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Abstract

Let © c RV (N > 3) be a bounded C? domain and 8(x) =dist(x,0Q). Put L, = A + 8% with u > 0.
In this paper, we provide various necessary and sufficient conditions for the existence of weak solutions to

—Lyu=uP +7 inQ, u=v onds,

where u > 0, p > 0, T and v are measures on 2 and 92 respectively. We then establish existence results
for the system

—Lyu=evP+1 inQ,

—Lﬂvzeuﬁ—i—f in Q,

u=v, v="VD ona<,
where € = 1, p >0, p > 0, t and T are measures on €2, v and ¥ are measures on 92. We also deal with

elliptic systems where the nonlinearities are more general.
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1. Introduction

Let @ c RY (N > 3) be a bounded C? domain, §(x) = dist (x, 3$2) and g € C(R). Put L, :=
A+ 5% In the present paper we study semilinear problems with Hardy potential of the form

—Lyu=gw)+t inQ, (1.1)

where & > 0, T is a Radon measure on .

The boundary value problem with measures for (1.1) without Hardy potential and with power
absorption nonlinearity, i.e. u =0, Tt =0, g(u) = —|u|1’_1u, p > 1, was well understood in the
literature, starting with a work by Gmira and Véron [10]. It was proved that there is the critical
exponent p* := % in the sense that if p € (1, p*) then there is a unique weak solution for
every finite measure v on 2, while if p € [p*, co) there exists no solution with a boundary
isolated singularity. Marcus and Véron [15,16] studied this problem by introducing a notion of
boundary trace, providing a complete description of isolated singularities in the subcritical case,
i.e. 1 < p < p*, and giving a removability result in the supercritical case, i.e. p > p*.

The solvability for boundary value problem for (1.1) without Hardy potential and with power
source term, namely u =0, t =0, g(u) =u?, p > 1, was studied by Bidaut-Véron and Vivier
[4] in connection with sharp estimates of the Green operator and the Poisson operator associ-
ated to (—A) in Q. They proved that, in the subcritical case 1 < p < p*, the problem admits a
solution if and only if the total mass of the boundary datum v is sufficiently small. Afterwards,
Bidaut-Véron and Yarur [6] reconsidered this type of problem in a more general setting and pro-
vided a necessary and sufficient condition for the existence of solutions. Recently, Bidaut-Véron
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et al. [5] provided new criteria for the existence of solutions with p > 1 in terms of the capacity
associated to the Besov spaces.

Let ¢ >01in Q and p > 1, we denote by L?(£2; ¢) the space of all function v on 2 satisfy-
ing fQ [v|? ¢dx < co. We denote by D(2; ¢) the space of Radon measures v on 2 satisfying
f9¢d|l’| < 00 and by 9T (Q; ¢) the nonnegative cone of M(Q; ¢). When ¢ = 1, we use the
notations () and M (). We also denote by () the space of finite measures on 92 and
by M+ (9R) the nonnegative cone of M(IQ).

Let G, and K, be the Green kernel and Martin kernel of —L,, in Q, G, and K, be the
corresponding Green operator and Martin operator (see [ 14,9] for more details). Let Cy be Hardy
constant, namely

) Jo IVv[2dx
Cp= inf 22277 (1.2)
veH! @\(0) [o(v/8)*dx

then it is well known that 0 < Cy < ‘—ll and if 2 is convex then Cy = % (see for example [12]).

Moreover the infimum is achieved if and only if Cy < ‘1—‘. When —A$ > 0 in Q in the sense of
distributions, the first eigenvalue A, of L, in €2 is positive, i.e.

2 Mmoo 2
A, = inf Jo(IVel” — 5reT)dx =0 (1.3)
B penl @) Jo p?dx

For 1 € (0, %], denote by « the following fundamental exponent

1
a:=§(1+\/1—4u). (1.4)
Notice that % < o < 1. The eigenfunction ¢, associated to A, with the normalization
fQ((pM/3)2dx = | satisfies ¢~ 18% < @, < c6* for some constant ¢ > 0 (see [7]).

In relation to Hardy constant, Bandle et al. [3] classified large solutions of the linear equation
—L,u=0 inQ, (1.5)

and of the associated nonlinear equation with power absorption
—Lyu+u?=0 inQ. (1.6)

In [14], Marcus and P.-T. Nguyen studied boundary value problem for (1.5) and (1.6) with u €
(0, Cy) in measure framework by introducing a notion of normalized boundary trace which is
defined as follows:

Definition 1.1. A function u € L!

Ioc(§82) possesses a normalized boundary trace if there exists a
measure v € 91(3$2) such that

éimoﬁ"‘_l / lu —K,[v]|dS =0. (1.7)
{xe:6(x)=p}

The normalized boundary trace is denoted by tr*(u).
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The restriction u € (0, Cy) in [14] is due to the fact that in this case L, is weakly coercive in
HO1 (£2) and consequently by a result of Ancona [2, Remark p. 523] there is a (1 — 1) correspon-
dence between M (3Q) and the class of positive L, harmonic functions, namely any positive
L, harmonic function u can be written in a unique way under the form u = K,[v] for some
v eMT(ORQ).

The notion of normalized boundary trace was proved [14] to be an appropriate generaliza-
tion of the classical boundary trace to the setting of Hardy potentials, giving a characterization
of moderate solutions of (1.6). In addition, it was showed in [14] that there exists the critical
exponent

N+«
Pu T N+a-2 (18

such that if p € (1, p,,) then there exists a unique solution of (1.6) with tr*(x) = v for every
finite measure v on 92, while if p > p,, there is no solution of (1.6) with an isolated boundary
singularity. Marcus and Moroz [13] then extended the notion of normalized boundary trace to the
case L < JT and employed it to investigate (1.6). When p = %, L, is no longer weakly coercive
and hence Ancona’s result cannot be applied. However, Gkikas and Véron [9] observed that if
the first eigenvalue of —L 1 is positive then the kernel K 1 (-, y) with pole at y € 92 is unique up
to a multiplication and any positive L 1 harmonic function # admits such a representation. Based
on that observation, they considered the boundary value problem with measures for (1.6), fully
classifying isolated singularities in the subcritical case p € (1, p,) and providing removability
result in the supercritical case p > p,. A main ingredient in [9] is the notion of boundary trace
which is defined in a dynamic way and is recalled below.
Let D € Q and xo € D. If h € C(d D) then the following problem

—L,u=0 in D,
(1.9)
u=nh ondD,
admits a unique solution which allows to define the L -harmonic measure a)g) on dD by
uto) = [ hnda o) (1.10)

oD

A sequence of domains {€2,} is called a smooth exhaustion of Q if 02, € C 2 Q, C Qs
U, 2, = Q and HY10RQ,) = HY~1(3Q). For each n, let a)gl be the Lff" -harmonic measure
on 082,.

Definition 1.2. A function u possesses a boundary trace if there exists a measure v € N ()
such that for any smooth exhaustion {€2,} of €,

n—o0

lim | ¢udwg =/;dv Vi e C(Q). (1.11)
02, Q2

The boundary trace of u is denoted by tr (u).
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It is worthy mentioning that in Definition 1.2, u is allowed to belong to the range (0, JT]
provided A, > 0.
In parallel, semilinear equations with Hardy potential and source term

—Lyu=u? inQ (1.12)

were treated by Bidaut-Véron et al. [5] and by P.-T. Nguyen [ 18] and a fairly complete description
of the profile of solutions to (1.12) was obtained in subcritical case p < p,, (see [18]) and in
supercritical case p > p,, (see [5]).

Our first contribution is to show that the notion of normalized boundary trace given in Def-
inition 1.1 is equivalent to that in Definition 1.2 by examining tr (fo[r]) = tr*(fo[t]) and
tr (Kff[v]) =tr* (Kff[v]). This enables to establish important results for the boundary value prob-
lem for linear equations (see Proposition 2.13) which in turn forms a basic to study the boundary
value problem for

—Lyju=gu)+t in Q,
(1.13)
tr (u) = v.

When dealing with (1.13), one encounters the following difficulties. The first one is due to
the presence of the Hardy potential in the linear part of the equations. More precisely, since the
singularity of the potential at the boundary is too strong, some important tools such as Hopf’s
lemma, the classical notion of boundary trace, are invalid, and therefore the system cannot be
handled via classical elliptic PDEs methods. The second one comes from the interplay between
the nonlinearity, the Hardy potential and measure data. The interaction between the difficulties
generates an intricate dynamics both in €2 and near 9€2 and leads to disclose new type of results.

Convention. Throughout the paper, unless otherwise stated, we assume that u € (0, 41_1] and the
first eigenvalue X, of —L,, in Q2 is positive. We emphasize that if 4 € (0, Cy) then A, > 0.

Definition 1.3. (i) The space of test functions is defined as

X, (Q):={¢ € HL.(Q):87%¢ e H'(Q,8%), §7%L, ¢ € L¥(Q)). (1.14)
(ii) Let (t, v) € M(, %) x M(I). We say that u is a weak solution of (1.13) if u € L' (Q2; 8%),
g(u) € L'(2;8%) and

—/uLﬂgdx:/g(u)gdx+/§dt—/Ku[v]Lﬂg“dx Vi e X, (R2). (1.15)
Q Q Q Q

Main properties of solutions of (1.13) are established in the following proposition.

Proposition A. Let T € M(QL; §%) and v € M(IQ). The following statements are equivalent.
(1) u is a weak solution of (1.13).
(i) g(u) € L' (2 8%) and

u=G,lgw)] +Gulr] +K,[v]. (1.16)

(i) ue Ll (), gw)e Ll (Q), uisadistributional solution of (1.1) and tr (u) = v.

loc loc
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This allows to establish necessary and sufficient conditions for the existence of a weak solu-
tion of

—Lu=u’ 4ot inQ,

(1.17)
tr (u) = ov.
Theorem B. Let T € MH(Q; %), v e MT(IQ) and p > 0.

(i) Assume 0 < p < py,. Then there exists a constant C > 0 such that
GulK,[v]P1 < CK,[v]  ae in Q. (1.18)

(ii) Assume 0 < p < p,,. Then there exists a constant C > 0 such that
GulGLIr]P1 < CGylt]  a.e. in L. (1.19)

(iii) If (1.18) and (1.19) hold then problem (1.17) admits a weak solution u satisfying

Gulot]l +Kulovl <u < C(Gulot] +Kylov]) a.e. in Q (1.20)

for o > 0and o > 0 small enough if p > 1, forany o >0and 0 >0if0 < p < 1.
@Gv) If p > 1 and (1.17) admits a weak solution then (1.18) and (1.19) hold with constant
1

(v) Assume O < p < py,. Then there exists a constant C > 0 such that for any weak solution u
of (1.17) there holds

Gulotl+Kulovl <u < C(Gulot] +Kulov] +8%) a.e. in Q. (1.21)

In order to study (1.17) in the supercritical case, i.e. p > p,, we make use of the capacities
introduced in [5] which is recalled below. For 0 <6 < 8 < N, set

1
lx = yIN=F max{|x — yl, 8(x), §(»)}’

Ny p(x,y) = V(x,y) €2 x Q, x#y, (1.22)

Np glt](x) ::/Ng,,g(x,y)dt VT e MH(Q). (1.23)

Q

Fora>—1,0<6<p <N ands > 1, define Capfy, by

Capﬁlwss(E) :=inf /cS“qb‘v dx: ¢ >0, Nyggl[8'¢l> xE ¢ » (1.24)

Q

for any Borel set E C Q. For 6 € (0, N — 1) and s > 0, let Capg’g, be the capacity defined in [5,

N

Definition 1.1]. Notice that if s > N — 1 then Capgﬁ({z}) > 0 for every z € 2.
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Theorem C. Let T € IMT(Q; %) and v € MT(IQ). Assume p > 1. Then the following state-

ments are equivalent.
(i) There exists C > 0 such that the following inequalities hold

/ 5%dt < CCaplt i?j,(E) V Borel E C Q, (1.25)
E
v(F) < CCap‘;’S_{M_+I (F) Y Borel F C0Q. (1.26)
£l

(1) There exists a positive constant C such that (1.18) and (1.19) hold.
(iii) Problem (1.17) has a positive weak solution for o > 0 and o > 0 small enough.

Remark. When 7 = 0, Theorem C covers Theorem B (i), (iii) due to the fact that

Cap?iza+a_ﬂ (2 > ¢ >0 forevery z € 9Q if 1 < p < py. Also if 1 < p < py then (see
L

Lemma 3.10)

: (p+Da
5125 Capy,, , (&) >0,

which implies the statements (ii) and (iii) in Theorem B.

The next goal of the present paper is the study of weak solutions of semilinear elliptic system
involving Hardy potential

—Lyju=gW)+1 inQ,
—L,ov=gw)+7T inQ, (1.27)

trw)=v, tr(v)="v
where 7, T € 9M(2; 8%), v,V € M), g, g € C(R).

Definition 1.4. A pair (u, v) is called a weak solution of (1.27) if u € L'(2; 8%), v e L' (Q; §%),
gu) € L'(28%), g(v) € L(R;8) and

—fuLugdx=/g(v)§dx+/§dr—/Kﬂ[v]Luédx,
Q Q Q Q

(1.28)
—/vLugdx=/§(u)§dx+/§df—/Ku[f)]Lugdx V¢ e X, ().
Q Q Q Q

A counterpart of Proposition A in the case of systems is the following:

Proposition D. Let 7, T € MM(2; §%) and v, v € IM(3RQ). Then the following statements are equiv-
alent.
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(1) (u, v) is a weak solution of (1.27).
(i) g(u) € L1 (Q; 8%), g(v) € L (Q; 8%) and

u=Gulg+Gulrl+Kulvl, v=GCplg)]+ Gult]+ Ky[V]. (1.29)

(iii) (u, v) € (L},.(2)%, (g(v), §(w)) € (L},.())?, (u,v) is a solution of
—Lyju=gW)+1 inQ,

(1.30)
—Lov=gw)+7T inQ,

in the sense of distributions and tr (u) = v and tr (v) = V.

Elliptic systems arise in biological applications (e.g. population dynamics) or physical ap-
plications (e.g. models of nuclear reactor) and have been drawn a lot of attention (see [8,19]
and references therein). A typical case is Lane-Emden system, i.e. system (1.27) with © =0,
g(v) = vP, g(u) = uP. Bidaut-Véron and Yarur [6] proved various existence results for Lane—
Emden system under conditions involving the following exponents

_p+1 - p+1
=p= , =p—. 1.31
q pp+1 q pp+1 (1.31)
We first treat the system
—Lyu=vP+o1 inQ,
—Lyv=i"4+6% inQ, (1.32)

tr(u) =pov, tr(v)=o0V,

where p >0, p >0, 7,7 € M(2; %) and v, v € M(INQ).
The next theorem provides a sufficient condition for the existence of solutions of (1.32).

Theorem E. Let p > 0, p > 0, 7, T € M (2 8%) and v, v € MT(IQ). Assume pp # 1, ¢ < py,

Gult]l +Kylv +v] € LP(Q,8%). Then system (1.32) admits a weak solution (u, v) for o >0
and 6 > 0 small if pp > 1, forany o > 0and 6 > 0 if pp < 1. Moreover

v Gplw] + K, [5], (1.33)
U~ Gul(Gulw] + K [0)P]+ Gult] + K, [v] (1.34)

where the similarity constants depend on N, p, p, u,2,0,6,t,T and
w =Gt + K, [01P1? + K, [v]P + 7.

A new criterion for the existence of (1.32), expressed in terms of the capacities Cap%e 58 and

Capgfsz, is stated in the following result.
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TheoremF. Let p > 1, p > 1, 7, T € MT(Q; 8%) and v, b € M (9Q). Assume there exists C > 0
such that

max / s%dr, / 8d7 SCmin{CapI(\iji)g/(E),CapI(\é: l)g,(E)}, VECQ, (1.35)
E E

max{v(F), D(F)} < Cmin{Cap?iH_lﬂ (). Capff_zﬁ,ﬁ 5 (F)) VF coQ. (1.36)
P’ P’

Then (1.32) admits a weak solution (u,v) for o >0, ¢ >0, 0 > 0, 0 > 0 small enough. There
exists C > 0 such that

Gulotl+Kulovl<u <C(Gulot + 671+ K, [ov +0V]),

G671+ K,[60] < v < C(Gylot +67]+ Kylov + o0)). (37
Finally, we deal with elliptic systems with more general nonlinearities
—Lyju=€egv)+ot in 2,
—Lyv=egu)+o7 in Q, (1.38)

tr(u) =ov, tr(v)=0v ondQ

where g and g are nondecreasing, continuous functions in R, e =+1,0 > 0,5 >0, o0 > 0,

¢ >V\(7)f; shall treat successively the cases € = —1 and € = 1. For any function f, define
)
A :=/s_1_1’“|f(s) — f(=s)|ds (1.39)
1
with p,, defined in (1.8).
Theorem G. Let € = —1 and 0,6,0,0 be positive numbers, T, T € M(2; %) and v,v €

IM(I2). Assume that Ay + Az < 0o and g(s) = g(s) = 0 for any s < 0. Then system (1.38)
admits a weak solution (u, v).

When € = 1, different phenomenon occurs, which is reflected in the following result.

Theorem H. Let e =1, 7, T € M(Q; 6%) and v, v € M(92).

I. SUBCRITICALITY. Assume that Ag + A; < oo. In addition, assume that there exist q1 > 1,
ay > 0, by > 0 such that

g <arls|” +by Vse[-1,1], (1.40)
g <ails|”" +b1 Vse[-1,1]. (1.41)

Then (1.38) admits a weak solution for by, 0,6, 0, 0 small enough.
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II. SUBLINEARITY. Assume that there exist q1 > 1, g2 € (0,1], a» > 0 and by > 0 such that
Ky [P+ GullT]] € L9 (2 671 and

lg(s)| <az|s|?" + by VseR, (1.42)

1g()| < aals|” +by VseR. (1.43)

(@) If 192 = 1 and ay > 0 is small then (1.38) admits a weak solution for any o > 0, 6 > 0,
0>0,0>0.
(b) If q192 < 1 then (1.38) admits a weak solution for any o >0, 6 >0, 0 >0, 0 > 0.

III. SUBCRITICALITY AND SUBLINEARITY. Assume that A, < 00. In addition, assume that
there exist a; >0, ap >0, by >0, by > 0, g1 € (1, pp), g2 € (0, 1], such that (1.40) and (1.43)
hold.

(@) If q1q2 > 1 then (1.38) admits a weak solution for by, by, 0,6, 0, 0 small enough.

(b) If gopu =1 and ay is mall enough then (1.38) admits a weak solution for any o > 0,
6>0,0>00>0.

(©) If gapu < 1 then (1.38) admits a weak solution for every for any o >0, 6 >0, ¢ > 0,
0> 0.

Remark about elliptic equations and systems with weights. We emphasize that Theorems B
and C can be extended to the case of equations with weights of the form

—Lyu=58"u’ +ot ing, (1.44)

and Theorems E—H can be extended to the case of systems with weights of the form

—Lu=€¢8"g(v)+ot ing,
(1.45)

—Lyv=e8"3u)+6% inQ,

by using similar arguments. However, in order to avoid the complication of the proofs, we state
and prove the results without weights.

The paper is organized as follows. In Section 2 we investigate properties of the boundary
trace defined in Definition 1.2 and prove Propositions A and D. Theorems B and C are proved

in Section 3 due to estimates on Green kernel, Martin kernel and the capacities Cap(R‘ID2 +i)z, and

Cap EI)SEOH»‘%I N4
systems with power source terms (1.32) (Theorems E and F) are obtained by combining the
method in [6] and the capacity approach. Finally, in Section 5, we establish existence results
for elliptic systems with more general nonlinearities (Theorems G and H) due to Schauder fixed
point theorem.

,- In Section 4 sufficient conditions for the existence of weak solutions to elliptic

Notations. Throughout this paper, C, c, c’,... denotes positive constants which may vary from
one appearance to another. The notation A ~ B means ¢ ' B < A < ¢B for some constant ¢ > 1
depending on some structural constant.
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2. Preliminaries
2.1. Green kernel and Martin kernel

Denote by LY (Q: 7), 1 < p <00, T €M (), the weak LP space (or Marcinkiewicz space)

(see [17]). When t = §%dx, for simplicity, we use the notation LY (: 8%). Notice that, for every
s> —1,

LP(2;8°) CL"(;8%) Vrell,p). (2.1)

Moreover for any u € L5, (2;8%) (s > —1),

88dx <17P ”””iﬂ,(ﬂ;m v > 0. (2.2)

{lul=2}

Let fo and K ff be respectively the Green kernel and Martin kernel of —L, in Q2 (see [14,9]) for
more details). We recall that

G2, ) ~min{lx = y2 7V, 60" =y PN vk ye@ux £y, @3)
K@, ) ~8x)%x —yP N7 VxeQ, yeoQ. (2.4)

Finally, we denote by G,, and K, be the corresponding Green operator and Martin operator (see
[14,9]), namely

Gulrlx) = / Gu(x,y)dt(y), VreIMK), (2.5)
Q

K [v1x) =[Kﬂ(x,z)dv(z), Yv € M(0R). (2.6)
Q2

Let us recall a result from [4] which will be useful in the sequel.

Proposition 2.1. ([4, Lemma 2.4]) Let w be a nonnegative bounded Radon measure in D = Q or
02 and n € C(R2) be a positive weight function. Let H be a continuous nonnegative function on
{(x,y) €2 x D: x#Yy}. Forany A >0 we set

A() i ={xeQ\{y}: H(x,y)>A} and m;(y):= / n(x)dx.
Ax(y)
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Suppose that there exist C > 0 and k > 1 such that m; (y) < CA7* for every A > 0. Then the
operator

Hlw](x) := / H(x,y)dw(y)
D

belongs to Lkw(Q; n) and

Ck
||H[a)]||L{j}(Q;r]) <1+ m)w(D)
By combining (2.3), (2.4) and the above Lemma we have the following result.

Lemma 2.2. Let y € (—#12_2, A",‘—]_Vz) Then there exists C = C(N, i, y, ) > 0 such that

Gu(. %)
8(5)”

sup
EeQ

<C. 2.7)

N+y
L T=2(@;67)

Proof. Let & € Q. We will apply Proposition 2.1 with D = Q, n =687 with y > —1, 0 = §%6,
where 8¢ is the Dirac measure concentrated at &, and

G )
H(x,y)= #

Then

G ’
H[w](x)=/%My)“d&(y):%(x,%‘).
Q

From (2.3), there exists C = C(N, u, 2) such that, for every (x,y) € 2 x Q, x #y,

Gulx,y) <C8()*|x — y* V72, (2.8)
s(»)* _
Gulr,y) = Coengl = >N, 2.9)
Gu(x,y) < C8(x)*8(»)%|x — y|> N2, (2.10)
By (2.8), for any x € A, (y),
A< Clx —y N, (2.11)
and form (2.9) and (2.10)
C
S(x)¥ < —lx = y>V and §(x)* > CAlx — y|N 122 (2.12)
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We consider two cases: y >0and —1 <y <0.

Case 1: y > 0.Due to (2.11) and (2.12) we have

Y
C @
mi(y) = / 8(x)dx =< / <I|x—yI2N> dx < CA™Wet1,

Ax(y) An(y)

with y < ﬁ—ivz Observe that w (2) = §(£)%, by Proposition 2.1, we get

Gk BN e, = C3E".

(@ 8)
This implies (2.7).

Case2: —1 <y <0.By (2.11) and (2.12) we have

)= / bx)7dx = /(Cklx—le”“‘z)%dxgcr%,

Ay(y) Ar(y)

with y > — By arguing similarly as in Case 1, we get (2.7). O

aN
N+2a—-2"

Lemma 2.3. Let y > —1. Then there exists C = C(N, i, y, 2) > 0 such that

sup HK G, S)H Nty <C.
N+ot Z(QSV)

Proof. Let & € 92. We will apply Proposition 2.1 with D = 92, n = §¥ with y > —1 and
@ = 8¢ . The rest of the proof can be proceeded as in the proof of Lemma 2.2 and we omitit. O

In view of (2.1), Lemma 2.2 and Lemma 2.3, one can obtain easily the following proposition
(see also [14,18]).

Proposition 2.4. (i) Let y € (— +2a 3 N 2) Then there exists a constant ¢ = c(N, u,y, 2)
such that

||GM[r]|} Ees <cltlonsey VYT €My ). (2.13)
Ly 777 (2:;87)

(i) Let y > —1. Then there exists a constant ¢ = c(N, u, y, Q) such that

1K, V]H sy <clvlimpe YveMOR). (2.14)
Ly T477(2:87)
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2.2. Boundary trace

In this section we study properties of the boundary trace in connection with of L, harmonic
functions. In particular, we show that, when u < Cy(2), the boundary trace defined in Defini-
tion 1.2 coincides the notion of normalized boundary trace introduced in Definition 1.1). To this
end, we will examine that tr (G,[t]) = 0 for every T € M(2; §%) and tr (K, [v]) = v for every
v € M(32). These results are proved below, based on a combination of the ideas in [9] and [14].
It is worth emphasizing that the below results are valid for u € (0, }—1] (under the condition that
the first eigenvalue A, of —L, is positive).

Proposition 2.5. Let T € M(2; 6%) and u = G, [t]. Then tr (u) =0.

Proof. First we assume that t is nonnegative. Let {€2,} be a smooth exhaustion of 2 and for

each n, let wg’n be the L,Sf” harmonic measure on 9€2,,. Then u satisfies

—Lyju=rt in 2,
(2.15)
u=u on 0%2,.
Thus

AQ
This, joint with (fo" [7]1 1 Gplr] as n — oo, ensures

lim uda))é0 =0,
n—0oo n
EIoN

namely tr (u) = 0.
In the general case, the result follows from the linearity property of the problem. O

The next result shows that the boundary trace of L, harmonic function can be achieved in a
dynamic way.

Proposition 2.6. [9, Proposition 2.34] Let xo € 21 and . € 9N(02). Put
v(x) = / Ky (x, y)dv(y),
a9
then for every ¢ € C(Q),

n— oo

lim {vdwg)n :/g‘dv. (2.17)
3Ry a0
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Also we have the following representation formula for L, harmonic functions.

Proposition 2.7. [9, Theorem 2.33] Let u be a positive L, harmonic in Q. Then u € LY(S: 8%)
and there exists a unique Radon measure v on 92 such that

u(x):/KM(x,y)dv(y). (2.18)

I

In the following proposition, we study the boundary trace of L, subharmonic functions.

Proposition 2.8. Let w be a nonnegative L, subharmonic function. If w is dominated by an L,
superharmonic function then L,w € M ($2; 8%) and w has a boundary trace v € MM(dQ). In
addition, if tr (w) =0 then w =0.

Proof. By proceeding as in the proof of [14, Proposition 2.14] and using Proposition 2.7, we
obtain the desired result. O

Proposition 2.9. Let w be a nonnegative L, subharmonic function. If w has a boundary trace
then it is dominated by an L, harmonic function.

Proof. The proof is similar to that of Proposition 2.20 in [14]. For the sake of convenience we
give it below. Let {€2,} be as in the proof of Proposition 2.5 and fix xo € €2;. For any x € Q,
set

Uy (x) = / wda)fzn,

082,

then u, is L,sf” harmonic function with boundary trace w. Furthermore, by the maximum princi-
ple we have that w <u, in ,. Let v € M (I2) be such that

n—o00
082, IR

lim [ ¢wdog =/;du Vi e C(RQ). (2.19)

Then
up(x0) = f wda)g’n — / dv.
3R a0
We infer from Harnack inequality that {u,} is locally uniformly bounded and hence there exists

an L, harmonic function u such that u,, — u locally uniformly in Q. By Proposition 2.8, there
exists a nonnegative measure T € T (2; 6%) such that

w=—-G,t]+K,[v].
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On the other hand,
w= —(fo" [t] +uy, = —Gulr] +u,
locally uniformly in 2. Thus we can deduce that u =K, [v] and the result follows. O

Proposition 2.10. Let u be a nonnegative L, superharmonic function. Then there exist v €
M (ORQ) and T € MT(Q; §%) such that

u=Gy,lt]+K.[v].

Proof. Let 2, and wg’n be as in the proof of Proposition 2.5. Since u is L, superharmonic
function there exists a nonnegative Radon measure in €2 such that

—Lyju=t inQ

in the sense of distributions. Note that u is the unique solution of

-Lyw=rt in
(2.20)
w=u on 082,.
Therefore
u=Gr[r] + K2 u). (2.21)

Set w;,, = KE" [u]. Since T > 0, by the above quality, we have 0 < w, (x) < u(x). Thus by the
Harnack inequality, w, — w locally uniformly in 2. Furthermore, w is an L, harmonic function
in © and by Proposition 2.18 there exists v € M1 (dQ) such that

w=K,[v]. (2.22)
Now since Gﬁ” 1 G, as n — oo, we deduce from (2.21) and (2.22) that
u=G ]+ K [u] » Gplr] + Ky [v].
Since
Glt('xv Y) Z C(x7 l“l" N)(S(y)a’
we can easily prove that T € 9T (2; §%) which completes the proof. O
The above results enable to study the boundary value problem for the linear equation

—Lyju=rt in €2,
(2.23)
tr(u) =v.
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Definition 2.11. Let (t, v) € M(R2; §%) x M(I2). We say that u is a weak solution of (2.23) if
ue L'(Q; 8% and

—/uLﬂgdxzfgdr—/Ku[v]Lugdx Ve € X, (), (2.24)
Q Q Q

Proposition 2.12. For any (t,v) € IM(2; §%) x M(I2) there exists a unique weak solution of
(2.23). Moreover

u=Gylr]+K,[vl, (2.25)
lullp 1.0y < clliTlloni@:s) + IvIlonea)- (2.26)

In addition, for any ¢ € X,(R2), ¢ >0,

—/|u|LM§dx§/§sign(u)dr—/KM[|U|]LM§dx, (2.27)
Q Q Q
and
—/quLM{dx §/§sign+(u)dr —/K/L[UJF]LM{dx. (2.28)
Q Q Q

Proof. The proof is similar to that of [9, Proposition 3.2] and we omitit. O

Remark 2.1.If h € L' (3%, da)g)) is the boundary value of (2.23), the above Proposition is valid
for dv = hdwg).

Proposition 2.13. (i) For T € MM(; %), tr (G, [t]) =0 and for v e M(O2), tr (K, [v]) = v.

(ii) Let w be a nonnegative L, subharmonic function in Q. Then w is dominated by an L,
superharmonic function if and only if w has a boundary trace v € M (). Moreover, if w has a
boundary trace then L, w € MM (Q; 8%). If, in addition, if tr (w) =0 then w = 0.

(iii) Let u be a nonnegative L,, superharmonic function. Then there exist v € MT(dQ) and
T € M (R, §%) such that (2.25) holds.

(iv) Let (t,v) € M(2; §%) x M(0K2). Then there exists a unique weak solution u of (2.23).
The solution is given by (2.25). Moreover, there exists ¢ = c(N, u, 2) such that (2.26) holds.

Proof. Statement (i) follows from Proposition 2.5 and Proposition 2.6. Statement (ii) can be
deduced from Proposition 2.8 and Proposition 2.9. Statement (iii) follows from Proposition 2.10.

Finally statement (iv) is obtained due to Proposition 2.12. O

Proof of Proposition A. We infer from [9] that (i) <= (ii). By an argument similar to that of
the proof of [18, Theorem B], we deduce that (ii) < (iii). O

For 8 > 0, put

Qp:={xeQ:6(x)<B}, Dg:={xeQ:6(x)> B}, Lg:={xecQ:6x) =4} (2.29)
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Lemma 2.14. There exists By > 0 such that for every point x € 5/3*, there exists a unique point
oy € 0S2 such that x = ox — §(x)ng, . The mappings x — 8(x) and x — oy belong to Cz(ﬁﬁ*)
and C! (5/3*) respectively. Moreover, limy_, 5 (x) V8(x) = —ng,.

Proof of Proposition D. (iii) =— (ii). Assume (u, v) is a distribution solution of (1.30). Put
w = g(v) and denote wg := ®|pg, T8 = T|Dy and Ag := ulsy for g € (0, B4). Consider the
boundary value problem

—L,w=wg+18 in Dy, w=Ag on Xg.

This problem admits a unique solution wg (see [9]). Therefore wg = u|p T We have
D D D
ulpy =wp =G’ [wgl + Gu” [tp] + P’ [2p]

where szﬁ and IP’,?“ are respectively Green kernel and Poisson kernel of —L, in Dg.
It follows that

[ 62 conswondy| =€ ] < luiv, |+ || + |01
Dg

Letting 8 — 0, we get

/Gu(uy)g(v(y))dy < 00. (2.30)
Q

Fix a point xo € 2. Keeping in mind that G, (xo, y) ~ §(y)* for every y € Qg,, we deduce
from (2.30) that g(v) € L'(Q;8%). Similarly, one can show that g(u) € L'(2; 8%). Thanks to
Proposition 2.13 (v), we obtain (1.29).

(ii) = (iii). Assume u and v are functions such that g(u) € L'(Q;8%), g(v) € L'(Q;8%)
and (1.29) holds. By Proposition 2.13 (i) L, K, [v] = L, K,[V] =0, which implies that (u, v)
is a solution of (1.30). On the other hand, since g(u) € L'(2;8%) and g(v) € L'(Q;8%),
we deduce from Proposition 2.13 (ii) that tr (G, [g(u)]) = tr (G,[g(v)]) = 0. Consequently,
tr (u) =tr (K, [v]) =v and tr (v) = tr (K, [V]) = V.

(iii) = (i). Assume (u, v) is a positive solution of (1.30) in the sense of distributions. From the
implication (iii) == (ii), we deduce that u € L'(2;8%), v € L'(Q; 6%), g(u) € L' (Q; 8%) and
g(v) € L(; 8%). Hence, by Proposition 2.13, (1.28) holds for every ¢ € X, (£2).

(i) = (iii). This implication follows straightforward from Proposition 2.13. O
3. The scalar problem

3.1. Concavity properties and Green properties

Here we give some concavity lemmas that will be employed in the sequel.
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Proposition 3.1. Let ¢ € L1(2; 8%), ¢ > 0 and t € M (Q; §%). Set

w:=0Gule+71] and v =G,lr].

Let ¢ be a concave nondecreasing C? function on [0, 00), such that ¢ (1) > 0. Then ¢'(w/¥)g €
LY(Q2; 8%) and the following holds in the weak sense in

—L, (Y w/¥)) =¢'(w/¥)e.
Proof. Let {¢,}, 7, € C*®(Q) such that ¢, — ¢ in L1(, 8%) and 7, — 7. Set w,, := G, [g, +

17,] and ¥, = G, [1,]. Since w, > ¥, > 0 for any n > ng for some ng € N, we have by straight-
forward calculations

wy
wd(—) | = (=AY, —)— —¢'(— Aw, —
(I/f ¢(¢n)> ( w)<¢(¢n) Wn¢(wn)>+( w)d)(wn)

— Yt (5 ’v (“’—)
" Vi

Now note that, since ¢’ > 0, we have

2

Yn

Wn n
(- Awn)¢(1/j) ¢(1/fn)< Ay — +M62 +<Pn)~

This, together with the fact that ¢ (£) — ¢’ (¢) + ¢'(t) > 0 for any ¢ > 1, implies

— Ay, —)— —¢'(— Aw, Zn
( 1//)((1)(%) %¢>(%))+( w)¢(wn)

> (=AY (¢<—> — ey g (—)) +¢ (—)( Y puln 5 +¢n)

R ARG Vi
u <¢(—> ¢(w’1)+¢/<ﬂ))+¢/<ﬂ)<— LN )

R AT o\ e e
= GV 9 o

Thus we have proved

(1/fn¢(%)> > ¢ (%) n-

Also

Iﬂnd)(w—) < Yn(@(0) +¢' (O)W ) = C(Wn +wp)
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and

/w(—)L édx>/¢’(%)<ﬂn€dx VE € X, ().
Q

By passing to the limit with Lebesgue theorem and Fatou lemma, we complete the proof. O
In the next Lemma we will prove the 3-G inequality which will be useful later.

Lemma 3.2. There exists a positive constant C = C(N, u, 2) such that

G, NGuy,2) _ c (5(y)°‘ s()“

Grutro2) 507 Gulx,y)+ 5 GM%Z)) V(x,y,2) €Q2x Q2 x Q. (3.1)

Proof. It follows from (2.3) and the inequality |§(x) — (y)| < |x — y| that

Gulx,y)~ min{|x — 7N 5% ()Y |x — y|272a7N}

-1
~ =y PV 580 (max {80787, Ix - v )
=y PN 8 ()" (max {5(x). 8(y), x — yIH >
= 5“5 Naaa(®,7). Yx.y €@ x £,

where Nag 2(x, y) is defined in (1.23) with a = 2« and B = 2. By [5, Lemma 2.2] we deduce
that there exists a positive constant C = C(N, u, 2) such that

1 1 1
<C + . (3.2)
Nog2(x,2) <N2a,z(x, y)  Noga(y, Z))

From (3.2) we can easily obtain (3.1). O

Lemma 3.3. Let 0 < p < p, and © € M (Q; 8%). Then there is a constant C = C(N, ., p,
7, 2) > 0 such that (1.19) holds.

Proof. First we assume that p > 1. By (2.13) we have that G, [t]” € LY(Q; 8%). We write

Gu(y,2)

S @,

Gulrl(y) = / Gy, dr(z) = f

Q Q

thus

Gu(y, 2\’
P o ZHV0 ST
GM[T]()’) SC/S(Z) < (S(Z)a ) dT(Z),
Q
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Consequently,

GM[GM[t]P](x)EC//Gu(x,y)GM(y,z)”c?(z)“(l_p)dt(z)dy. (3.3)
Q Q

Also by (3.1) we obtain

/ f Gu(x, )Gy, 2)P8()* " Pdr(z)dy
Q Q

(G, M\ (G, D\ <Gu<y,z>>P
SCQ/GM(X’Z)Q/(S@) << 8(x)¥ )( 3(z)¢ ) * 8(2)* dydr ()

p p
¢ [Gua [s0 ((%) + (%) )dydr(z), (3.4)
Q Q

where in the last inequality we have used the Holder inequality. By (3.3), (3.4) and Lemma 2.2
we derive that

GM[GM[I]”]()C)§C/G,L(x,z)dr(z).
Q

Note that the above argument is still valid for p = 1.
If0<p < 1then

GulGulr]?] < C(GLI1] + GLIG[z]D.
By combining the case p =1 and the estimate G, [1] < CG,[7], we obtain (1.19). O
Actually (1.19) is a sufficient condition for the existence of weak solution of

—Lyu=u’+ot inQ,
3.5)

tr(u) =0 on 0%2.

Proposition 3.4. Let 0 < p # 1, 0 > 0 and T € IMT(Q; 8%). Assume that there exists a positive
constant C such that (1.19) holds. Then problem (3.5) admits a weak solution u satisfying

Gulotl <u <CGylot] ae in, (3.6)
with another constant C > 0, for any o > 0 small enough if p > 1, foranyo >0if p < 1.

Proof. We adapt the idea in the proof of [6, Theorem 3.4]. Put w := AG,[o t] where A > 0 will
be determined later. By (1.19),

Gulw? +0t] < (CAPo”" ' + )Gylot] in Q.
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Therefore we deduce that w > G, [w? 4+ o 7] as long as
CAPeP~ ' 41 <A. (3.7)

If p > 1 then (3.7) holds if we choose A > 1 and then choose o > 0 small enough. If p € (0, 1)
then (3.7) holds if we choose o > 0 arbitrary and then choose A > 0 large enough.

Next put ug :=Gylot]and u,41:=Gy [u? + o] Itis clear that {u,} is increasing and u, <
w in Q for all n. Since (1.19) holds, w” € L'(R; §*). Consequently, by monotone convergence
theorem, there exists a function u € L?($2; 8%) such that u? — u? in L'(2; %). It is easy to see
that u is a solution of (3.5) satisfying (3.6). O

Estimate (1.19) is also a necessary condition for the existence of weak solution of (3.5).

Proposition 3.5. Let p > 1, 0 > 0 and T € MT(Q; 8%). Assume that problem (3.5) admits a
weak solution. Then (1.19) holds with C = ﬁ

Proof. We adapt the argument used in the proof of [6, Proposition 3.5]. Assume (3.5) has a

solution u € LP(2; §%) and assume o = 1. By applying Proposition 3.1 with ¢ replaced by u”
and with

(1—s'"P)/(p—1) ifs>1,
P(s) =

s—1 ifs <1,
we get (1.19) with C = ﬁ O

Proposition 3.6. Let 0 < p < p,, 0 > 0 and © € M (2; 8%). Then there exists a positive con-
stant C = C(N, u, 2, 0, t) such that for any weak solution u of (3.5) there holds

Gulotl<u <C(Gulot]+68%) ae. in Q. 3.8)

Proof. We follow the idea in the proof of [6, Theorem 3.6]. We may assume that o = 1. If
0 < p <1, then

u=Gyu? +1] < C(GLI1]+ Gylul + G, lT]D.
Since G,[1] < Cé“ a.e. in 2, we obtain
u<C@*+Gulul+Gylr]) ae.in Q.
Therefore it is sufficient to deal with the term G, [«] and we may assume that p > 1. Set
up:=u—Gyltl =Gylu?],
hence u = u1 +G,[t]. Since u € LP(2; §%) (by assumption), it follows that u + 7 € MF(Q; %),

therefore by (2.13), u € L*(R2; §%), for all 1 <s < p,. Thus there exists ko > 1 such that u” €
Lko(Q; 59).
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Let p < s < p,. By Holder inequality we obtain

kos

11 ()% = Gy [uP 1 ()0 = f Gl ) 5 yeuyyrdy

3(y)«
Q

(kg—Ds

N %o

Gult,)) . W =
—4 ord ——94 d
< ! sy oo | | [ SESRseray

G.(x,y) )S k
< C/ ("7 SN u(y)Ordy.
S(y)
Q
This, joint with Lemma 2.2, yields

/ul(y)k"sz?(y)“dy < Cfu(y)k"”rs(y)a/ <%> §(x)%dxdy < c.
Q Q Q

Since u? < C(u} + G, [t]?), by Lemma 3.3 we have

us<C (G/A[G/L[T]p] + u2) + GM[T] =< C(G/L[T] +uz),

ko2
where us := G, [u}]. Note that up € L »* (2; 8%).
By induction we define u,, := Gﬂ[uflfl] and we have u < C(G,[t] + un), ub e L (2; %)

with s, = kl‘;f,n . Since s, — 00, by [17, Lemma 2.3.2] we have for 1 <s < p,,

U, < C/ [x — y|2_a_Nu,I:,15(y)ady
Q

s
<C f lx — y|FTa =N (y)*dy + / Ix — y PPN u i 8 () dy
Q Q
<C,

for n large enough. Therefore we obtain u < C(G,[r] + 1), which implies u < C(G,[t] +
G [1]) with another C > 0. This, together with the inequality G, [1] < Cé%, implies (3.8). O

3.2. New Green properties

Lemma 3.7. Let 0 < p < p,, T € M1 (Q; 8%). Let s be such that

max(O,p—pM+1)<s§1. 3.9)
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Then there exists a constant C > 0 such that
GuIGLIt1P1 < CGLlt]®  ae in Q. (3.10)

Proof. First we assume that p > 1. In view of the proof of Lemma 3.3, we have
GulGulrPIx) < C f / Gu(x, )G (v, 2)P8(2)* =P dr(z)dy
Q Q

Gu(y,2)

p—s
S a(l—s)
A @ ) (2) dt(z)dy

:C/‘/Gu(x,y)l_s(;ﬂ(x, )’)SG/L()’vZ)S<
Q Q

Gulx,y) <Gu(y,1)

p—s
11
50) 5(z)“> dydt(z) (3.11)

<C / Gu(x,2) 8(z)* 1™ / 3(y)”
Q Q

1—s P
+C/Gu(x,z)SS(z)“(l_S)/S(y)“ (G“(X’y)> (G“(y’Z)> dydt(z) (3.12)
Q Q

3(x) 3(z)*
p—s+1

SC/Gu(x,z)SS(Z)“(l_“)/S(y)a (%) dydt(z) (3.13)

Q Q

p—s+1
+/GM(x,Z)S(S(Z)a(lfs)/8()’)“ (%) dydt(2) (3.14)
Q Q
SC/ <M> 5(2)%d(2) (3.15)
8(z)¢

Q

<C /G,L(x,z)dt(z) . (3.16)

Q

Here (3.11) and (3.12) follow from (3.1), (3.13) and (3.14) follow from Hoélder inequality, and
(3.15) follows from Lemma 2.2, Holder inequality and (3.9).

Note that the above approach can be applied to the case p = 1.

If0< p <1 then

GulGulr1’1 = C(GLIT + GuIGLlTID = C(GLl1] + GylzT)
Then (3.10) follows by a similar argument as in the proof of Lemma 3.3. O
3.3. Capacities and existence results

Fora>0,0<6 <B <N ands > 1, let Ng g, Ny g and Cap%wm be defined as in (1.22),
(1.23) and (1.24) respectively.

In this section we recall some results in [5, Section 2].

We recall below the definition of the capacity associated to Ny g (see [11]).
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Definition 3.8. Leta > 0,0 <6 < < N and s > 1. Define Capﬁle‘ﬂ’s by
Cap“Ne,ﬁ’s(E) :=inf /8“¢)de D ¢>0, Noggls“@l> xe ¢,

Q

for any Borel set E C Q.

Clearly we have

Capfj, , ;(E) =inf / §74CVgSdy: ¢ >0, Noplpl=xe .
Q

for any Borel set E C Q. Furthermore we have by [1, Theorem 2.5.1]

1 J—
(Cap”Ngvﬂys(E))x :inf{a)(E): 0 € M @), ||Noplol|| v g0 < 1}, (3.17)

for any compact set E C Q where s’ is the conjugate exponent of s.
Using [5, Theorem 2.6], we obtain easily the following result.

Proposition 3.9. Let p > 1, 0 > 0 and t € MT(Q; 8%). Then the following statements are equiv-
alent.

1. There exists C > 0 such that the following inequality hold

1
/(So‘dr < CCap(Rﬁiz’)i,(E),

E

for any Borel E C Q.
2. There exists a constant C > 0 such that (1.19) holds.
3. Problem (3.5) has a positive weak solution for o > 0 small enough.

Proof. First we note that
G(x,y) =8(x)*8(y)* Naw,2(x,y), Vx,y€Q, x#y.
Thus the inequality
GulGult1’1 = CGylr] ae.inQ
is equivalent to

Nog 2[8P TV (y)Nag 2[F17 (9)1(x) < CNag2[F1(x)  ae.in €,

where d7(y) = 8%(y)dz(y).
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Now notice that if u is a positive solution of (3.5) then by Proposition 2.12 we have that
u =Gy [u?]+ Gy[r] which implies that

" (p+Da (1P z
see N[5 ()] 0+ oMl
the desired results follow by [5, Theorem 2.6] and [5, Proposition 2.7]. O

Let us now give a result which implies the existence for the problem (3.5).

Lemma 3.10. Let 1 < p < p,. Then

inf Cap? ™ ({&}) > 0.
EeQ o,
Proof. By (3.17) it is enough to show that
sup ||N201,2[8E]| |Lp(Q;5(p+l)oz) <C< o0,
EeQ

which is equivalent to

Gu(-8)
8(5)~

sup
£EeQ

<C. (3.18)
LP(R;5%)

The result follows by Lemma 2.2 and (2.1). O
3.4. Boundary value problem

Estimate (1.18) is a necessary and sufficient condition for the existence of weak solutions of

—Lyu=u’ ingQ,
(3.19)

tr(u) =ov ondS2.

Proposition 3.11. /5, Theorem 4.1] Let p > 1, ¢ > 0 and v € M (3Q). Then, the following
statements are equivalent.
1. There exists C > 0 such that the following inequality holds

v(F) < CCap(® 1., (F)

o+ » P
for any Borel F C 0%2.
2. There exists C > 0 such that (1.18) holds.
3. Problem (3.19) has a positive weak solution for o > 0 small enough.

Lemma 3.12. Ler v € MT(3K2) and 0 < p < p,,. Then there exists a constant C > 0 such that
(1.18) holds.
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Proof. We first assume that 1 < p < p,. Let & € 9Q; we have 8¢ (F) < cCap?Sza+lﬂ

p/(F ) for
every F' C 92 where c is independent of £. By Proposition 3.11, (1.18) holds with v replaced by
8¢ and with the constant C independent of &. By taking integral over & € 92, we get (1.18).

Next, if p € (0, 1], we choose s > 1 such that 1 < ps < p,,. By Young’s inequality,

GulK,[v]P] < C(GL[1] + Gu[K,[v]P*']) < C(GL[1] + K, [v]). (3.20)
This, combined with the inequality G, [1] < c8* < c/Ku[v] a.e.in Q leads to (1.18). O

Proposition 3.13. Let p > 0, 0 > 0 and v € M (9Q).
(1) Assume there exists a constant C > 0 such that (1.18) holds. Then problem (3.19) admits a
weak solution u satisfying

Kulovl <u <CK,lov] a.e in<, (3.21)

with another constant C > 0, for any o > 0 small enough if p > 1, forany 0 > 0 if p € (0, 1).
(ii) Assume p > 1 and problem (3.19) admits a weak solution. Then (1.18) holds with C =
1
p=1
(iii) Assume O < p < p,. Then there exists a constant C > 0 such that for any weak solution
u of (3.19) there holds

Kulovl <u < CK,[ov]+6%) ae. in Q. (3.22)

Proof. By using an argument as in the proof of Proposition 3.4, Proposition 3.5 and Proposi-
tion 3.6, we obtained the desired results. O

The above results allow to study elliptic equations with interior and boundary measures.

Proposition 3.14. Let p > 0, 0 > 0, 0 > 0 and T € MT(R; 8%) and v € MT(ORQ). If (1.18) and
(1.19) hold then problem (1.17) admits a weak solution u satisfying (1.20) for 0 > 0 and o > 0
small enough if p > 1, foranyo >0and o >0if0 < p < 1.

Furthermore if 0 < p < p, there exists a constant C > 0 such that for any weak solution u of
(1.17) estimate (1.21) holds.

Proof. We adapt the argument in the proof of [4, Theorem 3.13]. Put v :=u — K, [oVv] then v
satisfies

—L,v=w+K,[ovD)?’ +01 inQ,
(3.23)
tr(v) =0.
Consider the following problem
—L,w=cpw? +c,(K,[ov])’ +0T inQ,
e P (3.24)
tr(w)=0
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where ¢, ;= max{l, 27=11 . Since (1.18) holds, it follows that Ky[v]? € L' (2 8%). Since (1.19)
holds, we infer from Proposition 3.4 that problem (3.24) admits a weak solution w for o > 0
and o > 0 small enough if p > 1, for any 0 > 0 and o > 0 if 0 < p < 1. Notice that w is a
supersolution of (3.24), we infer that there is a weak solution v of (3.23) satisfying v < w a.e.
in 2. By Proposition 3.4 and (1.18), we get

w < cGulKulov]? + 01l < (Gulotl+Kylov]) ae.in Q.

This implies (1.20).
If 0 < p < p,, then (1.21) follows from Proposition 3.6 and Proposition 3.13 (iii). O

Proof of Theorem B. Statements (i) and (ii) follow from Lemma 3.12 and Lemma 3.3 respec-
tively. Statement (iii) follows from Proposition 3.14. Statement (iv) follows from Proposition 3.5
and Proposition 3.13 (ii). Statement (v) is derived from Proposition 3.14 (ii). O

Proof of Theorem C. The implications (i) <= (ii) = (iii) follow from Proposition 3.11,
Proposition 3.9 and Proposition 3.14. We will show that (iii) = (ii). Since (1.17) has a weak
solution for o > 0 small and ¢ > 0 small, it follows that (3.5) admits a solution for o > 0 small
and (3.19) admits a solution for o > 0 small. Due to Proposition 3.11 and Proposition 3.9, we
derive (1.19) and (1.18). This completes the proof. O

4. Elliptic systems: the power case

Let n € (0, %]. In this section, we deal with system (1.32). We recall that p, is defined in
(1.31) and

p+1  _  p+l1

Q~=Pﬁ+l, f]~—Pp+1~

Without loss of generality, we can assume that 0 < p < p. Then p<g <g <pif pp > 1. Put
tw=p(p—pu+1).

Notice thatif g < p,, thent, <g < p,.

Lemma 4.1.Let p >0, p > 0 and v € MT(;8%). Assume q < p,. Then for any t €

(max(0,t,), pl, there exists a positive constant ¢ = c¢(N, p, p, u,t,7) (independent of T if
p > 1) such that

GCulG 1717 < cG,[t]'. 4.1)

In particular,
GulGLlt1P)? < CGylr), 4.2)
GulGLIG,[r]1P17] < CG,lr) (4.3)

where C=C(N, p, p, i, T).
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Proof. Since g < p,, it follows that p < p,, hence max(0,p — p, + 1) < 1. Let ¢ €
(max(0, t,, p] then max(0, p — p, +1) < % < 1. By applying Lemma 3.7 with s replaced by %
respectively in order to obtain

GulG, 1] < G, []7,

which implies (4.1). Since t,, < g < p, by taking t = g in (4.1) we obtain (4.2). Next, since
q < pu, by apply Lemma 3.7 with y replaced by y and (4.2), we get

G#[GM[GM[T]‘U][;] = CG#[Gu[t]q] = CGM[T] d

Lemma 4.2. Let p>0, p>0, 7,7 € MF(; 8%) and v, v € MT(IQ). Assume that there exist
positive functions U € LP (2; §%) and V € LP($2; §%) such that

U>Gul(V+KulevD?1+Gylotl,

. o “4.4)
V >Gul(U +Kulov)?1+ Gule7]
in Q. Then there exists a weak solution (u, v) of (1.32) such that
Gulotl+Kylovl <=u < U,
4.5)
Gulotl+Kylov]l <v < V.
Proof. Put up:=0 and
iu,m = Gulul]1+ Gu[67] + K,[69]. n>0, “e)
Uy = Gu[v,’l’] +Gulot]l +Kylov]l, n>1.

We see that 0 < vy =Gy[67T] +K,[oV] < V. Itis easy to see that {u,} and {v,} are nondecreas-
ing sequences, 0 < u, < U and 0 < v, <V in Q. By monotone convergence theorem, there exist
ue LP(§2;8% and v e LP(§2; 8%) such that u, — u in L'(), v, — v in LY(Q), ul — u? in
L'(R;8%), v) — v? in L'(£2; 8%). Moreover u < U and v < V in Q. By letting n — 00 in (4.6),
we obtain

{v =Gulu?] + G671+ K,[o7], @

u=Guw’]1+Gylot] +Kylov].
Thus (u, v) is a weak solution of (1.32) and satisfies (4.5). O
Proof of Theorem E. We first show that the following system has weak a solution

—Ly,w=W+K,[ov])P +0o1 ing,
—Lyw=(w+K,[ov])? +67 inQ, (4.8)
tr(u) =tr(v) =0.
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Fix9; >0, =1,2,3,4) and set
W= G017 + Ky [9201P17 + K, [030]7 + 047,
For k € (0, 1], put
o :=/<%191, 0:=kV4, © I=K%l93, 0 I=K#l92.
Then from the assumption, we deduce that ¥ € 9" (Q; §%). By Lemma 4.1,
GulGulG[¥11] < CC W] 4.9)
where C=C(N, p, p,u,0,0,k,7,T). Set
V:i=AG,[«k¥] and U :=G,[(V+K,[0V])? +o7]
where A > 0 will be determined later on. We have
(U +Kylov))? +67
< |Gy [ @Gl + Ku[é\”;])”]ﬁ +Gulol” +Kylov)’ | +57
< | APPKPPGLIG, 91V + G, (691 | + ¢ Glot)? + e Kylov)? + 6
where ¢ = c(p, p). It follows that
Gul(U +Kyulov))? +671 <1 + I (4.10)
where
Iy = c APPKPPG, [GM [GM[\I/]I’]ﬁ] +cG, [GM[KM[@]I’]I;],
b= cGulGlot)?] + ¢ G[K,[ov)P1 4 G, [6 7.
We first estimate /1. Observe that
G| GulKul691717 | = G [ GulKu (9291717 | < Gl W],
This, together with (4.9) implies
I} < c(APPiPP=L L DG kW] 4.11)
Next it is easy to see that

I <cGyleW]. (4.12)
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By collecting (4.10), (4.11) and (4.12), we obtain
Gul(U +Kulov))? + 651 < c(APPiPP =1 4+ DG, [k V] (4.13)
with another constant c. We will choose A and « such that
c(APPPP=1 4 1) < A, (4.14)
If pp > 1 then we can choose A > 0 large enough and then choose « > 0 small enough (depend-

ing on A) such that (4.14) holds. If pp < 1 then for any « > 0 there exists A large enough such
that (4.14) holds. For such A and «, we obtain

Gul(U + K, [ov])? + 651 < V.

By Lemma 4.2, there exists a weak solution (w, w) of (4.8) foro > 0,6 >0, v >0, v > 0 small
if pp>1,foranyo >0,6 >0,v>0,v>0if pp < 1. Moreover, (w, w) satisfies

w =~ Gylol, (4.15)
w~xGu[(Gulo] + K, [DDP]+ Gylr] (4.16)

where C =C(N, p, p, 4, R,0,0,1, 7).
Next put u :=w + K, [ov] and v := w + K, [oV] then (u, v) is a weak solution of (1.32).

Moreover (1.33) and (1.34) follow directly from (4.15) and (4.16). O

Proof of Theorem F. Put t* := max{z, ¥} and v* := max{v, ?}. Fix & > 0, ¥ > 0 and for k €
1 ~ ~ L
0,1],putoc =p= (k)7 and 6 =«, o = (k) rP. Set
=91 +9%f and V=0V 40D
then ¥ < (8 + 9)7* and v < (9 + D)v*.
Put V := A(G, [kt¥] + KM[KU#]) where A > 0 will be determined later on and put U :=

Gul(V+KylovD? +o1].
We have

UP + 6% <cAPPcPP {GM[GM #1717 + G, [Kﬂ[v#]p]ﬁ} +coPG,lr)?
+ CQI;KM[V]I; +co7T,
with ¢ = ¢(p, p). It follows that
Gul(U +Kulov))? +671 <c(J1 + o) (4.17)
where

It i= AP GGG,V + Gl Gl K, V17171,
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J2 = 0PGulCult1? ]+ 0P CulK, V1?1 + 5 Gl E] + GK,u[F]
We first estimate J;. We have

= APPRPP (@ 4 5)77 [ GGG, IT 1P 1] + Gl Gul K, [v*17171).
By (1.35), (1.36) and Proposition 3.11, Proposition 3.9 we infer that
Ji S c APPIPP (@ 4+ )PP (G ] + Ky [v*])

where c is a positive constant. Therefore

J1 <cAPPPP (9 4+ 9)PP max(® ™1, 971G . [e*] + K, [vF)). (4.18)
We next estimate J>. Again by (1.35), (1.36) and Proposition 3.11, Proposition 3.9, we deduce

D <c(@PGpult]+ 0P Kyu[v] + 6 Gl T] + 8K, [9])

(4.19)
=ck(GuT*] + K, [v¥)).
Combining (4.17), (4.18) and (4.19) implies
GulU? + 671+ K, [60] < C(APPkPP™! 4+ DGkt + Ky [kv*]) (4.20)
where C is another positive constant. We choose A > 0 and x > 0 such that
C(APPPP=1 4 1) < A, (4.21)

Since pp > 1, one can choose A large enough and then choose x > 0 small enough such that
(4.21) holds. For such A and «x, we have

GulUP + 671+ K, [oD] < V.
By Lemma 4.2, there exists a weak solution (u, v) of (1.32) which satisfies (1.37). O
5. General nonlinearities
5.1. Absorption case

In this section we treat system (1.38) with € = —1. We recall that A, and A are defined in
(1.39).

Proof of Theorem G. Step 1: We claim that

/g(KM[If)I] +GulloDé*dx +/§(KM[IV|] + GulltDé“dx < oo. (5.1
Q Q
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For >0, set A, :={x € Q: K.[V[1+ G.[IT]] > A} and a(}) := f/ﬁ 3%dx. We write

|l e ®wllPN +GrlZID 11 g 50, =/g(KM[|f)I]+GM[If|])8“dx

Al

+/8(K1L[|‘~)|]+G;L[|f|])8adx

Af

(5.2)

5/g(KuHﬁH+GM[|f|])8“dx+g(l)/8“dx.
A Q

‘We have

o0

fg(Ku[lﬁl]+Gu[|f|])5“dx=a(1)g(1)+/a(5)dg(S)~

Ay 1

On the other hand, by (2.2) and Proposition 2.4 one gets, for every s > 0,

a(s)§C<||K,L[|\7|]|Z +[Gpuizn|? )s_p“ <Cs P (5.3)

w w
P (;6%) (S8
where C = C(N, 1, 2, v, IVllonoe) » 1T lon@:sv))- Thus

o0

a(l)g(1) +/a(s)dg(s) < C—i—C/s*l*p"g(s)ds <CpuA,. 5.4
1 1

By combining the above estimates we obtain
| g ®yelI91 + GLlIZID 11 qgu0y < CPuAg + g(1) / 8%dx < C.
Q
Similarly,
[E 001+ GollzID] 1 ey < Cpudg + (D) / sdx < C.
Q

Thus (5.1) follows directly.

Step 2: Existence.
Put ug :=K,[v] + G,[7]. Let vg be the unique weak solution of the following problem

—L,vo+g(up) =7 inQ,

tr(vg) = V.
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For any k > 1, since g, g satisfy (5.1) there exist functions uy and vi satisfying

—Lyup+g_1)=t in €,
— Ly +gup) =7 in €2, (5.5)

tr(ug) =v, tr(vg)=".
Moreover

up +Gulg(u—1) 1 =Gylr] + K],
Vg + G;L[g(”k)] = Gu[f] + K}L[‘j]

(5.6)

Since g, g > 0, it follows that, for every k > 1,

K]+ Gpulr]l = GulgKpu] + GultD] < ur = Kyulvl+ Gult] = uo

and

K]+ Gult] = Gulg(Kulv] + GultD] = v = K] + Gul7]

in . Now, suppose that for some k > 1, ux < uj_1. Since g and g are nondecreasing, we deduce
that

v =KVl 4+ Gult] = Gulg(u)] = Ku[v] + Gul7T] — Gulg (ui—1)] = vi—1,

(5.7)
upr1 =K ] +Gulr] — Gulg)] = Kuvl+ Gulr] — Gulg(vr—1)] = ug.

This means that {vg} is nondecreasing and {u} is nonincreasing. Hence, there exist # and v such
that uy | u and vy 1 v in 2 and

K]+ Gpulrl = GulgKu[v]+ GultD] = u < Kyu[v] + Gyultl,
Kyl + Gult]l = Gulg(Kuv] + GulrD] = v = Ku[v] + Gyl
Since g and g are continuous and nondecreasing, we infer from monotone convergence

theorem and (5.1) that g(vy) — g(v) in L' (2 8%) and g(ur) — &(u) in L' (€2; 8%). As a conse-
quence,

Gulgu)] — Gulgw)] ae.in €,
Gulg(w)l— Gulg(v)] ae.in Q.

By letting k — oo in (5.6), we obtain the desired result. O
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5.2. Source case: subcriticality

In this section for simplicity we consider system (1.38) with € = 1. Assume that g(0) =
£(0) = 0. In preparation for proving Theorem H, we establish the following lemma:

Lemma 5.1. Assume € = 1, g and g are bounded, nondecreasing and continuous functions in R.
Let v, T € M(R; 8%) and v, v € M(0R). Assume there exist ay >0, by > 0 and q1 > 1 such that
(1.40) and (1.41) are satisfied. Then there exist Ay, 5»*, by > 0 and 0« > 0 depending on N, u, Q
V.V, Ag, Ag, ai, q1 such that the following holds. For every by € (0, by) and o, 0,0,0€ (0,04
the system

—Lyu=gWw+oK,[V]+cG,[T]) inQ,
—Lyv=gu+ oK, [vl+oG,lt]) inQ, (5.8)
tr(u)=tr(v) =0

admits a weak solution (u, v) satisfying

||u||L5f‘ (Q:8%) + ”u”[ﬂl (821 < )\,*, (5 9)
||U||L5“(Q;5a) + ”v”L‘Il (Q;6%1) < X*

Proof. Without loss of generality, we assume that ||t [lgn(q:s0) = 1T llon(a:s0) = IVIlonae) =
IVllox(a) = 1. We shall use Schauder fixed point theorem to show the existence of positive
weak solutions of (5.8). Define

S(w) :=Gulg(w + oKu[V]1+6GLlTD],

- . 1 (5.10)
S(w) := Gu[g(w + oKy [v] + UG/L[T])]’ Yw € L (£2).

Set
My (W) = [wll i gy Y € Luy* (R58%),

M (W) = [wll i gy Y0 € L (258,

M (w) := ||w||Lq1(Q;5a—l) . Ywe LT(Q; 5(171),

M(w) := M (w) + Mo(w), Vw € Ly (2 8%) N LI (87,

M(w) :=M; (w) + Ma(w), Yw e LY (Q;8%) N LY (Q; 5% Y.
Step 1: Upper bound for g(w + oK, [V] + 6G,[T]) in LY(Q; 8%) with w € Lgf‘(Q; 8%) N
L91(Q; 8271y,

For A > 0, set B, :={x € Q: |w| + OK (V|1 + 6G,IIT]] > A} and b(R) := féx 8%dx. We
write
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lg(w + GKu3] + G GulE) | 1 g0 < / g(lw] + 8K, [I9]1+ 5G| FD5 dx
B,

+/g(|w| + oKL [ID[14+6GLlITID8%dx

B

—fg(—lwl — 0K, [ID[1 = 6GLl|E11)8%dx (5.1
B,

—/g(—|w| — 0K, (D[] = 6 G lIT[ho%dx
B

= I+11+111+1V.

We first estimate /. Since g € C(R,) is nondecreasing, one gets

e e]

I =b(l)g(l) —i—fb(s)dg(s).

1

Since g is bounded, there exists an increasing sequence of real positive number {£;} such that

lim ¢; =00 and lim €, " g(¢;)=0. (5.12)

j—oo j—o0
Observe that

[e¢]

¢
/b(s)dg(s): lim /b(s)dg(s).
j—oo
A

1

On the other hand, by (2.2) one gets, for every s > 0,

a(s) < |lwl+ 0KulIDN + & GullFN| [ gy 1087 < CMI) +2+6)Ps ™0 (5.13)

where C = C(N, u, ). Using (5.13), we obtain

£

b(1)g(l) + / b(s)dg(s)
1
Ly

<CMj(w)+0+6)Prg(l)+ CM(w) + 0 +6)P /s_p“dg(s)
1
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¢
< COMIw) +54 66,7 g(6) + CpuMy(w) +2+ ) [ 571 Prg(syds,
1

By virtue of (5.12), letting j — oo yields

o0
I < Cp (M (w) + 6 + 67" / s~1=Pug(s)ds. (5.14)
1

Similarly we have

o0
111 < —Cp, (M (w) + 6 + )" / s Pug(—s)ds.
1

To handle the remaining terms [1,111, without lost of generality, we assume g; €

(1, %ig:;) Since g satisfies condition (1.40), it follows that

max{II,IV}§a1/(|w|+éK,L[|\7|]+6Kﬂ[|f|])qléadx+b1f6“dx
B Bf

5.15
EalC/|w|q'5adx+alc34(éq‘ +51)+b,C G-15)
Q

<a1CMa(w)?' + a1 C@" +69) + b1C

where C = C(N, u, ).
Combining (5.11), (5.14) and (5.15) yields

|g(w + 8K, [0]+6GLlE))|| Ly < CAMIW)P + a1 CMa(w)? +b1C +d5 5 (5.16)

where d3 5 = CAg(0P* +o0Pr) +a1C(e7 + ).

Step 2: Estimates on M, M, and M.
From (2.13), we have

M (S(w)) = [ Gulgw + oK pu[9] + 6 GulTD| p1 g 50,

L (5.17)
< C g+ 8Kul31 + 6 GultD | 11 g0 -

It follows that

Ml(S(w)) <CAM; (W) 4+ a; CM(w)?' + b1 C + Cdé’(}. (5.18)
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Applying (2.13), we get

My (Sw)) = |Gulgw + FKu[P] + GCulED | 1oy (5ot
= C ||g(w + éKM[f)] + 6@;/,[‘;]) ”LI(Q;SO‘) )

which implies
M (S(w)) < CAM(w)P* + a1 CMa(w)?' +b1C + Cdj 5. (5.19)
Consequently,
M(S(w)) < CAM;(w)P* +a CMp(w)? + b1 C + Cdy 5. (5.20)
Similarly, we can show that
M(S(w)) < CAZM; (W) + a;CMp(w)? + b1 C + Cdy (5.21)
where C is a positive constant. Define the functions 1 and 7 as follows

n(A) := max{CAg, CAZIAP" + max{C, C}a1A? + max{C, C}by +max{Cd; 5, Cdp o}
ii(1) :=max{CAg, CAg}AP* +max{C, C}a; 2" + max{C, C}b; + max{Cdj 5, Cdy »}

where C and C are the constants in (5.20) and (5.21) respectively. By (5.20) and (5.21), we
deduce

M(S(w)) <n(M(w)) and M(S(w)) < H(M(w)).

Since p,, > 1 and g1 > 1, there exist g, > 0 and b, > 0 depending on N, u, 2, Ag, Az, a1, qi
such that for any g, 0 € (0, 04) and by € (0, by) there exist A, > 0 and s > 0 such that

n(As) = 5\* and FI():*) = Ax.
Here A, and ):* depend on N, u, 2, Ag, Az, a1, q1. Therefore,

M(w) < Ay = M(S(w)) < Ay

_ - . (5.22)
M(w) < A = M(S(w)) < As.
Step 3: To apply Schauder fixed point theorem.
For wy, wy € L1 (), put
T(wi, w) = (Sw2), S(wy)), (5.23)

D:={(p, ) € LL(Q) x LL(Q) : M(p) < 1 and M() < .}
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Clearly, D is a convex subset of L'(©) x L'(). We shall show that D is a closed subset of
(L'(2))2. Indeed, let {(¢m, #m)} be a sequence in D converging to (¢, @) in (L'(2))%. Obvi-
ously, ¢ > 0 and ¢ > 0. We can extract a subsequence, still denoted by the same notation, such
that (¢, m) — (@, @) a.e. in 2. Consequently, by Fatou’s lemma,

M; (¢) <liminfM;(¢n), M;(@) < liminfM; (@)
m—00 m— 00

fori =1, 2. It follows that M(¢) < A, and M(¢) < *x. SO (¢, @) € D and therefore D is a closed
subset of L1(Q) x L1(Q).

Clearly, T is well defined in D. For (w, w) € D, we get M(w) < A, and M(w) < X, hence
M(S(w)) < iy and M(S(1)) < Ay. It follows that T(D) C D.

We observe that T is continuous. Indeed, if w,, — w and W,, — W as m — oo in L' () then
since g, g € C(R) N L*°(R), it follows that

g(m + 0K, [v] + G, [F]) — g + 0K, [v] +6G,[]) in L'(2;8%),

and
g(wy + 0K, vl +0Gult]) — g(w + 0K, [v]+0Gylr])  in L'(Q;6%)

as m — 0o. By (2.13), S(iby) — S@) and S(w,) — S(w) as m — oo in L'(). Thus
T(wy, W) = T(w, ®) in L1(Q) x L1 ().

We next show that T is a compact operator. Let {(wm, wy)} C D and foreachm > 1, put ¥, =
S(,,) and ¥,, = S(wm) Hence {Av,,} and {Alﬁm} are uniformly bounded in L?(G) for every
subset G € Q. Therefore {1,,} is uniformly bounded in W7 (G). Consequently, there exists
a subsequence, still denoted by the same notation, and functions v, ¥ such that (¥, 1/;,,,) —
(¥, ¥) ae. in Q. By dominated convergence theorem, (V,,, Um) = (W, %) in LY (Q) x L1(Q).
Thus T is compact.

By Schauder fixed point theorem there is (u, v) € D such that T (u, v) = (u,v). O

Proof of Theorem H.I. Let {g,} and {g,} be the sequences of continuous, nondecreasing func-
tions defined on R such that

8n(0) =g(0), |gnl < |gn+11 = [gl, sup[gn| =n and lim [lg, —gll 0 ®) =0,
R n—o00 oc

5 5 y N ; 5 S (5.24)
8n(0) =8(0), 18| = 18n+11 =181, sup|gnl =nand Tim gy —&li e ®) =
R e oC

Due to Lemma 5.1, there exist A, ):*, b, > 0and g, > 0 depending on N, u, 2, Ag, Ag, ai, qi
such that for every b € (0, by), 0, 0 € (0, 04) and n > 1 there exists a solution (wy,, w,) € D of

_L//.wn = gn(Wy +éK,u[‘~)]+5'Gu[f]) in Q,
_L/len = gn(w, + QK/L[V] + O—Gu [z]) in <, (5.25)
tr (w,) =tr(w,) =0.
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For each n, set u, = w, + oK, [v] +0G,[7] and v, = w, + 0K, [V] + 6G,[T]. Then

—/unLqudx=/gn(vn)¢dx+a/¢dt —Q/Ku[v]Luqbdx Vo € X, (), (5.26)
Q

Q Q Q
—/v,lL,Lqﬁdx=/§n(un)¢dx+&/¢df—é/KM[f)]LMqux Vo eX,(Q). (527
Q Q Q Q

Since {(w;, w,)} C D and the fact that Ag, < A, we obtain from (5.16) that
lgn W)l L1(@:50) < CAAL" + a1 CAL +b,C + dp, (5.28)

Hence the sequence {g(v;)} is uniformly bounded in LY(; 8%). Since {(wy, wy,)} C D, the se-
quence {s%w”} and {8%11),,} are uniformly bounded in L9'(G) for every subset G € Q. As a

consequence, {Aw,} and {Aw,} are uniformly bounded in LY (G) for every subset G € Q2. By
regularity results for elliptic equations, there exist subsequences, still denoted by the same no-
tations, and functions w and @ such that (w,, w,) — (w, w) a.e. in Q. Therefore (u,, v,) —
(u,v) ae. in Q with u = w + oK, [v] + oG,lr] and u = W + 0K, [V] + 6G,[T]. Moreover
(&n(un), gn(vn)) — (), g(v)) ae. in Q.

We show that u,, — u in L'(Q; 8%). Since {w,} is uniformly bounded in L9 (£2; 8*~!), by
(2.14), we derive that {u,,} is uniformly bounded in L9 (£2; §%). Due to Holder inequality, {u,} is
uniformly integrable with respect to §%dx. We invoke Vitali convergence theorem to derive that
up — u in L'(€2; 8%). Similarly, one can prove that v, — v in L1(£; 8%).

We next prove that g, (v,) — g(v) in L1(2;8%). For A > 0 and n € N set By ={xeQ:
[vy| > A} and b, () := an , 8“dx. For any Borel set E C Q,

/gn(vn)aadx = / gn(vp)8%dx + / gn(vn)8%dx

E ENB, ENBS,

< / gn(vn)Sadx—i—mg,;L/S“dx

(5.29)
By 5. E
< bu()gn(h) + f bu($)dgn(s) + mg s / 5 dx,
A E

where myg ; := supj ;; &- By proceeding as in the proof of Lemma 5.1 in order to get (5.14), we
deduce

bu () (0) + / bu(s)dga(s) < C / 51 Pugy(s)ds < C / sPug(s)ds  (5.30)
A A A

where C depends on N, u, Ag, Aj, ai, q1. Note that the term on the right hand-side of (5.30)
tends to 0 as A — oco. Take arbitrarily ¢ > 0, there exists A > 0 such that the right hand-side of
(5.30) is smaller than §. Fix such A and put = 5.—. Then, by (5.29),

- ng,;\

Please cite this article in press as: K.T. Gkikas, P-T. Nguyen, On the existence of weak solutions of semilinear elliptic
equations and systems with Hardy potentials, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.07.060




YJDEQ:9456
K.T. Gkikas, P.-T. Nguyen / J. Differential Equations eee (eeee) eee—eee 41

/S(X)O‘dx <n= /gn(vn)é(x)“dx <e&.
E E

Therefore the sequence {g,(v,)} is uniformly integrable with respect to §“dx. Due to Vitali
convergence theorem, we deduce that g, (v,) — g(v) in LY(Q; 8%).
By sending n — oo in each term of (5.26) we obtain

—/uLqudx = /g(v)d)dx +a/¢dr —Q/Kﬂ[v]Lﬂqﬁdx, Vo € X, (). (5.31)
Q Q Q Q
Similarly, one can show that g, (u,) — g(u) in LY(Q; 8%). By letting n — oo in (5.27), we get

—/vLu¢dx=/§(u)¢dx+&/¢df—@/Kﬂ[ﬂ]Lﬂcbdx, Vo eX,(Q).  (5.32)
Q

Q Q Q
Thus (u, v) is a solution of (1.27). 0O
5.3. Source case: sublinearity
We next deal with the case where g and g are sublinear.
Proof of Theorem H.II. The proof is similar to that of Lemma 5.1, also based on Schauder

fixed point theorem. So we point out only the main modifications. Let S and S be the operators
defined in (5.10). Put

Niw) = [l @go-1y, Ywe LT (Q; 8%,
No(w) = w11y, Yw e L'(R;8%7h).

Combining (2.13), (2.14) and (1.42) leads to

N2 (S(w)) < a2CNy(w)? + C (@7 +67 + by).

On the other hand
NiSw)) £ aCNo(w)® 4 C (0% + 0% + by)..
Define
E1(A) :=apCA? + C (07" 4+ 67 + by),
&) :=apCA”? + C(0? + 0? + by).
Then

No(Sw)) <& (Nj(w)) and Ny (S(w)) < &ENa(w)).
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If g1g2 < 1 then we can find A1 and A, such that & ()\1~) = Ay and & (X2) = Aq. Thus if
Ni(w) < Aj then Np(S(w)) < Az and if No(w) < A then N{(S(w)) < Ap.

If g1g2 = 1 and a, small enough we can find, | and A such that £; (1) = A and & (A2) = Ag.

The rest of the proof can be proceeded as in the proof of Lemma 5.1 and the proof of Theo-
rem H.I. and we omitit. O
5.4. Source case: subcriticality and sublinearity
Proof of Theorem H.III. Set

NW) = lwll a1 (quse-1y . Yw € LI (2847 ).

By an argument similar to the proof of Lemma 5.1 and Theorem H.II, we get

NESw)) = CAM; ()P + a1 CMa(w)?' +b1C +dp 5.

On the other hand
M(Sw)) < aCN(w)® + C (0% 4 6% + by).
Set
EL(M) 1= CAgAPH + a1 CAT +b1C +dj 5,
E2(M) = aCA2 + C(@P + 0 + by).
Then

NSw)) <& (M@w)) and MES(w)) < &(N(w)).

We consider there cases.
Case 1: g19> > 1. Since p, > qi, it follows that p,g> > 1. Therefore there exist b, > 0 and
0« > 0 such that for by, by € (0, b,) and o € (0, o) one can find A > 0 and A, > O satisfying

E M) =% and (M) =7 (5.33)

Case 2: p,,g> = 1. In this case, there exist a, > 0 such that if a> € (0, a,) then for every o > 0
and ¢ > 0 one can find 1| > 0 and A, > 0 satisfying (5.33).

Case 3: p,g2 < 1. In this case for every ¢ > 0 and ¢ > 0 one can find A; > 0 and A2 > 0 such
that (5.33) holds.

Hence, in any case,

M(w) < A => N(S(w)) < &1(h1) = A2
N(w) < A2 = MES(w)) < &(h) = A1

The rest of the proof can be proceeded as in the proof of Lemma 5.1 and the proof of Theo-
rem H.II. and we omitit. O
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