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Abstract

We study generalized Hopf–Cole transformations motivated by the Schrödinger bridge problem, which 
can be seen as a boundary value Hamiltonian system on the Wasserstein space. We prove that generalized 
Hopf–Cole transformations are symplectic submersions in the Wasserstein symplectic geometry. Based on 
this transformation, energy splitting inequalities are provided.
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1. Introduction

The Schrödinger bridge problem (SBP) nowadays plays a vital role in the physics, mathe-
matics, engineering, information geometry and machine learning communities [7,8,38]. It was 
first introduced by Schrödinger in 1931 [34,35], see also [14,23], and is closely related to, but 
different from the famous Schrödinger equation. The SBP searches for a minimal quadratic en-
ergy density path for drift-diffusion processes with fixed initial and final distributions. In physics, 
Zambrini [39] related the SBP to the Schrödinger equation derived in Nelson’s stochastic me-
chanics [6,30,31]. For numerical purposes, the SBP can be seen as an entropic regularization of 
optimal transport [12,16]; its numerical solvers include the Sinkhorn algorithm [13] and Fisher 
information regularization method [25]. In information geometry and machine learning, the SBP 
has been studied as a statistical divergence function [1]. In modeling, the SBP minimizing path, 
via Hopf–Cole transformation, shares similar structures with Nash equilibria in mean field games 
[21].

Mathematically, the SBP can be viewed as a diffusion-relaxation of dynamical optimal trans-
port [36]. As a celebrated result [20,24,27,32], the L2-Wasserstein metric introduces an infinite-
dimensional Riemannian structure on the density space, therefore named density manifold. In 
this aspect, the minimizing path of the SBP follows a boundary value Hamiltonian flow in den-
sity manifold. Recently, the study of SBPs as Hamiltonian flows has been developed in several 
works [11,17]. For example, Conforti [11] proved several functional inequalities, connecting the 
value of the SBP to Ricci curvature lower bounds. One of the main techniques he used is the 
Hopf–Cole transformation.

In this paper, we study a general family of SBPs, first considered in [22]. This family of prob-
lems consists of controlled gradient flows of general potential energies on the density manifold. 
We introduce a generalized Hopf–Cole transformation for general potential energies.1

Following key insights from the Schrödinger equation on graphs [10] and the Riemannian 
calculus in density manifold [24], we study the Wasserstein symplectic geometry for SBP. Our 
main results show that the Hopf–Cole change of variables is a symplectic embedding in the 
symplectic geometry of density manifold. We also prove several functional splitting inequalities 
related to our Hopf–Cole transformation. In addition, the Hopf–Cole type transformations are 

1 Later on, for simplicity we will omit the “generalized” part.
2
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also extended to general finite-dimensional manifolds with homogeneous of degree one type 
inverse metric tensors.

The arrangement of this paper is as follows. In Section 2, we briefly review the generalized 
SBP and Wasserstein Riemannian calculus. In Section 3, we study the Hopf–Cole transformation, 
which can be viewed as a symplectic change of variables. Many examples are provided therein. 
In Section 4, we establish several energy splitting functional inequalities for these symplectic 
variables. Several extensions in finite-dimensional manifold as well as graphs are presented in 
Section 5.

2. Review

In this section, we briefly review the Schrödinger bridge problem (SBP) and the Riemannian 
calculus in Wasserstein density manifold.

2.1. Schrödinger bridge problem

Consider a finite dimensional manifold 
(
M, (·, ·)). For the simplicity of presentation, we shall 

assume M to be compact and without boundary. Let ∇ and div be the gradient and divergence 
operators on M , respectively.

We first introduce the dynamical SBP, which takes the form

inf
ρ,b

T̈

0

1

2
|bt (x)|2 ρt (x) dx dt, (1)

under dynamical constraints and fixed initial and final densities:

∂tρt + div(ρtbt ) = γ�ρt , ρ0 = μ, ρT = ν.

Here γ > 0 is a diffusion parameter. Note that γ = 0 corresponds to the Wasserstein-2 distance 
between μ and ν via the Benamou–Brenier formula [4]. The minimizer of problem (1) has the 
property that bt = ∇�t for some scalar field �t , and (ρ, �) satisfy a pair of partial differential 
equations—a Fokker–Planck equation and a Hamilton–Jacobi–Bellman equation:

⎧⎨⎩
∂tρt + div(ρt∇�t) = γ�ρt

∂t�t + 1

2
|∇�t |2 = −γ��t,

(2)

for all t ∈ (0, T ). Although it is not apparent from formulation (1), the above system can be 
written in a time-symmetric fashion. To see this effect, consider the variable St(x) = �t(x) −
γ logρt (x). Then (ρ, S) satisfies the system⎧⎪⎨⎪⎩

∂tρt + div(ρt∇St ) = 0

∂tSt + 1 |∇St |2 = δ

(
γ 2 ˆ

|∇ logρt |2ρt dx

)
,

(3)
2 2

3
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together with the boundary conditions ρ0 = μ, ρT = ν. Here δ denotes the first variation (i.e. 
L2 gradient) with respect to ρ. Note that written as (2), the Schrödinger bridge problem has the 
form of a second-order mean field game [11,21]. More accurately, since the boundary conditions 
consist of fixing the densities, it is rather an instance of the planning problem [26,33,18].

Rather formidably, system (3) can be rewritten into a simpler and more symmetric way thanks 
to the Hopf–Cole transformation. Let

ηt (x) = √
ρt (x)eSt (x)/(2γ ), η∗

t (x) = √
ρt (x)e−St (x)/(2γ ),

then (ηt , η∗
t ) satisfies a backward-forward heat system{

∂tηt = −γ�ηt

∂tη
∗
t = γ�η∗

t .
(4)

Integrating the above system in time leads to the so-called Schrödinger system, see [15,5,19].

2.2. Density manifold

We next present the Wassertein geometry on the probability space, under which the SBP is a 
controlled gradient flow problem. In addition, the minimizing path of the SBP is a Hamiltonian 
flow in density space. Consider the set of smooth and strictly positive densities

P+(M) =
{
ρ ∈ C∞(M) : ρ(x) > 0,

ˆ
ρ(x)dx = 1

}
.

Definition 1 (L2-Wasserstein metric tensor). Denote

TρP+(M) =
{
ρ̇ ∈ C∞(M) :

ˆ
ρ̇(x)dx = 0

}
.

The L2-Wasserstein metric gW
ρ : TρP+(M) × TρP+(M) → R is defined by

gW
ρ (ρ̇1, ρ̇2) =

ˆ (
ρ̇1(x), (−�ρ)†ρ̇2(x)

)
dx.

Here ρ̇1, ρ̇2 ∈ TρP+(M), (·, ·) is the metric on M and �†
ρ : TρP+(M) → TρP+(M) is the inverse 

of the elliptical operator

�ρ = div(ρ∇·).

Following [20], (P+(M), gW ) is named density manifold. Let us now briefly present the Rie-
mannian calculus of (P+(M), gW ), see related details in [24].

(i) The Christoffel symbol 
W
ρ : TρP+(M) ×P+(M) → TρP+(M) forms


W
ρ (ρ̇1, ρ̇2) = −1{

�ρ̇1�
†
ρρ̇2 + �ρ̇2�

†
ρρ̇1 + �ρ(∇�†

ρρ̇1,∇�†
ρρ̇2)

}
.

2

4
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(ii) The Riemannian gradient forms

gradWF(ρ) =
(
(−�ρ)†

)†
δF(ρ) = −�ρδF(ρ) = −div(ρ∇δF(ρ)),

where F : P+(�) → R and δ is the L2 first-variation operator.
(iii) The Riemannian Hessian operator HessWF(ρ) : TρP+(M) × TρP+(M) → R forms as 

follows. Denote the cotangent vector of density manifold � ∈ C∞(M)/R := T ∗
ρ P(M), with the 

relation V� = −�ρ� ∈ TρP+(M), then

HessWF(ρ)(V�,V�)

=
¨

∇x∇yδ
2F(ρ)(x, y)∇x�(x)∇y�(y)ρ(x)ρ(y)dxdy

+
ˆ

∇2
xδF(ρ)∇x�(x) · ∇x�(x)ρ(x)dx.

2.3. Hamiltonian flows

A particular example for the Riemannian gradient is as follows. The gradient operator of the 
linear entropy (negative Shannon–Boltzmann entropy) forms the negative Laplacian operator. 
When F(ρ) = ´

ρ logρdx, then

gradWF(ρ) = −�ρδF(ρ) = −div(ρ∇(logρ + 1)) = −�ρ.

From the above relation, the SBP can be viewed as a special case of the following variational 
problem:

A(μ, ν) = inf
ρt ,bt

T̈

0

1

2
|bt (x)|2 ρt (x) dx, (5)

where ρt , bt are constrained by

∂tρt + div(ρtbt ) = div
(
ρt∇δF(ρt )

)
, ρ0 = μ, ρT = ν.

We therefore call problem (5) the generalized SBP (sometimes written GSBP) [22], when F is a 
general potential on the density manifold. This is the main focus of this paper.

We next demonstrate that SBP is a controlled gradient flow problem in density manifold. In 
details, we first present the Hodge decomposition at ρt , i.e.

bt = ∇�t + ut ,

where ut is the divergence free vector w.r.t. ρt , i.e. div(ρtu) = 0. Thus
5
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ˆ

|bt (x)|2ρt (x)dx =
ˆ

|∇�t(x)|2ρt (x) + |ut (x)|2ρt (x)dx

≥
ˆ

|∇�t(x)|2ρt (x)dx.

Denote at = −�ρt �t . In this notation, notice that fact

gW
ρt

(at , at ) =
ˆ

M

(
− �ρt �t , (−�ρt )

†(−�ρt )�t

)
dx

=
ˆ

(�t , (−�ρt �t )dx

= −
ˆ

�t · div(ρt∇�t))dx

=
ˆ

|∇�t |2ρtdx.

One can identity at with �t through the relation at = −�ρt �t . Thus the variational problem 
(5) is equivalent to the following formulation. For all density paths ρt ∈ P+(M) with boundary 
constraints ρ0 = μ, ρT = ν, consider

inf
{ T̂

0

gW
ρt

(at , at )dt : ∂tρt = at − gradWF(ρt )
}

= inf
{ T̂

0

gW
ρt

(∂tρt + gradWF(ρt ), ∂tρt + gradWF(ρt ))dt
}

= inf
{ T̂

0

(
gW

ρt
(∂tρt , ∂tρt ) + gW

ρt
(gradWF(ρt ),gradWF(ρt ))

)
dt

+ 2

T̂

0

(gradWF(ρt ), ∂tρt )dt
}

= inf
{ T̂

0

gW
ρt

(∂tρt , ∂tρt ) + gW
ρt

(gradWF(ρt ),gradWF(ρt ))dt

+ 2(F(μ) −F(ν))
}
,

where the first equality applies at = ∂tρt − gradWF(ρt ), the second equality expands the corre-
sponding quadratic forms and the last equality uses the fact
6
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T̂

0

gW
ρ (gradWF(ρt ), ∂tρt )dt =

T̂

0

d

dt
F(ρt )dt =F(ρt )|t=T

t=0 =F(μ) −F(ν).

The above variational problem introduces a geometric action problem in density manifold. Its 
minimizing path satisfies an Euler–Lagrange equation in density manifold, i.e. the following 
second-order differential equation

D2

dt2 ρt = 1

2
gradWgW

ρt
(gradWF(ρt ),gradWF(ρt )), (6)

where D2

dt2 ρt = ∂2
t t ρt + 
W

ρt
(∂tρt , ∂tρt ) with ∂2

t t ρ = ∂2

∂t2 ρ(t, x) and 
W
ρ is the Christoffel symbol 

in density manifold. In L2-coordinates, the above equation is equivalent to

∂2
t t ρt − �∂tρt �

†
ρt

∂tρt − 1

2
�ρt (∇�†

ρt
∂tρt ,∇�†

ρt
∂tρt )

= − 1

2
div(ρt∇δ

ˆ
|∇δF(ρt )|2ρtdx).

One can represent the above second order equations into two different first order systems. On 
the one hand, denote ∂tρt = −�ρt (�t − δF(ρt )), then{

∂tρt = δ�H̄(ρt ,�t )

∂t�t = −δρH̄(ρt ,�t ),
(7)

with the total Hamiltonian energy

H̄(ρ,�) = 1

2

ˆ
|∇�(x)|2ρ(x)dx −

ˆ
(∇�(x),∇δF(ρ))ρ(x)dx.

On the other hand, denote ∂tρt = −�ρt St , then{
∂tρt = δSH(ρt , St )

∂tSt = −δρH(ρt , St ),
(8)

with the total Hamiltonian energy

H(ρ,S) = 1

2

ˆ
|∇S(x)|2ρ(x)dx − 1

2

ˆ
|∇δF(ρ)|2ρ(x)dx.

Here the change of variable ρt = ρt , St = �t − δF(ρt ) is canonical. And we simply check that 
in the classical case, when F is the linear entropy, the equation systems (7), (8) are symplectic 
reformulations of the ones in (2), (3) respectively.

It is clear that the minimizer path in GSBP is a Hamiltonian flow in density manifold. For 
the simplicity of presentation, we mainly focus on the formulation (8), which shows symmetry 
properties for later proofs. It wasn’t explicitly mentioned in any previous work, which we are 
aware of, about the relation between Hopf–Cole transformation and Hamiltonian flow in density 
7
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manifold. In this paper, we shall prove that the Hopf–Cole transformation (η, η∗) performs the 
“symplectic change of variables” in density manifold. This fact is also true for general potential 
energy F(ρ).

3. Symplectic aspects of Hopf–Cole transformation

In this section, we study the Hopf–Cole transformation and its generalization via the symplec-
tic embedding in density manifold.

We start by recalling the generalization of Hopf–Cole transformation for the GSBP intro-
duced in [22]. Given ρ̇ ∈ TρP+(M), denote the cotangent vector S = (−�ρ)†ρ̇ ∈ T ∗

ρ P+(M). 
Here S is uniquely defined up to a spatial independent additive constant, i.e. ∇xS(x) is uniquely 
determined. Thus we define the cotangent bundle of the density manifold as follows

T ∗P(M) =
{
(ρ,S) : ρ ∈P(M), S ∈ C∞(M)/R

}
.

Here the notation C∞(M)/R represents the set of smooth functions up to a spatial independent 
function.

Definition 2 (Hopf–Cole transformation for general potentials [22]). Given a potential func-
tional F : P(M) → R, the generalized Hopf–Cole transformation

s : C∞(M) × C∞(M) → T ∗P(M), (η, η∗) → (ρ,S)

is given by ⎧⎪⎨⎪⎩
∇δF(ρ) = ∇

(
δF(η) + δF(η∗)

)
∇S = ∇

(
δF(η) − δF(η∗)

)
,

where δF denotes the first variation (i.e. L2 gradient) of F .

In above definition, there are two spatial independent constants in the change of variable 
formula (9). For the simplicity of presentation, we let them to be zero. In other words, we consider{

δF(ρ) = δF(η) + δF(η∗)

S = δF(η) − δF(η∗).
(9)

As a first example, consider the entropy F(ρ) = γ
´

ρ logρ dx = γ
´

ρ (logρ − 1) dx + γ . 
In this case, δF(ρ) = γ logρ, so that the generalized Hopf–Cole transformation{

logρ = logη + logη∗

S/γ = logη − logη∗

corresponds to the classical Hopf–Cole transformation, i.e. η = √
ρeS/(2γ ), η∗ = √

ρe−S/(2γ ).
8
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We next discuss the relation between (η, η∗) and (ρ, S) via generalized Hopf–Cole transfor-
mation. Assume that δF is invertible. We set

C(M) =
{
(η, η∗) :

⎧⎨⎩η = δF−1
(

1
2 (δF(ρ) + S)

)
,

η∗ = δF−1
(

1
2 (δF(ρ) − S)

)
,

(ρ, S) ∈ T ∗P(M)
}
.

We now state the main result of this section.

Lemma 1. Given a solution (ρt , St ) to the Hamiltonian flow (8), the new variables (ηt , η∗
t ) satisfy{

∂tηt =σ(ηt , η
∗
t ) ∂η∗K(ηt , η

∗
t )

∂tη
∗
t = − σ(η∗

t , ηt ) ∂ηK(ηt , η
∗
t ).

(10)

Here K is the Hamiltonian in the new variables: K(η, η∗) = H(ρ, S). Moreover σ : C∞(M) →
C∞(M) is defined on test functions α, β ∈ C∞(M) by

〈σ(η,η∗)α,β〉 =
¨

M×M

δ2F(ρ)(x, y)ᾱ(x)β̄(y) dx dy,

where ᾱ and β̄ satisfy

ˆ
δ2F(η)(x, y)ᾱ(y) dy = α(x),

ˆ
δ2F(η∗)(x, y)β̄(y) dy = β(x).

Equivalently, σ(η, η∗) can be formulated as

σ(η,η∗)(x,w) = −1

2

¨ [
δ2F(η)

]−1
(x, y) δ2F(ρ)(y, z)

[
δ2F(η∗)

]−1
(z,w)dy dz.

Note that σ(η∗, η) is the adjoint of σ(η, η∗), i.e. σ(η∗, η)(x, y) = σ(η, η∗)(y, x). Here and 
throughout the text δ2F denotes the second variation (i.e. L2 Hessian) of F .

Remark 1. Another way to interpret this result is by looking at the symplectic form in density 
manifold pulled back by s on C(M). For some special potentials F it takes a particularly simple 
form, which doesn’t depend on (η, η∗). This symplectic perspective is developed in Section 3.1
below.

We delay the proof of this lemma and first present in the next two propositions important 
consequences for specific potentials of interest. We also refer to Section 3.2 for more examples.

Proposition 1 (Entropy-induced Hopf–Cole transformation). Let F(ρ) = γ
´

ρ logρ dx. Let 
(ρt , St ) be a solution to (8) and write (ρt , St ) = s(ηt , η∗

t ) where s is the Hopf–Cole transfor-
mation (9). Then (ηt , η∗

t ) satisfies (4), which can be written as the Hamiltonian flow
9
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{
∂tηt = − (2γ )−1∂η∗K(ηt , η

∗
t )

∂tη
∗
t =(2γ )−1∂ηK(ηt , η

∗
t ),

(11)

where K is the Hamiltonian in the new variables: K(η, η∗) =H(ρ, S). Specifically, in the entropy 
case the Hamiltonian in the new variables is given by K(η, η∗) = −2γ 2

´ ∇η · ∇η∗dx.

Proposition 2 (Quadratic interaction energy induced Hopf–Cole transformation). Let F(ρ) =
1
2

˜
W(x, y)ρ(x)ρ(y) dx dy with a symmetric positive-definite interaction potential function 

W . Let (ρt , St ) be a solution to (8) and write (ρt , St ) = s(ηt , η∗
t ), where s is the Hopf–Cole 

transformation (9). Then (ηt , η∗
t ) satisfy the Hamiltonian flow{

∂tηt =σ ∂η∗K(ηt , η
∗
t )

∂tη
∗
t = − σ ∂ηK(ηt , η

∗
t ).

(12)

Here K is the Hamiltonian in the new variables: K(η, η∗) = H(ρ, S). The constant linear map 
σ : C∞(M) → C∞(M) is defined by inverting the kernel W ,

g = σf ⇔ f (x) =
ˆ

W(x,y)g(y) dy, ∀x ∈ M, (13)

for any test functions f and g.

Before proceeding with the proofs of Lemma 1 and Propositions 1 and 2, let us emphasize that 
the interesting part of Propositions 1 and 2 is not so much that (ηt , η∗

t ) satisfy a Hamiltonian-
type system of equations, but rather that the coefficient σ doesn’t depend on (η, η∗). Indeed, 
symplectic theory says that for any Hamiltonian H, if (ρ, S) satisfies the Hamiltonian flow equa-
tions (8), then any smooth transformation s̃ : (η, η∗) → (ρ, S) will yield a Hamiltonian flow-type 
equations in the new variables (η, η∗). More precisely, for any smooth potential F , consider our 
Hopf–Cole transformation (9). The following result shows that (η, η∗) satisfy a Hamiltonian-
type equation, as in Lemma 1. Note here that σ depends on (η, η∗) in general. The key point 
in Propositions 1 and 2 is that σ is independent of (η, η∗). The only example of non-quadratic 
potentials F for which σ(η, η∗) is independent of (η, η∗) that we know of are the entropy with 
linear potentials, see the examples in Section 3.2 for additional details.

Proof of Lemma 1. We aim to derive an equation on ∂tη, where η is defined by the generalized 
Hopf–Cole transformation

δF(η) = 1

2

(
S + δF(ρ)

)
, (14)

and where (ρ, S) satisfies the Hamiltonian system (8), explicitly given by⎧⎪⎨⎪⎩
∂tρt + div(ρt∇St ) = 0

∂tSt + 1

2
|∇St |2 = δ

(
1

2

ˆ
|∇δF(ρt )|2ρt dx

)
.

We start by taking time-derivatives on both sides of (14):
10
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ˆ

δ2F(ηt )(x, y) ∂tηt (y)dy = 1

2
∂tSt (x) + 1

2
∂t δF(ρt )(x).

We now compute each term in the R.H.S. of the above equation. On the one hand,

∂tSt (x) = −1

2
|∇St (x)|2 + 1

2
δ
(ˆ

|∇δF(ρt )|2ρtdx
)

= −1

2
|∇St (x)|2 + 1

2
|∇δF(ρt )(x)|2 +

ˆ
δ2F(ρt )(x, y)

(
− �ρt δF(ρt )(y)

)
dy

= −1

2
∇

(
St + δF(ρt )

)
(x) · ∇

(
St − δF(ρt )

)
(x)

+
ˆ

δ2F(ρt )(x, y)
(

− �ρt δF(ρt )(y)
)
dy,

where we recall that �ρ = div(ρ∇·). Using the generalized Hopf–Cole transformation (9) defin-
ing η and η∗, we derive

∂tSt (x) = 2∇δF(ηt )(x) · ∇δF(η∗
t )(x) +

ˆ
δ2F(ρt )(x, y)

(
− �ρt δF(ρt )(y)

)
dy. (15)

On the other hand, we check that

∂t δF(ρt )(x) =
ˆ

δ2F(ρt )(x, y)∂tρt (y)dy

=
ˆ

δ2F(ρt )(x, y)
(

− �ρt St (y)
)
dy.

(16)

Combining (15) and (16), we obtain

∂t

(
St + δF(ρt )

)
(x)

=2∇δF(ηt )(x) · ∇δF(η∗
t )(x) +

ˆ
δ2F(ρt )(x, y)(−�ρt )

(
St + δF(ρt )

)
(y)dy.

The above equation can be simplified into

∂t δF(ηt )(x) = ∇δF(ηt )(x) · ∇δF(η∗
t )(x) +

ˆ
δ2F(ρt )(x, y)(−�ρt )

(
δF(ηt )

)
(y) dy. (17)

Next, we would like to relate (17) to the Hamiltonian functional. Recall that the Hamiltonian 
is given by

H(ρ,S) = 1

2

ˆ (
|∇S(x)|2 − |∇δF(ρ)(x)|2

)
ρ(x)dx.

Switching to (η, η∗) variables, it is easy to check that the Hamiltonian can be written

K(η, η∗) = −2
ˆ

∇δF(η)(x) · ∇δF(η∗)(x)ρ(x) dx,
11
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where ρ is understood as a function of (η, η∗), i.e.

ρ = (δF)−1(δF(η) + δF(η∗)).

We now compute the first variation of K with respect to η∗

δK
δη∗(x)

= − 2

(ˆ
∇δF(η)(y) · ∇δF(η∗)(y)

δρ

δη∗(x)
(y) dy

+
ˆ

∇δF(η)(y) · ∇yδ
2F(η∗)(x, y)ρ(y) dy

)
.

(18)

Furthermore, by the relation between ρ and η, η∗, we have

δρ

δη∗(x)
(y) =

ˆ
[δ2F(ρ)]−1(y, z) δ2F(η∗)(z, x) dz.

Note that here the tensor (δ2F)−1 denotes the inverse of the Hessian δ2F . Applying it to (18), 
and inverting δ2F(η∗) we derive

− 1

2

ˆ [
δ2F(η∗)

]−1
(z, x)

δK
δη∗(x)

dx =
ˆ

∇δF(η)(y) · ∇δF(η∗)(y)
[
δ2F(ρ)

]−1
(y, z) dz − �ρ

(
δF(η)

)
(z).

Applying the Hessian operator δ2F(ρ) on both sides yields

− 1

2

¨
δ2F(ρ)(y, z) [δ2F(η∗)]−1(z, x)

δK
δη∗(x)

dx dz =

∇δF(η)(y) · ∇δF(η∗)(y) −
ˆ

δ2F(ρ)(y, z)�ρ

(
δF(η)

)
(z) dz.

Comparing the above equation with (17), we obtain

∂t δF(ηt )(y) = −1

2

¨
δ2F(ρt )(y, z)

[
δ2F(η∗

t )
]−1

(z, x)
δK

δη∗(x)
dx dz.

Finally, note that

∂t δF(ηt )(y) =
ˆ

δ2F(ηt )(y, x)∂tηt (x) dx.

By applying to both sides δ2F(ηt )
−1, we derive
12



JID:YJDEQ AID:10652 /FLA [m1+; v1.340] P.13 (1-40)

F. Léger and W. Li Journal of Differential Equations ••• (••••) •••–•••
∂tηt (x) = −1

2

˚ [
δ2F(ηt )

]−1
(x, y)

δ2F(ρt )(y, z)[
δ2F(η∗

t )
]−1

(z,w)
δK

δη∗(w)
dy dzdw,

which is precisely the first equation in (10). By very similar arguments, we can obtain the second 
equation for ∂tη

∗
t in (10). �

Here the above derivation is computed directly. For readers who are not familiar with L2

variations, we refer to Lemma 4, in which a finite-dimensional analogue of the proof is given. In 
addition, Proposition 1 and 2 will be proved later on in the examples of Section 3.2.

3.1. Symplectic forms

In this section we interpret Lemma 1 in the framework of symplectic geometry. In the case of 
the Schrödinger equation and the associated Madelung transform, the symplectic perspective has 
been studied in [20,37]. In this section, we study the similar relation in Hopf–Cole transformation 
and its generalization. Here the symplectic geometry introduces the symplectic forms in classical 
mechanics. The fact is that the Hamiltonian equations describe the time evolution of solutions for 
differential equations. In contrast, the symplectic form introduces a bilinear form that describes 
the vector field using the differential of Hamiltonian. It is often useful in describing submani-
folds, which nowadays arise in probability models in machine learning and computational fluid 
dynamics.

We begin our exposition by quickly recalling basic concepts such as symplectic submersions.

Definition 3. A symplectic manifold (M, ω) is a smooth manifold M equipped with a closed 
and nondegenerate 2-form ω, i.e. dω = 0 and ω(X, ·) is nonzero whenever X ∈ TM is nonzero.

Definition 4. Let (M, ω) and (N , η) be two symplectic manifolds. A symplectomorphism is a 
diffeomorphism s : (M, ω) → (N , η), which satisfies

η(ds(X), ds(Y )) = ω(X,Y )

for all vector fields X, Y ∈ TM.

Symplectomorphisms have desirable properties. For instance they preserve Hamiltonian 
flows:

Proposition 3. Let s : (M, ω) → (N , η) be a symplectomorphism. Let H ∈ C∞(N ), K ∈
C∞(M) such that H = K ◦ s. Then s maps Hamiltonian flows associated to H on (N , η) to 
Hamiltonian flows associated to K on (M, ω).

As a consequence, given a symplectic manifold (N , η), a manifold M and a diffeomorphism 
s : M → N , one can define a symplectic form on M by ω(X, Y) = η(ds(X), ds(Y )) which 
turns s into a symplectomorphism. We are interested in the cases where such ω is canonical for 
M, or more generally a constant symplectic form (i.e. constant in some appropriate coordinates).
13
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In our setting, the vector space C(M) = C∞(M) × C∞(M) plays the role of the mani-
fold M above, the cotangent bundle to the Wasserstein space T ∗P(M) plays the role of N , 
and we equip it with the natural symplectic form associated to the Wasserstein metric. Given 
(ρ̇1, Ṡ1), (ρ̇2, Ṡ2) ∈ T(ρ,S)T

∗P+(M), where

T(ρ,S)T
∗P+(M) = {(ρ̇, Ṡ) :

ˆ
ρ̇(x)dx = 0, Ṡ ∈ C∞(M)/R},

the symplectic structure in density manifold ωW
ρ : T T ∗P+(M) × T T ∗P+(M) → R satisfies

ωW
ρ ((ρ̇1, Ṡ1), (ρ̇2, Ṡ2)) =

ˆ
ρ̇1(x)Ṡ2(x) − ρ̇2(x)Ṡ1(x)dx.

Here we use the notation ρ̇i , Ṡi , i = 1, 2, to represent the tangent directions of ρ, S. In the case 
where the map s is our Hopf–Cole transformation given by (9), we can state a general version of 
Proposition 1 and 2:

Theorem 1. Define the symplectic form ωC
ρ on C(M) by

ωC
ρ

(
(η̇1, η̇

∗
1), (η̇2, η̇

∗
2))

)
=
ˆ

〈σ(η,η∗)η̇1, η̇
∗
2〉 − 〈σ(η,η∗)η̇2, η̇

∗
1〉dx,

where (η, η∗) = s−1(ρ, S) and

ρ = (δF)−1(δF(η1) + δF(η∗
1)) = (δF)−1(δF(η2) + δF(η∗

2)).

Then the Hopf–Cole transform (9) is a symplectomorphism between (C(M), ωC
ρ ) and (T ∗P(M),

ωW
ρ ).

Proof. We simply write the Lemma 1 into the following symplectic form ωC
ρ , i.e.

ωC
ρ

(
((η̇1, η̇

∗
1), (η̇2, η̇

∗
2))

)
= ωW

ρ

(
(ρ̇1, Ṡ1), (ρ̇2, Ṡ2)

)
. �

Remark 2. Our result is based on the cotangent vectors in density manifold, developed by [24]. 
Compared to cotangent vector fields used in manifold M [27,20,37], our proofs are direct. In 
addition, our results of symplectic forms hold for general potential energies.

Remark 3. Like previously remarked, when F are linear entropy or quadratic interaction en-
ergy, we emphasize that ωC

ρ is independent of (η, η∗) in L2 coordinates. This makes Theorem 1
attractive.

3.2. Examples

We now examine a list of important examples, for which we express in more details our 
Hopf–Cole transformation and the equations satisfied by the new variables.
14
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Example 1 (Hopf–Cole for the generalized entropy). Let m > 0, γ ∈ C and consider the gener-
alized entropy

F(ρ) = γ

m(m + 1)

ˆ
ρ(x)m+1dx.

First, the Hamiltonian flow equations (8) take the form{
∂tρt + div(ρt∇St ) = 0

∂tSt + 1
2 |∇St |2 = γ 2

[
(m − 1

2 )ρ2m−2
t |∇ρt |2 − div(ρ2m−1

t ∇ρt )
]
.

(19)

Since F(ρ) = γ
m(m+1)

[´ ρ(x)m+1 − (m + 1)ρ dx + (m + 1)], its first variation can be written 
δF(ρ) = γ

m
(ρm − 1), and our Hopf–Cole transformation takes the form ρm + 1 = ηm + η∗m, 

m
γ

S = ηm − η∗m, i.e. ⎧⎨⎩ η(x) = 2−1/m
(
ρ(x)m + mS(x)/γ + 1

)1/m

η∗(x) = 2−1/m
(
ρ(x)m − mS(x)/γ + 1

)1/m
.

The two ingredients needed to express the Hamiltonian flow in (η, η∗) variables are the form of 
the Hamiltonian K(η, η∗) as well as the linear map σ(η, η∗) associated to the symplectic form 
ωD . It is a simple matter to check that the Hamiltonian is given by

K(η, η∗) = −2(γ /m)2
ˆ

∇(ηm) · ∇(η∗m) (ηm + η∗m − 1)1/mdx.

The map σ(η, η∗) is given by the diagonal kernel

k(x) = (2γ )−1(η(x)−m + η∗(x)−m − η(x)−mη∗(x)−m
)m−1

m ,

by which we mean that 〈σ(η, η∗)f, g〉 = ´
k(x)f (x)g(x) dx for any test functions f and g. 

Consequently the equations satisfied by (η, η∗) are{
∂tηt = γm−1 ∇ηm

t · ∇ηt + γm−1 η
−(m−1)
t (ηm

t + η∗m
t − 1)�ηm

t

∂tη
∗
t = −γm−1 ∇η∗m

t · ∇η∗
t − γm−1 η

∗−(m−1)
t (ηm

t + η∗m
t − 1)�η∗m

t .
(20)

Example 2 (Hopf–Cole for the linear entropy). We next examine the Hopf–Cole formula for 
linear entropy. Note the fact that as m → 0, zm = 1 + m log z + o(m). Thus

lim
m→0

1

m(m + 1)

ˆ
ρ(x)m+1 − ρ(x)dx =

ˆ
ρ(x) logρ(x)dx.

Again notice that ηm = 1 + m logη + o(m). Then

lim
m→0

(
m−1 ∇ηm · ∇η + m−1 η−(m−1)(ηm + η∗m − 1)�ηm

)

=∇ logη · ∇η + η� logη.

15
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Recall that the Laplacian operator has the following format:

�η = ∇ · (η∇ logη) = ∇η · ∇ logη + η� logη,

therefore the classical Hopf–Cole transform is recovered when m → 0. In other words, substi-
tuting the above two relations into equation (20), we derive the backward-forward heat system 
(4).

Example 3 (Hopf–Cole for the quadratic entropy). Consider the interaction kernel W(x, y) =
γ δx=y , with γ > 0, which corresponds to the potential

F(ρ) = γ

2

ˆ (
ρ(x)

)2
dx.

Note also that it is a particular case of the previous example: a Rényi entropy with m = 1. In 
this situation the map σ is especially simple since it is (a multiple of) the identity: 〈σf, g〉 =
(2γ )−1

´
f (x)g(x) dx. Therefore, the new Hamilton equations in (η, η∗) variables are{

∂tηt =(2γ )−1 ∂η∗K(ηt , η
∗
t )

∂tη
∗
t = − (2γ )−1 ∂ηK(ηt , η

∗
t ).

Here K(η, η∗) = γ
2

´ (
η(x) + η∗(x)

)∇η(x) · ∇η∗(x) dx. In symplectic terms, we can say that 
ωD is (a multiple of) the canonical symplectic form on D(M). More specifically, the previous 
system of equation is {

γ −1 ∂tηt + 1
2 |∇ηt |2 + (ηt + η∗

t )�ηt = 0

−γ −1 ∂tη
∗
t + 1

2 |∇η∗
t |2 + (ηt + η∗

t )�η∗
t = 0.

Example 4 (Hopf-Cole for the interaction energy). Let W : Rd → R be an even interaction ker-
nel, i.e. W(z) = W(−z), for z ∈Rd , and consider the potential

F(ρ) = 1

2

¨

Rd×Rd

W(x − y)ρ(x)ρ(y) dx dy.

The Hamiltonian flow (8) associated to F is⎧⎨⎩
∂tρt + div(ρt∇St ) = 0

∂tSt + 1

2
|∇St |2 = 1

2
|∇W � ρt |2 − div(ρt∇W � ρt ) � W,

where � denotes convolution. We assume that convolution with W is invertible, i.e. there exists 
another kernel M : Rd →R such that

M � W � ζ = ζ
16
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for all smooth function ζ : Rd → R. In Fourier space for instance, this means M̂ = 1/Ŵ , since 
the Fourier transform of a convolution is the product of the Fourier transforms. Then, our Hopf–
Cole transformation is well-defined, W � ρ = W � η + W � η∗, S = W � η − W � η∗, i.e.

⎧⎪⎪⎨⎪⎪⎩
η = ρ + M � S

2

η∗ = ρ − M � S

2
.

Remark 4. In the recent work [3] the authors rigorously investigate a problem related to Exam-
ple 4. Indeed they consider the entropy-interaction functional

F(ρ) = 1

2

ˆ
ρ(x) lnρ(x)dx + 1

2

¨
W(x − y)ρ(x)ρ(y) dxdy.

In their Section 1.3.2 they write the associated Hamiltonian flow as a symmetric forward-
backward system in the variables ψ = δF(η), φ = δF(η∗). Their change of variable is therefore 
closely related to, but different from our variables (η, η∗) and allows them to write an explicit 
system of equations in variables (ψ, φ).

3.3. Extensions to Madelung transformation

Proposition 1 introduces the connection between the Schrödinger bridge problem and the 
Schrödinger equation. When γ = √−1 is the imaginary unit and F(ρ) = γ

´
ρ logρdx, the 

generalized Hopf–Cole transformation

{
logρ = logη + logη∗

S/
√−1 = logη − logη∗,

forms exactly the Madelung transformation, i.e. η = √
ρe−√−1S/2, η∗ = √

ρe
√−1S/2. And it is 

clear that η is the complex conjugate of η∗. As known already in [30,20],

−√−1∂tηt = 1

2
�ηt

satisfies the Schrödinger equation.
In this sequel, we further consider the generalized potential energies for Madelung transfor-

mation by setting γ = √−1 in (2) with general potential energies. Denote F(ρ) = √−1F̃(ρ), 
where F : P+(M) → R. Notice γ 2 = −1, then the Hamiltonian system on density manifold (8)
forms

∂tρt = δSH(ρt , St ), ∂tSt = −δρH(ρt , St ),

with
17
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H(ρ,S) =1

2

ˆ
|∇S(x)|2ρ(x)dx − 1

2

ˆ
|∇δF(ρ)(x)|2ρ(x)dx

=1

2

ˆ
|∇S(x)|2ρ(x)dx + 1

2

ˆ
|∇δF̃(ρ)(x)|2ρ(x)dx.

After the transformation (9), (ηt , η∗
t ) satisfies{

∂tηt =√−1σ(ηt , η
∗
t )∂η∗K(ηt , η

∗
t ),

∂tη
∗
t = − √−1σ(ηt , η

∗
t )∂ηK(ηt , η

∗
t ).

(21)

Here η∗
t is the complex conjugate of ηt , denoted by η∗

t = η̄t . Equation (21) can be viewed as the 
generalized Schrödinger equations. It can also be written into one single equation:

∂tηt = √−1σ(ηt , η̄t )∂η̄K(ηt , η̄t ).

Example 5. In particular, consider the energy F(ρ) =
√−1

2

´
ρ2dx. Then after the generalized 

Madelung transformation, we derive the equation of (ηt , η∗
t ):

−√−1 ∂tηt = 1

2
|∇ηt |2 + (ηt + η̄t )�ηt .

4. Energy splitting

In this section, we present an energy-splitting approach based on Hopf–Cole transformations. 
We present several inequalities for the split energies.

We first define the class C(a) of a-homogeneous functional.

Definition 5. Let a > 0. We say that a smooth functional F : P(M) → R is a-homogeneous, 
which we write F ∈ C(a), if there exists b ∈R such that

F(ρ) = a−1
ˆ

δF(ρ)ρ dx + b (22)

for all smooth probability densities ρ.

We are now able to define a certain splitting of F into two functionals in phase space.

Definition 6 (Energy splitting). Assume that F ∈ C(a), and consider the Hopf–Cole transforma-
tion s : (η, η∗) → (ρ, S) defined in the previous section by (9). We define G and G∗ on C(M)

by

G(η, η∗) = a−1
ˆ

(δF)−1(δF(η) + δF(η∗)) δF(η) dx + b/2,

G∗(η, η∗) = a−1
ˆ

(δF)−1(δF(η) + δF(η∗)) δF(η∗) dx + b/2.

The constant b is the one appearing in Definition 5, i.e. b =F(ρ) − a−1
´

δF(ρ)ρ dx.
18
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For any F ∈ C(a) and from the definition of our Hopf–Cole formulation, it is clear that 
F(ρ) = G(η, η∗) + G∗(η, η∗). This is the reason we call G, G∗ energy splitting functionals.

From now on, we shall demonstrate that along the solution of the SBP, G, G∗ share similar 
properties to the gradient descent and the gradient ascent flows of F . We shall prove energy 
dissipation results for each of them.

Theorem 2 (Energy splitting inequalities for Hopf–Cole transformation). If F is λ-convex in 
density manifold, then

G(ηt , η
∗
t ) + ctH ≤ α1−t G(η0, η

∗
0) + (1 − α1−t ) (G(η1, η

∗
1) + cH),

and

G∗(ηt , η
∗
t ) − ctH ≤ (1 − αt )G(η0, η

∗
0) + αt (G(η1, η

∗
1) − cH).

Here

αt = 1 − e−2λt

1 − e−2λ
,

H denotes the Hamiltonian of the system (a constant of the flow) and c = 1−a−1

2 .

Let us mention that our study is motivated by the work [11], in which the author rigorously 
proved related energy splitting and convexity inequalities for the classical SBP. Theorem 2 ex-
tends the inequalities considered in [11] to our generalized SBP in a formal setting. Additionally, 
the work [17] proved in the context of the GSBP a convexity inequality on the potential F . The-
orem 2 is very related to their result in the following sense: while [17] works directly on the 
potential F , we are more interested in our splitting F(rho) = G(η, η∗) + G∗(η, η∗).

The outline of the proof is as follows. We first compute the first derivative and second deriva-
tive along the Hamiltonian flow for the splitting energies. We then compare the value of first and 
second derivative of each splitting energy. Following Grönwall’s inequality, we prove the entropy 
dissipation result.

We first calculate the first derivative for the split energies G, G∗.

Lemma 2 (Energy production for Hopf–Cole transformation). The first time derivatives of split 
energies along the flow are

d

dt
G(ηt , η

∗
t ) =

ˆ
ρt |∇δF(ηt )|2dx − cH,

d

dt
G∗(ηt , η

∗
t ) = −

ˆ
ρt |∇δF(η∗

t )|2dx + cH.

Here H denotes the Hamiltonian of the system (a constant of the flow) and c = 1−a−1

2 .

We next calculate the second derivative for the split energies G and G∗.
19
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Lemma 3 (Energy dissipation for Generalized Hopf–Cole transformation). The second time-
derivatives of the split energies along the flow are

d2

dt2G(ηt , η
∗
t ) =2 HessW F(ρt )(VδF(ηt ), VδF(ηt )),

d2

dt2G
∗(ηt , η

∗
t ) =2 HessW F(ρt )(VδF(η∗

t ), VδF(η∗
t )),

where HessW is the Hessian operator in density manifold with

VδF(η) = −div(ρ∇δF(η)),

and

VδF(η∗) = −div(ρ∇δF(η∗)).

Proof of Lemma 2. We begin the proof by noting that expressing δF(η) in terms of ρ and S, 
and using the fact that F ∈ C(a), the function G defined in the theorem can be written in (ρ, S)

variables as

G = 1

2
F(ρ) + a−1

2

ˆ
S ρdx.

Here we will abuse notation and write G whether considering it as a function of (ρ, S) or a 
function of (η, η∗). In the proof we will also make use of the following results whose proofs are 
easy and left to the reader.

(i) If F ∈ C(a) then the first variation δF belongs to C(a − 1), in the sense that

(a − 1) δF(ρ)(x) =
ˆ

ρ(y) δ2F(ρ)(x, y) dy

for any x ∈ M . Here δ2F denotes the second variation of F .
(ii) If F ∈ C(a) then the square norm of the Wasserstein gradient of F

J (ρ) =
ˆ

|∇δF(ρ)|2ρ

belongs to C(2a − 1).

Along the Hamiltonian flow (8) the time-derivative of the first term in the new expression of G is 
simply

d

dt

1

2
F(ρt ) = 1

2

ˆ
(∇δF(ρt ),∇St ) ρtdx .

For the second term, we compute after an integration by parts
20
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d

dt

ˆ
St ρtdx =

ˆ
1

2
|∇St |2 ρtdx +

ˆ
δJ (ρt ) ρtdx

=
ˆ

1

2
|∇St |2 ρtdx + (2a − 1)J (ρt )

where we use result 4 above on J . Writing explicitly the expression of J yields

d

dt

ˆ
St ρtdx =

ˆ
1

2
|∇St |2 ρtdx + (a − 1/2)

ˆ
|∇δF(ρt )|2 ρtdx,

which implies that

d

dt
G(ηt , η

∗
t ) =a−1

2

ˆ
1

2
|∇St |2 ρtdx +

(
1 − a−1

2

)ˆ
1

2
|∇δF(ρt )|2 ρtdx

+ 1

2

ˆ
(∇δF(ρt ),∇St ) ρtdx.

Introducing the Hamiltonian H(ρ, S) = ´ 1
2 |∇S|2 ρ − 1

2 |∇δF(ρ)|2 ρdx, which is a conserved 
quantity. We can more simply write

d

dt
G(ηt , η

∗
t ) = 1

4

ˆ
|∇St + ∇δF(ρt )|2 ρtdx + a−1 − 1

2
H

=
ˆ

|∇δF(ηt )|2 ρtdx + a−1 − 1

2
H

where we used that δF(η) = S+f (ρ)
2 . By a similar computation one can obtain the expression of 

d
dt
G∗. �

Proof of Lemma 3. The proof is based on the Riemannian calculus in Wasserstein density man-
ifold. For readers who are not familiar with infinite dimensional geometry calculus, one can find 
the finite dimensional analog provided in Lemma 7. We represent (ηt , η∗

t ) in coordinates (ρt , St ), 
so as (ρt , ∂tρt ). From the transformation (9), notice the fact that δF(ηt ) = 1

2

(
St + δF(ρt )

)
and 

∂tρt = −�ρt St , thus denote

at = ∂tρt + gradWF(ρt ).

From (6), we can simply check

D

dt
at = D2

dt2 ρt + D

dt
gradWF(ρt )

=1

2
gradW(gW

ρ (gradWF(ρ),gradWF(ρt ))) + HessWF(ρt )∂tρt

=HessWF(ρt )(gradWF(ρt ) + ∂tρt )

=Hess F(ρ )a ,
W t t

21
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where D
dt

is the covariant derivative in density manifold. We now recall the result from Lemma 6:

d

dt
G(ηt , η

∗
t ) =1

4

ˆ
|∇δF(ηt )|2 ρtdx + a−1 − 1

2
H

=1

4

ˆ (
δF(ηt ), (−�ρt )δF(ηt )

)
ρtdx + a−1 − 1

2
H

=1

4

ˆ (
�ρt δF(ηt ), (−�ρt )

−1�ρt δF(ηt )
)
dx + +a−1 − 1

2
H

=gW
ρt

(at , at ) + a−1 − 1

2
H.

We are ready to compute the second time-derivative of G:

d2

dt2G(ηt , η
∗
t ) = d

dt
gW

ρt
(at , at ) = 2

ˆ
gW

ρt
(
D

dt
at , at ) = 2HessWF(ρt )(at , at ).

From the Hessian formula derived in Wasserstein geometry [24], we prove the result. A similar 
computation can be used to obtain the expression of d

dt
G∗. �

By combining Lemma 2 and 3, we now proceed with proving Theorem 2.

Proof of Theorem 2. From Lemma 2 and Lemma 3, along the Hamiltonian flow (8), we have 
that

d2

dt2G(ηt , η
∗
t ) ≥ 2λ

(
d

dt
G(ηt , η

∗
t ) + cH

)
,

and

d2

dt2G
∗(ηt , η

∗
t ) ≥ −2λ

(
d

dt
G∗(ηt , η

∗
t ) − cH

)
.

Integrating in time variable [0, t], and applying the Grownwall’s inequality, we finish the 
proof. �
Remark 5. Let A(μ, ν) be the value of the generalized SBP problem (5). Theorem 2 allows us 
to express A(μ, ν) in terms of variables at initial and final times only. Indeed, note that along the 
Hamiltonian flow (8),

d

dt

(
G − G∗) =

ˆ (|∇δF(ηt )|2 + |∇δF(η∗
t )|2

)
ρtdx − 2cH

=
ˆ

1

2

(|∇St |2 + |∇δF(ρt )|2
)
ρtdx − 2cH

= L(ρt , St ) − 2cH,
22
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where L denotes the Lagrangian of the problem. Since, along the optimal flow (8) with the 
boundary conditions ρ0 = μ, ρ1 = ν, we have that A(μ, ν) = ´ 1

0 L(ρt , St ) dt , we deduce that

A(μ, ν) = G(ν, S1) − G(μ,S0) + G∗(μ,S0) − G∗(ν, S1) + 2cH,

where we recall that H = ´ 1
2 |∇S|2 ρ − 1

2 |∇δF(ρ)|2 ρdx can be taken at any time t ∈ [0, 1] since 
it is a constant of motion. We can further simplify the previous expression using the identity 
F = G + G∗, which implies that

A(μ, ν) = 2G(ν, S1) + 2G∗(μ,S0) −F(μ) −F(ν) + 2cH.

Naturally, the value of S0 or S1 is not known before fully solving the problem (5). See similar 
discussions in [11] and [17].

4.1. Examples

Many functionals usually considered in optimal transport and information theory [2] are ho-
mogeneous: this fact is highlighted below, where we examine several important examples.

Example 6 (Generalized entropy). It is easy to show that the generalized entropy

F(ρ) = γ

m + 1

ˆ
ρm+1 dx

is (m + 1)-homogeneous, in the sense of Definition 5, and we can therefore apply the splitting 
result of Theorem 2. The expressions of G and G∗ are

G(η, η∗) = γ

m + 1

ˆ
ηm ρ dx

and

G∗(η, η∗) = γ

m + 1

ˆ
η∗m ρ dx,

where like before ρ is understood as a function of (η, η∗), i.e. here ρ = (ηm + η∗m)1/m. It is 
easy to check that indeed F(ρ) = G(η, η∗) + G∗(η, η∗). Moreover, along the flow (19), the first 
time-derivatives of G and G∗ are

d

dt
G(ηt , η

∗
t ) = γ 2

ˆ
|∇ηm

t |2 ρtdx − cH,

d

dt
G∗(ηt , η

∗
t ) = −γ 2

ˆ
|∇η∗m

t |2 ρtdx + cH,

where c = m
2(m+1)

and where the Hamiltonian expressed in (η, η∗) variables is H =
−2γ 2

´ ∇(ηm) · ∇(η∗m) ρdx. We recall that the Hamiltonian is a conserved quantity and there-
fore H is constant in time.
23
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Example 7 (Interaction energy). It is easy to check that interaction energies are 2-homogeneous. 
Therefore, applying Theorem 2 we can split F = G + G∗ where

G(η, η∗) = 1

2

ˆ
(η + η∗)W � η dx,

G∗(η, η∗) = 1

2

ˆ
(η + η∗)W � η∗ dx.

Along the Hamiltonian flow (8), the variation of G and G∗ is

d

dt
G(ηt , η

∗
t ) =

ˆ
(ηt + η∗

t ) |∇W � ηt |2dx −H/4,

d

dt
G∗(ηt , η

∗
t ) = −

ˆ
(ηt + η∗

t ) |∇W � η∗
t |2dx +H/4,

where the Hamiltonian in (η, η∗) variables can be computed to be

H(η, η∗) = −2
ˆ

(η + η∗)∇(W � η) · ∇(W � η∗)dx.

In fact, there are lots of interesting Hessian formulas in Wasserstein space. For example, 
the Hessian operator of linear entropy connects with the Bakery–Emery Gamma two operator 
[36,24]. From the associated smallest eigenvalue of Hessian operators, one can derive related 
inequalities for the split energies.

5. Finite-dimensional analogues

In this section our aim is to show that most results presented in this paper are not only true for 
the density manifold with Wasserstein metric, but rather are verified on any (finite-dimensional) 
manifold whose metric satisfies some properties detailed below. We therefore prove analogues 
of most result presented in the paper and follow the same outline.

Our setting in this section is a finite-dimensional Riemannian manifold (M, g) together with 
global coordinates (qi) on M, as well as a smooth potential function

F : M → R.

For ease of notation, we will often write the metric as |v|2 instead of g(v, v), if v is a vector or a 
co-vector. Moreover we will denote gradients with the symbol ∇ . Morally M corresponds to the 
Wasserstein space and the global coordinates are the L2 coordinates. We refer to [22] for more 
details on this setting. From now on, we use Einstein summation symbol freely.

5.1. Finite-dimensional Schrödinger bridge problems

The manifold analogue of the GSBP (5) is the controlled gradient flow problem

inf
q,b

1ˆ
1

2
|bt |2 dt (23)
0
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where the infimum runs over smooth paths (q, b) : [0, 1] → TM constrained by

q̇t = bt − ∇F(qt ) (24)

for all t ∈ (0, 1) with the boundary conditions

q0 = x, q1 = y,

where x and y are fixed point in M. This problem was introduced in [22] and also studied in [17]. 
There exists an equivalent, “Lagrangian-mechanics” version of this problem given by

inf
q,v

1ˆ

0

1

2
|vt |2 + 1

2
|∇F(qt )|2 dt + F(y) − F(x), (25)

where v denotes the velocity, q̇ = v. The same boundary conditions as above are considered. 
We refer to [22] for more detailed explanations. Associated to this problem are the Lagrangian 
L(q, v) = 1

2 |v|2 + 1
2 |∇F(q)|2, as well as the Hamiltonian

H(q,p) = 1

2
|p|2 − 1

2
|∇F(q)|2. (26)

Here the momentum p ∈ T ∗
q M is the covector associated to the velocity v: pi = gij v

j .
The optimally conditions of the problem (25) are, in coordinates:{

q̇i = gijpj ,

ṗi = − 1
2∂ig

jkpjpk + 1
2∂i(g

jk∂jF∂kF ),
(27)

completed with the boundary conditions.

5.2. Symplectic aspects

Our Hopf–Cole transformation s : (η, η∗) → (q, p), introduced in [22], was also defined on 
manifolds by {

∂iF (η) = 1
2

(
pi + ∂iF (q)

)
∂iF (η∗) = 1

2

( − pi + ∂iF (q)
)
,

(28)

provided ∂iF is invertible.
Before stating an analogue of Lemma 1, we first introduce some notation. We write fi(q) =

∂iF (q) for the first derivative of F in coordinates and hij (q) = ∂2
ijF (q) for the second derivative. 

We also write hij for the inverse tensor of hij .

Lemma 4. Consider the Hopf–Cole transformation s : (η, η∗) → (q, p) defined by (28). Let

σ i�(η, η∗) = 1
hij (η)hjk(q)hk�(η∗)
2

25
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where q stands for f −1
(
f (η) + f (η∗)

)
. Then, the Hamiltonian flow (27) can be written in the 

new variables as {
η̇i = −σ ij (η, η∗) ∂K

∂η∗j

η̇∗i = σ ji(η, η∗) ∂K
∂ηj

Here K denotes the Hamiltonian in the new variables:

K(η,η∗) = H
(
s(η, η∗)

) = −2gij (q)fi(η)fj (η
∗)

where we write q = f −1(f (η) + f (η∗)).

Remark 6. The expression of σ doesn’t depend on the metric g.

Theorem 3. Assume that in coordinates (qi) the potential F is written

F(q) = 1

2
Wijq

iqj + Ui q
i,

where W is a symmetric positive-definite matrix and U is a vector in Rn. Then the Hamiltonian 
flow (27) can be written in the new variables as{

η̇i = −2Wij ∂K
∂η∗j

η̇∗i = 2Wij ∂K
∂ηj

where Wij denotes the inverse of the matrix Wij .

Example 8 (Flat metric). Consider the simple case where M = Rn is equipped with the flat 
metric gij (q) = δij . Let

F(q) = 1

2
〈Aq,q〉,

where A is a symmetric positive-definite n × n matrix and where 〈·, ·〉 denotes the canonical 
inner product on Rn. The Hamiltonian associated to F is

H(q,p) = 1

2
‖p‖2 − 1

2
‖Aq‖2

where ‖·‖ is the Euclidean norm, and the Hamiltonian flows equations are{
q̇ = p,

ṗ = A2q.

It is easy to check that our Hopf–Cole transformation is given by Aq = Aη+Aη∗, p = Aη−Aη∗, 
i.e.
26
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⎧⎪⎪⎨⎪⎪⎩
η = 1

2
(q + A−1p),

η = 1

2
(q − A−1p).

The flow equations in the new variables are{
η̇ = Aη,

η̇∗ = −Aη∗.

Note that in this simple case the η and η∗ equations are respective gradient ascent and descent 
flows of F . This phenomena is explained in details in [22].

Proof of Lemma 4. We recall the notation used in the lemma: fi(q) = ∂iF (q) and hij (q) =
∂2
ijF (q). Let t → (qt , pt) ∈ T ∗M be a solution to the Hamiltonian flow (27), which we recall 

takes the form {
q̇i = gij (q)pj ,

ṗi = − 1
2∂ig

jk(q)pjpk + 1
2∂i(g

jk∂jF∂kF )(q).

Here we don’t need to fix boundary conditions. We would like to derive an equation on η̇, where η
is defined by our generalized Hopf–Cole transformation: in other words fj(η) = 1

2

(
pj +fj (q)

)
. 

Taking time-derivatives on both sides of this equality implies

hij (η) η̇i = 1

2
ṗj + 1

2

d

dt
fj (q).

We now compute each term in the RHS separately. Firstly,

ṗj = −1

2
∂jg

k�(q)pkp� + 1

2
∂j (g

klfkf�)(q)

= −1

2
∂jg

k�(q)pkp� + 1

2
∂jg

k�(q)fk(q)f�(q) + gk�(q)hjk(q)f�(q).

Note that by symmetry of indices k and �, the first two terms can be factorized into the expression 
1
2∂jg

k�(q)
(
pk + fk(q)

)( − p� + f�(q)
)
. Using the expression (28) which defines η and η∗, we 

obtain

ṗj = 2 ∂jg
k�(q)fk(η)f�(η

∗) + gk�(q)hjk(q)f�(q).

Secondly, we can easily check that d
dt

fj (q) = hjk(q)q̇k = hjk(q)gk�(q)p�. Therefore, combin-
ing the expression obtained thus far, one can check that ṗj + d

dt
fj (q) = 2 ∂jg

k�(q)fk(η)f�(η
∗) +

2 gk�(q)hjk(q)f�(η). This implies an expression for η̇,

hij (η) η̇i = ∂jg
k�(q)fk(η)f�(η

∗) + hjk(q)gk�(q)f�(η).
27
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Next, we would like to relate the expression of η̇ to the Hamiltonian. Recall that the Hamilto-
nian is given by H(q, p) = 1

2 |p|2 − 1
2 |∇F(q)|2, which in coordinates takes the form

H(q,p) = 1

2
gjk(q)pjpk − 1

2
gjk(q)fj (q)fk(q).

Similarly to an operation above, by symmetry of indices j and k the above difference can be 
factorized into 1

2gjk(q)
(
pj + fj (q)

)(
pk − fk(q)

)
. Switching to (η, η∗) variables, we can obtain 

the expression of the Hamiltonian in the new variables,

K(η,η∗) = −2gjk(q)fj (η)fk(η
∗).

Here q should be implicitly understood as a function of (η, η∗) (i.e. defined by fi(q) = fi(η) +
fi(η

∗)). Let us now compute a partial derivative:

∂K

∂η∗�
= −2

[
∂ag

jk(q)
∂qa

∂η∗�
fj (η)fk(η

∗) + gjk(q)fj (η)hk�(η
∗)

]
.

By differentiating the expression fi(q) = fi(η) + fi(η
∗) with respect to η∗, it is clear that

∂qa

∂η∗�
= hak(q)hk�(η

∗).

Note that here the tensor hij denotes the inverse of hij . As a consequence we derive the identity

−1

2
hk�(η∗) ∂K

∂η∗�
= hjk(q) ∂j g

k�(q)fk(η)f�(η
∗) + gk�(q)f�(η),

where we have changed the name of some repeated indices. By multiplying both sides by hjk(q), 
we obtain

hij (η) η̇i = −1

2
hjk(q)hk�(η∗) ∂K

∂η∗�
,

which can be rearranged into the desired expression,

η̇i = −1

2
hij (η)hjk(q)hk�(η∗) ∂K

∂η∗�
.

An almost identical line of proof can be used to obtain the required expression for η̇∗. �
We now derive the symplectic matrix for the generalized Hopf–Cole transform.

Lemma 5. Define on Rn ×Rn the symplectic form ω by

ω(η,η∗) =
(

0 −σ(η,η∗)
σ T(η, η∗) 0

)
,

where σ is the coefficient defined in Lemma 4. Then our Hopf–Cole transformation is a symplec-
tomorphism between (Rn ×Rn, ω) and T ∗M equipped with its natural symplectic form.
28



JID:YJDEQ AID:10652 /FLA [m1+; v1.340] P.29 (1-40)

F. Léger and W. Li Journal of Differential Equations ••• (••••) •••–•••
With this symplectic perspective, the result in Lemma 4 can be written more compactly as

d

dt
(ηt , η

∗
t ) = ∇ωK(ηt , η

∗
t ),

where ∇ωK is the symplectic gradient of K . It is the vector field defined by ω(∇ωK, u) = DK(u)

for any vector field u, where DK stands for the differential map of K .

5.3. Energy splitting

This section follows very closely the one in Wasserstein space, roughly giving equivalent 
results for each one presented in Section 4.

Note first that the class C(a) of a-homogeneous potentials, introduced in Section 4, is a notion 
that still makes sense on manifolds provided we work in coordinates:

Definition 7 (Homogeneous functions on manifolds). Let a > 0. We say that a smooth function 
F : M →R is a-homogeneous, and we write F ∈ C(a), if there exists b ∈R such that

F(q) = a−1qi∂iF (q) + b

for all q ∈ M .

Note that this definition only depends on the expression of F in coordinates but not on the 
metric g itself. We now define our energy splitting F = G + G∗.

Definition 8. Assume that F ∈ C(a). We define the function G and G∗ by

G(η,η∗) = a−1qifi(η) + b/2

and

G∗(η, η∗) = a−1qifi(η
∗) + b/2.

Here qi is to be understood as a function of (η, η∗), i.e. inverting the equality fi(q) = fi(η) +
fi(η

∗). We recall that f denotes the first derivative of the potential F : fi(q) = ∂iF (q). Moreover, 
b is the constant appearing in the definition of a-homogeneity: b = F(q) − a−1qifi(q). Since F
is a-homogeneous, it is easy to see that

F(q) = G(η,η∗) + G∗(η, η∗).

The main theorem of this section is a direct analogue of Theorem 2 in Wasserstein space. It is 
available on manifolds when the metric g satisfies, like the potential F , a homogeneity condition.

Assumption 1. The potential F is a-homogeneous, i.e. F ∈ C(a).
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Assumption 2. The metric g satisfies, in coordinates (qi), the homogeneity condition

gjk(q) = mqi∂ig
jk(q)

for some m > 0.

Note that in these two assumptions are implicitly chosen the global coordinate chart (qi). An 
important example is to consider M as the probability simplex

M = {(qi)
n
i=1 ∈Rn :

n∑
i=1

qi = 1, qi ≥ 0}.

One can define Riemannian structures on probability simplex such as a Wasserstein metric, which 
satisfies the proposed assumptions. See details in subsection 5.4.

Theorem 4. If F is λ-convex with λ ∈R, then along the flow

G(ηt , η
∗
t ) + ctH ≤ α1−t G(η0, η

∗
0) + (1 − α1−t ) (G(η1, η

∗
1) + cH),

and

G∗(ηt , η
∗
t ) − ctH ≤ (1 − αt )G(η0, η

∗
0) + αt (G(η1, η

∗
1) − cH).

Here

αt = 1 − e−2λt

1 − e−2λ
,

H denotes the Hamiltonian of the system (a constant of the flow) and c = a−1(m−2)+1
2 .

Lemma 6. Suppose that Assumptions 1 and 2 hold. Consider the Hopf–Cole transformation 
s : (η, η∗) → (q, p) defined by (28). The splitting F(q) = G(η, η∗) + G∗(η, η∗) satisfies along 
the flow (27)

d

dt
G(ηt , η

∗
t ) = gij (qt ) fi(ηt ) fj (ηt ) − cH,

d

dt
G∗(ηt , η

∗
t ) = −gij (qt ) fi(η

∗
t ) fj (η

∗
t ) + cH.

Here H denotes the Hamiltonian of the system (a constant of the flow) and c = a−1(m−2)+1
2 .

To prove the main theorem of this section, we not only need information on the first time-
derivative of G and G∗ but also on the second time-derivative.
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Lemma 7. Suppose that Assumptions 1 and 2 hold. Then, the two functions G and G∗ introduced 
in Definition 8 satisfy along the flow (27)

d2

dt2 G = 2
(
∂2
k�F (qt ) − 
n

k�(qt ) fn(qt )
)
gik(qt )g

j�(qt )fi(ηt )fj (ηt ),

d2

dt2 G∗ = 2
(
∂2
k�F (qt ) − 
n

k�(qt ) fn(qt )
)
gik(qt )g

j�(qt )fi(η
∗
t )fj (η

∗
t ),

where the 
n
k�’s denote the Christoffel symbols associated with the metric g. As a consequence, 

a lower bound on the Hessian of F of the form

∇2F ≥ λg

where λ ∈R implies that

d2G

dt2 ≥ 2λgij (qt ) fi(ηt ) fj (ηt )

and

d2G∗

dt2 ≥ 2λgij (qt ) fi(η
∗
t ) fj (η

∗
t ).

Remark 7. In Lemma 7, the term with Christoffel symbols is exactly the expression of the 
Hessian of F in coordinates. More precisely, let ∇2F be the Hessian of F , in the classical Rie-
mannian sense. If (ei) denotes the basis on T M associated with coordinates (qi), then

∇2F(q)(ek, e�) = ∂2
k�F (q) − 
n

k�∂nF (q).

Proof of Lemma 6. Let F be a potential in the class C(a) and g a metric satisfying Assump-
tion 2 for some m > 0. We start the proof by splitting F into the sum G + G∗ according to 
Definition 8. Similarly to the Wasserstein proof, we note that G can be written in (q, p) vari-
ables as

G = 1

2
F(q) + 1

2
a−1qipi.

Here we abuse notation and write G whether considering the function in (q, p) variables or in 
the transformed (η, η∗) variables. Therefore we compute

dG

dt
= 1

2
fi(q)q̇i + 1

2
a−1(q̇ipi + qiṗi).

For clarity, we will drop the q dependence in expressions such as fi(q), gij (q), etc. Using the 
expression of the time-derivatives given by (27) implies

dG = 1
gijfipj + 1

a−1
[
gijpipj − 1

qi∂ig
jkpjpk + qi∂iJ

]
,

dt 2 2 2
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where J (q) = 1
2gjkfjfk . Because of the homogeneity condition on g we can simplify the third 

term, − 1
2qi∂ig

jkpjpk = − 1
2mgjkpjpk . Next, we deal with the last term. We directly compute

qi∂iJ = 1

2
qi∂i(g

jkfjfk)

= 1

2
qi∂ig

jkfjfk + qigjk∂2
ijFfk.

Using once more the homogeneity condition on g the first term can be written as 1
2mgjkfjfk . 

As for the second term, we can simplify it by noting that F ∈ C(a) =⇒ ∂iF ∈ C(a − 1); more 
precisely

qi∂2
ijF = (a − 1)∂jF.

Therefore qi∂iJ = 1
2mgijfifj + (a − 1)gij fifj . Grouping similar terms together, we have

dG

dt
= 1

2
gijfipj − (m − 2)a−1

4
gijpipj + (m − 2)a−1 + 2

4
gij fifj

= gij fi + pi

2

fj + pj

2
− (m − 2)a−1 + 1

4
gijpipj + (m − 2)a−1 + 1

4
gij fifj .

To conclude the proof, note that the first term is exactly gij (q)fi(η)fj (η) and the last two terms 

combine into −cH(q, p) with c = (m−2)a−1+1
2 .

A very similar line of proof can be used for the time-derivative of G∗. �
Proof of Lemma 7. For this proof it is best to stay away from working in coordinates. Since the 
content of the lemma is geometric in nature, it allows to work directly with geometric quantities 
(rather than having to describe everything in coordinates). We start by introducing the vector 
b ∈ TqM defined by

bi = 2gij (q)fj (η) = gij (q)
(
pj + fj (q)

)
.

Note that b corresponds to the control in the “controlled gradient flow” viewpoint described in 
Section 2, with b = q̇ − ∇F(q). The time-derivative of b along the flow is

Dtb = ∇2F(q)b,

where Dt denotes the covariant derivative along q , while ∇2F denotes the Hessian of F . We 
refer to [22] for a proof.

We now recall the result from Lemma 6, which provides the first time-derivative of G along 
an optimal flow (27). Although the lemma is stated in the (η, η∗) variables, it is easier here to 
express it in terms of b, as follows
32
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dG

dt
= gij (q)fi(η)fj (η) − cH

= 1

4
gij (q) bi bj − cH

= 1

4
〈b, b〉q − cH

where we denote 〈·, ·〉q = g(q)(·, ·). Consequently, the second time-derivative of G is simply 
written as

d2G

dt2 = 1

2
〈Dtb, b〉q = 1

2
〈∇2F(q)b, b〉q .

Writing this last expression in coordinates, in terms of η, yields exactly the result. Finally, a 
similar computation can be used to obtain the expression of dG∗

dt
. �

Proof of Theorem 4. The inequality is a consequence of Lemma 6 and Lemma 7. Indeed com-
bining the lemmas we obtain that

d2

dt2 G ≥ 2λ

(
d

dt
G + cH

)
and

d2

dt2 G∗ ≥ −2λ

(
d

dt
G∗ − cH

)
along the flow (27). We can then make use of the following lemma proven in [11]:

Lemma (Lemma 4.1 in [11]). Let φ : [0, 1] → R be twice differentiable on (0, 1) and continuous 
on [0, 1]. Let λ ∈R. If φ̈ + 2λφ̇ ≥ 0 on (0, 1) then

φt ≤ (1 − αt )φ0 + αt φ1,

where αt is defined in Theorem 2 by

αt = 1 − e−2λt

1 − e−2λ
.

Applying this lemma to the functions t → G(ηt , η∗
t ) +cHt and t → G∗(ηt , η∗

t ) −cHt proves 
the result. �
Example 9 (Quadratic potential on flat space). Consider the simple case where M = Rn is 
equipped with the flat metric gij (q) = δij . Let

F(q) = 1 〈Aq,q〉,

2

33



JID:YJDEQ AID:10652 /FLA [m1+; v1.340] P.34 (1-40)

F. Léger and W. Li Journal of Differential Equations ••• (••••) •••–•••
where A is a symmetric positive definite n ×n matrix and where 〈·, ·〉 denotes the canonical inner 
product on Rn. The variational problem (25) then takes the form

inf
q

1ˆ

0

1

2
‖q̇(t)‖2 + 1

2
‖Aq(t)‖2 dt

where the infimum runs over all paths q with fixed endpoints, say q(0) = x and q(1) = y. Intro-
ducing the dual variable p, the optimality conditions read

q̇ = p,

ṗ = A2 q.

The Hopf–Cole transformation (η, η∗) → (q, p) is then given by A q = A η + A η∗ and p =
A η − A η∗, i.e.

η = 1

2

(
q + A−1p

)
,

η∗ = 1

2

(
q − A−1p

)
.

We now focus on the splitting of F . Let λ > 0 be the lowest eigenvalue of A. It is easy to check 
that F is 2-homogeneous, in the sense of Definition 7. As a consequence, we can use Theorem 4
to split F(q) = G(η, η∗) + G∗(η, η∗) with

G(η,η∗) = 1

2
〈Aη,η + η∗〉

and

G∗(η, η∗) = 1

2
〈Aη∗, η + η∗〉

The first time-derivatives along the optimal flow are given by

d

dt
G(η,η∗) = ‖Aη‖2

and

d

dt
G∗(η, η∗) = −‖Aη∗‖2,

where ‖·‖ denotes the canonical Euclidean norm on Rn. The second time-derivatives are given 
by

d2

G(η,η∗) = 2 〈A2η,Aη〉 ≥ 2λ‖Aη‖2
dt2
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and

d2

dt2 G∗(η, η∗) = −2 〈A2η∗,Aη∗〉 ≤ −2λ‖Aη∗‖2,

which are the dissipation rates given in the theorem.

5.4. Hopf-Cole transformation on graphs

In this section we consider the generalized Schrödinger bridge problem on a discrete prob-
ability set. It is a finite-dimensional variational problem whose critical point satisfies a finite-
dimensional Hamiltonian flow. We shall derive a (generalized) Hopf–Cole transformations for 
this Hamiltonian flow, by applying the theory developed in Section 5.

To start, let us briefly review the L2-Wasserstein metric tensor on graphs [9,28,29]. See related 
geometry studies in [24].

Consider a weighted undirected graph G = (V , E,ω), where V = {1, · · · , n} is the vertex set, 
E is the edge set, and ω is the weight function defined on the edge set. The probability simplex 
supported on the vertex set is defined as

P = {(ρi)
n
i=1 ∈ Rn :

n∑
i=1

ρi = 1, ρi ≥ 0}.

Its interior is denoted by P+. Denote the tangent space at ρ ∈P+ by

TρP+ =
{
ρ̇ ∈Rn :

n∑
i=1

ρ̇i = 0
}
.

Given ρ̇i ∈ TρP+, i ∈ {1,2}, the L2-Wasserstein metric tensor is given by

gW
ρ (ρ̇1, ρ̇2) = ρ̇1TL(ρ)†ρ̇2,

where † is the pseudo-inverse operator, L(ρ) ∈Rn×n is the discrete weighted Laplacian matrix

L(ρ)ij =
{∑n

i′=1 ωii′θij (ρ) if i = j

−ωij θij (ρ) if i �= j,

and θij (ρ) = 1
2 ( 1

di
ρi + 1

dj
ρj ) with di =

∑n
i′=1 ωii′∑n

i=1
∑n

j=1 ωij
. We note here that several other choices of 

functions θij are available in [28].
As a consequence, the Riemannian gradient operator of a functional F : P+ →R is given by

gradWF(ρ) =(L(ρ)−1)−1dF(ρ)

=L(ρ)dF(ρ)

= −
n∑

ωij (∂iF(ρ) − ∂jF(ρ))θij (ρ).
j=1
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The analogue of GSBP (5) on graph is the following finite-dimensional controlled gradient 
flow problem:

inf
ρ,σ

1ˆ

0

σ(t)TL(ρ(t))σ (t) dt

subject to

ρ̇(t) = σ(t) − gradF(ρ) = σ(t) − L(ρ(t))dF(ρ).

The equivalent, “Lagrangian-mechanics” version of this problem is given as follows. Substitute 
σ(t) = ρ̇(t) + gradF(ρ), then the previous minimization problem is equivalent to

inf
ρ

1ˆ

0

ρ̇(t)TL(ρ(t))ρ̇(t) + dF(ρ(t))TL(ρ(t))dF(ρ(t))dt +F(ρ(1)) −F(ρ(0)).

The critical path of the controlled gradient flow problem satisfies Hamilton’s equations{
ρ̇ =∇SH(ρ,S)

Ṡ = − ∇ρH(ρ,S),

where the Hamiltonian is

H(ρ,S) =1

2
STL(ρ)S − 1

2
dF(ρ)TL(ρ)dF(ρ).

The momentum S ∈ T ∗
ρ P+ is the covector associated to the velocity ρ̇, i.e. ρ̇ = L(ρ)S. Here 

Hamilton’s equations can be formulated explicitly:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dρi

dt
+

∑
j∈N(i)

ωij (Sj − Si) = 0

dSi

dt
+ 1

2

∑
j∈N(i)

ωij (Si − Sj )
2 ∂θij

∂ρi

= 1

2
∂ρi

I (ρ),

(29)

where we use the notation

I(ρ) = dFTL(ρ)dF = 1

2

n∑
i=1

n∑
j=1

ωij (∂iF(ρ) − ∂jF(ρ))2θij (ρ).

Here 1
2 is due to the fact that each edge is counted twice in the summation.

As an analogue to the continuous states case, we call the first equation in (29) the continuity 
equation on graphs and the second equation in (29) the Hamilton–Jacobi equation on graphs.
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We now turn our attention to the generalized Hopf–Cole transformation on graphs. The new 
variables η and η∗ are given by ⎧⎪⎪⎨⎪⎪⎩

∂iF(η) =1

2

(
∂iF(ρ) + Si

)
∂iF(η∗) =1

2

(
∂iF(ρ) − Si)

)
.

(30)

We are now able to present an important example illustrating Hopf–Cole transformation on 
graphs.

Example 10 (Discrete entropy). Let F(ρ) = ∑n
i=1(ρi logρi −ρi). We then have ∂iF (ρ) = logρ

and the Hopf–Cole transformation on graphs (30) takes the form⎧⎪⎪⎨⎪⎪⎩
logηi =1

2
logρi + 1

2
Si

logη∗
i =1

2
logρi − 1

2
Si

=⇒
⎧⎨⎩ηi =√

ρie
1
2 Si

η∗
i =√

ρie
− 1

2 Si .

We can therefore rewrite equation (29) in the variables (η, η∗) and illustrate that we have a 
symplectic transformation.

Proposition 4. We can write ⎧⎪⎪⎨⎪⎪⎩
d

dt
ηi = − 1

2
∂η∗

i
K(η, η∗)

d

dt
η∗

i =1

2
∂ηi

K(η, η∗),

where K(η, η∗) = −2ηTL(ηη∗)η∗ is the Hamiltonian in the new variables.

Proof. Notice that HessF(ρ) = diag( 1
ρ
), thus

σ(η,η∗) =1

2
Hess F(η)−1Hess F(ρ)Hess F(η∗)−1

=1

2
diag(η)diag(

1

ρ
)diag(η∗)

=1

2
diag(

ηη∗

ρ
) = 1

2
I,

where I is the identity matrix. From Lemma 4, we derive the equation for η, η∗. �
We now wish to rewrite the equation of η explicitly. Similarly equation can be written for η∗.

d

dt
ηi = −1

2

∑
ωij (ηi − ηj )θij (ηη∗) − 1

2

∑
ωij (ηi − ηj )(η

∗
i − η∗

j )∂η∗
i
θij (ηη∗).
j∈N(i) j∈N(i)
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The continuous analogue of the above formula gives

∂tη =1

2
∇ · (ηη∗∇η) − 1

2
(∇η,∇η∗)η.

We compare it to the one in continuous state, i.e. the Schrödinger system (4). From this compar-
ison, we discover the following relation:

Claim.

−�η = 1

2
∇ · (ηη∗∇η) − 1

2
(∇η,∇η∗)η.

Proof of Claim. Notice the fact that in the continuous state,

K(η, η∗) =
ˆ

(∇η,∇η∗)dx =
ˆ

(η∇ logη,η∗∇ logη∗)dx.

There are two variation formulation of δη∗K, which proves the claim. �
Here the claim presents a nonlinear reformulation of Laplacian operator. It is hidden in 

Hopf–Cole transformation. This fact shares many similarities to the nonlinear reformulation of 
Laplacian operator derived in Schrödinger equation [10]. It is one of the motivation for this paper.

6. Discussion

In this work, we study the generalized SBP as a controlled gradient flow problem in the 
Wasserstein space (density manifold). We discuss the symplectic structures of (generalized) 
Hopf–Cole transformation. Similar structures can also be extended to general homogeneous met-
rics with various boundary conditions in density manifold. In the future, we will research related 
problems on statistical manifold [2], with applications in both mean field games and machine 
learning.

Notations

We will use the following notations

Base manifold M

Drift vector field b

Divergence operator div
Gradient operator ∇
Density manifold P+(M)

Probability distribution ρ

Tangent space ρ̇ ∈ TρP+(�)

Wasserstein metric tensor gW
ρ

Weighted Laplacian operator �ρ = ∇ · (ρ∇·)
Dual coordinates S

First L2 variation δ

(continued on next page)
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Second L2 variation δ2

Gradient operator gradW

Hessian operator HessW
Christoffel symbol 
W

ρ (·, ·)
Cotangent space (ρ,�) ∈ T ∗

ρ P(M)

Hopf–Cole variables (η, η∗) ∈ C(M)

Tangent space for Hopf–Cole variables (η̇, η̇∗) ∈ D(M)

Density manifold symplectic form �W
ρ (·, ·)

Hopf–Cole symplectic form �D
ρ (·, ·)

Split energies G, G∗

Finite dimensional manifold q ∈ M
Metric tensor g

Energy F

Split energies G, G∗
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