u /∈ N̂+
λ∗ . Then

lim
λ↑λ∗ t−λ (u) = tλ∗(u), lim

λ↑λ∗ t+λ (u) = sλ∗(u)

and

lim
λ↑λ∗ J−

λ (u) = �λ∗(tλ∗(u)u), lim
λ↑λ∗ J+

λ (u) = �λ∗(sλ∗(u)u),

with tλ∗(u) and sλ∗(u) defined as in (11) and (12).
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Proof. If u ∈ N̂λ∗ the proof follows from the Proposition 2.13. If u /∈ N̂λ∗ ∪ N̂+
λ∗ then, from the 

definition of λ∗, we have that u ∈ N̂λ for all λ ∈ (0, λ∗) and λ∗ = λ(u). Moreover

{ ‖t−λ (u)u‖p − λ‖t−λ (u)u‖q
q − F(t−λ (u)u) = 0,

p‖t−λ (u)u‖p − λq‖t−λ (u)u‖q
q − γF(t−λ (u)u) < 0,

∀ λ ∈ (0, λ∗),

and { ‖t+λ (u)u‖p − λ‖t+λ (u)u‖q
q − F(t+λ (u)u) = 0,

p‖t+λ (u)u‖p − λq‖t+λ (u)u‖q
q − γF(t+λ (u)u) > 0,

∀ λ ∈ (0, λ∗).

From the Corollary 2.14 we can assume without loss of generality that t−λ (u) → t−, 
t+λ (u) → t+ as λ ↑ λ∗ where 0 < t+ ≤ t− < ∞. It follows that

{ ‖t−u‖p − λ∗‖t−u‖q
q − F(t−u) = 0,

p‖t−u‖p − λ∗q‖t−u‖q
q − γF(t−u) ≤ 0,

(13)

and { ‖t+u‖p − λ∗‖t+u‖q
q − F(t+u) = 0,

p‖t+u‖p − λ∗q‖t+u‖q
q − γF(t+u) ≥ 0.

(14)

We claim that t− = t+. Indeed, suppose on the contrary that t− < t+. It follows from (13) and 
(14) that t− = t−λ∗(u) and t+ = t+λ∗(u). However, this contradicts the fact that λ(u) = λ∗ and the 
Proposition 2.5, therefore t− = t+ and from (13), (14) we conclude that t− = t+ = t0

λ∗(u). The 
second limit is straightforward. �
3. Existence of solutions in [0, λ∗]

In this section we show existence of positive solutions to the problem (Pλ) for λ ∈ [0, λ∗]. 
Some of the ideas used here can be found in [7–9].

Lemma 3.1. For each λ ∈ [0, λ∗], there exist 0 < wλ ∈ N−
λ and 0 < uλ ∈ N+

λ solutions of (Pλ). 
Moreover wλ, uλ ∈ C1,α(�) for some α ∈ (0, 1).

The proof will be given at the end of this section.

Proposition 3.2. Let λ > 0. The functional �λ is weakly lower semi-continuous. Moreover, the 
functionals J∓

λ are coercive.

Proof. That �λ is weakly lower semi-continuous is a straightforward calculation. To prove co-
erciveness, note that for all u ∈Nλ there holds

�λ(u) ≥
(

1 − 1
)∫

|∇u|p −
(

1 − 1
)

λ

∫
|u|q, (15)
p γ q γ
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which implies from the Sobolev embedding that �λ is coercive over Nλ and therefore J∓
λ are 

coercive. �
The next result is essential in proving that minimizing sequences does not converge weakly to 

zero.

Proposition 3.3. Suppose that N∓
λ �= ∅. Then

(i) for each u ∈N−
λ , there holds

(p − q)‖u‖p < (γ − p)F(u);

(ii) for each u ∈N+
λ , there holds

(γ − p)‖u‖p < λ(γ − q)‖u‖q
q .

Proof. The proof is straightforward from the definitions. �
From the Proposition 3.3 and the Sobolev embeddings we obtain

Corollary 3.4. There are constants C1, C2 > 0 such that

(i) for each u ∈N−
λ , there holds

‖u‖ > C1

(
p − q

γ − q

) 1
γ−p ;

(ii) for each u ∈N+
λ , there holds

‖u‖ < C2

(
γ − q

γ − p

) 1
p−q

λ
1

p−q .

For each λ > 0, we consider the following constrained minimization problems

Ĵ∓
λ = inf{J∓

λ (u) : u ∈N∓
λ }.

Observe from the Proposition 3.4 that Ĵ∓
λ > −∞.

Proposition 3.5. For each λ > 0 there holds

(i) if wn ∈ N−
λ is a minimizing sequence for Ĵ−

λ then there exist constants c, C > 0 such that 
c < ‖wn‖ < C;

(ii) if un ∈ N+
λ is a minimizing sequence for Ĵ+

λ then there exist constants c, C > 0 such that 
c < ‖un‖ < C.
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Proof. (i) Suppose that wn ∈N−
λ satisfies J−

λ (wn) → Ĵ−
λ . From the Corollary 3.4, we only have 

to find C. However, from the Proposition 3.2, if ‖un‖ → ∞ then we conclude that J−
λ (un) → ∞

which contradicts the definition of Ĵ−
λ .

(ii) Suppose that un ∈ N+
λ satisfies J+

λ (un) → Ĵ+
λ . From the Corollary 3.4, we only have to 

find c. However, from the Proposition 3.2, if ‖un‖ → 0 the we conclude that Ĵ+
λ ≥ 0 which is an 

absurd because Ĵ+
λ < 0. �

Lemma 3.6. For each λ ∈ (0, λ∗) there are two positive functions wλ ∈ N−
λ and uλ ∈ N−

λ such 
that J−

λ (wλ) = Ĵ−
λ and J+

λ (vλ) = Ĵ+
λ .

Proof. We start with Ĵ−
λ . Suppose that wn ∈ N−

λ satisfies J−
λ (wn) → Ĵ−

λ . From the Proposi-

tion 3.5, we may assume that wn ⇀ w in W 1,p

0 (�), wn → w in Lq(�), Lγ (�). Let us prove that 
w �= 0 and F(w) > 0. Indeed, if not, from the Proposition 3.3 we would have that ‖wn‖ → 0, 
which contradicts the Proposition 3.5. Therefore w �= 0 and F(w) > 0.

We claim that wn → w in W 1,p

0 (�). In fact, on the contrary, we would have that ‖w‖ <
lim inf‖wn‖ and thus

lim inf
n→∞ Du�λ

(
t−λ (w)wn

)
> Du�λ

(
t−λ (w)w

)= 0,

which implies from the Proposition 2.3 that for sufficiently large n, Du�λ

(
t−λ (w)wn

)
> 0. 

Therefore, for sufficiently large n we have that t+λ (wn) < t−λ (w) < t−λ (wn) = 1 and hence

J−
λ (w) = �λ(t

−
λ (w)w) < lim inf

n→∞ �λ

(
t−λ (w)wn

)
< lim inf

n→∞ �λ (wn) = Ĵ−
λ ,

which is a contradiction. Therefore wn → w in W 1,p

0 (�), w ∈ N−
λ and J−

λ (w) = Ĵ−
λ .

Now suppose that un ∈ N+
λ satisfies J+

λ (un) → Ĵ+
λ . From the Proposition 3.5, we may as-

sume that un ⇀ u in W 1,p

0 (�), un → u in Lq(�), Lγ (�). Let us prove that u �= 0. Indeed, 
if not, from the Proposition 3.3 we would have that ‖un‖ → 0, which contradicts the Propo-
sition 3.5. We claim that un → u in W 1,p

0 (�). In fact, on the contrary, we would have that 
‖u‖ < lim inf‖un‖ and thus

lim inf
n→∞ Du�λ

(
t+λ (u)un

)
> Du�λ

(
t+λ (u)u

)= 0,

which implies from the Proposition 2.3 that for sufficiently large n, Du�λ

(
t+λ (u)un

)
> 0. There-

fore, for sufficiently large n we have that 1 = t+λ (un) < t+λ (u). It follows that �λ

(
t+λ (u)u

)
<

�λ (u) for sufficiently large n, and consequently

J+
λ (u) = �λ

(
t+λ (u)u

)
< lim inf

n→∞ �λ(un) = Ĵ+
λ ,

which is an absurd. Therefore un → u in W 1,p
(�), u ∈ N+ and J+(u) = Ĵ+. �
0 λ λ λ
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Now we study the problems Ĵ∓
λ∗ . First, observe from the Proposition 2.10 and the Corol-

lary 2.11 that if

�̂−
λ∗ = inf{�λ∗(tλ∗(w)w) : w ∈N−

λ∗ ∪N 0
λ∗},

and

�̂+
λ∗ = inf{�λ∗(sλ∗(u)u) : u ∈ N+

λ∗ ∪N 0
λ∗},

with tλ∗(u) and sλ∗(u) defined as in (11) and (12), then Ĵ∓
λ∗ = �̂∓

λ∗ .

Proposition 3.7. There holds

(i) The functions (0, λ∗] � λ �→ Ĵ∓
λ are decreasing;

(ii)
lim
λ↑λ∗ Ĵ∓

λ = Ĵ∓
λ∗ .

Proof. (i) Indeed, if 0 < λ < λ′ < λ∗, we have from the Corollary 2.14 item (ii) that

Ĵ−
λ′ ≤ J−

λ′ (wλ) < J−
λ (wλ) = Ĵ−

λ .

Moreover, if λ ∈ (0, λ∗) then from the Corollaries 2.14 and 2.15 we obtain that Ĵ−
λ∗ =

�̂−
λ∗ ≤ �λ∗(tλ∗(w)w) = limλ↓λ∗ �λ(t

−
λ

(w)w) < J−
λ (w), with tλ∗(u) defined as in (11), for all 

w ∈ N−
λ∗ ∪N 0

λ∗ and hence Ĵ−
λ∗ ≤ Ĵ−

λ .
The same holds true for Ĵ−

λ .
(ii) Let λn ↑ λ∗. From (i) we can assume that Ĵ−

λn
→ J ≥ Ĵ−

λ∗ . Given δ > 0, suppose on 

the contrary that J − Ĵ−
λ∗ ≥ δ. Fix 0 < δ′ such that 2δ′ < δ and choose wδ′ ∈ N−

λ∗ such that 
J−

λ∗(wδ′) − Ĵ−
λ∗ ≤ δ′.

Once J−
λn

(wδ′) → J−
λ∗(wδ′) (see Corollary 2.14), we conclude that for sufficiently large n

0 ≤ J−
λn

(wδ′) − J−
λ∗(wδ′) ≤ δ′.

It follows that for sufficiently large n,

Ĵ−
λn

≤ J−
λn

(wδ′) ≤ Ĵ−
λ∗ + 2δ′ ≤ J − δ + 2δ′,

and hence J ≤ J − δ + δ′ < J , a contradiction, therefore J = Ĵ−
λ∗ .

The proof is similar for Ĵ+
λ∗ . �

Now we are able to show the existence of solutions to the minimization problems Ĵ∓
λ∗ .

Proposition 3.8. There are function wλ∗ ∈ N−
λ∗ and uλ∗ ∈ N+

λ∗ such that Ĵ−
λ∗ = J−

λ∗(wλ∗) and 
Ĵ+

λ∗ = J+
λ∗(uλ∗).
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Proof. Take λn ↑ λ∗ and wn ∈ N−
λn

with Ĵ−
λn

= J−
λn

(wn). Observe from the Proposition 2.1 that

−�pwn − λn|wn|q−2wn − f |wn|γ−2wn = 0, ∀ n = 1,2, . . . . (16)

We claim that there exist positive constants c, C such that c ≤ ‖wn‖ ≤ C for all n = 1, 2, . . .. 
Indeed, from the Corollary 3.4 we only have to show existence of C, thus, suppose on the contrary 
that, up to a subsequence, ‖wn‖ → ∞ as n → ∞. It follows from the Proposition 3.7 and (15)
that

Ĵ−
λ∗ = lim

n→∞J−
λn

= lim
n→∞J−

λn
(wn)

≥ lim
n→∞

[(
1

p
− 1

γ

)
‖wn‖p −

(
1

q
− 1

γ

)
λn

∫
|wn|q

]

=∞,

which is an absurd. Therefore, we can suppose that c ≤ ‖wn‖ ≤ C for all n = 1, 2, . . . and up to 
a subsequence wn ⇀ w in W 1,p

0 (�) and wn → w in Lq(�), Lγ (�). We claim that w �= 0 and 
F(w) > 0. In fact, if w = 0 then from the Proposition 3.3 we obtain that ‖wn‖ → 0 which is an 
absurd.

From (16) and the S+ property of the p-Laplacian (see [15]) we conclude that wn → w in 
W

1,p
0 (�) and

−�pw − λ∗|w|q−2w − f |w|γ−2w = 0. (17)

We claim that w ∈N−
λ∗ . If not then w ∈ N 0

λ∗ . From the Proposition 2.5 we conclude that

−p�pw − λ∗q|w|q−2w − γf |w|γ−2w = 0. (18)

Let us prove that (18) gives us an absurd. From (16) and (18) we obtain that

f (x)|w(x)|γ−q = p − q

γ − q
λ∗, a.e. x ∈ {x ∈ � : w(x) �= 0}. (19)

From the Corollary 2.2, we can assume that w ∈ C(�). Once w ∈ W
1,p

0 (�), given ε > 0, 
there exists δ > 0 such that if �δ = {x ∈ � : dist(x, ∂�) < δ} then |w(x)| ≤ ε, however, this 
contradicts (19) and the fact that f ∈ L∞(�). Therefore w ∈ N−

λ∗ . It follows that

Ĵ−
λ∗ = lim Ĵ−

λn
= limJ−

λn
(wn) = J−

λ∗(w).

Now take λn ↑ λ∗ and un ∈ N+
λn

with Ĵ+
λn

= J+
λ∗(un). Observe from the Proposition 2.1 that

−�pun − λn|un|q−2un − f |un|γ−2un = 0, ∀ n = 1,2, . . . . (20)
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We claim that there exist positive constants c, C such that c ≤ ‖un‖ ≤ C for all n = 1, 2, . . .. 
Indeed, from the Corollary 3.4 we only have to show existence of c, thus, suppose on the contrary 
that, up to a subsequence, ‖un‖ → 0 as n → ∞. It follows from the Proposition 3.7 and (15) that

Ĵ+
λ∗ = lim

n→∞J+
λn

= lim
n→∞J+

λ∗(un)

≥ lim
n→∞

[(
1

p
− 1

γ

)
‖un‖p −

(
1

q
− 1

γ

)
λn

∫
|un|q

]

≥0,

which is an absurd. Therefore, we can suppose that c ≤ ‖un‖ ≤ C for all n = 1, 2, . . . and up to 
a subsequence un ⇀ u in W 1,p

0 (�) and un → u in Lq(�), Lγ (�). We claim that u �= 0. In fact, 
if u = 0 then from the Proposition 3.3 we obtain that ‖un‖ → 0 which is an absurd.

From (20) and the S+ property of the p-Laplacian we conclude that un → u in W 1,p
0 (�) and

−�pu − λ∗|u|q−2u − f |u|γ−2u = 0. (21)

We claim that u ∈N+
λ∗ . If not then u ∈N 0

λ∗ . From the Proposition 2.5 we conclude that

−p�pu − λ∗q|u|q−2u − γf |u|γ−2u = 0.

However this equation contradicts (21) and consequently u ∈N+
λ∗ . It follows that

Ĵ+
λ∗ = lim Ĵ+

λn
= limJ+

λn
(un) = J+

λ∗(u).

By taking wλ∗ ≡ w and uλ∗ ≡ u, the proof is completed. �
Now we prove the Lemma 3.1.

Proof of the Lemma 3.1. From the Propositions 3.6 and 3.8, for each λ ∈ (0, λ∗], there exist 
wλ ∈ N−

λ and uλ ∈ N+
λ such that J−

λ (wλ) = Ĵ−
λ and J+

λ (uλ) = Ĵ+
λ .

From the Proposition 2.1 we have that both wλ, uλ are solutions of (Pλ) and wλ, uλ ∈ C1,α(�)

for some α ∈ (0, 1). Moreover, once �λ(u) = �λ(|u|) for all u ∈ W
1,p

0 (�), it follows that 
|wλ| ∈N−

λ , |uλ| ∈ N+
λ and J−

λ (|wλ|) = Ĵ−
λ . J+

λ (|uλ|) = Ĵ+
λ , therefore, we can assume that 

wλ, uλ ≥ 0.
From the Harnack inequality (see [16]) we obtain wλ, uλ > 0. �

4. Existence of solutions for λ > λ∗

In this section we show existence of solutions to the problem (Pλ) for λ close to λ∗. In fact, we 
show that for λ near λ∗, it is possible to minimize �λ over submanifolds of the Nehari manifolds 
N− and N+.
λ λ
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Lemma 4.1. There exists ε > 0 such that for each λ ∈ (λ∗, λ∗ + ε), there exist 0 < wλ ∈ N−
λ and 

0 < uλ ∈ N+
λ solutions of (Pλ).

The proof will be given at the end of this section.
For λ > 0, denote

H−
λ (w) = p‖w‖p − λq‖w‖q

q − γF(w), ∀ w ∈ N−
λ ∪N 0

λ ,

and

H+
λ (u) = p‖u‖p − λq‖u‖q

q − γF(u), ∀ u ∈N+
λ ∪N 0

λ .

Proposition 4.2. Let 0 < c < C. Assume that λn ↓ λ∗.

(i) suppose that wn ∈ N−
λ∗ satisfies c ≤ ‖wn‖ ≤ C for all n = 1, 2, . . .. If H−

λn
(t−λn

(wn)wn) → 0

then dist(wn, N 0
λ∗) → 0 as n → ∞;

(ii) suppose that un ∈ N+
λ∗ satisfies c ≤ ‖un‖ ≤ C for all n = 1, 2, . . .. If H+

λn
(t+λn

(un)un) → 0

then dist(un, N 0
λ∗) → 0 as n → ∞.

Proof. (i) First observe from the Corollary 3.4 that there exists a positive constant c such that 
F(wn) ≥ c for all n = 1, 2, . . .. We claim that the same holds for ‖wn‖q

q . In fact, let us first prove 
that t+λn

(wn) → 1. Observe that

⎧⎪⎪⎨
⎪⎪⎩

t
p
n ‖wn‖p − λnt

q
n ‖wn‖q

q − t
γ
n F (wn) = 0,

pt
p
n ‖wn‖p − λnqt

q
n ‖wn‖q

q − γ t
γ
n F (wn) = o(1),

s
p
n ‖wn‖p − λns

q
n‖wn‖q

q − s
γ
n F (wn) = 0,

∀ n = 1,2, . . . ,

where tn = t−λn
(wn) and sn = t+λn

(wn). It follows that

‖wn‖p

⎡
⎢⎣p − q − (γ − q)

1

t
γ−p
n

⎛
⎜⎝
(

sn
tn

)p−q − 1(
sn
tn

)γ−q − 1

⎞
⎟⎠
⎤
⎥⎦= o(1), n → ∞.

Since ‖wn‖p ≥ c for n = 1, 2, . . ., we conclude that sn, tn → 1 as n → ∞ and from the 
Corollary 3.4 we obtain that ‖wn‖q

q ≥ c for all n = 1, 2, . . .. Moreover, as tn → 1, we obtain

{ ‖wn‖p − λ∗‖wn‖q
q − F(wn) = 0,

p‖wn‖p − λ∗q‖wn‖q
q − γF(wn) = o(1),

∀ n = 1,2, . . . . (22)

From (22) we produce the following identities

γ − p

γ − q

‖wn‖p

q = λ∗ + o(1)
q , n → ∞,
‖wn‖q (γ − q)‖wn‖q



JID:YJDEQ AID:9289 /FLA [m1+; v1.283; Prn:12/04/2018; 10:29] P.18 (1-28)

18 K. Silva, A. Macedo / J. Differential Equations ••• (••••) •••–•••
and

p − q

γ − q

‖wn‖p

F (wn)
= 1 + o(1)

(γ − q)F (wn)
, n → ∞.

From (2) we infer that

λ(wn) =
(

λ∗ + o(1)

(γ − q)‖wn‖q
q

)(
1 + o(1)

(γ − q)F (wn)

) p−q
γ−p

, n → ∞.

Therefore λ(wn) → λ∗ and wn is a bounded minimizing sequence for λ∗. Moreover, following 
the same argument of the item (ii) of the Proposition 2.5 we can see that, up to a subsequence, 
wn → w ∈N 0

λ∗ and consequently dist(wn, N 0
λ∗) → 0 as n → ∞.

(ii) Indeed, first observe from the Corollary 3.4 that there exists a positive constant c such that 
‖un‖q ≥ c for all n = 1, 2, . . .. We claim that the same holds for F(un). In fact, let us first prove 
that t−λn

(un) → 1. Observe that

⎧⎪⎪⎨
⎪⎪⎩

t
p
n ‖un‖p − λnt

q
n ‖un‖q

q − t
γ
n F (un) = 0,

pt
p
n ‖un‖p − λnqt

q
n ‖un‖q

q − γ t
γ
n F (un) = o(1),

s
p
n ‖un‖p − λns

q
n‖un‖q

q − s
γ
n F (un) = 0,

∀ n = 1,2, . . . ,

where tn = t+λn
(un) and sn = t−λn

(un). It follows that

‖un‖p

⎡
⎢⎣p − q − (γ − q)

1

t
γ−p
n

⎛
⎜⎝
(

sn
tn

)p−q − 1(
sn
tn

)γ−q − 1

⎞
⎟⎠
⎤
⎥⎦= o(1), n → ∞.

Once ‖un‖p ≥ c for n = 1, 2, . . ., we conclude that sn, tn → 1 as n → ∞ and from the Corol-
lary 3.4 we obtain that F(un) ≥ c for all n = 1, 2, . . .. Therefore

{ ‖un‖p − λ∗‖un‖q
q − F(un) = 0,

p‖un‖p − λ∗q‖un‖q
q − γF(un) = o(1),

∀ n = 1,2, . . . . (23)

From (23) we produce the following identities

γ − p

γ − q

‖un‖p

‖un‖q
q

= λ∗ + o(1)

(γ − q)‖un‖q
q

, n → ∞,

and

p − q ‖un‖p

= 1 + o(1)
, n → ∞.
γ − q F(un) (γ − q)F (un)
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From (2) we obtain that

λ(un) =
(

λ∗ + o(1)

(γ − q)‖un‖q
q

)(
1 + o(1)

(γ − q)F (un)

) p−q
γ−p

, n → ∞.

Therefore λ(un) → λ∗, which implies that un is a bounded minimizing sequence for λ∗. More-
over, following the same argument of the item (ii) of the Proposition 2.5 we can see that, up to a 
subsequence, un → u ∈N 0

λ∗ and consequently dist(un, N 0
λ∗) → 0 as n → ∞. �

Consider the sets

N−
λ∗,d,C ≡ {w ∈N−

λ∗ : dist({w, |w|},N 0
λ∗) > d, ‖w‖ ≤ C},

where d > 0 and C > 0. Similar, define

N+
λ∗,d,c ≡ {u ∈ N+

λ∗ : dist({u, |u|},N 0
λ∗) > d, ‖u‖ ≥ c},

where d > 0 and c > 0.

Corollary 4.3. There holds

(i) take d > 0 and C > 0. There exists ε > 0 such that if w ∈ N−
λ∗,d,C then w ∈ N̂λ for all λ ∈

(λ∗, λ∗ + ε). Moreover, there exists δ < 0 such that H−
λ (t−λ (w)w) < δ for all w ∈ N−

λ∗,d,C ;

(ii) take d > 0 and c > 0. There exists ε > 0 such that if u ∈N+
λ∗,d,c then u ∈ N̂λ∪N̂+

λ for all λ ∈
(λ∗, λ∗ + ε). Moreover, there exists δ > 0 such that H+

λ (t+λ (w)w) > δ for all w ∈ N+
λ∗,d,c.

Proof. Immediately from the Proposition 22. �
The Corollary 4.3 shows that for λ close to λ∗, the Nehari submanifolds N−

λ∗,d,C and N+
λ∗,d,c

projects over the Nehari manifolds N−
λ and N+

λ respectively.
For each λ ∈ (0, ∞), denote

S−
λ = {w ∈ N−

λ : J−
λ (w) = Ĵ−

λ }

and

S+
λ = {u ∈ N+

λ : J+
λ (u) = Ĵ+

λ }.

From the previous section we know that S∓
λ �= ∅ for all λ ∈ (0, λ∗].

Proposition 4.4. There holds

(i)
dist(S−

λ∗ ,N 0
λ∗) > 0;
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(ii)
dist(S+

λ∗ ,N 0
λ∗) > 0.

Proof. (i) Suppose on the contrary that dist(S−
λ∗ , N 0

λ∗) = 0. Therefore, we can find a sequence 
wn ∈ S−

λ∗ and a corresponding sequence vn ∈ N 0
λ∗ such that ‖wn − vn‖ → 0 as n → ∞ and

−�pwn − λ∗|wn|q−2wn − f |wn|γ−2wn = 0, ∀ n = 1,2, . . . . (24)

From the Proposition 2.6 we can assume without loss of generality that vn → v ∈ N 0
λ∗ and 

hence wn → v. Passing the limit in (24) we obtain that

−�pv − λ∗|v|q−2v − f |v|γ−2v = 0,

however, once v ∈ N 0
λ∗ , we know from the Proposition 2.5 that

−p�pv − λ∗q|v|q−2v − γf |v|γ−2v = 0,

which is a contradiction.
The proof is similar for (ii). �
Define d−

λ∗ ≡ dist(S−
λ∗ , N 0

λ∗) and d+
λ∗ ≡ dist(S+

λ∗ , N 0
λ∗).

Choose Cλ∗ > 0 such that ‖w‖ ≤ Cλ∗ for all w ∈ S−
λ∗ . Take d− ∈ (0, d−

λ∗), C > Cλ∗ and ε > 0
as in the Corollary 4.3. Define for λ ∈ (λ∗, λ∗ + ε)

Ĵ−
λ,d−,C

= inf{J−
λ (w) : w ∈ N−

λ∗,d−,C
}.

Similar choose cλ∗ > 0 such that cλ∗ ≤ ‖u‖ for all u ∈ S−
λ∗ . Take d+ ∈ (0, d+

λ∗), c < cλ∗ and 
ε > 0 as in the Corollary 4.3. Define for λ ∈ (λ∗, λ∗ + ε)

Ĵ+
λ,d+,c

= inf{J+
λ (u) : u ∈N+

λ∗,d+,c
}.

Observe from the Proposition 4.4 that for each d−, d+, c, C satisfying the above conditions 
we have that S−

λ∗ ⊂N−
λ∗,d−,C

and S+
λ∗ ⊂N+

λ∗,d+,c
.

Proposition 4.5. There holds

(i)
lim
λ↓λ∗ Ĵ−

λ,d−,C
= Ĵ−

λ∗;

(ii)
lim
λ↓λ∗ Ĵ+

λ,d+,c
= Ĵ+

λ∗ .

Proof. (i) From the Proposition 2.13, we have Ĵ−
λ,d−,C

≤ J−
λ (w) < J−

λ′ (w) for all w ∈ N−
λ∗,d−,C

and λ∗ < λ′ < λ < λ∗ + ε and hence Ĵ−
λ,d−,C

≤ Ĵ−
λ′,d−,C

. Moreover, if wλ∗ ∈ S−
λ∗ then for all 

λ ∈ (λ∗, λ∗ + ε) we have that Ĵ−
− ≤ J−(wλ∗) < J−∗(wλ∗) = Ĵ−∗ .
λ,d ,C λ λ λ
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Take λn ↓ λ∗ and suppose ad absurdum that Ĵ−
λn,d−,C

does not converge to Ĵ−
λ∗ . We can assume 

without loss of generality that Ĵ−
λn,d−,C

→ J < Ĵ−
λ∗ as n → ∞.

For each n = 1, 2, . . ., choose wn ∈ N−
λ∗,d−,C

such that J−
λn

(wn) − Ĵ−
λn,d−,C

≤ 1/2n.

Once ‖wn‖ is bounded, we can assume that up to a subsequence wn ⇀ w in W 1,p

0 (�) and 
wn → w in Lq(�), Lγ (�). Note that w �= 0. In fact, if w = 0 then from the Proposition 3.3 we 
obtain that ‖wn‖ → 0 which is an absurd. We claim that wn → w in W 1,p

0 (�). In fact, on the 
contrary, we would have that ‖w‖ < lim inf‖wn‖ and thus

lim inf
n→∞ Du�λn (tλ∗(w)wn) > Du�λ∗ (tλ∗(w)w) = 0,

for tλ∗(u) defined as in (11), which implies that for sufficiently large n, Du�λn (tλ∗(w)wn) > 0. 
Therefore, for sufficiently large n we have that t+λn

(wn) < tλ∗ (w) < t−λn
(wn) and hence

�λ∗ (tλ∗(w)w) < lim inf
n→∞ �λn (tλ∗ (w)wn)

< lim inf
n→∞ Ĵ−

λn,d−,C
= J,

which is an absurd, because from the Proposition 2.10 and the Corollary 2.11 we have that 
�λ∗ (tλ∗(w)w) ≥ Ĵ−

λ∗ . It follows that wn → w in W 1,p

0 (�) and consequently, from the Proposi-
tion Appendix A.1 we conclude that |J−

λn
(wn) − J−

λ∗(wn)| → 0 as n → ∞, which is a contradic-
tion.

(ii) Similar to (i). �
Proposition 4.6. Take d− ∈ (0, d−

λ∗) and C > Cλ∗ . There exists ε− > 0 such that for all λ ∈
(λ∗, λ∗ + ε−), the problem Ĵ−

λ,d−,C
has a minimizer wλ ∈N−

λ,d−,C
.

Proof. For each λ > 0, let wn(λ) ∈ N−
λ∗,d−,C

be a minimizing sequence for Ĵ−
λ,d−,C

. From 

the Corollary 4.3 we can assume that t−λ (wn(λ)) → t (λ) ∈ (0, 1) and wn(λ) ⇀ w(λ) �= 0 in 

W
1,p
0 (�). Let us prove that there exists ε− > 0 such that w(λ) ∈ N̂λ for all λ ∈ (λ∗, λ∗ + ε−). 

Suppose on the contrary that there exists a sequence λm ↓ λ∗ such that w(λm) /∈ N̂λm for all 
m = 1, 2, . . .

Denote wn,m ≡ t−λm
(wn(λm))wn(λm). If necessary, by relabeling the sequence wn,m, we can 

assume that

|Ĵ−
λm,d−,C

− Ĵ−
λm

(wn,m)| ≤ 1

2m
, n,m = 1,2, . . . . (25)

From (25) and the Proposition 4.5 we conclude that

|Ĵ−
λ∗ − J−

λm
(wn,m)| ≤ |Ĵ−

λ∗ − Ĵ−
λm,d−,C

| + |Ĵ−
λm,d−,C

− J−
λm

(wn,m)| → 0, n,m → ∞. (26)

From the Corollary 3.4 we can assume that 0 < c ≤ t−λm
(wn,m) < 1 for all n, m = 1, 2, . . ., 

therefore we can suppose that wn,m ⇀ w in W 1,p
(�) \ {0} as n, m → ∞ and wn,n → w in 
0
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Lp(�), Lγ (�). We claim that wn,m → w in W 1,p

0 (�) \ {0} as n, m → ∞. Indeed, suppose not 
then, ‖w‖ < lim infn,m ‖wn,m‖ and

lim inf
n,m→∞Du�λm(tλ∗(w)wn,m) > �λ∗(tλ∗(w)w) = 0,

for tλ∗(u) defined as in (11). Hence, for n, m sufficiently large, we can suppose that
Du�λm(tλ∗(w)wn,m) > 0. It follows that for n, m sufficiently large, t+λm

(wn,m) < tλ∗(w) <
t−λm

(wn,m). Therefore, from (26)

�λ∗(tλ∗(w)w) < lim inf
n,m→∞�λm(tλ∗(w)wn,m)

< lim inf
n,m→∞J−

λm
(wn,m)

=Ĵ−
λ∗

which is an absurd and hence wn,m → w in W 1,p
0 (�) \ {0} as n, m → ∞. Hence, if wm ≡ w(λm)

we obtain that

‖wm − w‖ ≤ lim inf
n→∞ ‖wn,m − w‖, ∀ m = 1,2, . . . ,

which implies that for sufficiently large m, the sequence wm belongs to N−
λ∗,d−,C

and conse-

quently wm ∈ N̂λm for sufficiently large m, which is a contradiction. Therefore, there exists 
ε− > 0 such that w(λ) ∈ N̂λ for all λ ∈ (λ∗, λ∗ + ε−). Arguing as in the Proposition 3.8, we 
conclude that for all λ ∈ (λ∗, λ∗ + ε−), we have t−λ (wn(λ))wn(λ) → t (λ)w(λ) in W 1,p

0 (�), 
w(λ) ∈ N−

λ∗,d−,C
and

J−
λ,d−,C

= J−
λ (w(λ)).

By denoting wλ ≡ w(λ), the proof is complete. �
Proposition 4.7. Take d+ ∈ (0, d+

λ∗) and c < cλ∗ . There exists ε+ > 0 such that for all λ ∈
(λ∗, λ∗ + ε+), the problem Ĵ+

λ,d+,c
has a minimizer uλ ∈ N+

λ,d+,c
.

Proof. For each λ > 0, let un(λ) ∈ N+
λ∗,d+,c

be a minimizing sequence for Ĵ+
λ,d+,c

. From 

the Corollary 4.3 we can assume that t+λ (un(λ)) → t (λ) ∈ (1, ∞) and un(λ) ⇀ u(λ) �= 0 in 

W
1,p

0 (�). Let us prove that there exists ε+ > 0 such that u(λ) ∈ N̂λ ∪ N̂+
λ for all λ ∈ (λ∗,

λ∗ + ε+). Suppose on the contrary that there exists a sequence λm ↓ λ∗ such that u(λm) /∈
N̂λm ∪ N̂+

λm
for all m = 1, 2, . . .

Denote un,m ≡ t−λm
(un(λm))un(λm). If necessary, by relabeling the sequence un,m, we can 

assume that

|Ĵ+
+ − Ĵ+

λ (un,m)| ≤ 1
, n,m = 1,2, . . . . (27)
λm,d ,c m 2m
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From (27) and the Proposition 4.5 we conclude that

|Ĵ+
λ∗ − J+

λm
(un,m)| ≤ |Ĵ+

λ∗ − Ĵ+
λm,d+,c

| + |Ĵ+
λm,d+,c

− J+
λm

(un,m)| → 0, n,m → ∞. (28)

From the Corollary 3.4 we can assume that 1 < t+λm
(un,m) ≤ C for all n, m = 1, 2, . . ., there-

fore we can suppose without loss of generality that un,m ⇀ u in W 1,p
0 (�) \ {0} as n, m → ∞ and 

un,n → u in Lp(�), Lγ (�). We claim that un,m → u in W 1,p
0 (�) \ {0} as n, m → ∞. Indeed, 

suppose not. Then ‖u‖ < lim infn,m ‖un,m‖ and

lim inf
n,m→∞Du�λm(sλ∗(u)un,m) > �λ∗(sλ∗(u)u) = 0,

for sλ∗(u) defined as in (12). Hence, for n, m sufficiently large, we can assume that
Du�λm(sλ∗(u)un,m) > 0. It follows that for n, m sufficiently large, t+λm

(un,m) < sλ∗(u). There-
fore, from (28)

�λ∗(sλ∗(u)u) < lim inf
n,m→∞J+

λm
(un,m)

=Ĵ+
λ∗

which is an absurd and hence un,m → u in W 1,p

0 (�) \ {0} as n, m → ∞. Therefore, if um ≡
u(λm) we obtain that

‖um − u‖ ≤ lim inf
n→∞ ‖un,m − u‖, ∀ m = 1,2, . . . ,

which implies that for sufficiently large m, the sequence um belongs to N+
λ∗,d+,c

and conse-

quently um ∈ N̂λm ∪ N̂+
λm

for sufficiently large m, which is a contradiction. Therefore, there 

exists ε+ > 0 such that u(λ) ∈ N̂λ for all λ ∈ (λ∗, λ∗ + ε+). Arguing as in the Proposition 3.8, 
we conclude that for all λ ∈ (λ∗, λ∗ + ε+), we have t+λ (un(λ))un(λ) → t (λ)u(λ) in W 1,p

0 (�), 
u(λ) ∈ N+

λ∗,d,c and

J+
λ,d+,c

= J+
λ (u(λ)).

By denoting uλ ≡ u(λ), the proof is complete. �
Now we prove the Lemma 4.1.

Proof of the Lemma 4.1. Choose d− ∈ (0, d−
λ∗), d+ ∈ (0, d+

λ∗), C > Cλ∗ and c < cλ∗ . From the 
Propositions 4.6 and 4.7, for each λ ∈ (λ∗, λ∗ + ε), where ε = min{ε−, ε+}, there exists wλ ∈
N−

λ∗,d−,C
and uλ ∈ N+

λ∗,d+,c
such that J−

λ (wλ) = J−
λ,d−,C

and J+
λ (uλ) = J+

λ,d+,c
.

From the Corollary 2.2 we have that both wλ ≡ t−λ (wλ)wλ, uλ ≡ t+λ (uλ)uλ are solutions 
of (Pλ) and wλ, uλ ∈ C1,α(�) for some α ∈ (0, 1). Moreover, once �λ(u) = �λ(|u|) for 
all u ∈ W

1,p

0 (�), it follows that |wλ| ∈ N−
λ,d−,C

, |uλ| ∈ N+
λ,d+,c

and J−
λ (|wλ|) = Ĵ−

λ,d−,c
, 

J+
λ,d+,c

(|uλ|) = Ĵ+
λ , therefore, we can assume that wλ, uλ ≥ 0. From the Harnack inequality 

(see [16]) we obtain wλ, uλ > 0. �
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5. Behavior of uλ near λ = 0

From the Lemma 3.6 we have that S+
λ �= ∅.

In this section we study the behavior of λ−1/(p−q)u near λ = 0, where u ∈ S+
λ . Let z ∈

W
1,p
0 (�) denote the unique positive solution of (see Díaz–Sáa [17])

{−�pu = |u|q−2u in �,

u ∈ W
1,p
0 (�).

(p,q)

Lemma 5.1. Given ε > 0, there exists δ > 0 such that if 0 < λ < δ then

‖λ−1/(p−q)u − z‖ ≤ ε, ∀ u ∈ S+
λ .

The proof will be given at the end of the section. Let N0 be the Nehari manifold associated 
with (p,q) then, one can easily see that

N0 = {‖v‖q/(p−q)
q v : v ∈ S}.

Proposition 5.2. There holds

lim
λ→0

t+λ (v)

λ1/(p−q)
= ‖v‖q/(p−q)

q ,

uniformly in v ∈ S.

Proof. Indeed, once t+λ (v)v ∈Nλ, we have that

t+λ (v)p−q

λ
− ‖v‖q

q = t+λ (v)p−q

λ
t+λ (v)γ−pF (v).

From the Proposition 3.4 item (ii), there is some positive constant C such that t+λ (v) ≤
Cλ1/(p−q) and t

+
λ (v)p−q

λ
≤ C for λ > 0. Therefore

lim
λ↓0

∣∣∣∣∣ t
+
λ (v)p−q

λ
− ‖v‖q

q

∣∣∣∣∣≤ lim
λ↓0

Cλ
γ−p
p−q ,

which implies that

lim
λ↓0

t+λ (v)

λ1/(p−q)
= lim

λ↓0

(
t+λ (v)p−q

λ

)1/(p−q)

= ‖v‖q/(p−q)
q ,

uniformly in v ∈ S. �
From the Proposition (5.2) we obtain that N+/λ1/(p−q) → N0 as λ ↓ 0, to wit
λ
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Corollary 5.3.

lim
λ↓0

t+λ (v)v

λ1/(p−q)
→ ‖v‖q/(p−q)

q v,

uniformly in v ∈ S.

Moreover, if �0 is the energy functional associated to (p,q) then, J+
λ

λp/(p−q) converge to �0
uniformly in v ∈ S, that is

Corollary 5.4.

lim
λ↓0

J+
λ (v)

λp/(p−q)
= �0(‖v‖q/(p−q)

q v),

uniformly in v ∈ S.

Proof. In fact, we have that

J+
λ (v)

λp/(p−q)
= 1

p

(
t+λ (v)

λ1/(p−q)

)p

− 1

q

(
t+λ (v)

λ1/(p−q)

)q

‖v‖q
q − λ

γ−p
p−q

γ

(
t+λ (v)

λ1/(p−q)

)γ

F (v).

From the Corollary (5.4) we conclude that

lim
λ↓0

J+
λ (v)

λp/(p−q)
= 1

p

∫
|‖v‖q/(p−q)

q v|p − 1

q

∫
|‖v‖q/(p−q)

q v|q = �0(‖v‖q/(p−q)
q v),

uniformly in v ∈ S. �
Denote

�̂0 = inf{�0(‖v‖q/(p−q)
q v) : v ∈ S}.

Let ẑ = z/‖z‖ and note that �̂0 < 0 and �0(‖ẑ‖q/(p−q)
q ẑ) = �̂0. Now we are ready to prove 

the Lemma 5.1

Proof of Lemma 5.1. Observe from the Corollary 5.4 that

lim
λ↓0

Ĵ+
λ

λp/(p−q)
= �̂0 < 0. (29)

Let us prove that, given ε > 0, there exists δ > 0 such that if 0 < λ < δ then

∥∥∥λ−1/(p−q)t+λ (v)v − ‖ẑ‖q/(p−q)
q ẑ

∥∥∥≤ ε, ∀ v ∈ S+
λ .
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Indeed, suppose not. Then, we can find a sequence λn ↓ 0 and a corresponding sequence 
vn ∈ S+

λn
such that

∥∥∥λ−1/(p−q)
n t+λn

(vn)vn − ‖ẑ‖q/(p−q)
q ẑ

∥∥∥> ε. (30)

From the Proposition 3.4 item (ii) we have that ‖λ−1/(p−q)
n t+λn

(vn)vn‖ for n = 1, 2 . . . is 

bounded. Therefore we can assume that λ
−1/(p−q)
n t+λn

(vn)vn ⇀ u in W
1,p
0 (�) and

λ
−1/(p−q)
n t+λn

(vn)vn → u in Lp(�), Lγ (�) as n → ∞. We claim that u �= 0. Indeed, if not then, 

‖vn‖q
q → 0 and from the Proposition 3.3 item (ii) we conclude that λ−1/(p−q)

n t+λn
(vn)vn → 0

in W 1,p

0 (�) as n → ∞, however this is an absurd because it implies that limn→∞
Ĵ+
λn

λ
p/(p−q)
n

= 0, 

which is a contradiction with (29), therefore u �= 0.
From the equation

−�p(λ
−1/(p−q)
n t+λn

(vn)vn) = (λ
−1/(p−q)
n t+λn

(vn)vn)
q−1 + λ

γ−p
p−q (λ

−1/(p−q)
n t+λn

(vn)vn)
γ−1,

and the S+ property of the p-Laplacian operator we conclude that λ−1/(p−q)
n t+λn

(vn)vn → u in 

W
1,p
0 (�) as n → ∞. Once u �= 0, it follows that λ−1/(p−q)

n t+λn
(vn) → t > 0 and vλ → v in 

W
1,p

0 (�) as n → ∞. From (29) we conclude that

�̂0 = lim
n→∞

Ĵ+
λn

λ
p/(p−q)
n

= lim
n→∞

⎡
⎣ 1

p

(
t+λn

(vn)

λ
1/(p−q)
n

)p

− 1

q

(
t+λn

(vn)

λ
1/(p−q)
n

)q

‖vn‖q
q − λ

γ−p
p−q
n

γ

(
t+λn

(vn)

λ
1/(p−q)
n

)γ

F (vn)

⎤
⎦

= 1

p
tp − 1

q
tq‖v‖q

q,

and consequently v = ẑ and t = ‖ẑ‖q/(p−q)
q , however this contradicts (30) and thus the Lemma 

is proved. �
6. Proof of Theorem 1.1

Proof. i) From the Lemmas 4.6 and 4.7, for each λ ∈ (0, ε) we can find 0 < wλ ∈ N−
λ and 0 <

uλ ∈ N+
λ solutions of (Pλ). Observe from the definitions of N−

λ , N+
λ that Duu�λ(wλ)(wλ, wλ)

< 0 and Duu�λ(uλ)(uλ, uλ) > 0.
(ii) From the Lemma 5.1 we have that

lim
λ↓0

u

λ−1/(p−q)
= z, ∀ u ∈ S+

λ .

Once uλ ∈ S+
λ , the proof is completed. �
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Proposition Appendix A.1. There holds

(i) take C > 0 and d > 0. Suppose that ε is given as in the Corollary 4.3. There exists a constant 
C > 0 such that for all λ, λ′ ∈ [λ∗, λ∗ + ε] we have

|t−λ (w) − t−
λ′ (w)| ≤ C|λ − λ′|, ∀ w ∈N−

λ∗,d,C;

(ii) take c > 0 and d > 0. Suppose that ε is given as in the Corollary 4.3. There exists a constant 
c > 0 such that for all λ, λ′ ∈ [λ∗, λ∗ + ε] we have

|t+λ (u) − t+
λ′ (u)| ≤ c|λ − λ′|, ∀ u ∈ N+

λ∗,d,c.

Proof. (i) Recall from the Proposition 2.13 that for all w ∈N−
λ∗,d,C we have that

∂

∂λ
t−λ (w) = ‖t−λ (w)w‖q

q

H−
λ (t−λ (w)w)

, ∀λ ∈ [λ∗, λ∗ + ε).

Also from the Proposition 2.13 we have that t−λ (w) ≤ 1 for all w ∈ N−
λ∗,d,C and hence 

‖t−λ (w)w‖q
q ≤ C for all w ∈ N−

λ∗,d,C . Moreover, from the Corollary 4.3 we have that H−
λ (w) ≤

δ < 0 for each w ∈N−
λ∗,d,C . Therefore, from the mean value theorem, we conclude that

|t−λ (w) − t−
λ′ (w)| ≤

∣∣∣∣ ∂

∂λ
t−θ (w)

∣∣∣∣ |λ − λ′| ≤ C

|δ| |λ − λ|′,

where θ ∈ (λ, λ′).
(ii) Recall from the Proposition 2.13 that for all u ∈N+

λ∗,d,c we have that

∂

∂λ
t+λ (u) = ‖t+λ (u)u‖q

q

H+
λ (t+λ (u)u)

, ∀λ ∈ [λ∗, λ∗ + ε).

Observe from the Corollary 3.4 that there exists a positive constant C1 such that t+λ (u) ≤ C1
for all u ∈ N+

λ∗,d,c and hence ‖t+λ (u)u‖q
q ≤ C

q

1 C for all w ∈ N+
λ∗,d,c . Moreover, from the Corol-

lary 4.3 we have that H+
λ (u) > δ > 0 for each u ∈ N+

λ∗,d,c . Therefore, from the mean value 
theorem, we conclude that

|t+λ (u) − t+
λ′ (u)| ≤

∣∣∣∣ ∂

∂λ
t+θ (u)

∣∣∣∣ |λ − λ′| ≤ C
q
1 C

δ
|λ − λ|′,

where θ ∈ (λ, λ′). �
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Appendix B. List of notations (Table B.1)

Table B.1
Main Notations.

�λ Page 2

Nλ,N−
λ ,N+

λ ,N 0
λ Page 3

φλ,u Page 4

t0
λ , t+λ , t−λ Page 4

t (u), λ(u) Page 5

λ∗ Page 5

N̂λ, N̂+
λ Page 7

tλ∗ , sλ∗ Page 8

J−
λ (u), J+

λ (u), Ĵ−
λ , Ĵ+

λ Page 9

�̂−
λ∗ , �̂+

λ∗ Page 14

H−
λ , H+

λ Page 17

N−
λ∗,d,C

, N+
λ∗,d,C

Page 19

S−
λ , S+

λ Page 19

Ĵ−
λ,d−,C

, Ĵ+
λ,d+,c

Page 20
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