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Abstract

This paper is concerned with the semilinear transmission of wave-plate system with source term on
Riemannian manifold. We prove the existence of weak solutions by using Faedo-Galerkin’s method. Fur-
thermore, by introducing nonlinear boundary feedbacks acting only on plate, we establish the explicit and
general decay rates of the system. Our proofs are based on the geometric multiplier method and the Rie-
mannian geometry method.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Let (M, g) be a complete C? Riemannian manifold of dimension 2 in which g(-, -) = (-, -) is
a Riemannian metric on M. 2 C M denotes an open, bounded and connected subset satisfying
Q=Q U Q,, where Q;, i = 1,2 are two disjoint open connected domains with smooth bound-
aries I = QN2 =9Q) and [ = 00\I', ', Ty £ W and 'y N T, = . We consider the
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initial-boundary value problem composed by a wave equation in €21 and an Euler-Bernoulli plate
equation in €2,

d2uy — Auy = |uy|%u; in ©; x (0, 00),
uy + A%upy — (1 — )8(kduz) =0 in 2 x (0, 00),
uy=uz, Biup =0, Boup=20,ju; on I'y x [0, 00),

Biuz =wy, Bouz=w» on I'; x [0, 00), (4.1
ulzu?, 8tu1=u{ on Qp x {t =0},
Uy = ug, Oty = u% on Qp x {t =0},

in which « € R4 and v; = v;(x), i = 1,2 denote the unit outward normal vectors along 92;
satisfying

vi=—vy on I'.

k is the Gaussian curvature function on 2,, u € (0, %) the Poisson coefficient. D and A =
div (V) denote the Levi-Civita connection and the Laplace-Bertrami operator in the Riemannian
metric g respectively. 9, u; = % = {(v;, Du;), i =1, 2. d is the exterior derivative and § is the

formal adjoint operator of d. The functions

wi = —Bx)dnuz — f(v,0u2), w2 =y x)uz+ h(du2), (1.2)

are two boundary feedbacks acting only on the Euler-Bernoulli equation, in which the functions
B, vy :I'o— Rand f, h: R — R will be given later. The boundary operators By, By : 922 — R
are defined by

Bius = Auy — (1 — ) D*un (12, 12),
Bouy = 3y, Aus + (1 — (1), (D?ua (12, v2)) + ke dyy 2,

where D?u5 is the Hessian of us and 7;, i = 1,2 are unit tangential vectors of €2;. The term
(1 — w)é(xdy) in system (1.1) comes from the curvedness of the Riemannian metric g. The
conditions (1.1)3 are so-called interface conditions introduced in [1,2,24] and the references
therein. The boundary feedbacks (1.1)4 are some dissipation laws introduced in [1,2,11,12,18,
24]. Here we should give a remark that the boundary conditions of system (1.1) are chosen to
ensure that the energy of the system is dissipated, and the third transmission condition is purely
mathematical. Of course, other transmission conditions can also be given.

Transmission systems often arise in many practical control systems of interactive processes
such as coupled chemical reactions, structural-acoustic systems, electromagnetic coupling and
so on. It has significant meaning in both theory field and application field, and is increasingly
attractive in recent years to investigate how to control and stabilize the transmission systems by
exchanging information between different equations. Through the efforts of the predecessors, the
stability or controllability theory is relatively mature in the context of coupled wave equation with
either constant or variable coefficients (see for instance [7,14,15]). Among these papers, Hassine
[9] established the pointwise stabilization of a one-dimensional transmission wave equation with
an internal spatially varying anti-damping term. By designing a feedback law based on the back-
stepping method, the author proved the exponential stability of the closed-loop system with a
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desired decay rate. Liu and Williams [15] proved the exponential stability of the transmission
wave/wave problem with lower-order terms. Afterwards, Liu [14] devoted himself on research-
ing the controllability of the transmission wave equation in the case of constant coefficient. They
showed that the system can be controlled by both boundary control along the exterior bound-
ary and distributed control near the transmission boundary. Subsequently, Chai [5] extended the
system in [14] to the situation of variable coefficients by using a very different method, namely,
the Riemannian geometry method, which was first introduced by Yao [22] for the exactly con-
trollability of wave equations. Under the same controls as in [14] and without any restriction on
the transmission boundary, the exponential stability result of the transmission wave problem was
established. Chai and Liu [6] also considered the transmission problem of Naghdi’s model which
has a middle surface of any shape. Under some checkable geometric conditions on the middle
surface, they gave a sufficient condition to ensure the exponential decay of the problem. More
about the stability or controllability of coupled wave equations with either constant or variable
coefficients, we can see [9,13] and the references therein.

However, so far as the authors know, there are only a few papers addressing the stability or
controllability of the plate-plate (wave-plate) transmission system. For example, Ammari et al.
[1] investigated the stabilization problem for a linear transmission string-beam model. With one
damping feedback acting on the middle point, they proved that the energy of the system decays
polynomially. More precisely, the order of the polynomial decay rate is based on the length of
beam. They also proved, with two control functions acting on the middle point, that the energy
decays with a polynomial rate independently of the length of beam. Ammari and Nicaise [2] ex-
tended the system of [1] from 1-dimensional Euclidean space to 2-dimensional Euclidean space.
Based on the energy disturbance method and under some geometric condition, they proved an
exponential stability result with the linear boundary damping feedbacks acting on both wave and
plate. Later on, Zhang and Zhang [24] addressed the same transmission system as in [2] on Rie-
mannian manifold. Relying on the geometric multiplier method, they established the exponential
and rational energy decay rate for the problem by introducing the nonlinear boundary feedbacks,
that has a polynomial growth near the origin, acting on both wave and plate. Guo and Shao [8]
researched the controllability of a transmission system of Euler-Bernoulli variable coefficients
plate equation under Neumann control and studied the collocated observation. They developed
the exact controllability of an open-loop system by establishing the observability inequality for
the dual system. We can also see [3,10] if we want to learn more about the plate/plate (wave/plate)
transmission system.

Inspired by the investigations above, we concentrate on the research of the stability of the
transmission system with source term (1.1) on Riemannian manifold. By introducing nonlinear
boundary controls acting only on the plate and using the Riemannian geometry method and ge-
ometric multiplier method which was firstly proposed by Martinez [16,17], we prove that the
damping feedbacks can restrain the effect of source term acting on wave equation and impel sys-
tem (1.1) to decay uniformly. It should be mentioned that, in our case, we wipe off the restrictions
on the growth rates of the functions f and 4 near the origin, which is different in [2,24].

The remainder of this paper is organized as follows. In section 2, we introduce some notations
on Riemannian manifold and present some hypotheses needed in this work. In sections 3, we
give the well-posedness result of system (1.1) and prove it by Faedo-Galerkin’s method. Finally
we state and prove the main decay results and give some lemmas that are needed in proving the
main results in section 4.
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2. Assumptions and preliminaries
2.1. Notations on Riemannian manifold

For convenience, we introduce some notations and definitions in Riemannian manifold that are
standard and classical in literature. We refer the readers to [20,22,23] for more detailed notations
and further relationships.

For x € M, M, represents the tangential space of M at x. For n € Z*, we denote the n order
tensor space on M at x by 7' (M). Then T, (M) is an inner product space with the inner product

2
<T],T2>T¥n= Z Tl(eilael'25"'9ein)T2(ei1’ei27"'ael'n)a .XEM, TlaTZET;(M)’

i1,02,0,in=1

where {ej, ez} is an orthogonal basis of M. Let T"(M) = |J TJ'(M) be the set of all n-rank
xeM
tensor fields on M and

2
trT = Z T (e;, e;)
i=1

be the trace of T € T2(M).

We denote by V, D, D? and A = div (V) the gradient, the Levi-Civita connection, the Hes-
sian and the Laplace-Bertrami operator in the Riemannian metric g respectively. Especially, we
have Du = Vu in which u is any scalar function. Furthermore, the covariant differential D H of
H determines a second order tensor field in the following sense

DH(X,Y)=DyH(X)=(DyH,X), X,YeM,, xeM.

The exterior derivative d : A,,(M) — A,4+1(M) satisfies d? =0 in which A, (M) represents
the set of all n forms on M. § : A1 (M) — A, (M), the formal adjoint operator of d, is charac-
terized by

(dwl,wz)Lz(M),A = (0)1,5602)L2(M),A,,

n+1
for w; € A, (M) and wy € A, 1(M) with compact support. Then we have the following lemma.
Lemma 2.1. Let y, w € H4(§22). Then we have

/ (AQy - - u)8(/<dy)) wdx = /a(y, w)dx — / Byydy, wdl’ + / Byywdrl',

Q2 Q) Li92) 197]

with the bilinear form

a(y,z) = (1 —p)(D*y, D*2)72 + p(tr Dy tr D*z).
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Moreover, we denote
[ loo=1"llee, I-I=1-l2s I-lpar=1-leey, I-le =1-l2g) =12
2.2. Assumptions

This subsection gives several assumptions that are needed in the procedure of operation. In
order to do so, we define

up in 1,
U= .
up in Qs.

Furthermore, we denote the Hilbert space
H={ul @) € H'(@1) x HX(Q2), uy =uz on T

equipped with the inner product

(u,v)y = / DujDvidx —l—/a(uz, vp)dx + / B(x)0y,u20,,v2 + Y (x)uzvpdl,

Q2 Q2 Iz
. . up inQ vy inQ i
inwhichu=1{ "1 =0 p=1 "1 0 and the norm flully = (u,u)Z,.
upy in 2 vy in 2y

Next we give the following assumptions.

Al): Compatibility conditions. The initial data u® € (H*(Q)) x H*(Q2)) N H and u' € H
satisfy the following compatibility conditions

BlugZO, BzugZBWM? on I'q,

Biud = —B(x)dy,ud — f(du,u3). Boul =y (x)uj —h(uy) on Iy.

Here the functions u®(x) and u'(x) are defined by

0 1
0, _ Jujx), xe, 1, Jux), xeQ,
”(’“)‘{ugm, e T lWw. reo.

A2): Assumptions about feedback functions. f, 4 : R — R are two nondecreasing continuous
functions satisfying

FUsD <1F 1< F71AsD, Qs <) <k~ (s if Is] <1, 2.1)
filsI < 1F@ < falsl, hils| < lh(s)| < hals| if |s|> 1, 22)
max[t* | € (0,11, h(s) < f(s) or £(s) <h(s) on [O,I*]} —1, 2.3)

Please cite this article in press as: J. Hao, P. Wang, Uniform stability of transmission of wave-plate equations with
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in which f and h are strictly increasing C'! functions with f (0) =0and 2(0) =0, f ~land h~!
denote the inverse functions of f and & respectively, and f;, h;, i = 1,2 are positive constants.

A3): Geometrical assumptions. There exists a vector field H € x (M) and two positive con-
stants ¥ and § such that

DH(X,X) = #|X[;, X e x(M), 2.4)

and

(H,v)=0 on 'y, (H,1n)>8>0 on I'y, (2.5)
in which [X|2 = (X, X).

Remark 2.2. The geometric condition (2.4) was introduced by Yao [22] to prove the exact con-
trollability of variable coefficients wave equation. In the case of constant coefficients, the radial
field H = x — xg satisfies (2.4), where xg is fixed in R”.

3. Existence of solutions

In this section, we state and verify the existence of weak solutions for problem (1.1) by Faedo-
Galerkin’s method. In the following proof, C;, i =1, 2, ..., 8 are used to be the different positive
constants independent of index m.

Theorem 3.1. Let assumptions A1)-A3) hold, then there exists at least a solution u of system
(1.1) satisfying

Wel® 0, T:H), u eL®O,T:H), uyel™ (O,T;LZ(Q)>,
for some T > 0.

Proof. Let {9(")()5)};511 be an orthonormal basis of H in which

(k) .
Q(k)(x) — Ql(k)(X) %n Qq,
0, " (x) in 0.

Then the standard results on ODEs guarantee that there exists only one local solution

m
u™ (x,1) = Zy,(f)(f)Q(k)(x)
k=1

on [0, T;;,) for some T;, > 0 satisfying the following ODE

Please cite this article in press as: J. Hao, P. Wang, Uniform stability of transmission of wave-plate equations with
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/agu(m)g(k)dx+<u(m)’9(k)>’H_/’ugm)‘“ ugm)el(k)dx
Q Qi
+ / h(@uy"™)6050 + f (8, 0u3")8,,605dT = 0,

I,

with the initial data (u™ (x, 0), 3,u"™ (x, 0)) satisfying A1) and

u™ (x,0) = Zy(k>(0)9<k>(x)—> u’(x) in H,

du'™ (x,0) = Z(y(k)) 00% (x) > u'(x) in H,
k=1

in which

(m) _ u(lm) in Q] s
Uw=—=1 m .
Uy in ;.

Priori estimates. Multiplying (3.1) by (y(k)) (t) and summing up them for k =1,2,---
get

o
—Q (t)+/f(avza,u2 )3y 80l + h(3ul™)8,uldr = /‘uﬁ’")) w9, "™ dx.,

in which

Onit) =5 {H o™

Rt
H

Using Sobolev embedding theorem, Holder and Young’s inequalities, we have

/‘u w3 dx < H (my || @ ”au(’”) H
1 2a+1),Q
Q
a2 a+2
< C (HDu(m) + Ha u(m) o )
1

Integrating (3.2) over (0, ¢) and using the inequality above we get

t
Om(t) + / / F By ™ (513, 948 (5) + h (@™ (5))3,5™ (s)dTds
0 I

a2
§C2+C3/Qm2 (s)ds.

7

(3.1)

,m, we

(3.2)

source on Riemannian manifold, J. Differential Equations (2019), https://doi.org/10.1016/j.jde.2019.11.048
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Then the Gronwall’s inequality implies that

Om(t) < <Cs.

- <
(Co — Cut)e

Thus we have

u™ are uniformly bounded in L*°(0, T; H), 3.3)
Btu(’") are uniformly bounded in L*° (0, T; Lz(Q)) .

F @y ™)y, 0™ are uniformly bounded in L' (0, T) x T'2), (3.4)
h(@ul™)d,ul" are uniformly bounded in L' ((0, T) x T'2). (3.5)

Next we estimate [|92u™ || and [|3,u4" ||l. Multiplying (3.1) by (»'*))"(¢) and summin
; H plying y g

them up from k = 1 to k = m we arrive at

2 a
Btzu(’”) +<u(m),8,2u(m)>H—/‘u§m) ugm)atzu(lm)dx
@ (3.6)
+ f h@ud™)02ul"™ + £ (3, 0,u8™)828,,ul™ dT" = 0.

I
Considering t =0 in (3.6) and due to A1), we have

a+1
ui"™ (0)

< Ce.

2
2 (m) (m) ” ” 2,,0m) ‘
at u (0) H < HAul (0) Q +|A Uy (0) 242,21

2
+
197]

Differentiating (3.1) with respect to ¢, multiplying the obtained equations by ( y,gf ))’ ’(t), and then
summing up the obtained equations in k from 1 to m, we obtain

1d .
2dr <||3t2u(m)||2 + ”at“(m)”%{) < (x+1) f ‘u?"” a,u§m>a,2u§m>dx
1
¢ 3.7)
242,21 2042, Q
<

of

Then integrating (3.7) over (0, t) and using Gronwall’s inequality, we arrive at the second esti-
mate

s+ [ )
H

2 2
JoFu "+ Jo ], =

which implies
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3,u™ are uniformly bounded in L*° (0, T; H), (3.8)
afu(m) are uniformly bounded in L™ (0, T; L2(S2)) . 3.9

Convergence. From (3.4), (3.5) and A2) we get

<C, (3.10)
L2((0,T)xTI')

<c, ”h 3™ ’
L2((0,T)xTy) — @ruz™)

| @005

in which the positive constant C is independent of m and ¢. Hence (3.3) and (3.8)-(3.10) permit
us to obtain a function u# and a subsequence of {u(’”)} which from now on will be also denoted

by the same notation {u™} satisfying

u™ — y weakly star in L (0, T; H) (3.11)
3u™ — 9,u weakly star in L> (0, T; H) (3.12)
92u™ — 92 weakly star in L (o, T LZ(Q)) , (3.13)
f @y, du™) — x1 weakly in L2 ((0, T) x T2), (3.14)
h(@ud™) = x2 weakly in L% ((0, T) x T'2). (3.15)

Then it follows from (3.11)-(3.13) and Aubin-Lions compactness lemma in [19] that

u™ oy strongly in C (0, T; H),
8,u(’”) — 0qu strongly in C (0, T; H),

which implies that
8tu§m) — 0;uy strongly in C (0, T; LZ(FQ)) ,
81, 0,u5"™ — 8y, 8,u7 strongly in C (0, T; L2(F2)) .

Thus we have

dud"” — duz ae.in (0,T) x T, (3.16)
By Byud"” — 8,,0ur ace.in (0,T) x T'y. (3.17)

From (3.14)-(3.17) and [4] we obtain

F @y ™) = (31, 812) weakly in L2 (0, T) x Ta), (3.18)
h(@ud™) = h(d;ua) weakly in L ((0, T) x T'2). (3.19)

Now we deal with the nonlinear source term. By (3.3) and Sobolev embedding theorem, we
obtain

o
‘ugm)‘ ugm) are uniformly bounded in L (O, T: Lz(Ql)) ,

Please cite this article in press as: J. Hao, P. Wang, Uniform stability of transmission of wave-plate equations with
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and thus we get a subsequence of {x ™)} which still be denoted by the same notation {x™} such
that

o
‘u(l’”)‘ ul™ — |u1|u; weakly star in L (O, T, L2(91)> . (3.20)

Convergences (3.11)-(3.13) and (3.18)-(3.20) permit us to pass to the limit in system (3.1). Then
just as in [4,21], since {9(")} is a complete orthogonal basis of 7, we have

/82u9dx+ u, 9 /|u1| u16;dx

@ (3.21)

+/h(8,u2)92 + f(8,8,12)8,,00dT =0, 6 eH,

I

and the function u satisfies the initial conditions, namely

wi(x,0) =ul(x), dui(x,0)=uj(x) in Q,
ua(x,0) = u3(x), dua(x,0)=uy(x) in Q.

Therefore the function u is a weak solution of system (1.1). O
4. General decay of solutions

In this section, we devote our minds on the asymptotic stability of system (1.1). In order to do
so, we define the energy functional of system (1.1)

£ =3 (10l + Wuly) — s il g, = sl + 70, @D
and the functional

2 2
1) = lullg, = lur 335 o, -

By Lemma 2.1 and Green’s formula in €21, we can easily check that the energy of system (1.1)
satisfies

E'(t)= —/ J (0, 0¢2) v, 0z + h(dru2)dsurdl’, (4.2)
I
which in particular implies that E (¢) is nonincreasing. Moreover, we introduce two vital inequal-
ities
el 1@y < hollullze and Nl o <Sllullyo). ueH, t=2, 43)

in which the open subset O C 2, A is a positive constant and S, denotes the embedding constant.
Then denoting

Please cite this article in press as: J. Hao, P. Wang, Uniform stability of transmission of wave-plate equations with
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go)=min{f).hw]. sero.1,
we have the following dissipative properties of system (1.1).

Theorem 4.1. Let assumptions Al)-A3) hold and the initial data satisfy

¢ = SUHet? <2(a +2) E(O)) <1. (4.4)

More precisely, we assume that 1(0) > 0 and the functions B, y € L°°(I"2) satisfy

Bo<B=<pP1 and yy<y =<y on I'y,

in which B; and y;, i = 1, 2 are positive constants. Then the energy E (t) has the following decay
estimates:

1) If g(s) =s, there exists some positive constant iy such that
E()<E@©) '™ t>0. 4.5)

2) If g(s) =s", n > 1, there exist some positive constant hy such that

2
E(t) < E(0) < 2"++h;) s (4.6)

3) Denoting Go(s) = g(s)s, we have

. 1\\?
E(t) < CE(0) <Ggl <?>) , 1> 1. 4.7)
4) Denote G(s) = & If G is increasing on (0,d] for some d € (0, 1), and hm G(t) =0,
there exists some posztlve constant ty, such that
. 1\\?
E@t) < CE(0) (g‘ (;)) L >t (4.8)

To prove Theorem 4.1, we first present some lemmas.

Lemmad4.2. [/6] Let E : Ry — R be a nonincreasing function and ¢ : Ry — R be a strictly
increasing C' function satisfying

¢(0) =0, lim ¢(t) = +oo.

If there exist positive constants m and A such that

Please cite this article in press as: J. Hao, P. Wang, Uniform stability of transmission of wave-plate equations with
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f¢>/(l)Em+l(t)dt§ %Em(O)E(S), 0<S <+oo,

we have
- { E(O)elffkb(l)’ y m=0,
)= 1+ "
forallt > 0.

Lemmad4.3.[/7] Let E : Ry — R be a nonincreasing function and ¢ : Ry — R be a strictly
increasing C' function satisfying

¢(0) =0, lim ¢(#) = +oo.

If there exist positive constants m, m’ and ¢ such that

+oo
¢
&' OE™ M (1)dt < ¢E™"TN(S) + ———— E™(0)E(S), 0<S§ <400,
/ A +oS)H™
there exists a constant C > 0 such that
c
E(t) < E0) t>0.

(1+ d)(t))(l—&-m’)/m ’

Lemma 4.4. Let assumptions Al)-A3) and (4.4) hold. If 1(0) > 0, we have I(t) > 0 for all
te[0,T].

Proof. Because of the continuity of 7(¢) and 7(0) > 0, there exists some constant 7* € (0, T']
such that

I(t)>0, te[0,T*].

Then we have

J(1) = €0, T7],

1
— It ,
@ +2)|IMIIH P ()_2( +2)IIMIIH
which combines with (4.3) gives

a+2 a+2 a+2 o424 42 a+2
1853 g, < SeTzlull4fn, ) < Se3ng T uls;

2(x +2)
< Searg™? (T“”) I3, < Clulld, < lul3, te[0,T*].
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More precisely, we have I(7*) > 0. Then we obtain the desired result directly when 7* =T,
or repeat the procedure above until the goal is achieved when T* < T. Thus we complete the
proof. O

It is worthwhile to note that Lemma 4.4 implies the global existence of solutions for system

(1.1).

Proposition 4.5. Let assumptions A1)-A3) and (4.4) hold. If 1(0) > 0, the solution u of system
(1.1) is global and bounded in time.

Proof. Using Lemma 4.4, we have

J(@) = te|0,T].

Bt —— 1) = — )
20+2)" M T a42 “2@+2)

Thus we can deduce

©ul, + 210l < T + S0l = E@) < E0)
2at2) MmN = p ol = 2= 2

which also implies that 7T = +oc0. O

Lemma 4.6. Let assumptions Al)-A3) hold and z = (z1, z2) be the solution of

Az =0 in 21 x (0, 00),
A%zy — (1 — w)d(kdz2) =0 in 25 x (0, 00), 9)
21 =22, B1za=0, Byzp =09,,z1 onT x (0, 00), :
22 =ua, 0,22 = 0,2 on Ty x (0, 00).
Then there exists a positive constant A1 such that
j21P < 1§ [ ploal® + yidar | (4.10)
Iz
and
b(z,u) =b(z,2) =0, 4.11)

in which the bilinear form b is denoted by

b(z,u)=/(Dz1,DM1)dX+/a(Z2,M2)dx, Z,ueH.
Q1 Q2
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Proof. Based on the classical theory about elliptic equations, there exists some positive constant
A1 such that

2P <) /IavzzzlerIZzlzdF ,
I

which implies the estimate (4.10). Next we prove (4.11). By Green’s formula and Lemma 2.1,
we have

bz,z—u) = _/Azl(zl —up)dx + /(A222 — (1 = w)8(kdz2))(z2 — uz)dx
Q Q
_/31;121(141 - Z])dF + / [31Z28U2(Z2 — u2) — BZZZ(ZZ _ uz)] dr (412)
T Ele3s

=0,
for z € H*(21) x H*(2). Thus the conclusion follows by a standard density argument. O
We denote
M) =Hw)+ru+oz, u,zeH.
Then we have the following lemmas.

Lemma 4.7. Let assumptions Al)-A3) hold and ¢ : R — Ry be a concave and strictly in-
creasing C? function. Then the solutions of system (1.1) satisfy, for all0 < S < T < oo,

T T

Ir= | ¢/E" f duMydx || — / (' E™Y / 8y M ()dlxdr
S s Q

Q
; divH ; divH
+f¢’Em/< ’Vz —r> (Btu)zdxdt—i-/d)’Em/ <r— wz )IDu1|2dxdt
S Q S Q1
T T
/ m dLVH / m
+ | ¢'FE r— a(uy,ur)dxdt + | ¢'E DH(Duy, Duy)dxdt
S Q) S Q1

T T
+2(1 —M)/¢’E”‘/DH(Dzuz,Dzuz)dxdt—i—a/gb/Em/b(u,z)dxdt
S Q Ky Q
T
+ [oE [[a =00t + ur D1 | dra
S

Q)
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T T
+2,u/¢’Em / DH(Auyp, Auz)dxdt — o / ¢ E™ / 01 0; zdx dt
S Q) S Q

T
—/¢’E’"f|u1|“u1M(u1)dxdt,
s

Q

where It is denoted by

T
1
Ir= 5/¢/Em/ i[(&zuz)Z —a(u, u2)|(H, v2) + w1 dy, (M (u2)) — sz(M)} drds.
S

2
(4.13)
Proof. Multiplying system (1.1) by ¢’ E™ M (1) and integrating over Q x [S, T'], we get
T T
0= ¢’Em/8tuM(u)dx —/qﬁ’Em/(Aul —|—|u1|“u1)M(u1)dxdt
Q S5 Q
T div i T
+ / ¢ E™ / < 1v2 —r) (0yu)2dxdt — o / &' E" / i dyzdxdr
S @ . s @ (4.14)
! pmy/ 1 ! pm 2
— | (@ E™) | o,uM(u)dxdr — > ¢'E (0;un)” (H, vp)dI'dt
S Q S T,
T
+/¢>’E’"/ (A2u2 —(1- M)S(Kduz)) M (up)dxdt.
S Q)
By Green’s formula, we have
T
—/¢/Em/Au1M(u1)dxdt
S Q
T T
=—/qb’E'”/avlulM(ul)dth—i-/qS’Em/DulD(M(ul))dxdt
S I N Q)
T T
:—/qb’E’"/avlulM(ul)dth—i-/d)’Em/DH(Dul,Dul)dxdt (4.15)
S I S Q)
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T T
1 div H
+§/¢’Em/|Du1|2(H, u1>drdr+/¢’E'"/ (r— 1v2 >|Du1|2dxdt
S I S Q

+U/¢ E"’/Duledxdt

Q)

Moreover, in order to calculate the last term of the right hand of (4.14), we introduce the follow-
ing two equalities (for details see [20])

(D%, DXH() 12 = 3 H(D*32) + 2DH(DY, D) + (D, 1)) .
and
tr D%y tr D2(H(y)) = %H((Ay)z) +2DH(Ay, Ay) + tr D?1(y).
Here I[(y) = —R(Dy,-, H, ) — D2H(Dy, -, -) in which “-”” denotes the position of the variable

and R is the curvature tensor of the Levi-Civita connection D. Then Lemma 2.1 and the equalities
above yield

T
/¢’Em/ (Azuz —a- M)B(Kdm)) M (uy)dxds
S Q>

= /¢ E™ f a(us, up)(H, vy)dI'dr — —/q) Em/a(uz,uz)dldexdt

S 392 93]

T
+2(1 —u)/d) Em/DH(Dzuz,Dzuz)dxdt+r/¢ Emfa(uz,uz)dxdt

& § & (4.16)
+2u/¢ EmeH(Auz,Auz)dxdt+0/¢ Em/a(uz,zg)dxdt
Qo Q0

+f¢/E’" / BguzM(uz)dI‘dt—fq’)/E’" / Biuzd,, (M (uz))dlds

N 0920 N 195}
T
+ / ¢'E" / [(1 = (D202, 1G02)) 72 + ptr D) | .
N Q)

Because of A2) and u; = u, on I'j, we have
Hwy) — Hup) = (avZuz — 31,114]) (H,v1) + (8r2u2 — 3f1u]) (H,71)=0 on Iy. “4.17)

Exploiting (4.14)-(4.17), we have the conclusion. 0O
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The Proof of Theorem 4.1. Letr = >
to the fact that div H =tr DH > 29 we have

T
%/d)/Eer]dl

1% m 2 ( +1)19 m a2
Z/¢E 8:0) 17t + ———— 2@t 2) /¢E lurlly s o, df

/(;5 Em/a(uz,uz)dxdt—i— /d) Em/,B|8vu2| + ¥ |up|*dlds

Q2

T
+ [oe [t ) + oz + 1 - —/¢ E™ | Duy 3, dt
S

Q)
T

T
+ / (@'E™Y / duM (u)dxdt
S Q

- ¢>’Em/81uM(u)dx
Q

T
= [on [ [0 - w0tz + utr D1t axe
S

Q2

T

+0/¢/Em/8[M atdedt

Q

Next we will deal with certain terms of the right-hand side above respectively.

) (Ot + )9 / 2
1) Estimate for 1 E™[luy ||
) Estimate for I} = 2@i2) ¢ E™ ||u Utllgis.q, 9

Applying (4.3), Young’s 1nequahty and interpolation inequality as follows

- s l-g
I¥lpar SIVIG, Vg S =5+— = selo.n
we arrive at
(@ + Do
1S —— @ +2) ¢Emllulllzllu1||2a+m

< 69/¢> E™luy|Ig, dt + —0/¢ E™|lurl3513 o, d

17

dive _ %. From assumption A3) and Lemma 4.7, and due

(4.18)

(4.19)

(4.20)
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r S22 1
20042
§C9/¢/EM||u1II§21dt+ﬁﬁf(p/];m”u”ﬁ‘;fgél)dt
S S

T T

v
§C9/¢/Em||u1||éldt+R/(p/Em”u”%{dt,
s s

where the constants Cg and Cy¢ are defined by

Cio ((@+ Do\? 2042, 20+2 2+ 1) *
C9 = T (T—’—Z) and C]() = 822(—"_2)\40(1 TE(O) .

T
2) Estimate for I, = / ¢ E™ / [y |%uy(H () + oz1)dxdt.
S

Q)
We use (4.19) with ¢ = szaﬂ) p=2@+1Dandg=2(a+1)+s (s e RT) to get

S I—¢ l—¢ I—¢ I3 l—¢
llu ||2(a+1),$21 =< lu ”Ql llu ||2(a+l)+s,§2| = SZ(oH—l)-}—s)\'O llu ”Ql HMH'H s

in which s is any positive constant satisfying s < O%Ll Then combining Holder and Cauchy
inequalities, Lemma 4.6 with the inequality above, we have

I

IA

T T
1 1
| Hllo / ¢ E"NurlSh) ) |1 Dt gy di + 0 f ¢ E" urllSh ) g, I2lde
N S

T d=9)(a+D+1

=) a+1) 5 (1—¢)(a+1 +1 2
St A U o+ 0) [ & Bt (1l -+ 121P) dr
S

d=g)(a+D+1

T T
2—c¢cla+1 =
011/¢>’E”1||u1||§21dz+#e/¢f’"(||u||%{+||z||2) T ar
N N

IA

8C12

IA

T T
1
C11/¢/E’"|Iullléldt+1/¢/E”’|Iu||%{dt,
S N
4.21)

where C11 and Cy, are positive constants satisfying

2—¢(a+1)
2(1— 2(1— ]
5_(a + 1)82((0[_‘_%))_/‘5)\’0( §)/§C s(a+1)
1= 2—c@+t))

29 st+D

(1H oo + )/ (4D,

and
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Co=——F——(U+2x) <@t

2— g(zoe +1) U (2(0{ +2) E(())) @D .
o

3) Estimate for Ir.
Using the fact that there exists a positive constant A such that

180, (H u2)) > < A2 (180,121 + | D*ua|%,)
TX

and (H,vp) > > 0, we have

T
/¢/Em/w18v2(H(u2))dth

T
1—p)s A
( ”) ¢>E’” |D*us 3. 2dldf + ———— 2 ¢’ E™ | widIds
1
(1—pw)é
S 1)

1— w8
+% / ®'E™ / |y, 122 dldr (4.22)

T
A
<2 /¢> Em/a(uz,uz)df‘dt—i— 2 /¢’Em/w%drdz
1= s r
2

Fz

1— )8
+%f¢/E'"/|av2u2|2drdt.
S

Let A3 be the smallest positive constant such that

/IDM2I2dF<)»3 /ID2M2| zdx+/(ﬂ|3vzuz|2+yuz)dr ,

I
which gives
/q& EmfwzH(ug)dth
Fz
DslHIZ [
(1—M)19//n/ 2 A3 oo//m/Z

< — E’ D didt + —== E dIrds 4.23

=g |9 DusParde + 0 [ @' [ w (4.23)
N I I

IA

/cb E’”/a(uz,uz>dxdr+cn/¢ £" [ (w3 + plousl + yu3) arer,

Q) I
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2
where the constant Cy3 = 1% 4 Z3e Then (4.22) and (4.23) imply that

Ir <= /(b E'"/wlav2 (M (u2)) dTdt + = /¢> E'"/(a,uz) H,v,)dl'ds

I I

——f¢ Em/sz(uz)dth— —fq) Em/a(uz,ug)df’dt

2 I

/d) E’"fa(uz,uz)dxdt+o/¢ Em/(wlavzuz—i—wzuz)dFdI

Q) I

+C14/¢ E™ /Qlwl + 02w3 + Bldy,us|* + yusdlds
I

| H
' ”°° /¢> E’”/|B,u2|2dr‘dt

where the constants o1, 02 > 1 will be chosen later and

C C11+r {l 1}+r {1 l}
==+ —, —t+-max{—,—¢.
200 4 o1 Bo 4 22 Yo

Then the inequalities

wi < %f (B, 102) — P13y ual* — 2o [wid, 2| on T3 x (0, +00),
and
wl < ghz(aﬂm — yoyu3 — 29 lwauz| on T3 x (0, +00),
0
give
H T
Ir < (o —2C14Q1,30)/¢ Em/ |w18U2u2|dth+ ” ||oo /¢ Em[(atuz) dI"dr
I S

+Cia(1 —Qlﬁo)/¢> E”’/,B|8v2u2|2dr‘dt+ /(b E’"fa(uz,uz)dxdt (4.24)

Q)
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C C
1491/31 /¢Em/f (9, dyua)dlds 4+ 1402V 140271 /¢Emfh (8;up)dId?

I, Iz

+Ca(l —QzVo)f¢ Emfyuzdrdl+(0 —2C1492V0)f¢ Em/lwzuzldrdt
I

T
4) Estimate for Iy = — | ¢' E™ / A uM (u)dx ‘S.

Q
Using Cauchy’s inequality and (4.3) we have

) L CsCatd (4.25)
o

f dud s < Crs (EO + s g,
Q

in which the constant Cys := 2max {AJ|| H [loc + rS3A3, oA }. Thus we arrive at

2 4
< 2050 HD p gy (4.26)
o

5) Estimate for 1, = /((]) E™Y / o uM (u)dxdt.

By the inequality (4. 25) we conclude that

(_¢//Ern+1 + m(f)/Em E/) dr

T
, < 2C15(3(¥+4)/
- o

2C1s5mQBa +4) “4.27)

< Xi5Ga+d E™L(S)
o a(m+1)

T
E"TL(S) / —¢"dt +
_ 2Ci52m + DG +4)

m+1
a(m+1) EO).

T

6) Estimate for Is = — f ¢ E" / [(1 — W(DPuz, L)) 72 + ,mozz(ug)] dxd.

N Q
From Cauchy’s inequality, we have

T
(1—;L)l?/z/)’E’"/|D2u2|2T_2dxdt+£(u2)
§ 2 (4.28)
/d) Em/a(ug,uz)dxdt—i—ﬁ(uz)

Q2

Is

IA

| /\
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where
L(up)=—— f ¢'E™ / |l(u2)|T2dxdt /¢ Em/trD2l(u2)dxdt
Q)

is the lower order term of a(u», u») and can be absorbed by a compactness-uniqueness argument.
T

7) Estimate for I¢ = —o / ¢ E™ / d;u 3, zdxdt.

S Q
By using (4.10) and Cauchy inequality we arrive at

9 T 2 T
Is < qu&’EmHB,qudt—l—%/d)’EmHatzllzdt
S § (4.29)
< — /cb E”‘Ilazullzdﬂr—/cb Em/ﬁlauﬁzuzl + y|duz|*dIdr.

I

Substituting (4.21), (4.24) and (4.26)-(4.29) into (4.18), we get

T
%/¢/Em+ldt

< CisE™(S) + (0 — 2C1a0150) f ¢'E" / | w13y, dTdr
I

T
v
+ <§ +Cra(l — glﬂo)) / o' E" / BlvuzPdTds
S

I

1% ! m 2
+ A + C1a(1 — 02y0) ¢'E v lup|“dl'dt

Iy

L—

+(C9+C10)/¢> E™|uy||g,dt + (o —2C14Q2V0)/¢ Em/lwzuzldrdt

Iy

2
A c
+Z ”31 f¢> Em/|8v28,u2| dxdr + 149271 /¢> Em/hz(a,uz)dI‘dt

I

H 25
+<|I 2IIoo Loam 17’1)/¢ Em/|a,u2|2drdr+£(uz)
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C14Q1,31 f¢ E’”/f (9v, d;uz)dIdr,

r

2C14(Ba+4)(3m+2) Let

in which C5 := IR

o1 = >1, o= > 1
2C14P0 2C1ay0
and
o s
1—92V0—1—Qlﬁ0—1—ﬁ<—m,

which means we have to choose o satisfying

4
>2C 14+ —
o 14 max{ﬂo v0, 1+ T }

T
Finally, using the compactness-uniqueness theorem to absorb the lower orders / ¢ E™|\u; ||%2 dr

S
and L(u3), we get

/qs E"tldr < 2C15E'”+](S)+C16/¢ E’"/ [f (8y,0ru2)+
I
TR +h2(atu2) + 19z Jdrdr,

(4.30)

in which the constant Ci¢ is denoted by

o’ B Hlloo  0?riyi Cuuoipt Craooyi
Ci6 = 2max , + , , .
s 2 v Bo Y0

Next, we handle the last four terms in the right hand of (4.30) from the following four cases.
Case 1: If g(s) = s, we choose ¢ (t) =t and m = 0 in (4.30) to obtain

T

/E(t)dt

S

4C 4C
< SPES) / / (@1, 9u2) By, 2 + h(y102)8,u2dTdr
S I'

4
< ry (C15+ Ci7) E(S),
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in which Cj7 := Cy¢ max {fg + kot hil} +2C16. Then letting T — +o00 we obtain (4.5)

with i} = % (C15 + Cy7) directly from Lemma 4.2.
Case 2: If g(s) = s" with n > 1, we set

ry:={x el ||duz| €[0,11}, T3:={xels||duze (0,+00)}.
Then we exploit Cauchy and Holder’s inequalities, and set m = % to deduce

T T
2
/d)/Em/|8,u2|2dl"dt=/¢/Em/(8,u2§(8,u2))m drdr

S 1“5 S Fé

IA

T
—meas (T) / & E"(E)TTdr
S

, 4.31)

T
n+1 n
nﬁmeas (Fz)/qﬁ/E”’Hdt—n_%lmeas (Fz)f¢/E/dt
S S

IA

T
n+1
nn%lmeas (Fz)/¢’E”’+ldt+n_
S

n+l
2

IA

meas ()¢ (S)E(S),

T T
1 1
/¢’Em/|8,u2|2dr‘dt§ h—/q&’E’”/a,uzh(B,uz)dthg h—E’”“(S), (4.32)
1 1
S 1"% S 1"%
T T

/ P E" / h2(3,u2)dTdr < / P E" / (0uah (du2)) 7T dT'dt

5 r) . 5 r) (4.33)

< n%meas (Fg)/(ﬁ/(t)Em(t)dt—{—r;_%meas (T2 E"TL(S),
S

and

T
/ ¢ E™ / W% (3;u2)dTdr < hy EMTL(S), (4.34)

S F%

where n > 0 will be chosen later. From (4.31)-(4.34) we have

T
/ &' E" / [h2(3,u2)+|8,u2|2] drds
S

I
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ntl
2

< (hz + }%) E™TL(S) 4+ 172 meas ()¢’ (S)E(S) (4.35)
1

+2n%meas (T) / ¢'E™dt.

Similarly, departing I'; into
[} i={x el |18,,8u2| €[0,11}, T3:={xeTa2|ldwdus| € (1,+00)},

we arrive at

/qs Em/[f (4, 8,142) + |3y, y102] ]dth

I
ntl

< (f2+ %) E™N(S) + 777 meas (T2)¢' (S)E(S) (4.36)
42075 meas (T'2) [ &' () E™ (1)dt.
Substituting (4.35) and (4.36) into (4.30), and choosing ¢ (1) = ¢, we get
T
[

with

T
_8Ci6 8C
16 n"+lmeas (Fz)/E 2 (1)dt + CisE"T (S) + Tmn—%]meas(mE(S)

N

1 1
Cigs= |:2C]5+C]6 (— +— +f2+hz)i|.

i m

SIS

Then choosing

ﬂ n+1
= <16C16meas (Fz)) ’

and letting T — 400, we obtain (4.6) with
16C n—1
hy=2Cis + n—ﬂmmeas (M) ME©0) "7 .

Case 3: Motivated by [17], we define ¢ (t) = @~ (r) for t > 1, in which the function

t

1
go(t)zl—i—fA ds, t>1.
)

N
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Then ¢ is a concave and strictly increasing function with properties

¢(t) > 400, t— 400,

and

1 1
M= —— =3 0, .
PO=T6m g<¢>(r)) o

Furthermore, to estimate / ¢'E™ f |0;u2|>dTdt, we depart I'; by the following way
I
3= {x el ol € 10,7 @],
ri:={rerligule @' @) 1}, (4.37)
3 :={x €y ||duz] € (1, 400)}.
With this partition we easily obtain

T

/d) Em/|8,u2|2df‘dt < meas (r2)/¢ Em 8¢’ )) (4.38)

S r3

/d) Em/|8,u2|2dth /E’"/ 1(¢) [0,z |>dTds
< /Emfg(a,uz)a,uzdrdz
S 1'*3

/Em/h(a,uz)a,uzdrdz

1'*4

(4.39)

T
1
—/EmE’dt <—E"™9),
m+1
S

and

FS

T
/¢/Em/|a,u2|2drdt < —/Emfh(a[uz)a[uzdrdz
S rg
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1 1
<—— | EmE'dt < ——— E™T1(S). 4.40
- hl/ ~ (m+ Dhy 5 (4-40)

Then from (4.38)-(4.40) we have

/d) E’"/|8tu2| drdr < ( m+1)2h1 ’"+1(S)+meas(F2)/¢'Em <§_1(¢'))2df- (4.41)
3

To estimate / ¢'E1 / [0y, 8,u2| dI'dz, we depart I'; by the following way

I

.= { erl|8V28,u2|e[0,§_1(¢/)]},

!
4;
—’—

x €2 | Bzl € @90, 11}, (4.42)
3 :={x el | |dy,dul € (1, +00)}.

Then similar to the progress of proving (4.41), we get

T
f ¢'E™ / |8, 9y, ua|*ddr
S Iy

(4.43)

m+2 2
—— = _E™1(S) + meas (T / "EM (87! ’) dt
< ang e ) [ ¢'E" (57" @)
S
T
To estimate[qﬁ/Em/hz(atug)dth,we depart I'; as follows
S 1)

S :={x ey ||9uz| €10,9'1},
I} :={x el |ldusl € (¢, 11}, (4.44)
I3 :={x € Ty | [dua| € (1, +00)},

then we conclude that

‘ 2
/ o E" / 2 (3,u2)dTdt / ¢ E" / (g—l(a,uz)) drds

rs $ r§ . (4.45)

IA

IA

2
meas (') / o'E" (57 () ar,
S
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/4) Em/h (0;up)dI'dt <h(1)/Em/h(8,u2)alu2dth<

r] I,

-
n lE (), (4.46)

and

h
/ ¢ E™ f 1% (8,u2)dTdt < hy / &' E™ f h(8;u2)d;urdldr < le'"“(S). (4.47)
m

rs I

From (4.45)-(4.47) we have

h(l) + hy

/qb E’"/g (O;up)dlNdr < ———= 1

I

——~ " E"™(S) + meas (I') / g E’” 8¢/ )) dr. (4.48)

To estimate /qb Em/h (0y, 0;u2)dI"dt, we depart I'; as follows

I

IS :={x ey | 13u,0u2] € 0,91},
[} = {x e 18,8u2] € (¢, 11}, (4.49)
I8 :={x e |18,0ul € (1, +00)} .

Then similar to the proof of (4.48), we conclude
fO+ f
m+1

f ¢'E™ / £ @y du2)dTdr < T 722 EHL(S) 4 meas (T) / ¢'E™ (§‘1(¢’>)2dr
S

(4.50)

Substituting (4.41), (4.43), (4.48) and (4.50) into (4.30) we get

T
/¢/Em+]dt

IA

C19Em+](S)+ 5 meas(l"z)/¢ E'" 6~ ‘(¢’))2dt

IA

8C1e
CloE™1($) + = meas (M) E"(5) / e (1/ (@) @) e
¢(S)

C19Em+1(5)+ f; meas(Fz)Em(S)f

$(5)
E™(S)

P(S)

Please cite this article in press as: J. Hao, P. Wang, Uniform stability of transmission of wave-plate equations with
source on Riemannian manifold, J. Differential Equations (2019), https://doi.org/10.1016/j.jde.2019.11.048

8C
< C1gE™FL(S) + %meas (T5)




YJDEQ:10125

J. Hao, P. Wang / J. Differential Equations eee (eeee) eee—eee 29
in which the constant
c _4C15+2C16 S +h)+ fo2+h2 m+2 m+2
=7y 9 m+ 1 m+Dfi  (m+Dh |

Letting T — +o00 and m = 1 and using Lemma 4.3, we have

CA‘E(O)’ .
> (1) -

E(t) < 4.51)

From the monotonicity of ¢ and g(1) < 1, we have

t

o 1
o~ =1+ [ -
8

1
1 T

t—1 t 1
<

dt <1+ —- <= 1\’
g(3) 89 Go(y)

—_ 1

which implies

L<G‘1<1> r>1
oy~ \¢) T

Thus the proof of (4.7) is achieved.
Case 4: By the fact that lim+ G (t) =0 and that G is increasing on (0, d], we know that there
t—0

exists a positive constant 77 such that

We define

)=y, t=2n :=maX{T1, é}

in which the function v is defined by

t
1
(t)=t+/—ds, t>1.
14 1 , o) 1
' ;

We can conclude that ¢ is a concave and strictly increasing C? function satisfying

1 1
(1) = =G(—=)<G@), ,
¢ (1) D0 ((b(t))i d), t=n

1 1
¢ @) <¢' (1) = G(;) < G(T]) <d<l1, t>t,

and
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¢(t) = +oo, ¢'(t) >0 when t— +oo.

Moreover, we choose #, > t; such that ¢ (¢,) < G(1) = g(1) < 1. Then replacing (4.37) by

rs:= {x eIy | |8;uz] €0, G71(¢/)]} ,
= {x e | [dua| € (G (@), 1]},

M= {x ey | |9ua] € (1, +00)},

and (4.49) by

i9:={x €2 902l € 10,6791}
= {x el ondual € (G @), 1],
D= {x e M2 [ 8y, druz] € (1, +00)},

we arrive at

A

E()<—~—, 121,
$2(0)

which is similar with the proof of (4.51). From the monotonicity of G and G(%) < 1 we have

1 1

—1

H=H+ ds < , P>y,

¢~ =1 /G(_ 8
1

namely

which gives (4.8).
Thus we complete the proof of Theorem 4.1. O
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