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Abstract

This paper is devoted to studying the averaging principle for a fast-slow system of rough differential
equations driven by mixed fractional Brownian rough path. The fast component is driven by Brownian
motion, while the slow component is driven by fractional Brownian motion with Hurst index H (1/3 <
H < 1/2). Combining the fractional calculus approach to rough path theory and Khasminskii’s classical
time discretization method, we prove that the slow component strongly converges to the solution of the
corresponding averaged equation in the L1-sense. The averaging principle for a fast-slow system in the
framework of rough path theory seems new.
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1. Introduction

Let (2, F, {F:}i>0, P) be a complete probability space, W = (W;);>0 be a standard d’-
dimensional Brownian motion (Bm), B = (B;);>0 be a d-dimensional fractional Brownian mo-
tion (fBm) with Hurst index H € ( %, %], that is a collection of centered, independent Gaussian
processes, independent of W as well, with covariance function

1
Rir(t.) =3 (ﬂH 42— |t—s|2H) I, s,t>0,

where I is the identity matrix of size d. The Kolmogorov theorem entails that fBm has a modi-
fication with S-Holder sample paths for any 8 < H. For each ¢t > 0, we denote by F; the o-field
generated by the random variables { By, Wy, s € [0, ¢]} and all P-null sets. The expectation with
respect to P is denoted by E. In addition to the natural filtration {F;, ¢ > 0}, we will consider a
larger filtration {G,,t > 0} such that {G,;} is right-continuous and {Gy} contains the P-null sets,
so that B are Gp-measurable, and W is a {G, }-Brownian motion.

In what follows, we will denote by C’b‘(Rm; R™) the set of functions f : R™ — R” which
are bounded, k-times continuously differentiable with bounded derivatives of order up to k (in
symbols V £, V2f, ..., VX f). We denote by Cg’)‘(Rm; R") the set of f € Cﬁ(Rm; R™) whose
kth derivative is uniformly Holder continuous of order A € (0, 1]. The time interval will be [0, T']
for arbitrary T > 0. The transpose of a vector A will be denoted by AT.

We firstly consider the differential equation driven by both Bm and fBm of the type

t t 1

uy =g+ / a(us)ds + f bus)dB; + / c(uy)dWs, (L1)

0 0 0

with ug € R® which is arbitrary and non-random but fixed. Since the fBm is neither Markov
nor semimartingale if H # %, we cannot use the classical It6 theory to solve (1.1) unless b =
0. Lyons [21] made a breakthrough by inventing rough path theory, which enabled us to do
pathwise study of stochastic differential equations (SDEs) as above. We will show that (1.1) can
be understood as a rough differential equation (RDE) and possesses a unique global solution
if the coefficients a : R¢ — R¢, b :R¢ > R¢ @ RY and ¢ : R¢ —> R¢ ® R satisfy suitable
regularity assumptions.

The driving rough path of RDE (1.1) is a natural rough path lift of (B;, W;)o<;<r, which is
formally given by Z = (Z, Z?), where

2 4 _
B i (Bu Bs)®qu>. (1.2)

Z:=(B;, W)T and z?:( st
e N\ SN W, - W) @dB, W2

For every B € (%, H), this lift Z exists and is a S-Holder (weakly) geometric rough path almost
surely (see Section 3 for details). We call it mixed fractional Brownian rough path. Since the
W -component of Z is Stratonovich-type Brownian rough path, the last term in (1.1) is something
like a Stratonovich integral.

In the case H € (%, 1), it is well-known that Young integral, which is essentially a generalized
Riemann-Stieltjes integral, could be a good choice to give meaning to the integral with respect to
fBm [26,37]. When ¢ =0 in (1.1), the theory of SDEs driven only by fBm with H € (%, 1) was
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initiated by Lyons [20] and has been well developed by many authors especially on the existence
and uniqueness of pathwise solutions. For example, using the fractional calculus introduced by
Zihle [37], Nualart and Rascanu [26] derive very weak conditions for the general case where
a, b are functions of (¢, u;), in particular b need to be only C ! with bounded and Holder con-
tinuous first derivative, to ensure the existence and uniqueness of the solution in the space of
Holder continuous functions. When ¢ does not vanish identically, there are only a few results
devoted to such mixed equations. The main difficulty when considering (1.1) lies in the fact that
both stochastic integrals are dealt in different ways. The integral with respect to the Bm is un-
derstood as an It integral, while the integral with respect to the fBm has to be understood in
the pathwise Young sense. Kubilius [18] studies SDEs driven by both fBm and Bm, in the one-
dimensional case, with no drift term. Guerra and Nualart [13] combine the pathwise approach
(generalized Riemann-Stieltjes integral) with the It6 stochastic calculus to prove an existence
and uniqueness theorem for multidimensional, time-dependent SDEs driven simultaneously by a
multidimensional fBm with Hurst parameter H > 1/2 and a multidimensional Bm.

Let us get back to the case H € (%, %]. When ¢ =0 in (1.1), the existence and uniqueness
result was generalized by Lyons’ seminal paper [21]. In this paper he established rough path
theory to define the integral with respect to 8-Holder rough path (% < B < %). This theory is ba-
sically deterministic (see several monographs [8,9,22,23]). Coutin and Qian [4] proved that fBm
admits a natural rough path lift in 1/8-variation rough path topology, which was later improved
to B-Holder rough path topology (% < B < H). These results enabled us to study (1.1) via rough
paths when ¢ =0.

There are other formulations of rough path theory. Gubinelli [12] established an alternative
theory of controlled rough paths to generalize the concept of integration and differential equa-
tions with Holder exponent greater than % Following Zihle [37], Hu and Nualart [15] developed
another approach to rough path theory by using fractional calculus.

Like the case of usual SDEs, the condition on the drift a can be weaker than one on the
diffusion coefficient b. A well-known result states that a unique global solution exists when a €
C g and b € Cg (see [10] for instance). Riedel and Scheutzow [31] solved RDEs with unbounded
drift term. In this work, a is allowed to grow at most linearly, while b € Cg (see Proposition 1.1
below).

When ¢ does not vanish identically, however, much less is known about (1.1). The most rele-
vant result in our case is Diehl, Oberhauser and Riedel [5], in which the authors gave a meaning to
differential equations driven by a deterministic rough path and Brownian rough path. In contrast
to the RDE in [5], the trajectories of B and W in (1.1) are both stochastic.

Now, we summarize the existence and uniqueness result for (1.1). Needless to say, the unique
solution does not depend on the choice of 8 € (%, H).

Proposition 1.1. Let % <B<H< % and write b= (b1, ...,bg) and c = (cy, ..., cq). Assume
either one of the following two conditions on the coefficients of RDE (1.1).

1. a is a locally Lipschitz continuous vector field with at most linear growth on R® and b;, c; €
CyRR) (1<i<d,1<j=<d).
2. ac€ Cg(R“’,R“’) and b;,cj € Cg(]R",]R") (I<i<d,1<j=<d).

Then, RDE (1.1) possesses a unique global solution in the framework of B-Holder rough path
theory.
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Next, we will deal with a fast-slow system of RDEs driven by mixed fractional Brownian
rough path with Hurst index H € (%, %] of the type

t

_x0+/f Ads+f (X) dBs,

(1.3)

1
Y,:y0+8/ (X5, Y7) ds+—/ X5, Y7)dWy,

where XS = XpeR™, Yé = Yo € R” are arbitrary and non-random but fixed, while ¢ is a small
positive parameter. The coefficients f : R”™ x R” - R", g :R”" x R" - R",0 : R"” - R" ®
R h:R™ x R" — R” @ R? satisfy the following regularity assumptions:

(H1) f isaLipschitz continuous vector field with at most linear growth, o € CS(]R’”; R” @ RY).
(H2) g is a Lipschitz continuous vector field with at most linear growth, i € Cg R"™ x R"; R"®
RY).

The system of RDEs (1.3) is a special case of RDE (1.1) and therefore possesses a unique global
solution under (H1) and (H2) due to Proposition 1.1.

Let us summarize some basic results on the stochastic averaging principle for this kind
of slow-fast systems, which can be traced back to the work of Khasminskii [17], see e.g.
[6,7,19,29,30,33-36] and the references therein. In order to obtain the strong convergence, it is
known that the diffusion coefficient o in (1.3) should not depend on the fast variable Y* (see e.g.
[11]). The corresponding literature in the case of perturbation by multiplicative fractional Brow-
nian noise is quite sparse. It is worth mentioning that Hairer and Li [14] considered a slow-fast
system where the slow component is driven by fBm and proved the convergence to the aver-
aged solution takes place in probability. The most relevant result in our case is the recent work
[27,32] which answered affirmatively that an averaging principle still holds for fast-slow mixed
SDE:s if disturbances involve both Bm and fBm with H € (%, 1) in the mean square sense. Using
the generalized Riemann-Stieltjes integral, an averaging principle in the mean square sense for
stochastic partial differential equations driven by fBm subject to an additional fast-varying diffu-
sion process was established in [28]. We point out that all the aforementioned papers concerning

fBm assume H > ;

Therefore, it is quite natural to extend the averaging result to the case H € ( ] Compared
to the known results, the main difficulty here is how to deal with the mixed fractlonal Brownian
rough path with Hurst index H € (%, %]. We will mainly use Hu and Nualart’s fractional calculus
approach to prove the averaging principle (see Theorem 1.2 below).

Now, following the averaging theory inspired by Khasminskii in [17], we define the averaged
RDE as follows:

X0+/ (X )ds+/a()_(s)st, (1.4)
0

with Xo = X, where we set

205



B. Pei, Y. Inahama and Y. Xu Journal of Differential Equations 301 (2021) 202-235

f(s>=/f(s,¢)u$<d¢>, £eR™, (1.5)
Rn

for a unique invariant probability measure ¢ with respect to the following frozen SDE under
condition (H4) below:

AvE? = 36, YEO dt + h(E, YO AW, YE? =g eR". (16)

Here, [ --- d'W stands for the usual Ito integral and

n d n
1 < <
3E 0 =8GO+ 5> > D6 9). D=3 hyiC )y
I=1

I=1 j=1
To establish the averaging principle for (1.3), we set the following hypotheses:

(H3) feCl@®R™xR";R™).
(H4) There exist L >0, 8; > 0,i =1, 2, such that

20p — ¢, 8, @) — §(E, ) + |h(E, ) — h(E, P> < —Bild — I,
20, 8, 9)) + |hE, PP < —Balp* +LIEP + L

for any £ € R and ¢, cR".

Now, we present our main result of averaging principle in the L'-sense. To our knowledge,
this is the first result that proves the averaging principle for a fast-slow system in the framework
of rough path theory.

Theorem 1.2. Let % <H< % and Z be the natural rough path lift of (B;, W;)iej0,1) as in (1.2).
Assume that f, o, g, h satisfy (H1)-(H4). Then, we have

m E[|| X% = X|leo] = 0.
e—0

Here, | - ||l oo denotes the supremum norm over [0, T] and X¢ and X denote the first level paths
of the slow component of (1.3) and (1.4), respectively.

Remark 1.3. A simple example that satisfies the (H4) is g(&, ¢) =& — 8¢ and h(&, ¢) =sin& +
sing when d =d’ =m =n = 1. Another example is as follows. Let g(&, ¢) = —A(&)p, where
A is a bounded, positive, C é -function in &, which is also bounded away from zero. If |||l +
IVohlloco + ||V(/2)h||OO is sufficiently small, then these g and / satisfy (H4). Here, V,, stands for
the (partial) gradient with respect to ¢ and || - ||c denotes the supremum norm.

The rest of the paper is organized as follows. Section 2 presents some notations and the path-
wise approach based on the techniques of the fractional calculus and rough path theory. The
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existence and uniqueness theorems to (1.1) and (1.3) are proved in Section 3. Section 4 is de-
voted to proving Theorem 1.2, that is, the averaging principle for the fast-slow system driven by
mixed fractional Brownian rough path with Hurst index H € (%, %].

Throughout this paper, K and K, denote certain positive constants that may vary from line to
line. K, is used to emphasize that the constant depends on the corresponding parameter *, which
is one or more than one parameter.

2. Preliminaries

Let | - | stand for an absolute value of a real number, the Euclidean norm of a finite dimensional
vector or of a matrix, (-, -) be the Euclidean inner product. Set A, , = {(s,t) | a <s <t <b}.
Moreover, for a function f : [a, b] — R™ we define the following seminorms:

[ lsiasi= swp 1fOL 1l = sup LE=IO

rela,bl (s.)ehg,  IT—SY

where y € (0, 1] and also use the convention 0/0 £ 0. We will study continuous R”-valued paths
on some interval [a, b], and we denote the space of such functions by C ([a, b]; R™). We denote
by CY ([a, b]; R™), the space of y-Holder continuous functions on some interval [a, b] with
values in R™ and set || fll, := [ flly.i0,71, | flloo := I flloo,[0,7] @and A := Ag, 7 for shortness.
Next, for a function v : A, — R™, that vanishes on the diagonal, that is, v(z,¢) =0 for ¢ €
[a, b], we set

llya,, = sup 12E:D)
Y b .
T (sneng, 1t =SV

The set of such functions with a finite norm ||v|,, A, , is denoted by C; (Agps R™),
CY (Aapi R™) = (v: Agp — R™ [ v(t.1) = 0,1 € [a, ], [lly.a,, < 00}.

The purpose of this paper is to use the pathwise approach including rough path analysis and an
approach via fractional calculus to the stochastic calculus with respect to Bm and fBm. To prove
Proposition 1.1, we mainly use the rough path analysis developed in Lyons [20]. To establish
the averaging principle (see Theorem 1.2), we combine the rough path analysis and the pathwise
approach via fractional calculus inspired by the work of Hu and Nualart [15].

We firstly recall the pathwise approach based on the techniques of the fractional calculus in
forthcoming Section 2.1 (see Hu and Nualart [15] and Definition 2.2 below). Then, following the
ideas in [12] and [20], we provide an explicit formula for integrals in the rough path sense (see
Gubinelli in [12] and (2.11) in Section 2.2).

2.1. Integrals along rough paths via fractional calculus
Without approximation by Riemann sums, a pathwise approach to study integration of vector-
valued Holder continuous rough functions using fractional calculus was firstly developed by Hu

and Nualart [15]. Later, Ito [16] showed that the integral defined in Definition 2.2 below (see
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also Definition 3.2 in [15]) using fractional calculus should be consistent with that obtained by
the usual integration in rough path analysis, that will be given by the limit of the compensated
Riemann-Stieltjes sums in forthcoming (2.11) of next subsection. In this subsection, we follow
the notations proposed by Hu and Nualart [15].

This subsection aims to recall the integrals along rough paths via fractional calculus, that is
giving meaning to the following integral

/ o (x,)dw, = Z / o (x,)dw], 2.1)

J=1y

using fractional calculus, where w € C B0, T1; R4 ) with 8 € (%, %). Moreover, for a given w €

CB([0, T1; RY), consider v to be an element of C;’g (A; R™ @ RY) and assume that the triplets
(x, w, v) satisfy Chen’s relation: for all 0 <s <t <t < T it holds that

Vst + Vgr + (X7 — X5) @ (07 — w) = vy, (2.2)
where ® denotes tensor.
Definition 2.1.

(1) For a given w € CP([0, T];R?), we denote by M’3 d the space consisting of triplets
(x,w,v) € CA([0, T]; R™) x CA([0, T]; RY) x Czﬂ(A R™ ® R?) such that (2.2) holds.

) (v, w?)iscalleda B-Holder rough path (over RY)if (0, w, w?) € M 5 4+ Moreover, define the
space of B-Holder rough paths (over R?) in symbols €7 ([0, T]; RY) énd the space of weakly
geometric B-Holder rough paths in symbols %gﬂ ([0, T]; R) by stipulating that (v, »?) €
%{f([o, T1; R?) if and only if (w, w*) € €# ([0, T]; RY) and

1
Sym(wft) = E(wt — wy) ® (0 — wy),
for every s, t.

To proceed, for « € (0, 1), define the following fractional derivatives

I (f(r) . rf(r)—f(é)(w)’

Dol = ra=g\G = 9] —gen
1-a (=D e — g () g(r) — 8(9)
DIl = (ST >/ ),

where g;— = g(-) — g(1).
Then, we are now ready to define the integral fab o (x;)dw,.
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Definition 2.2 (cf. [15, Definition 3.2]). Let € (3, 3), (x,»,v) € M}ﬁ’d and o € CLH(R™;

R”™ @ RY) with 2+ 1) > 1. Fixa € (0, 1) such that 1 — B < < 28, and & < “ZL. Then, for
any (a, b) € A we define

b b
/ o (x,)dw, = (—1)* / D% o (x)[r1D} " *wp—[rldr
b
—(—1)2“—1/Dgi—lvU(x)[r]Dg:“D;:“v[r]dr.

a
Here, for r € (a, b),

1 (o(xn +a/r'0(xr)—0(xo)—va(x9)(xr—xo)(w)

Daro 1= ra— s\ ¢ =y (r — )+

is the compensated fractional derivative and

b

—1l-@ v Vps
D;:“u[r]z( ) 4 —a)/#ds
L) \(b-nt— (s —r)?@
r
is the extension of the fractional derivative of v.
Notice that under the constraints 1 — 8 <o <28 and o < ’\ﬂ; L itis easy to prove that the

fractional derivatives Dll,:“a)b_[r] and D;:“D;:“v[r] are well defined because the functions
w and Dll;“v are B-Holder continuous. Because there exists a constant K > 0 such that for all

r,0 €la,bl,0 <r, we have
lo(x,) — 0 (x) — Vo (x6) (x — xg) < K|r — 6] 1P,
Vo (x,) — Vo (xg)| < K|r — 0%,
then the derivatives ﬁfl‘ o (x)[r] and Dg‘i_l Vo (x)[r] are also well-defined. More details can be
found e.g. in [15, p. 2694].

Now, given a continuous path y € C([0, T]; R"), we aim to solve the RDE with drift term
driven by a B-Hoélder rough path (o, @?)

1

t
Xy =x0+ / f(xs, ys)ds +/U(xs)des (2.3)
0

0
where f € CL(R™ x R"; R™), 0 € C}(R™; R" @ RY).
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The main idea to solve (2.3) inspired by Hu and Nualart in [ 15, Section 4] and Garrido-Atienza
and Schmalfuss [10, Theorem 4] is to write a system of three components for the enlarged un-
known (x, w, v). According to Definition 2.2, the first component is just (2.3) itself, where the
right-hand side is a function of (x, w, v), i.e.

t

X =x0 + / f (x5, ys)ds + (= 1)® / D, o ()[r1D; =" w,_[rldr
0
t

—(—1)2“—1/1)31 Vo (0)[r)1D} =D =% v[r1dr.
0

The second component is

t

t r
vy = / f (g, ¥)dg ® da, — / o (x,)dw?, (). 2.4)

s

Note that the second term on the right-hand side of (2.4) is a functional of (x, w*, w) again by
Definition 2.2 (w will be given later), i.e.

t t

/a(xr)da)%t(r)z(—1)”/ﬁf+o(x)[r]Dl aa)zt [r]dr

N N

t
—(—1)2“—1/03_7_ Vo ()[r1D} =D =% w;, . ;[r1dr. (2.5)

The third component is defined by writing w as a functional of (x, w, v, w?) (see [15, (3.26)])
as follows, for s < g <t

i _
(=Dt Xr — Xr— l—apml—a, 2
Mo =t —amy | | s O 1)/ g | © DD e
N L -
+ (D + Qa — )/ ®D1*°’D‘*“v[r]dr
F(Z _ 20() ( S)Zoz 1 9)20: q— q—
s L

e q((xr—xs)ca(wt @) f(xe—xr)®(wr—wa)d9)
I'd—oa) (r—s)~ )+l

®D;:°‘a)q_[r]dr. (2.6)

Remark 2.3. It should be noted that the sign in front of the second term on the right-hand side of
(2.4) is negative. This definition of RDEs was first given in [15, p. 2701, Eq. (4.2)] when f =0.
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However, a negative sign is missing there (and in many other subsequent works). Concerning this,
the right side of (2.6) and that of [15, p. 2701, Eq. (4.5)] have the opposite signs. Fortunately,
since what is actually computed is the norm of these terms, all the results in [15] remain valid.

By a slight generalization of Theorem 4 in [10], a solution of (2.3) is defined to be an ele-
ment of M ’ﬁ 4 When (2.3)-(2.6) have a solution and given a continuous path y € C([0, T']; R")
and a rough path (w, w?) € €P([0, T1; ]Rd) with 8 € (%, %), (2.3) has a unique global solution
under the conditions f € Cg R™ x R"; R™), 0 € Ci’ (R™; R™ @ RY), see Garrido-Atienza and
Schmalfuss [10, Theorem 4] for example.

Based on a slight generalization of these results in Hu and Nualart [15] and Besald, Binotto
and Rovira [1], it is not difficult to provide quantitative estimates for the integration operator in

(2.3) and (2.4). Let us recall two propositions from [1,2,15]. On M, ,’: 4> we introduce the following
functionals for any (s, ) € A:

Dp [5.01(x, @, v) = |[vll2g, A, + 1X1g. 5.1l 85,15 )

and

Dp (5.1, 0, v, ) = 015, 4 lIx g0 + ol g sallvlg.a,, + 1X1p sl lp.a,,- (2.8)
We have the following estimates:

Proposition 2.4 (cf. [15, Proposition 3.4]). Let (x, w,v) € Mfl’d and o € C;’A(Rm; R™ @ RY)
with (24 A)B > 1. Then, for any (a, b) € A, we have

b
‘ / o () dwy | < Ko (x|l o (b — @)
a

K ®p 1001 0, 0) IV oo + [V 31115 4 4 (b — ) (0 — ),
where ®g (4. p)(x, @, v) is defined in (2.7).

Proposition 2.5 (cf. [15, Proposition 3.9]). Let (x, w, v) € th s (@, 0% € €210, T1; RY) and
o€ C;’A(Rm; R™ @ RY) with (2+ 1) > 1. Then, for any (a,b) € A, we have

b
‘ f o (xp)dew?, (1| < Ko (xa)|®p [a.p) (@, 0, &) (b — a)*
a

+K (Vo lloo + IVO L l1x 1 4.1 B — @) P)Pp a1 (x, 0, v, ) (b — a),

where ®g 4.p)(x, w, v, a)2) is defined in (2.8).
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Given (w, w?) € €F([0, T1; RY), we write

Ap =1+ [olf+ 2.

In [1,3], Besald and coauthors derived the upper bound of the supremum norm and Holder
norm of the solution x in (2.3) without y. By a slight generalization of these results in [1,3], it is
easy to obtain the following lemma.

Lemma 2.6 (c¢f. [3, Theorem 4.1] and [I, Proposition 5.2]). Assume that f € C; (R™ x R";
R™), 0 € le R™; R"™ & Rd). Then, we have the following estimate for the solution (x,w, v) €
MY of (2.3):

Ixlloo 4 X118 + l0ll2p.8 < Kp.T.1x0), f.0 ASP,

where () denotes a certain positive constant which depends only on B and Kg 1 |xy|, f,0 > 0 is
a constant depending only on B, T, |x0|, | f lloos |6 lsos | VO l|lso and || V26 || oo and is independent

of y.

Proof. The proof of this result can be found in [1,3], although the paper [3] did not deal with
any drift term f. However, such a term can be handled easily since the boundedness of f. Thus,
by [3, Theorem 4.1 (i)] and Proposition 2.4 and Proposition 2.5, it is not difficulty to see that

1
[¥lloo < [x0l + T (KpfoAw) P + 1,

where pr o := | fllooT'™? + 0 lloo + I Vo |loo + | V2o || and K is a universal constant depending
on 8.

By [3, Step 2, pp. 251-252] or [1, Proposition 5.2], we can find a bound for the Holder
norms of |lx|lg and [[v]2g,a, i.e. there exists a constant Kg 7 |y f,c depending only on
B. T.1x0l. | flloos 1 llo: VO lloo and [[ V20 || such that

lxllg + llvli2g,a < Kﬁ,T,\xol,f,aAZ)(ﬁ)-

Thus, the statement holds. O

In order to give some estimates involving a Lipschitz function o, we need to introduce some
notation:

Gl lan) (@ %, %, 0,0) = K[(IV?0lloo + 1 V20 I (1x 15 100y + 1515 106 & — )
X (D g [a,p1(x, @, V) + @l g, 10,011 Xl ,1a,61) + @l 8,10,/ VO ll00]s
G 1ap (0%, %, 0,0) = K[ V20 | oo(Pp 051 (x, . V) + @]l fa.01 1%l . [a.61) (B — @)
Flloll g a1 Vo llso],

G} 1@ %) =KIIVo oo + V20 lloolIE | a1 (b — )1,
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Proposition 2.7 (cf. [15, Proposition 6.4]). Let (x,w,v), (X, w, V) € Mr/‘z 4 Assume that o €
CZ’)‘(]R’"; R™ @ RY) with (2 + M)B > 1. Then, for any (a, b) € A, we have

b
' f (0 (xr) — o @E)Ndwy| < G140, %, 5. 0,0) (b — ) |Ix = Flloofa.b)
a
2 ~ 28 ~
+G51a.61(0: X, X, 0, 0)(b —a) 7 |lx — X ,[a,b]
+G 10y (@ D)0 — )P v = Bl2p. -
Let us introduce more useful notations:
G%,[a,b](a7 X, F, 0,0, 0% = K{|Voloo®g,ja,p) (@, ©, ©)
V0 lloo + V20 1. (1x 15 1.5y + 1E 15 05 B — ™)
X (P [a,p1(x, 0, v, o)+ %1 8,1a,01PB, 10,01 (@, ©, o1},
G 1) (0. %, %, 0,0,0%) = K[(|Vo oo + V?0 ool E 1 .1a.61 (B — @)Y g a0y (@, @, %)
+IV20 loo @, ja,5) (X, @, v, 0?) (b — )],

G 1 (0%, 0) = KG} 1, 41(0, Dllollg.1a.b)-

From the previous results it is possible to prove the following proposition.

Proposition 2.8 (c¢f. [I, Proposition 4.9]). Let (x,w,v), (X,w,v) € Mfl’d and (w,w?) €

P[0, T1; RY). Assume that o € Ci’k(Rm;Rm ® RY) with (2 4+ A)B > 1. Then, for any
(a,b) € A, we have

b
‘ /(a(xr) — o (E ), (M| < G (40, %, %, 0,0, ) (b — a)*P||x = Zloo,[a.b]
a
+G%,[a,b] (07 X, f, w, v, wz)(b — a)3ﬂ ||x — i”ﬂ,[a,b]
+G 1) (0, 5 )b = )P v = Tll2p,a,.,-
2.2. Rough paths theory with approximation by Riemann sums

In this subsection, we write a S-Holder rough path by (X, X?) instead of (w, w?) following
the notations by Friz and Hairer [9].

Definition 2.9. We say that a pair (x,x") is a controlled path with respect to (X, X?) if the
following decomposition holds

Xe—Xs =X (X; — Xy) 7y, (5,0) €A,
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for certain x* € C#([0, T];: R" @ R?) and r € C;ﬂ(A; R™) where x is the Gubinelli derivative
of x. The totality of such (x, xT) is denoted by Diﬂ([O, T1;R™), see e.g. [9, Definition 4.6]. We

will omit the value space for simplicity of presentation, i.e. Diﬁ for shortness.

When (x, xT) € Diﬂ , then the rough integral of x against X can be defined as

t

d
. _ . ) 20
/ xdxt = dim Y (v (X, = Xi) + > Xl (2.9)
: neP =1
wherei =1,...m, j=1,...,d and the limit is taken over all partitions P = {s =1_ =t <t <

... <y =tlyq1 =1} such that |[P| = sup, cp |1x — tx—1| — 0. It is known that ([ x/dX], x'e;) €
Diﬂ , where {e;} is the canonical basis of R,

Proposition 2.10 (¢f. e.g. [9, Lemma 7.3]). Let (x,x") € Diﬂ and ¢ € Cl% (R™; R"™). Then we

can c{eﬁne a controlled path (¢(x), D(p(x)xT) € Diﬁ , that is, ¢(x) is controlled by X if we take
o(x)" = Do(x)x" as a Gubinelli derivative of p(x), i.e.

0(x) — p(x;) — () (X, — X;) € CFP (A R).

Using appropriate estimates for the integrals, the solution to the following RDE driven by
(X, X?) in the sense of controlled paths theory:

t

t
x,=xo+/f(xs)ds—i—fa(xx)dXs, (2.10)
0

0
with f: R™ — R™, o : R"™ — R™ ® R? is obtained via a fixed point argument.

Lemma 2.11 (cf e.g. [9, Section 8]). Suppose that (X, X?) € €P([0, T];RY) and let f €
Cg(Rm,Rm) and o € Cg(Rm,Rm ® RY). Then the equation (2.10) possesses a unique

global solution (x,o(x)) € Diﬂ ([0, T1, R™). Here, both sides are understood as elements of
DY ([0. T, R™).

As a consequence of this Proposition 2.10 and Lemma 2.11, we have

t

d
i . i j 2,05
/ oj(x)dX] = | 7£1|I—n>0 Z (a‘, o) (X7, — X7) + Zpéng ) Xi 1), (2.11)
0 lkEP =1

witho; : R™ — R™, j =1,2...d, where the differential operators DY — Z;"zl 07,¢(-)dy,. It is
known that (xo + f; f(xo)ds + [; 0 (x)dX], 0;(x)) € DY ([0, T1, R™).

Remark 2.12. Let o € C3 (R™; R” ® R?).
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e For (x,w,v) € MYIZ 4 the integral fOT o (xg)dws coincides with the integral defined using the

1 _variation norm (see Ito [16, Theorem 2.5 and Remark 2.6]). This implies that fOT o (xs)dwy

in Definition 2.2 can be given by the limit of Riemann sums of the same form of given in
(2.11).

e The first level of Hu-Nualart type (Definition 2.2) and Gubinelli type (Definition 2.11)
unique global solution are known to coincide.

Using the flow method, the solution to the RDE with unbounded drift term is obtained by
Riedel and Scheutzow [31].

Lemma 2.13 (¢f. e.g. [31, Theorem 3.1]). Suppose that (X, X?) € %ﬁf([o, T1; RY) and assume
that f is a locally Lipschitz continuous vector field with at most linear growth on R™ and o €
Cg(Rm; R™ ® RY). Then a unique global solution exists for any initial value x.

3. RDEs driven by mixed fractional Brownian rough path

We mainly use rough path theory recalled in Section 2 to prove that (1.1) possesses a unique
global solution. To do that, we recall the following lemma.

Lemma 3.1 (¢f. [24, Lemma 2]). Suppose (S(t), F1)ie[0,T] is a stochastic process with B-Holder
trajectories for all B € (%, %), such that IE[||S|I§] < 0o forall p> 1. Then, for all 8’ € (0, B),

there exist a modification of (s,t) — f;(S(u) — S(s5))d'W,, and an almost surely finite random
variable Ct g such that

t
'/(S(u)—S(s))dIWu gcr,,g/|t—s|%+ﬂ’, (s,1) € A.

Now, we are ready to prove Proposition 1.1.
Proof of Proposition 1.1. We understand (1.1) as following RDE

t t

Uy =uo+/a(us)ds+/(b, ¢)(ug)dZs,
0

0

where Z = (Z, Z?) is a joint, step-2 rough path lift between the Bm W and fBm B (which will
be defined below). Here (b, ¢) is the m x (d + d’) block matrix. Set Zy; £ Z, — Z, and denote

B? I[B, W],
Zsi = (By, Wy) ', Z?I=< IE;V Bl W “>,
) st

st

where B = (B, B?) is a canonical geometric rough path (see Friz and Hairer [9, Section 10.3] for
example) associated to fBm, W = (W, W?2) is a geometric rough path in Stratonovich sense (see
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Friz and Hairer [9, Section 3] for example) associated to Bm, and we define for every (s, ¢) € A,

t

I[B,W]s,é/Bsma‘Wu,

N

t

I[W, Bl & Wy, ® By, — / d'W, ® By,
N
Firstly, we need to prove the joint, step-2 rough path lift Z satisfies (2.2). For Zf,’” ,i,j €
(1,....d}andi,je{d+1,...,d+d'},itis easy to know that Z? satisfy the Chen’s relation. It
remains to demonstrate that wheni € {1,...,d},je{d+1,...,d+d'}and j €{l,...,d},i €
{d+1,...,d +d'}, whether we can obtain same relation. Let us study

t

Zz,ij:/B;‘udIWL{’ iell,....d),jeld+1,....d+d),

st

N

then,ifi € {1,...,d},je{d+1,...,d+d'},wehavefors <u <t,

t u t
320 = [t [ mawd— [
N N u
t
o
= / Bl d'W/

u

= 71,2} G.)

By (3.1), it is easy to obtain Zszt’” _zEi Zi;” = Z!,Z), holds for j € {1,...,d},i €
{d+1,...,d +d'}. Thus, the joint, step-2 rough path lift Z satisfies (2.2).

Then, there remains the analytic condition to be checked. By Lemma 3.1, it follows that almost
surely (Z, Z2%) € €P ([0, T1; R9*) for any B € (%, H). It is easy to check Zszt'” + Z?,’ﬂ =
Z1.7},. 80, (Z,2%) € €4 ([0, T1; R forany B € (1, H).

Finally, according to Lemma 2.13, because a is a locally Lipschitz continuous vector field with
at most linear growth on R¢ and b;,c; € Cﬁ(Re,Re) (1<i<d,1<j<d).Then, (l.1) pos-
sesses a unique global solution. By Lemma 2.11,ifa € C,} (R¢,R¢) and b;, cj € le (R¢, R (1 <
i<d,1<j<d). Then, (1.1) possesses a unique global solution. O

Through a similar argument as in the proof of Proposition 1.1, we prove that (1.3) possesses
a unique global solution.

Theorem 3.2. Let 8 € (%, H) and assume the coefficients of (1.3) satisfy (H1) and (H2). Then,
(1.3) possesses a unique global solution.
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Proof. This is just the special case of Proposition 1.1. Let

‘ 0
e = ()Y(g) F(é,d))::(é((i”d;))) and V(& ) = (0(05) th(g,@)’ (32)

where F : R — R and V = (V1, ..., Vyiq) is (m +n) x (d + d') matrix-valued. Then,
set (b, c) =V and by (H1) and (H2), (1.3) possesses a unique global solution. O

Moreover, by (1.5), it is easy to know f is also a Lipschitz continuous vector field with at
most linear growth, thus (1.4) possesses a unique global solution.

Now, we study the relation between the fast component of RDE (1.3) and an It6 SDE. Note
that EZ, EW are the expectation with respect to B and W, respectively, so that E = EZ x EW.

Theorem 3.3. The first level path of the fast component of RDE (1.3) is the following Itd6 SDE

t

1
Y? :Yo—i—g/g(XE Ys)ds+—fh(X Y&)d'w;. (3.3)

Here, X¢ is the first level path of the slow component of RDE (1.3) and g has been defined in
(1.6).

Proof. By (2.11), we rewrite the rough path lift terms of the right side of (1.3) as

m4nd+d ]
>3 [ v
=1 j=1 0
m+nd+d’ d+d’
ST 9530 M ENCAL RS BEATCAE 1) NEERY
neP I=1 j=1 i=1

where D) = Y V) (D3 i =1, ..., d +d'.
To prove the theorem itis sufﬁcwnt to compute the fast component Y¢ of (1.3). According to
(3.4), taking (m + 1) <l < (m + n), we have

m+n d+d’ { d+d’' }

i (@) 2,ij
|7£1\IE Z Z Z Vi J(”tk)Zlklk+1 + Z D\; Vl’j(ufk)z”f’l’g“
i=1

nePl=m+1 j=1

m+n  d+d’
. (i) 2,ij
=|7£1\IEO {ZZh t’(’ tk”<+l+ Z Z ZD Vl](ufk)ztktk+1
eP © I=1 j=1 I=m+1 j=d+1i=1
m+n  d+d"  d+d’ 3
@) 2,ij T
LYY Y ez = m S

I=m+1 j=d+1i=d+1 i=1
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We will prove that lim I; exists for i =1, 2, 3 in the sense of limit in probability.
IP|=0

For the term Iy, it is easy to obtain

\';iIIil)O Z Zzhl j(XlA’ tktA+l _ZZ/hl ](X.f’ Ysg)dlvvsjT in Lz’

eP =1 j=1 =1j=1y

by the definition of the It6 integral because hi, JT(X 2,Y?),s €0, T], is continuous, bounded and
adapted.

For the second term I, set Dg )= Z;’i , 9 ;(~)3xi, there exists a constant K > 0, one has

w w oW @) 211’ ?
EV[B]I=E Z Z Z ZD Vi W) Zti

tePl=m+1 j=d+1i=1

P 2
[(Z ZZZD(z)hU(xlk, )I[B, W],k,k“) ]

w€P [=1 j=1i=1

Tk+1

. 2
<KZZZ]EW[<ZD“>h,](X,k,Y )/(B;'—B;'k)dlw,’> }

=1 j=1i=1 %eP 1k

To prove this, put AA— —(t) = (')hl/(X Yf),Alel—]r(k) A z —(tk) and consider

Tk+1 N
EW[(ZA;I-J-(k)/(Bf—Bfk)dIW,f> }
k P
Tk ) A ) I 41 A
[ZA”,(k)A;,-,«k)(/(B;'—B,’lewrf)(/(Bi lk»d‘W’)]
kK’ b ey

SR A; (k) 41 (BL — Bl )d'W/) and ( ;¥ (B — B

7%

If k <k’ then A; ; - ,k,)dIWJ) are inde-
pendent so the terms vanish in this case, and similarly if k > k’. So we are left with

1

Tk+ R R A2
I 3 > e[ (oo v) [ - mpawd ) |
173

I=1 j=1i=1t%€P

Note that EB[||Bf||/23] < 00, thus, one has E[13] = EZ[EY[3]] — 0 as [P| — 0.
To proceed, for the third term I3, one has

d d

n T3
i 1= g, 57 35590 )

weP =1 i=1 j=I
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where D,(E) = Z;—’: | hl-j(~, ')3}’1" Following [24, Theorem 4], for i= J_ we have

WOZ ZZD")h“(XW (W2, ZZ/p]y)hl,(X;Yf)ds, as.

%eP i=1 i=1 =1i=1y

Then, by [24, Theorem 4] again, for i # j, we obtain

p o
I;E()E[(ZZZZD(’%”(XW ) ,k,k“)”) }zo in L2,

%€P I=1 i=1 j=1

Thus, we have shown (3.3). O
4. Averaging principle

In this section, we combine the pathwise approach via fractional calculus and rough path the-
ory to estimate the slow component X* and fast component Y* of RDE (1.3), respectively. Now,
let us study the slow component of RDE (1.3) using the pathwise approach via fractional calcu-
lus. By (3.2), it is not difficult to show that there exists a triplet (u®, Z, v°) e M p men.dtd’ (this
section follows the notations proposed by Hu and Nualart [15]). Note that the slow component
X¢ is the solution of (2.3) with (y, w) replaced by (Y¢, B). In particular, its “v-component” is of
the following form

t

tr
ft://f(XE,YqE)dq@)dB,—/o(Xf)dB%t(r), “.1)

N

where the last integral is defined based on fractional calculus theory (see Definition 2.2) and (4.1)
is well defined under the conditions (H2) and (H3). The stochastic integral of slow component of
(1.3) is a pathwise integral which depends on B and B>.

Following the discretization techniques inspired by Khasminskii in [17], we introduce an
auxiliary process (X¢,Y*®) and divide [0, T] into intervals depending of size § < 1, where § is
a fixed positive number depending on ¢ which will be chosen later. Then, we construct Y€ with
initial value ¥ = Yo,

t

1
Yt =Yo+ - /g(Xs((s)aY )ds+ffh(XS(5),Yf)dIWg, “4.2)
0

where s(§) =ALs8_1J8 is the nearest breakpoint preceding s. Also, we define the process X¢ with
initial value X 8 = Xy, by

t
X¢ _Xo+/f(Xb(é),Yf)ds+/a(X§)st, 4.3)
0
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in the rough path sense. Similarly, denote the second component of (4.3) and (1.4) as v¢ and v,
ie. (Xs, B, 1%),(X,B,v) € Mfl,d, respectively.

4.1. Some estimates on the solutions X¢, Xe, X, Y¢ and ye

From now on, ¢(f) is a certain positive constant and may vary from line to line. Then, by
Lemma 2.6, it is easy to obtain the following lemmas.

Lemma 4.1. Assume that f, o satisfy (H1)-(H3). Then, we have the following estimate:

1X% oo + 1 X715 + 10%l12p.8 < Kp.7.1x00, fo AL

almost surely, where Kg 1,|x,|, f,0 > 0 is a constant depending only on B, T, | Xol, || fllco, 110 |lcos
Vo lloo and || V30 |lso and A g has moments of all order:

Using similar techniques, the statements proposed in Lemma 4.1 also hold for X¢ and X.

Lemma 4.2. Assume that f, o satisfy (H1)-(H3). Then, for (t,t + 8) € A, we have the following
estimate:

sup |XZ,s — XE| < Kprxol ro AR 6P,
1€[0,T]

almost surely.

Lemma 4.3. Assume that f, o satisfy (H1)-(H3) and let (X¢, B, v®), ()A(S, B,1%) € Mﬁ’d be as
in (1.3) and (4.3), respectively. Then, we have the following estimates:

X6 — X¥ oo < Kﬂ,T,|X0|,f,aA<;;(ﬂ)8ﬁ + o,
1X° = Xllp1a.61 < Kp.1ixol, fr A58 + e
10® = 0%ll2p,a, < IBllg(Kp. 7, 1x01, f0 AT 8P + @),

almost surely, where

&, = H [(f(Xr(,g)v f(Xr((S)v Yrg))d” H /(f(Xr(g)» f(Xr((s)’ Yrg))dr 5

Proof. We start studying the supremum norm. By Lemma 4.2 and (H3), we obtain

I1XE — Xloo = H / (f (X5, YE) = [(XE (5, YE)ds
0 o0

t
< sup [ 1700 = 7K VOGS
0
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H /(f(Xé((s)a s f(Xs(,s)v Ysg))ds

[o)0]
= Kﬂ,T,\xm,f,aAZ(ﬁ)Bﬂ + o, as.

Now, we study the Holder norm. Using Lemma 4.2 and by (H3) again, we obtain

. | [TCF(XE, YE) — F(XEs, YE))dr|
”XE _ XS”ﬂ,[a,b] — Sup -[S r r ﬁ r(5) r
(5,)€Dap (t—s)

< Kp1ix0 fo NS (b —a)' PSP + @, as.

Now, we study the Holder norm [[v® —9°|2,a, - By (4.1), Fubini’s theorem and the argument
proposed in [10, p. 2367], we have

t
10 = 8lapn,, = sup L XY = f(XE ), Yo dg ® dB |
T eBas (t —5)%

< IBlp(Kp. 1100 0 Ay (b —a) TP + @), as.
This completed the proof of Lemma 4.3. O

Next, let us study | X — X [loo.

Lemma 4.4. Assume that f, o satisfy (H1)-(H3) and let ()A(e, B, %), (X,B,?) € Mﬁyd be as in
(4.3) and (1.4), respectively. Then, we have the following estimates:

A - ()
1X° = Xlloo < Kp.7x0. 1028 AZP (P +A) + By + @),

almost surely, where

’

A= H /(f(Xq@)’ s f(XS(‘S)))dS‘

|f N (f(Xg(,g), 7) f(XE((;)))dq@dB |
B; = sup 3
G, t)eA (t — )P

Proof. Fix a realization of (B, B?), then everything in this proof is deterministic. Our first pur-
pose is to estimate the Holder norm || X* — X||g,14,51- By (1.4) and (4.3), we have

X — Xllg1ab) <

f (F(XE 5, V9) — FOXE 5 )ds
B
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+ f (f(Xis) — F(XE)ds
B,la,b]
+ / (FOXE) = F(XE)ds
B.la,b]
a
+ / (FR) - F(Xo)ds
B,la,b]
+ / (0(R?) — o(X,))dB,
B.la,b]
+ / (0/(X?) — 0 (X2))dB
B.la,b]
6
= ZA,
i=1
Let us study A, A3 and A4. By Lemma 4.3, it is easy to obtain
4 -
D> A <Kb—a)F( up_ 1XE = XE )l + 1X° = XElloo + 1 X° = Xlloo,(a.5)
i=2 te[0,T

<K(b-a) P (Kﬂ,r,|xo|,f,aA2(’”6“ + ®p + [1XE = Xlloo.ab)-

Now we estimate A5 and Ag. Since o € Cg (R™; R" @ RY), taking A = 1 in Proposition 2.7,

we have
As <Gl lo (0. X5 X, B 5°) (b — )P | X* = Xlloo a0
+G 1y X, X, B, 09 (b — )P IR* = X g 1a
+G 10 @ X6 — )P [0 = Gl12p.,,.
and by Proposition 2.7, Lemma 4.2 and Lemma 4.3, we have
A6 <G 1)@ X°. X5 B ") (b — @) [IX° = X¥loo fa,b
+G3 1ap1(0. X5 X5 B0 (b — )P X* — X |g 10
+G3 10 @ R0 — )P |0 = ¥ l12p.,
< Gl 1ap)(©@ X, X5 B0 ) (b — )P (Kp 1. %00, fo AR 6P + @)
+G3 1051 (0. X5 XS B )b — )P (Kp 1 x0. 10 A" 8P + D)

+G} 1000 XOBlp(b — )P (Kp 7. 1x00, 10 A" 8% + @),
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Putting above estimations together, we obtain

I1X5 = Xl pas) < A1+ Kp.1x00 1.0 VIAGPSP + K7 W1 &, + Wa || X8 — Xloo.[a.b]
+G% 001(0, X5, X, B 09) (b — )P | X* — Xl 1a0)
+G3 4510 X) (b — )P |0F — Dllop.a, -

where we set

\Ijl = 1 + G}S,[O’T](O—v XS’ )%Ea B’ vs) + Gé’[O’T](U7 XE’ )?87 Ba vg) + G%’[O,T](05 )%E)”Bnﬁa

U =K(b—a)'"P+G} 0. X X, B.5)(b—a).
Next, by (4.1), we have

L3 S (X ¥ = F(XE5))dr @ dBy|

[0° — Dll2g1ab) < sup

(s,HEA (t—s)%

Coap | Sy [P (XE ) — F(XE)dr ® dBy|
(‘Y,I)EIA)aJ; (t - S)2ﬁ

. |JE[ACF(XE) — F(XE)dr @ dBy|
(5,)€0q.p (t —5)%

"rF(XE) - F(X,)dr ®dB

- | [ ACF (XD f(2 )dr ® dB,|
(5,)€0ap (t —s)2P

© s | [ (0 (X2) — 0 (X,))dB2,(r)]
(5,)€0ap (t —s)F

| [ (0 (X2) — o (X2)dB2, ()]
(5,)€0ap (t —s)f

6
= ZBj'
j=1

+

Now, we estimate the norm [|9° — 0||2g,[a,5]- Let us study B, B3 and B4. By Fubini’s theorem
and the argument proposed in [10, p. 2367], it is easy to obtain

4
> B < IBlp(Kp.1rxolfo Ay 88 + Kp 1 ®e + K0 — ) “PIX* = Xlloo fa)-
=2

Next, thanks to Proposition 2.8 (taking A = 1), we have

Bs < G}, (0. X*. X, B, °, B))(b — )P | X* = X|lco.ja.b]
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+G3 0 (0. X5 X, B 55, B (b — a)P | X — X100
+GY 1010 X, BY(b — )P | — Dll2p.a,,-
and by Proposition 2.8 and Lemma 4.2, we have
Bs < G (,.4)(0. X, X, B,v*, B)(b — )P (Kp. 1. x01, o A 6P + ®¢)
+G3 10 (0, X5, X6, B B (b — @) (Kp 1, 1x01, 10 A7 P + ®e)
+GS 10010 X, BYb — )P | Bllp(Kp 1. 1x00, 0 N 8P + D).
We take suitable a and b such that

G 10.1y(0. X, BY(b — ) < (4.4)

N =

— 1
So, we can define A}B such that A}S = (ZG%’[0 (0. X, B))  B.Then, for (b—a) < A}s it is easy
to obtain

195 = Bllap.a,, < 2B1 + Kp.7.1x0), £.0 W3 A G 8P + K 7W300 + Wy | X° — X oo al
+2G3, 4.1(0. X5, X, B, 7, BY) (b — )P | X* — X | p a1
where
W3 =2[|Bllg +2G} o.7)(0. X*, X, B,v, B?)
+2G3 0.71(0, X, X*, B, 0%, BY) +2GS (g (0. X°., B)|| B,
Wy =2K(b—a)' "P|Blp+2G} g 11(0. X*. X, B,?*, B*)(b— a)P.

Next, we have

I1XE = Xl pas) < A1+ Kp.1 500 f.0 VIAGYSP + K701 @, + Wa || X8 — X oo fab]
+G3 10 (0. X5, X, B, 55, B (b — )P | X — Xl|g.ja.t)
+G 1) (0. X) (b — )P
x[2B1 + K, 7,1X0|. f.0 %A?’S)(Sﬂ + Kp W3 P, 4+ Wal| XE — X oo [a.5]
+2G3 4.1(0. X°. X, B, %, B*)(b— )’ | X* = X |l p a.p1]-

Similar to the definition of A/ls’ we take suitable a and b again such that

G} 10,110, X5, X, B8, BB — )

—_

+2G3 o.71(0, X5, X, B, %, B (b — ) G} g.1)(0, %) < 4.5)

2
Then, we have
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||)28 — X”ﬂ,[a,h] <2A |+ 2Kg’T"XO|’f’U\I’1A%(ﬂ)5‘B + 2K'3’T\I’1(D8 + 2\112”)28 — )_(”oo,[a,b]
+2G3 1.1 (0. X) (b — )P [2B1 + Kp 7. %01, 10 V3 AP 6% + Kp 7 W30,

W1 XE = X loo a5]]
= 2A1 + 4G%,[a,b] (67 X)(b - a)ﬂBl

+QW1 +2G3 1, (0, X) (b — )P U3) (Kp 1. 300, fo Ay 8% + K17 @)
+QWs +2G3 |, (0. X) (b — )P W)X = X oo, fa.b)-
Putting
I1X¥ = Xlloo,fa.b) < 1X5 — Xal + (b — @)P | X* = Xl g a1
in above equation we have
1XE = Xlloo,ab) < 1XE — Xal + (b — a)P[2A1 + 4G} |, (0. X) (b — )’ B,
+QW1 +2G3 1, (0, X) (b — )P U3) (Kp 1 300, fo Ay 8% + K17 @)

+QWs + 2G5 4 (0. X) (b — )P W) | X = Xloo a1]-

Similar to the definition of A}B, we take suitable a and b again such that

_ 1
(b — a)f QW +2G} (g 11(0, X) (b — @) Wy) < > (4.6)
and by Lemma 2.6 and Lemma 4.1, it is easy to know
IR Nloo + IR Mg + 195 N2p,a + 1 X lloo + I1XNlg + I5ll25,8 < Kp.7.1x0), f.0 A"
holds. Then, we have
1X® = Xlloo.tan < 21X5 — Xol + Kp 1 1%00, 0 9D (87 + Aj + By + D).
Hence,

sup X8 — X, <2 sup XS — X/ + Kprixol o ASD (8% + A1 + By +®,).  (47)

0<t<b 0<t<a

Now, we can take suitable a and b. There exists A7 such that all a, b with (b — a) < A’é‘“"
fulfill (4.4), (4.5) and (4.6), then, it is clear that (4.7) holds for all a and b such that (b — a) <
A’g‘”. Then, choose a certain M = K,g,T,|X0|,f,UA<;(ﬂ), we take a partition 0 =19 <] <-+- <

tyy = T of the interval [0, T'] such that (fi41 — ;) < AZ"”‘. Then,

sup |)A(f —X;| <2 sup |)A(f - X
0<t<ty=T 0<t<tpy—i

FKp. 1 %00 f.0 ASP (8P + A1 + By + D). (4.8)
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Repeating the process M times we obtain

M—1
sup |X&—X,| <2M|X5 — Xo| + ( > 2") KpTixol fo ASP (87 + A1 + By + @)
0<t<T
=I= k=0

()
< Kﬁ,T,lXO\,f,ozAB Az(ﬂ)(rSﬁ + A1 +By + D).

Finally, we have

A - o(p)
1X = Xlloo < Kp.1x00, 1028 AFP 0P + A1 +B1 + ).
This completed the proof of Lemma 4.4. O
By Theorem 3.3, the first level path of the fast component of RDE (1.3) is an It6 SDE (3.3).
Thus, it is easy to derive an upper bound of the supremum norm of the solution Y?. By [27,

Lemma 4.3, Lemma 4.4], the following two lemmas are obtained.

Lemma 4.5. Suppose that (H1)-(H4) hold. Then, we have

sup E[IYFI*1 <K,
tel0,T]

where K > 0 is a constant independent of ¢.

Lemma 4.6. Suppose that (H1)-(H4) hold. Then, we have

sup E[|YF — Y¢)?] < K8,
t€l0,T]

where K > 0 is a constant independent of § and ¢.
4.2. Some estimates on the difference between f and f

Now, let us study A;. It is easy to see that

A <
(s,)eA

{ | fi (F (XE sy, Y = F(XEg))dr] . }
(t —s)P ¢

{ |/;[ (f(Xf(g)’ ?f) - f_‘(Xf(g)))d” 1@0}

+ sup (t—s)ﬂ

(s.0)€A
=:A;1 +Ap,
where 1. is an indicator function, £ := {t < ([s8~!] +2)8} and £¢ :={¢t > (|58~ | +2)8}.
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On the one hand, by (H3) and the fact that  — s < |_s5_1j §—s+25 <28, we have

{ |f (f(Xr(g)’ ©) f(Xf(g)))d”zl }]

E[A%I]SE[ sup 5y

(s,1)eA
< Kﬁj(g.

On the other hand, by (H3) and the fact that |[A1] — [A2] <A1 — A2+ 1, for A1 > A2 > 0, we have

{ ST (xe ) T — fX)ar? }}
14

E[A 2]<KIE|: sup (t—s)zﬁ

(s,1)€A

(s,H)eA (= S)zﬂ
[rs~!
+KE[ up { | i Ky T) = F (X)) [”
(s.)€A (t —s)%
(s~ 1418
< KE[(SS,‘;EA {(t — 3)1_2/3 / (f(Xr(g)» ) f(X (5)))dr 14 }:|

N

+KIE|: sup {(t )1 28
(s,t)eA

/(ﬂ&m,, — X g i

16(”
16~ ]8
Lta—l]_l (k+1)8

> ‘/ (f (Xfs5. YF) — F(X{g))dr

k=s8"1]+1 s

gl

—i—KE[ sup {(r — )2
(s,t)eA

gKﬁ,T5+KE[ sup {(Lta—lj—Lsa—lj—n(z—s)—zﬁ

(s.eA
2
1 ”

Ltaflj_l (k+1)(;

x Yy (f (Xf5. Y) = F(XEs)dr

k=|s8"1]+1" g5

LT871J*1 (k+1)8

2
5Kﬁ,T5+K,3,T5—lJE[ > (f(XE5, YE) — F(XEs)dr ]
k=0 ks
(k+1)8 )
<Kprd+Kpgrs™>  max ]EH / (f(XE5, YE) — F(XEs)dr }
0<k<|Ts~!|—1 A

Now, by the construction of Y€ and a time shift transformation, for any fixed k and s € [0, 4],
we have
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! kS+s ! kd+s
Vs =Yis+ - / §(Xli5jf)dr~l—$ / h(Xfy, YE)d'W,
kS ké

s s
1 [ . 1 . .
=T+ 1 [ 20 Faaar+ 2 [ H0XG T Wy,
0 0

where W;* = W; 15 — Wys is the shift version of W;, and hence they have the same distribution.
Let W be a Bm and independent of W. Construct a process Y Xis Yis by means of

s/e s/e
X0 o - X5, V8 XG5, V¢ -

Ys/é(S . =Y55+/8(X1§3’Yr ° ka)d’+/‘h(X1§5aYr ° ks)dIWr
0 0
1 i 1 i

~ » Xé ,YS Xé ’ys =
= ,f5+g/g(X,§5,Yr/’;5 “)dr+ﬁ/h(X,§5,Yr/§5 “)d'wy, (4.9)
0 0

where V?/f =./e W, /e 1s the scaled version of W,. Because both W* and V?/ are independent of
(X5, V&), by comparison, yields

- XG5 V¢
(in,s, {Y_f+k§}.¥€[0,(s)) ~ (ingv {YS/E(S ko }56[0,5))3 (4.10)

where ~ denotes coincidence in distribution sense. Thus, we have

(k+1)8 5

JE[A%]5Kﬁ,Ta+Kﬂ,T3—2O<k<%§U_IE ‘ / (f(XE5, YE) — F(XE5))dr }
T ks
8§ 8

e

<Kprd+Kpre?s™>  max //jk(s,e)dsde,
0<k<|T§-1|-1
0 6

where

Ti(s.0) = E[(F(XE,, vty — Fxe ), poxs,, vy — Foxeon.

Through the argument as in Appendix A (the similar argument could also be found in [27,
Appendix B)), i.e., forany 0 <60 <5 <% and k=0, 1,...,[T/8] — 1, we have

~Fe- : B
Ji(s,0) < Ke™ 2O ORI + X512 + 175191 < K1 x1v50¢~ 2 077,

where B is defined in (H4). Here, Lemmas 4.1, 4.5 and 4.6 were used for the last inequality.
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Thus, we have

E[A1<Kpr(+e57h). (4.11)

For the term By, by Fubini’s theorem and the argument proposed in [10, p. 2367], we have

Bl — | [ CF(XE ) YE) = F(XE5)))dr @ dBy|
1 = sup (t—s)zﬂ
(s,t)eA
X5 X:5)) ® [1dB,d
- |y (F Xy, Y — £ 2;(5)» I r|}
(s,NeA (t—s)
- |y (F(XE ), V) = F(XEs) ® [ ) dBydr|
< sup (t—s)2ﬁ
(s,t)eA
s {|f (f(XE ¥ = F(XEp ) ® [ dB, dr|}
(s,1)eA (r— 5)2,5
=:B;1 +B2.

Let us study By. Similarly, we have

X ¥ = 1 dB,d
E[B%I]SE[ sup {If(f( 0 F(XE) ® [ dBydr|? EH

(s,)eA (r —5)4P
+E[ wp {I/ S (X, YE) = F(XE)) ® [} (5, dBydr|? ‘H
(s,EA (1 —5)*P

< Kp rE[|| B 318

r (Lss~1 1+ D)8

+KE| sup 17 (f Xy Y9 = F(XE) ® [ (5, dBydr|? . H
L (s,t)eA (t _s)4ﬁ
- ; 2

ke[ sup | s 15( (X B5) = F(XE)) ® [y dBydr| 1[6”
L (s.n)eA (t — 5)%
- Lta

+KE| sup |f(Ls8 1J+1)5(f(Xr(3)a r f(Xf(S)))®fr(6) dB,dr|? KC”
_(S,I)EA (t —S)4ﬁ

sK,g,TE[an,%]HK]E[ sup {(r—s>13ﬂ||B||,a

(s,1)eA
(Ls8~11+2)8 '
x' / (f(X,(a), ) — f(X¢ (3)))®/qudr m”
s r(8)
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—i—KE[ sup {(l—s)13ﬁ||B||lg
(s,1)eA

5

t t
/ (f(Xf(g)» ?':9) - ];(Xf(a))) by / qudV

X
Lrs—1]s (8)
s =1 rk+1)s 5 z 2
+KIE[ { izﬁaﬂjﬁl k(é ) (f (Xgs: Y) — f(Xgs) ®fkta qudr| 1 ”
Sllp 0c
(s,)EA (t —5)4P

sKﬁ,TIE[an,%]HKJE[ sup {(Lra—lj —Lss7' =D -9 BIg

(s,1)€A
2
uc}]

LI(S_IJ—I (k+1)8
& e Fove
X Z /(f(XkS’Yr)_f(Xkﬁ))dr
k=s8"1]+1" g5

< Kp rE[|B| 31

T8~ 1|1 (k+1)8 5
+Kprs™' Y IE[HBH,% / (f(xl’is,?f)—ﬂxi(g))dr]
k=0 ks

1
< KprElIBI318 + Kp.r8~ (E[IBI5])

(k+1)8

|78~ -1 a4\ 4
x Y (EH / (f (Xis: Y — f(XEs))dr D
k=0 ks
(k+1)8 poi L
~ - 2
<Kprd+Kgrs™'  max EH / (f(XE5, YE) — F(XEg))dr ])
0<k<|T8s"1|—1 4

<Kpr($+e1871).
To proceed, it is easy to obtain
E[B2,] < Kp.78%F.
Thus, we have
E[B?] < Kpr (6% + 2257 1). (4.12)
Now, let us study E[@g].
2
IE[@?] < 2E|: sup i|
1€[0,T]

t
/(f(Xf((;), YE) = (X5, YO)ds
0
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t 5 2
(f (XS5 Y — f(X 5, YO))dr
+2E|: sup |fs r(§) °r N r(§) °r | i|
(s.)€A ()
=:2C; +2C,.
Through a similar argument as in the estimates of IE[A%I] and E[A%z] and by Lemma 4.6, we
have
! 2
(o <21E1|: sup / (fF (X YE) = f(XE G5, YE))ds ]
tel0,T]
1671
L1571J—1 (k+1)8 5
+2IE|: sup | Y / (f(XEs5, YE) — f(XEs, YE))ds }
rel0.71l 15
= ks
(k+1)8 )
<K&+ Kprs™?  max EH / (f(X55, YE) — f(XE5, YE))ds }
0<k<|Ts~!|—1 ‘ ‘
s
(k+1)8
<K& +Kprs™ ' max E[|f(X§s, YE) — f(XEs, YE)|1ds
0<k<[Ts~!|—1
ks
<Kg 18,
and
(k+1)8 5
C<Kprd+Kprd™?  max ]EH f (f (X5, ¥E) = £(Xf5, YE))ds }
0<k<|Ts~!|-1
(k+1)8
< Kprdt Kpro ™! max [ BIFO 70 - G YIRS
0<k<[Ts'|—1
ks
< Kﬂ’TS.

Thus, we have
E[®Z] < Kp,78. (4.13)
4.3. Proof of Theorem 1.2
By Lemma 4.3 and Lemma 4.4, it is easy to have
I1X7 = Xlloo < I1X° = X7 lloc + 1X° = Xlloo
< Kprixofo20 AP GF £ AL+ B -0, as.
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Next, for each R > 1, set D := {Ap < R} and D¢ := {Ap > R}, then, by (4.11), (4.12) and
(4.13), we have

S (B)
E[IX® — Xlloolp] <E[Kp,71x01, £.02"5 Az(ﬁ)(Sﬂ +A+B+d,)]
o1
< KrKp.1.x01.5.0(6F +£7677), (4.14)

where K > 0 is a constant and

- — 1 1
E[IX® — Xlloo1pe] < (E[|IX* — X212 P(Ag > R)?
- 1 1
< E[IX )% + 1X12D2P(Ag > R)2
1 1
= Kﬁ,T,|xo\,f,o(E[Az(ﬂ)])fP(AB > R)2, (4.15)

where Kg 7,|x,|, f,0 E[Az(ﬂ)] and P(Ap > R) are all independent of ¢.
Putting (4.14) and (4.15) together and choosing § := e+/—In¢g, we have

limsup E[[|X¢ — X[loo] < K P(Ag > R)?,

e—0

where K > 0 is a constant which is independent of ¢ and R. Then, let R — oo, we have
lim E[|| X% — X|loo] =0.
e—0

Thus, the statement of Theorem 1.2 is obtained.
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Appendix A

Let W be as in (4.9) and Q? denote the probability law of the diffusion process {Y,‘é }+=0 which
is governed by following equation

dYf =g (&, Y5)de + h(g, Y))d'W,,
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with initial value Yg = ¢ and we denote the solution by {Y’ f’dj},zo. The expectation with respect
to Q¢’ is denoted by E?. Hence, we have IEq’[\I/(Yf)] = ]E[\D(Yts’d’)], for all bounded function W.
For more details on Q¢, the readers are referred to [25, p. 110]. Let }“f be the o-field generated
by {¥5?,r <t} and set

Ji(s,0,€,¢) :=E[(f(E YEN) — F(&), F& Y P — FEN.

Then, we have

Ji(5,0,6,0) =EP[(f (&, YE) = F (&), F(E,Y5) — ()]
= E[EC[(f (€, YE) — f(&), fE, Y — FENFI
—EP[(f(§, Y]) — F&),EC(f (€ YE) — FENIF DI

To proceed, by invoking the Markov property of {Y,M’} >0, We have

Ji(s.0.£.¢) =EP[(F(&. Y5) — F&). BN [£&. Y5 ) — F@N.

where E5 [ £(5, YE_,) — F(§)] means the function E®[f (£, Y*_,) — F(¢)] evaluated at ¢ =
vy

Using Holder’s inequality and the boundedness of the function f, we obtain

Ti(s.0.6.¢) < KEC[I £ 6. Y5) — F@PDIEIIEY (£, Y ) — FOIPDE.
In view of [27, Lemma 0.10], we have
Ji(s.0.6.0) < K(1+ £ + |p[P)e= 260, (A.1)

Let My, be the o-field generated by X} and }A’,fa that is independent of {Y,s’d’},zo. By adopting
the approach in [25, Theorem 7.1.2]. We can show

Jis.6) = BIEN S (X 155715 = F(Xfy). £O6G5, 1,80 = FOxiomimi
=E[Jk(s,0, &, ¢)|(§,¢):(X€5,?,§ )]

k )
which, with the aid of (A.1), yields
N B
Ji(5,0) < KE[(1+ X512 + |51 le™ 2 60,
This completes the proof of the claim. O
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