
J. Differential Equations 249 (2010) 914–930
Contents lists available at ScienceDirect

Journal of Differential Equations

www.elsevier.com/locate/jde

Blow-up theorem for semilinear wave equations
with non-zero initial position

Hiroyuki Takamura a,∗, Hiroshi Uesaka b, Kyouhei Wakasa a

a Department of Complex Systems, Future University-Hakodate, 116-2 Kamedanakano-cho, Hakodate, Hokkaido 041-8655, Japan
b Department of Mathematics, College of Science and Technology, Nihon University, Chiyodaku Kanda Surugadai 1-8, Tokyo, 101-8308,
Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 November 2009
Available online 26 February 2010

MSC:
primary 35L70
secondary 35B05, 35E15

Keywords:
Blow-up
Semilinear wave equations

One of the features of solutions of semilinear wave equations can
be found in blow-up results for non-compactly supported data. In
spite of finite propagation speed of the linear wave, we have no
global in time solution for any power nonlinearity if the spatial
decay of the initial data is weak. This was first observed by Asakura
(1986) [2] finding out a critical decay to ensure the global existence
of the solution. But the blow-up result is available only for zero
initial position having positive speed.
In this paper the blow-up theorem for non-zero initial position by
Uesaka (2009) [22] is extended to higher-dimensional case. And
the assumption on the nonlinear term is relaxed to include an ex-
ample, |u|p−1u. Moreover the critical decay of the initial position
is clarified by example.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

We consider the initial-value problem for semilinear wave equation{
utt − �u = F (u) in Rn × [0,∞),

u(x,0) = f (x), ut(x,0) = g(x),
(1.1)

where u = u(x, t) is a scalar unknown function of space–time variables. The assumptions on the non-
linear term F will be given precisely later, but at this moment we may assume that F (u) = |u|p , or
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F (u) = |u|p−1u with p > 1. For n = 1, we have no time decay of a solution even for free case, F ≡ 0,
so that there is no possibility to obtain any global in time solution for (1.1) with n = 1. Therefore we
assume n � 2 in this paper.

In the case where the initial data ( f , g) has compact support, we have the following Strauss’ con-
jecture. There exists a critical number p0(n) such that (1.1) has a global in time solution for “small”
data if p > p0(n) and has no global solution for “positive” data if 1 < p � p0(n). As in Section 4 in
Strauss [17], p0(n) is a positive root of the quadratic equation (n−1)p2 −(n+1)p−2 = 0. This number
comes from the integrability of a weight function (1 + |t − |x||)(n−1)p/2−(n+1)/2 in the iteration argu-
ment. We note that such a weight function is obtained by space–time integration of (1+ t +|x|)(n−1)/2

which is a decay of a solution to free wave equation.
This conjecture was first verified by John [7] for n = 3 except for p = p0(3). Later, Glassey [5,6]

verified this for n = 2 except for p = p0(2). Both critical cases were studied by Schaeffer [15]. In
high dimensions, n � 4, the subcritical case was proved by Sideris [16] and the supercritical case was
proved by Georgiev, Lindblad and Sogge [4]. Finally, the critical case in high dimensions was obtained
by Yordanov and Zhang [23], or Zhou [24] independently. We note that the blow-up results in high
dimensions are available only for the positive nonlinear term, F (u) = |u|p .

On contrary, if the support of the initial data ( f , g) is non-compact, we may have no global solu-
tion even for the supercritical case. Actually we have the following Asakura’s observation. There exists
a critical decay κ0 of the initial data such that (1.1) has no global solution provided ( f , g) satisfies
that

f (x) ≡ 0, g(x) � C

(1 + |x|)1+κ
with 0 < κ < κ0 (1.2)

for some constant C > 0, and has a global solution provided ( f , g) satisfies that

(1 + |x|)1+κ

( ∑
|α|�[n/2]+2

∣∣∇α
x f (x)

∣∣ +
∑

|β|�[n/2]+1

∣∣∇β
x g(x)

∣∣) (1.3)

is sufficiently small with κ � κ0 and p > p0(n).
This was first proved by Asakura [2] in n = 3 except for the critical case clarifying

κ0 = 2

p − 1
. (1.4)

The critical case in n = 3 was studied by Kubota [13], or Tsutaya [21] independently. For n = 2, the
nonexistence part was verified by Agemi and Takamura [1], and the existence part was verified by
Kubota [13], or both parts by Tsutaya [19,20] independently. In high dimensions, only the radially
symmetric solution has been studied. The nonexistence part was proved by Takamura [18], and the
existence part was proved by Kubo and Kubota [11,12] and Kubo [10]. It is remarkable that the critical
decay κ0 does not depend on space dimensions n. We also note that the nonlinear equation is invari-
ant under a scaling u(x, t) → uR(x, t) = Rκ0 u(Rx, Rt) (R > 0). As suggested by this fact, (1 +|x|)1+κ in
(1.3) cannot be replaced by (1+|x|)1+κ0 log−l(2+|x|) with any l > 0. See Kurokawa and Takamura [14].

In view of (1.2) and (1.3), it is not enough to establish the blow-up result only for the case where
f ≡ 0 in the sense that one may have a smaller critical decay if f �≡ 0 and g ≡ 0. The blow-up result
is based on a positivity of the solution, but it is impossible to get a positive solution for g ≡ 0 directly
by its representation. For example, cf. Caffarelli and Friedman [3]. In spite of this fact Uesaka [22]
succeeded to overcome this difficulty in low-dimensional case by making use of t-differentiation. The
price he paid is C3 regularity of the solution. But no example of f was given, so that the relation
between the assumption on f and Asakura’s observation was not so clear. We also note that the
strong restriction on nonlinear terms, F ′(u) � 0 for any u, is required in [22].

In this paper, we extend Uesaka’s theorem to high-dimensional case by making use of pointwise
estimates in [14], and relax the restriction on F to include a type of |u|p−1u with p > 1. Moreover,
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giving an example of f under slightly weaker assumption on f , we show that κ0 is still the critical
decay in the sense of replaced (1.2) essentially by

f (x) � C

(1 + |x|)κ , g(x) ≡ 0 with 0 < κ < κ0 (1.5)

with some additional condition on f , and of improved (1.3). We claim that “improved” means that
| f (x)| in (1.3) should be replaced by (1 + |x|)−1| f (x)|. Finally we investigate a C2-solution under
stronger assumptions.

This paper is organized as follows. In the next section, our problem is formulated. After the next
section we show our claim on f in (1.3) as above. We discuss the positivity of C3-solution in the
fourth section. After this, the main theorem is proved. A blow-up theorem for C2-solution and related
positivity are given in the sixth and seventh sections. In the last section, the lifespan of solutions is
discussed.

2. Main results

For unknown functions u = u(r, t), r ∈ (0,∞), t ∈ [0,∞), we consider the following radially sym-
metric version of (1.1): ⎧⎨⎩ utt − n − 1

r
ur − urr = F (u) in (0,∞) × [0,∞),

u(r,0) = f (r), ut(r,0) = 0 for r ∈ (0,∞),

(2.1)

where we assume that there exists a positive constant R such that F ∈ C1(R) and f ∈ C3(0,∞) satisfy⎧⎨⎩
F ′(s) � p Asp−1 for s � 0 and f (r) > 0,

f ′′(r) + n − 1

r
f ′(r) + F

(
f (r)

)
� C0

(1 + r)l
for r ∈ [R,∞)

(2.2)

with p > 1 and some positive constants l, A, C0.
Then we have the following theorem.

Theorem 2.1. Let u be a C3-solution of (2.1). Suppose that (2.2) is fulfilled. Then u cannot exist globally in
time provided

0 < l < κ0 + 2, (2.3)

where κ0 is defined by (1.4).

Remark 2.1. In Uesaka [22], (2.2) is assumed for r ∈ (0,∞). This restriction prevents us to find a
simple example of f . In order to clarify the relation between (1.5) and (2.2), we give an example of
decaying f in Theorem 2.1. First we assume that F (u) = |u|p or |u|p−1u with p > 1, and define a
smooth function f on (0,∞) by

f (r) = c

rν
(ν > 0)

with a constant c > 0, where ν is fixed as follows. One can readily check that

f ′′(r) + n − 1
f ′(r) + f (r)p = c

ν+2

{
ν(ν + 2 − n) + cp−1rν+2−pν

}
.

r r



H. Takamura et al. / J. Differential Equations 249 (2010) 914–930 917
Hence if we assume that ν + 2 − pν > 0, i.e.

0 < ν <
2

p − 1
= κ0, (2.4)

then we can find R = R(c, ν,n, p) > 0 such that

f ′′(r) + n − 1

r
f ′(r) + f (r)p � c

rν+2
for r � R.

Therefore, setting ν + 2 = l, we get an example of f with this R . In view of (2.2), the upperbound
of ν in (2.4) implies the one of l in (2.3).

3. Sharp condition for the global existence

As stated in the last part of Introduction, we claim that (1.3) should be replaced by

(
1 + |x|)1+κ

( | f (x)|
1 + |x| +

∑
0<|α|�[n/2]+2

∣∣∇α
x f (x)

∣∣ +
∑

|β|�[n/2]+1

∣∣∇β
x g(x)

∣∣). (3.1)

We shall investigate this fact in three space dimensions along with the proof of the global existence
theorem of Asakura [2].

To this end it is enough to concentrate on estimating

v(α)
2 (x, t) = 1

4π

∫
|ξ |=1

Dα
x f (x + tξ)dωξ

which is defined by (1.12) on p. 1465 in [2], where |α| � 2 and D stands for ∇ . Making use of an
associated assumption

| f (x)|
1 + |x| +

∑
0<|α|�3

∣∣∇α
x f (x)

∣∣ � G

(1 + |x|)1+κ

with the new condition (3.1), where G > 0, we have

∣∣v(α)
2

∣∣ � G

4π
w(α).

Here we set

w(α)(x, t) =
{∫

|ξ |=1(1 + |x + tξ |)−κ−1 dωξ for 0 < |α| � 2,∫
|ξ |=1(1 + |x + tξ |)−κ dωξ for |α| = 0.

The estimate for w(α) with 0 < |α| � 2 is already established by [2], so that we consider only the
case where |α| = 0.

For 0 � t � 1/2, one can follow completely the same argument to (1.26) on p. 1466 in [2]. Hence
we have

∣∣w(α)
∣∣ � C

κ
,

(1 + t + r)
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where r = |x| and C is a positive constant. On the other hand, for t � 1/2, we shall show a new
estimate as follows. Making use of radially symmetric expression as in [2], we have

∣∣w(α)
∣∣ � 4π

2rt

t+r∫
|t−r|

ρ

(1 + ρ)κ
dρ � 2π

rt

t+r∫
|t−r|

dρ

(1 + ρ)κ−1
.

First we consider the case where κ � 1. In this case we have

∣∣w(α)
∣∣ � 2π

rt(1 + |t − r|)κ−1

t+r∫
|t−r|

dρ.

Extending the domain of this integral to [t − r, t + r] or [r − t, r + t], one can readily get

∣∣w(α)
∣∣ � 4π

{t or r}(1 + |t − r|)κ−1
.

Hence we obtain the desired estimate

∣∣w(α)
∣∣ � 16π

(1 + t + r)(1 + |t − r|)κ−1
(3.2)

because of the following simple estimates in two cases. If r � t , then

t = 2t + t + t

4
� 1 + t + r

4

holds. If t � r, then

r = 2r + r + r

4
� 2t + t + r

4
� 1 + t + r

4

holds.
Next we consider the case where 0 < κ < 1. In this case we have

∣∣w(α)
∣∣ � 2π

rt(1 + t + r)κ−1

t+r∫
|t−r|

dρ.

Hence, similarly to the above, we obtain the desired estimate

∣∣w(α)
∣∣ � 16π

(1 + t + r)κ
. (3.3)

As a result, the following improved version of Proposition 1.1 in [2] is established.
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Proposition 3.1. Let f ∈ C3(R3), g ∈ C2(R3) satisfy

| f (x)|
1 + |x| +

∑
0<|α|�3

∣∣∇α
x f (x)

∣∣ +
∑

0�|β|�2

∣∣∇β
x g(x)

∣∣ � G

(1 + |x|)1+κ
,

where G and κ are positive constants. Then the solution u0 to the initial-value problem{
u0

tt − �u0 = 0 in R3 × [0,∞),

u0(x,0) = f (x), u0
t (x,0) = g(x)

satisfies

∣∣∇α
x u0(x, t)

∣∣ �

⎧⎪⎪⎨⎪⎪⎩
C G

(1+t+|x|)(1+|t−|x||)κ−1 (κ > 1),

C G log(2+t+|x|)
(1+t+|x|) (κ = 1),

C G
(1+t+|x|)κ (0 < κ < 1)

for |α| � 2, where C depends only on κ .

Based on this proposition, we have a global existence theorem for semilinear wave equations when
κ � κ0. See [2] for details. This procedure is also available in two space dimensions.

Remark 3.1. For radially symmetric solutions in high dimensions, (1.3) is replaced by

2∑
j=0

∣∣ f ( j)(r)
∣∣〈r〉κ+ j +

1∑
j=0

∣∣g( j)(r)
∣∣〈r〉1+κ+ j,

where 〈r〉 = √
1 + r2. We note that we have to investigate a C1-solution of the associated integral

equation because p is close to 1. For example, see Kubo [10]. In view of this quantity also, we can say
that our condition (2.3) is optimal.

4. Positive C 3-solution

In order to prove Theorem 2.1, we need positivity of a solution of (2.1). According to (2.2), we have
the following lemma which is similar to the comparison theorem for low-dimensional wave equations
by Keller [9].

Lemma 4.1. Assume that there exists a positive constant R such that F ∈ C1(R) and f ∈ C3(0,∞) satisfy⎧⎨⎩ F ′(s) � 0 for s � 0 and f (r) > 0,

f ′′(r) + n − 1

r
f ′(r) + F

(
f (r)

)
> 0 for r ∈ [R,∞).

(4.1)

Then there is a positive constant δ = δ(n) such that a C3-solution u of (2.1) satisfies

ut > 0 in Σ = {
(r, t) ∈ (0,∞)2: r − t � max{R, δt} > 0

}
(4.2)

as far as u exists. Moreover, u in Σ satisfies
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ut(r, t) � 1

8rm

r+t∫
r−t

λmutt(λ,0)dλ + 1

8rm

t∫
0

dτ

r+t−τ∫
r−t+τ

λm F ′(u(λ, τ )
)
ut(λ, τ )dλ, (4.3)

where m is an integer part of n/2, namely m = [n/2].

Proof. Taking into account the regularity of u and applying ∂/∂t to (2.1), we have a new problem for
v = ut of the form: ⎧⎪⎨⎪⎩

vtt − n − 1

r
vr − vrr = F ′(u)v,

v(r,0) = 0, vt(r,0) = f ′′(r) + n − 1

r
f ′(r) + F

(
f (r)

)
.

(4.4)

Therefore, by (4.1), we can employ the comparison argument in high-dimensional wave equations by
Kurokawa and Takamura [14] because of the fact that F ′(u)v � 0 for v � 0 and vt(r,0) = utt(r,0) > 0
for r ∈ [R,∞).

Actually one can see this in the following argument. Set δ = 2/δm . Here δm is a positive constant
satisfying

Pm−1(s), Tm−1(s) � 1

2
for 1 � s � 1

1 + δm
, (4.5)

where Pk , Tk denote the Legendre, the Tschebyscheff polynomials of degree k respectively. Moreover,
define

Γ (r, t) = {
(λ, τ ) ∈ (0,∞)2: |r − λ| � t − τ

}
.

Then, for an arbitrarily fixed point (r0, t0) ∈ Σ , we have Γ (r0, t0) ⊂ Σ . Setting

t1 = inf
{

t > 0: v(r, t) = 0 where (r, t) ∈ Γ (r0, t0)
}
,

we obtain t1 > 0. Because vt is positive in a time including t = 0 in Γ (r0, t0) due to vt(r,0) > 0.
Suppose that there exists r1 > 0 such that v(r1, t1) = 0 and (r1, t1) ∈ Γ (r0, t0). First we con-

sider the odd-dimensional case, n = 2m + 1. Then it follows from Lemma 2.2 in Takamura [18] and
Duhamel’s principle that

v(r, t) = 1

2rm
I
(
r, t, vt(·,0)

) + 1

2rm

t∫
0

I
(
r, t − τ , F ′(u(·, τ )

)
v(·, τ )

)
dτ , (4.6)

where we set

I
(
r, t, w(·, τ )

) =
r+t∫

|r−t|
λm w(λ, τ )Pm−1

(
λ2 + r2 − t2

2rλ

)
dλ.

By the definition of t1 and u(r,0) = f (r) > 0, we have that

v = ut > 0, therefore also u > 0,
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in the domain of double integral, Γ (r1, t1) \ {(r1, t1)}, of the second term in (4.6) with (r, t) = (r1, t1).
For (λ, τ ) ∈ Γ (r, t), one can see that

λ2 + r2 − (t − τ )2

2rλ
� (r − t + τ )2 + r2 − (t − τ )2

2r(r + t − τ )

= r − t + τ

r + t − τ
� r − t

r + t
. (4.7)

Since (r1, t1) ∈ Σ implies r1 − t1 � δt1 = (2/δm)t1 which yields

r1 − t1

r1 + t1
� 1

1 + δm
,

so that we have

I
(
r1, t1 − τ , F ′(u(·, τ )

)
v(·, τ )

)
� 1

2

r1+t1−τ∫
r1−t1+τ

λm F ′(u(λ, τ )
)

v(λ, τ )dλ � 0

for 0 � τ � t1 by the assumption on F ′ and (4.5). We finally obtain a contradiction in (4.6) with
(r, t) = (r1, t1) such that

0 = v(r1, t1) � 1

4rm
1

r1+t1∫
r1−t1

λm vt(λ,0)dλ > 0.

Therefore we have v = ut > 0 in Σ which also implies that u > 0 in Σ . The remainder of the lemma
for n = 2m + 1 immediately follows from (4.5), (4.6) and (4.7).

Next we consider the even-dimensional case, n = 2m. Then, as in the odd-dimensional case, it also
follows from Lemma 2.3 in [18] that

v(r, t) = 2

πrm−1
J
(
r, t, vt(·,0)

) + 2

πrm−1

t∫
0

J
(
r, t − τ , F ′(u(·, τ )

)
v(·, τ )

)
dτ , (4.8)

where we set

J
(
r, t, w(·, τ )

) =
t∫

0

ρ dρ√
t2 − ρ2

r+ρ∫
r−ρ

λm w(λ, τ )Tm−1((λ
2 + r2 − ρ2)/(2rλ))dλ√

λ2 − (r − ρ)2
√

(r + ρ)2 − λ2
.

By the definition of t1 and u(r,0) = f (r) > 0, we have that

v = ut > 0, therefore also u > 0,

in the domain of triple integral of the second term in (4.8) with (r, t) = (r1, t1) because 0 � ρ < t1
implies that (λ, τ ) ∈ Γ (r1, t1) \ {(r1, t1)}. Replacing t − τ by ρ in (4.7), we obtain

λ2 + r2 − ρ2

2rλ
� r − ρ

r + ρ
� r − t

r + t
(4.9)
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for 0 � ρ � t . So that, similarly to the odd-dimensional case, we have

J
(
r1, t1 − τ , F ′(u(·, τ )

)
v(·, τ )

)
� 1

2

t1−τ∫
0

ρ dρ√
(t1 − τ )2 − ρ2

r1+ρ∫
r1−ρ

λm F ′(u(λ, τ ))v(λ, τ )dλ√
λ2 − (r − ρ)2

√
(r + ρ)2 − λ2

� 0

for 0 � τ � t1 by the assumption on F ′ and (4.5). We finally obtain a contradiction in (4.8) with
(r, t) = (r1, t1) such that

0 = v(r1, t1) � 1

πrm−1
1

t1∫
0

ρ dρ√
t2

1 − ρ2

r1+ρ∫
r1−ρ

λm vt(λ,0)dλ√
λ2 − (r1 − ρ)2

√
(r1 + ρ)2 − λ2

> 0.

Therefore we have v = ut > 0 in Σ which implies u > 0 in Σ . The remainder of the lemma for n = 2m
immediately follows from the proof of Lemma 2.6 in [18].

Actually, inverting the order of (λ,ρ)-integral, we find that, for w � 0 and (r, t) ∈ Σ ,

J
(
r, t, w(·, τ )

)
� 1

2

t∫
0

ρ dρ√
t2 − ρ2

r+ρ∫
r−ρ

λm w(λ, τ )dλ√
λ2 − (r − ρ)2

√
(r + ρ)2 − λ2

= 1

2

r+t∫
r−t

λm w(λ, τ )dλ

t∫
|r−λ|

ρ dρ√
t2 − ρ2

√
ρ2 − (r − λ)2

√
(r + λ)2 − ρ2

.

In the domain of (ρ,λ)-integral, one can see that

(r + λ)2 − ρ2 � 2(r + t)
(
r + λ − |r − λ|) � 8r2

because of r − t > 0. Since

b∫
a

ρ dρ√
ρ2 − a2

√
b2 − ρ2

= 1

2
B

(
1

2
,

1

2

)
= π

2

for b > a � 0, we obtain

J
(
r, t, w(·, τ )

)
� π

8
√

2r

r+t∫
r−t

λm w(λ, τ )dλ.

The proof is now completed. �
Remark 4.1. In some case, we do not need any comparison argument in the proof of Lemma 4.1 if we
employ the uniqueness of the solution. See Remark 6.1 below.
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5. Blow-up of C 3-solution

Let u be a global in time C3-solution of (2.1). We will see that this is false under the assumption
of Theorem 2.1 by following up the basic iteration argument by John [7].

The assumption (2.2) on F and f enables us to make use of Lemma 4.1. Hence, cutting the domain
of the integral, we have

ut(r, t) � 1

8rm

r+t∫
r

λm C0

(1 + λ)l
dλ � C0t

8(1 + r + t)l

in Σ . This is the first step of our iteration.
First we assume that ut has an estimate

ut(r, t) � cta

(1 + r + t)b
in Σ, (5.1)

where all a, b, c are positive constants. This is true with a = 1, b = l, c = C0/8 as we see. Integrating
this inequality with respect to t , we obtain, by u(r,0) = f (r) > 0, that

u(r, t) � cta+1

(a + 1)(1 + r + t)b
in Σ. (5.2)

Then we can put (5.1) and (5.2) into the second term in the right-hand side of (4.3) because its
domain of the integral is included in Σ . Hence, neglecting the first term by positivity, we have by
(2.2) that

ut(r, t) � p A

8rm

t∫
0

dτ

r+t−τ∫
r

λm
(

cτ a+1

(a + 1)(1 + λ + τ )b

)p−1 cτ a

(1 + λ + τ )b
dλ

� p Acp

8(a + 1)p−1rm(1 + r + t)pb

t∫
0

τ p(a+1)−1 dτ

r+t−τ∫
r

λm dλ

� p Acp

8(a + 1)p−1(1 + r + t)pb

t∫
0

τ p(a+1)−1(t − τ )dτ .

That is

ut(r, t) � Acp

8(a + 1)p{p(a + 1) + 1} · t p(a+1)+1

(1 + r + t)pb
in Σ. (5.3)

In order to repeat this procedure infinitely many times, one should compare (5.1) with (5.3) and
define sequences {a j}, {b j}, {c j} by

a j = p(a j−1 + 1) + 1, a0 = 1,

b j = pb j−1, b0 = l,

c j = Acp
j−1

8(a + 1)p{p(a + 1) + 1} , c0 = C0

8
.

j−1 j−1
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Therefore we have

a j =
(

1 + p + 1

p − 1

)
p j − p + 1

p − 1
, b j = lp j . (5.4)

This implies

c j >
Bcp

j−1

p(p+1) j
, where B = A

8p

(
p − 1

2p

)p+1

> 0.

So one can get inductively

c j > B(p j−1)/(p−1) cp j

0

p(p+1)s j
, where s j = p j

j∑
k=1

k

pk
. (5.5)

Summing up (5.1), (5.4) and (5.5), we obtain

ut(r, t) > B−1/(p−1)t−(p+1)/(p−1) exp
(

p j K (r, t)
)

in Σ,

where

K (r, t) = log
(

B1/(p−1)c0
) − (p + 1)

∞∑
k=1

k

pk
log p

+
(

1 + p + 1

p − 1

)
log t − l log(1 + r + t). (5.6)

It is easy to find a point (r0, t0) ∈ Σ such that K (r0, t0) > 0 because we have

1 + p + 1

p − 1
> l

by (2.3). Therefore, letting j → ∞, we get a contradiction ut(r0, t0) → ∞. The proof is now completed.

6. Positive C 2-solution

In this section we investigate C2-solution under stronger assumptions than that of Theorem 2.1.
Instead of (2.2), we assume that there exists a positive constant R such that F ∈ C1(R) and f ∈
C3(0,∞) satisfy ⎧⎨⎩

F (s) � Asp for s � 0 and f (r) > 0,

f ′′(r) + n − 1

r
f ′(r) � C0

(1 + r)l
for r ∈ [R,∞),

(6.1)

or ⎧⎪⎪⎨⎪⎪⎩
F (s) � Asp for s � 0 and f ′′(r) + n − 1

r
f ′(r) > 0,

f (r) � C0

(1 + r)l−2
for r ∈ [R,∞)

(6.2)

with p > 1 and some positive constants l, A, C0.
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Then we have the following theorem.

Theorem 6.1. Let u be a C2-solution of (2.1). Suppose that (6.1), or (6.2), is fulfilled. Then the same conclusion
as in Theorem 2.1 holds.

In view of Remark 2.1, there is no possibility to find an example of decaying f in (6.1) or (6.2)
except for n = 2. Hence it is doubtful to have a local in time solution for growing f at infinity in r.
The partial answer for this question can be obtained as follows.

Corollary 6.1. Suppose that (6.1) is fulfilled. Assume that C0 is replaced by C0ϕ(r)(1+r)l , where ϕ is a positive
and monotonously increasing function in [R,∞). Moreover ϕ satisfies limr→∞ ϕ(r) = ∞. Then (2.1) admits
no C2-solution till any positive time.

Corollary 6.2. Suppose that (6.2) is fulfilled. Assume that C0 is replaced by C0ϕ(r)(1 + r)l−2 , where ϕ is a
positive and monotonously increasing function in [R,∞). Moreover ϕ satisfies limr→∞ ϕ(r) = ∞. Then (2.1)
admits no C2-solution till any positive time.

The proofs of these corollaries immediately follow from the one of Theorem 6.1 by the argument
in Kurokawa and Takamura [14]. See the end of the seventh section.

As in Theorem 2.1 we need a lemma on the positivity of the solution.

Lemma 6.1. Suppose that F ∈ C1(R) satisfies F (s) � 0 for s � 0. Assume that there exists a positive constant
R such that f ∈ C3(0,∞) satisfies

f (r) > 0 and f ′′(r) + n − 1

r
f ′(r) > 0 for r ∈ [R,∞). (6.3)

Then there is a positive constant δ = δ(n) such that a C2-solution u of (2.1) satisfies

u > 0 in Σ, (6.4)

where Σ is the one in (4.2), as far as u exists. Moreover, u in Σ satisfies

u(r, t) � 1

8rm

t∫
0

dτ

r+τ∫
r−τ

λm
(

f ′′(λ) + n − 1

λ
f ′(λ)

)
dλ

+ f (r) + 1

8rm

t∫
0

dτ

r+t−τ∫
r−t+τ

λm F
(
u(λ, τ )

)
dλ, (6.5)

where m = [n/2].

Remark 6.1. In the case where the uniqueness of the solution holds, for example F (0) = 0, we do not
need any comparison argument. See Appendix 1 of John [8]. In such a case, the lemma follows from
the positivity of the linear part of the solution which means u0 defined below. For example, if u0 > 0
and F (u) = |u|p , then we have u > 0 in Σ immediately. Hence this u also solves the equation with
F (u) = |u|p−1u in Σ by the uniqueness as far as they have the same initial data.



926 H. Takamura et al. / J. Differential Equations 249 (2010) 914–930
Proof of Lemma 6.1. Let u0 = u0(r, t) be a solution of⎧⎨⎩ u0
tt − n − 1

r
u0

r − u0
rr = 0,

u0(r,0) = f (r), u0
t (r,0) = 0.

Then v0 = u0
t satisfies

⎧⎪⎨⎪⎩
v0

tt − n − 1

r
v0

r − v0
rr = 0,

v0(r,0) = 0, v0
t (r,0) = f ′′(r) + n − 1

r
f ′(r).

Hence it follows from (6.3) and the estimates for I(r, t, w(·, τ )), J (r, t, w(·, τ )) in the proof of
Lemma 4.1 that

v0(r, t) � 1

8rm

r+t∫
r−t

λm
(

f ′′(λ) + n − 1

λ
f ′(λ)

)
dλ > 0 in Σ. (6.6)

This inequality and (6.3) imply that

u0(r, t) =
t∫

0

v0(r, τ )dτ + f (r) > 0 in Σ. (6.7)

Therefore one can end the proof of (6.4) by the same manner as in Lemma 4.1. Actually, we note
that Γ (r0, t0) ⊂ Σ for any (r0, t0) ∈ Σ . Setting

t2 = inf
{

t > 0: u(r, t) = 0 where (r, t) ∈ Γ (r0, t0)
}
,

we obtain t2 > 0. Because u is positive till a small time in Γ (r0, t0) due to u(r,0) = f (r) > 0 and its
continuity together with the compactness of the closure of Γ (r0, t0). Suppose that there exists r2 > 0
such that u(r2, t2) = 0 and (r2, t2) ∈ Γ (r0, t0). Then the representation formulas,

u(r, t) = u0(r, t) + 1

2rm

t∫
0

I
(
r, t − τ , F

(
u(·, τ )

))
dτ

for n = 2m + 1 and

u(r, t) = u0(r, t) + 2

πrm−1

t∫
0

J
(
r, t − τ , F

(
u(·, τ )

))
dτ

for n = 2m, imply the desired contradiction

0 = u(r2, t2) � u0(r2, t2) > 0
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by definition of t2 because u(·, τ ) > 0, hence also F (u(·, τ )) � 0, holds in each domain of the integral.
The estimates of the kernel of each integrand, (4.7) and (4.9), are still available. Therefore (6.4) and
(6.5) immediately follow. �
7. Blow-up of C 2-solution

We are now in a position to prove Theorem 6.1. Let u be a global in time C2-solution of (2.1). The
assumption (6.2) on F and f enables us to make use of Lemma 6.1. Hence we have

u(r, t) � 1

8rm

t∫
0

dτ

r+τ∫
r

λm C0

(1 + λ)l
dλ

� C0

8(1 + r + t)l

t∫
0

τ dτ

� C0t2

16(1 + r + t)l
(7.1)

in Σ if we assume (6.1). Or, we have

u(r, t) � f (r) � C0

(1 + r)l−2
� C0t2

(1 + r + t)l
(7.2)

in Σ if we assume (6.2). Hence they can be combined as

u(r, t) � C0t2

16(1 + r + t)l
in Σ.

This is the first step of our iteration.
First we assume that u has an estimate

u(r, t) � cta

(1 + r + t)b
in Σ, (7.3)

where all a,b, c are positive constants. This is true with a = 2, b = l, c = C0/16 as we see. Then we
can put (7.3) into the third term in the right-hand side of (6.5) because its domain of the integral is
included in Σ . Hence, neglecting the first and second terms by positivity, we have by (6.1) or (6.2)
that

u(r, t) � A

8rm

t∫
0

dτ

r+t−τ∫
r

λm
(

cτ a

(1 + λ + τ )b

)p

dλ

� Acp

8rm(1 + r + t)pb

t∫
0

τ pa dτ

r+t−τ∫
r

λm dλ

� Acp

8(1 + r + t)pb

t∫
τ pa(t − τ )dτ .
0
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That is

u(r, t) � Acp

8(pa + 2)2
· t pa+2

(1 + r + t)pb
in Σ. (7.4)

In order to repeat this procedure infinitely many times, one should compare (7.3) with (7.4) and
define sequences {a j}, {b j}, {c j} by

a j = pa j−1 + 2, a0 = 2,

b j = pb j−1, b0 = l,

c j = Acp
j−1

8(pa j−1 + 2)2
, c0 = C0

16
.

Therefore we have

a j =
(

2 + 2

p − 1

)
p j − 2

p − 1
, b j = lp j . (7.5)

This implies

c j >
Bcp

j−1

p2 j
, where B = A

8

(
p − 1

2p

)2

> 0.

So one can get inductively

c j > B(p j−1)/(p−1) cp j

0

p2s j
, where s j = p j

j∑
k=1

k

pk
. (7.6)

Summing up (7.3), (7.5) and (7.6), we obtain

u(r, t) > B−1/(p−1)t−2/(p−1) exp
(

p j L(r, t)
)

in Σ,

where

L(r, t) = log
(

B1/(p−1)c0
) − 2

∞∑
k=1

k

pk
log p

+
(

2 + 2

p − 1

)
log t − l log(1 + r + t). (7.7)

It is easy to find a point (r0, t0) ∈ Σ such that L(r0, t0) > 0 because we have

2 + 2

p − 1
> l

by (2.3). Therefore, letting j → ∞, we get a contradiction u(r0, t0) → ∞. The proof is now completed.



H. Takamura et al. / J. Differential Equations 249 (2010) 914–930 929
Proof of Corollary 6.1. Replacing C0 by C0ϕ(r)(1 + r)l , we have

u(r, t) � 1

8rm

t∫
0

dτ

r+τ∫
r

λmC0ϕ(λ)dλ � C0t2ϕ(r)

16

in Σ instead of (7.1). Hence we have to put l = 0 in the iteration argument of the proof of Theo-
rem 6.1. Moreover the monotonicity of ϕ again makes us to replace ϕ(λ) by ϕ(r) in the λ-integral, so
that (7.7) should be rewritten as

L(r, T ) = log
(

B1/(p−1)c0ϕ(r)
) − 2

∞∑
k=1

k

pk
log p +

(
2 + 2

p − 1

)
log T

for any T > 0 in Σ . Therefore one can find a point (r0, T ) ∈ Σ such that L(r0, T ) > 0 by the assump-
tion limr→∞ ϕ(r) = ∞. This means that the corollary is established. �
Proof of Corollary 6.2. Replacing C0 by C0ϕ(r)(1 + r)l−2, we have

u(r, t) � C0ϕ(r)

in Σ instead of (7.2). Hence we have to put l = 0 and a0 = 0 in the iteration argument of the proof of
Theorem 6.1. Again by the monotonicity of ϕ , (7.7) should be rewritten as

L(r, T ) = log
(

B1/(p−1)c0ϕ(r)
) − 2

∞∑
k=1

k

pk
log p + 2

p − 1
log T

for any T > 0 in Σ . The proof is ended as above. �
8. Remark on the lifespan

Finally we shall discuss the lifespan, the maximal existence time, of the solution. If we put f (r) =
εϕ(r) with a function ϕ and a small parameter ε > 0 in (2.1), then the lifespan T (ε) can be measured
at least for the example in Remark 2.1 by order of ε, where

T (ε) = sup
{

T ∈ (0,∞]: ∃C3 solution u(r, t) of (2.1) in (0,∞) × [0, T ]}.
To see this, we first put ϕ(r) = r−ν with 0 < ν < κ0. Then, in order to make (2.2) to be independent

of ε, we have to replace C0 in (2.2) by C0ε and to assume that

ν(ν + 2 − n) + εp−1 Rν+2−pν � C0.

This condition on R can be rewritten as

(r �) R � C1ε
−(κ0−ν)−1

, (8.1)

where C1 is a positive constant independent of ε. We note that this rescaling argument requires
replaced c0 in (5.6) by c0ε. Hence it is easy to find that there is a positive constant C2 independent
of ε such that
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εt2+κ0−l
0 > C2. (8.2)

Therefore (8.1) and (8.2) give the same upper bound of the lifespan as

T (ε) � C3ε
−(κ0−ν)−1

, (8.3)

where C3 is a positive constant independent of ε because of l = ν + 2 for this example.
On the other hand, we know that there exist positive constants c and C independent of ε such

that T̃ (ε), a lifespan of the solution of (1.1) with rescaled initial data of the form f (x) = εϕ(x), g(x) =
εψ(x), satisfies

cε−(κ0−κ)−1 � T̃ (ε) � Cε−(κ0−κ)−1
. (8.4)

Here we assume that C in (1.2) is replaced by Cε, and the quantity with 0 < κ < κ0 in (1.3) has an
order O (ε) as ε ↓ 0. See [1,10,13,18,21]. In view of Remark 2.1, we have the same optimal upperbound
for both T (ε) in (8.3) and T̃ (ε) in (8.4) by setting ν = κ .
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