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Abstract

In this paper, we obtain the boundary pointwise Ccl-® and c2¢ regularity for viscosity solutions of fully
nonlinear elliptic equations. That is, if 92 is C1-¢ (or C%%) at xg € 92, the solution is C1-¢ (or CZ®)
at xg. Our results are new even for the Laplace equation. Moreover, our proofs are simple.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Since 1980s, the fully nonlinear elliptic equations have been studied extensively (see [1] and
[3] and the references therein). For the investigation on boundary behavior, there are usually
two ways. One is to study the boundary regularity for viscosity solutions. Flattening the curved
boundary by a transformation is widely applied (e.g. [9]). However, the lower order terms and
variant coefficients arise inevitably. Moreover, only local estimates can be derived rather than
pointwise estimates. Another way is to obtain a priori estimates first and then use the method of

* This research is supported by the National Natural Science Foundation of China (Grant No. 11701454) and the
Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ1039).
¥ Corresponding author.
E-mail addresses: lianyuanyuan @nwpu.edu.cn, lianyuanyuan.hthk @ gmail.com (Y. Lian),
zhang_kai @nwpu.edu.cn, zhangkaizfz @gmail.com (K. Zhang).

https://doi.org/10.1016/j.jde.2020.01.006
0022-0396/© 2020 Elsevier Inc. All rights reserved.


http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2020.01.006
http://www.elsevier.com/locate/jde
mailto:lianyuanyuan@nwpu.edu.cn
mailto:lianyuanyuan.hthk@gmail.com
mailto:zhang_kai@nwpu.edu.cn
mailto:zhangkaizfz@gmail.com
https://doi.org/10.1016/j.jde.2020.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2020.01.006&domain=pdf

Y. Lian, K. Zhang / J. Differential Equations 269 (2020) 1172-1191 1173

continuity to prove the existence of classical solutions. It often requires more smoothness on the
boundary and the boundary value (e.g. [10]). In both cases, the proofs are usually complicated.
We note that in [8], Ma and Wang also proved the boundary pointwise C - regularity by a barrier
argument and a complicated iteration procedure.

In this paper, we study the boundary regularity for viscosity solutions and prove the pointwise
C® and C%¢ estimates under the corresponding pointwise geometric conditions on 2. Our
results are new even for the Laplace equation and these geometric conditions are rather general.
Moreover, the boundaries don’t need to be flattened and the proofs are simple.

The perturbation and compactness techniques are adopted here. We use solutions with flat
boundaries to approximate the solution and the error between them can be estimated by maxi-
mum principles. Then, we can obtain the necessary compactness for solutions (see Lemma 2.7).
This basic perturbation idea is inspired originally by [1]. The application to boundary regularity
is inspired by [7]. Based on the compactness result, we can obtain the desired estimates at the
boundary if the boundary is “almost” flat (see Lemma 3.1 and Lemma 4.1). This compactness
technique has been inspired by [9] and [11]. Then in aid of the scaling, the estimates on curved
boundaries can be derived easily and the perturbation is a matter of scaling in some sense. The
treatment for the right hand term and the boundary value is similar.

In this paper, we use the standard notations and refer to Notation 1.10 for details. Before
stating our main results, we introduce the following notions.

Definition 1.1. Let A C R" be a bounded set and f be a function defined on A. We say that f is

Ck® (k> 0)at xg € A or fe Ccka(xp) if there exist a polynomial P of degree k and a constant
K such that

| F(x) — P(x)| < K|x — xo/*T%, VxeA. (1.1)
There may exist multiple P and K (e.g. A= B; N R"~!). Then we take Py with
I Py|l = min {|| P||| 3K such that (1.1) holds with P and K},
where || P|| = Y% _, |D" P (x0)|. Define

D™ f(xo) = D™ Py(x0),
[f1cka(yy) =min {K |(1.1) holds with Py and K }

and

I fllcra gy = 1PNl + [f 1ok (xg)-
Next, we give the definitions of the geometric conditions on the domain.

Definition 1.2. Let Q2 be a bounded domain and x¢ € 2. We say that 92 is C ke (k> 1) at xg
or 9Q € C*%(x) if there exist a coordinate system {xy, ..., x,} (by translating and rotating the
original coordinate system), a polynomial P(x’) of degree k and constants ry and K such that
xo = 0 in this coordinate system,
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Bry N (s x) |xn > P(X) + K |x' 7)€ B,y N Q2 (1.2)
and
By N, %) |10 < P() — K |x' |7} € B,y N Q°. (1.3)
Then, define
[0Q] cha () = inf { K| (1.2) and (1.3) hold for K }
and

102/ cha gy = 1PNl + [0R2] char (1) -
In addition, we define the oscillation of 9€2:

Definition 1.3. Let 2 be a bounded domain and xg € 992. Given ry > 0 and v € R" with |v| =1,
set

A(w) = {r|{x € B(xo,r0)| (x —x0) - v >r} C 2}
and
B(v) ={r|{x € B(xo,r0)| (x —x0) - v < —r} C Q°}
If A(v) and B(v) are not empty, define

osc 0Q= inf r+ inf r
Byy,v reA®) reB(v)

and

osc 02 = inf osc 0Q.

Br() [v|=1 Br()vV

Remark 1.4. Throughout this paper, we always assume that 0 € 92 and study the boundary
behavior at 0. When we say that 9Q is C5¢ at 0, it always indicates that (1.2) and (1.3) hold with
ro = 1. Furthermore, without loss of generality, we always assume that

P(0)=0and DP(0) =0.

Finally, we always assume that osc 9€2 exists for any » > 0 and

B,

0sc Q2= osc a0 = sup x,— inf x,.
B, B, e, x€IQNB; x€dQNB,
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Remark 1.5. In this definition, 92 doesn’t need to be the graph of a function near xo. For exam-
ple, let

2= Blea, D\ [, xo)|a = ¥ 12/2, 1 < 172},

Then 9K is C>* at 0 by the definition. We will prove that the solution is C>* at 0. Hence, our
results are new even for the Laplace equation.

Since we consider the viscosity solutions, the standard notions and notations for viscosity
solutions are used, such as S(A, A, ), S A, ), SO A, f), ME(M, A, A), M~ (M, A, A)
etc. For the details, we refer to [1], [2] and [3]. Without loss of generality, we always assume
that the fully nonlinear operator F is uniformly elliptic with ellipticity constants A and A, and
F(0) = 0. We call a constant C universal if it depends only on n, A and A.

We use the Einstein summation convention in this work, i.e., repeated indices are implicitly
summed over.

Now, we state our main results. For the boundary pointwise C!¢ regularity, we have

Theorem 1.6. Let 0 < o < o] where a1 is a universal constant (see Lemma 2.1). Suppose that
aQ is C1* ar 0 and u satisfies

ueSM A, f) in QNBy;
u=g on 02N By,

where g € C1*(0) and f € L"(Q2 N By) satisfies for some constant Ky
||f||Ln(QmBr)§Kfra, VO<r<l. (14)
Then u € C! %(0), i.e., there exists an affine function L such that
(@) — L] < Cle ™ (lullp@nmy + K s+ lgllcre) . Y€ QN By, (L)
and
|Du(0)| < C (llullL=@nay) + Kr + lIgllcre)) - (1.6)
where C and r1 depend only on n, A, A, o and [8Q]C1,a(0).

Remark 1.7. In [8], Ma and Wang only proved the boundary pointwise C'# regularity for some
a with 0 < @ < min(«, o) since Ehe Harnack inequality was used. For instance, for the Laplace
equation, we can obtain the C1¢ regularity for any 0 < & < 1, which can not been inferred
from [8].

For the boundary pointwise C>* regularity, we have
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Theorem 1.8. Let 0 < a < oy where oy is a universal constant (see Lemma 2.2). Suppose that
dQ is C>* at 0 and u satisfies

F(D*uw)=f in QN By;
u=g on 02N By,

where g € C>*(0) and f € C*(0).
Then u € C>*(0), i.e., there exists a quadratic polynomial P such that

lu(x) = P(x)] < ClxIP** (lull =@y + 1 flceo) + gl cray) » VX €QNB,,  (1.7)

and

|Du(0)| + | D*u(0)|| < C (llullLoo@npy) + Il fllceoy + lgllc2e)) » (1.8)
where C and ry depend only on n, A, A, @ and 19€2]| c2.0(0)-

Remark 1.9. Note that the convexity of F is not needed here, which is different from the interior
C>“ regularity.

In the next section, we prepare some preliminaries. In particular, we prove the compactness
and the closedness for a family of viscosity solutions. We obtain the boundary C-* regularity in
Section 3 and the boundary C>* regularity in Section 4.

Notation 1.10.

. {ei }Ll: the standard basis of R", i.e., ¢; = (0, ...0, ‘tlh, 0,...0).
1

X' =(x1,%x2, .00, Xp—1) and x = (x1, ..., x,) = (X', x5).

. 8™: the set of n x n symmetric matrices and || A|| = the spectral radius of A for any A € S”".
. R ={x € R"|x, > 0}.

. Br(x0) = {x € R"||x — x0| <r}, B, = B (0), B{ (x0) = B, (x9) N R". and B;" = B;"(0).

. Tr(xp) ={(x,0) € R"||x' — x{| <r} and T, = T,-(0).

. A°: the complement of A and A: the closure of A, VA C R".

. Q,=QNB, and (), =32 N B,.

. ¢i = Djp = d¢/0x; and D¢ = (¢1, ..., ¢,). Similarly, ¢;; = D;j¢ = 82¢/8xi8xj and
D2§0 = ((pij)nxn'

2. Preliminaries

In this section, we introduce two lemmas stating the C1** and C> regularity on flat bound-
aries. We will use them to approximate the solutions on curved boundaries. In addition, we prove
the compactness and closedness for a family of viscosity solutions.

The following lemma concerns the boundary C- regularity. It was first proved by Krylov [6]
and further simplified by Caffarelli (see [4, Theorem 9.31] and [5, Theorem 4.28]).
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Lemma 2.1. Let u satisfy

ueSA, A0 in Bf;

u=>0 on Ti.

Then there exists a universal constant 0 < a1 < 1 such that u € C1-*1 (0) and for some con-
stant a,

|1+011

lu(x) —ax,| < Cilx ”””Loo(31+)7 VXEB{?Z

and
lal < Cy ||u||L00(31+),
where C1 is universal.

The next lemma concerns the boundary C>¢ regularity. We refer to [9, Lemma 4.1] for a
proof.

Lemma 2.2. Let u satisfy
F(D*u)=0 in Bf;
u=0 on Tj.

Then there exists a universal constant 0 < o < 1 such that u € C**2(0) and for some con-
stants a and b, (1 <i <n),

|u(x) — axn — binxix,| < C2|x|2+“2||u||Loo(Bl+), VxeB,, 2.1)
F(bin) =0 (22)
and
lal + |bin| < CZ”””LOO(BI*')a
where Cy is universal.

Remark 2.3. In (2.1), the Einstein summation convention is used, i.e., b;,x;x, denotes the sum
Z?:l binxix, (similarly hereinafter). In (2.2), b;, denotes the matrix g;; (similarly hereinafter)
whose elements are
0 i<n,j<n;
ajj =\ bin i<n,j=n;

2by, i=n,j=n.
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The following lemma presents a uniform estimate for solutions, which is a kind of “equicon-
tinuity” up to the boundary.

Lemma 2.4. Let 0 < § < 1/4. Suppose that u satisfies

ue S, A, f) in Q;
u=g on (0€2)1,

with [ullpe@y < 1L I fllzn@) <6, lIgllLe o)) <8 and osc 9Q <34.
1
Then

llull Lo (@s) < €3,
where C is universal.
Proof. Let B;L = B]" — 8e, and Ti =T} — 8e,. Then (9R)1/4 C B} Let v solve
M*(D*v,A,A)=0 in B];

v=0 on Tl;

v=1 on 81§l+\T1.
Let w = u — v and then w satisfies (note that v > 0)

weSh/n, A, f) in QN B
w<g on 8Qﬁl§l+;
w=<0 on 3B NQ.

By Lemma 2.1,
<
”v”LOO(B;S) = Ca’
where C is universal. For w, by the Alexandrov-Bakel’man-Pucci maximum principle, we have

Sup w = ||g||Loc(agmgl+) + C”f”L"(QﬂélJr) <Cs,
QnBf

where C is universal. Hence,

supu < sup u< ”v”LvO(E’Z;)"*' sup w < Cé.
$2s QnBy; QnB

The proof for

infu > —C§
Qs
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is similar and we omit it here. Hence, the proof is completed. O

Remark 2.5. The proof shows the idea that approximating the general solution u by a solution v
with a flat boundary. This idea is inspired by [7].

Based on the above lemma, the following corollary follows easily:

Corollary 2.6. For any 0 <r < 1 and & > 0, there exists 8 > 0 (depending only on n, \, A,r
and ¢) such that if u satisfies

ue S, A, f) in Qu;
u=g on (91,

with lullze@y < L [ fllzn@) <6, lIgllLe o)) < and osc Q< §, then
1

lullL>@nBxo.5) <& Y x0€dRNB;.
Next, we prove the equicontinuity of the solutions, which provides the necessary compactness.

Lemma 2.7. For any Q' CC QN B and ¢ > 0, there exists § > 0 (depending only onn, A, A, Q'
and €) such that if u satisfies

ue S, A, f) in Q;
u=g on (39)1,

with lullpo@)y < L I fllee@) <6, llgllieon)) <6 and osc 382 < 8, then for any x,y € Q'
1
with |x — y| <6, we have
lu(x) —u(y)| <e.

Proof. By Corollary 2.6, for any ¢ > 0, there exists §; > 0 depending only on n, A, A, &€ and Q'
such that for any x, y € Q with dist(x, 3Q2) < §; and |x — y| < &1, we have

lu(x) —u()| < |u@x)| +uly)| <e. 2.3)

If dist(x, 0€2) > 81, by the interior Holder estimate,

o

lx — ¥l

@) —uy) = C—5—, (2.4)
1

where C and 0 < « < 1 are universal. Take § small enough such that
C— <e.
h

Then by combining (2.3) and (2.4), the conclusion follows. O
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Now, we give a closedness result for viscosity solutions.
Lemma 2.8. Let uy € C(Q N By) (k > 1) satisfy
Fe(D*up) = (<) fe  in QN Bi;
Up = gk on 02, N Bj.

Suppose that Fy — F uniformly on compact subsets of S", | fillrr.nB) — 0,

gkl L= @e,nBy) — 0 and osc 3y — 0.
1

In addition, assume that for any Q' CC Bfr U Ty, ur — u uniformly on Q. That is, for any
& > 0, there exists ko such that for any k > ko and x € Q' N Qy, we have

lug(x) —u(x)| <e.
Then u € C(Bfr UT)) and
F(D*u)>(<)0 in Bj;
u=~0 on Ti.
Proof. We only prove the case for a subsolution. From [2, Theorem 3.8], F(D?u) > 0 in Bf
holds. For any xo € Ty and & > 0, let § > 0 be small to be specified later and ¥ € B (xq, §) CC

Bl+ U T1. Since uy converges to u# uniformly, there exists ko such that for any k > kg and x €
Bt (xp, 8) N Q, we have

i (x) —u(x)| <&/2.

Take k large enough such that ¥ € Q; and || gkllL>@o,nB,) < ¢/4. Note that u; € C(Qx N By).
Then we can take § small such that |uy(x)| < &/2. Hence,

()| = [u(x) — ur(X) + up ()] = Ju(X) — up (O] + lur(X)] < e.
Therefore, u is continuousup to 77y andu =0on 77. O
3. Boundary C1® regularity
In this section, we give the proof of the boundary C!-* regularity. First, we prove that the
solution in Theorem 1.6 can be approximated by a linear function provided that the prescribed

data are small enough.

Lemma 3.1. Let o and Cy be as in Lemma 2.1. For any 0 < « < «y, there exists § > 0 such that
if u satisfies

ueSh,A,f) in Qr1;
u=g on (0€2)1,
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with |lu|lpe@) < L | fllLr@) <6, lIgllLean)) <& and OBSC 02 < 4, then there exists a con-
1

stant a such that
1
lu —axpllLo,) <n t
and
la] < Cy,
where n depends only on n, A, A and «.

Proof. We prove the lemma by contradiction. Suppose that the lemma is false. Then there exist
0 <« < «ap and sequences of uy, fk, gk, 2k such that

ug € S(A, A, fi)  in QN By;
Ur = 8k on anmBl

with |lug|lLeonsy < 1, | fillr@ins) < 1/k, llgkllLe@ons) < 1/k and osc 02 <1/k,and
1

lug — axnllLo(@ing,) > n' .V lal < C1, 3.1
where 0 < n < 1 is taken small such that
Cin™* % <1/2. (3.2)

Note that uy are uniformly bounded. In addition, by Lemma 2.7, u; are equicontinuous. More
precisely, for any Q' cC Bl+ U T1, € > 0, there exist § > 0 and k¢ such that for any k > kg and
x,yeQ'n Q; with |x —y| <8, |lu(x) —u(y)| < e.Hence, there exists a subsequence (denoted by
uy again) such that u; converges uniformly to some function # on compact subsets of Bl+ UuT.
By the closedness (Lemma 2.8), u satisfies

ueS, A0 in B

u=>0 on Tj.
By Lemma 2.1, there exists a such that
lu(x) — ax,| < Cylx|'T¥, Vxe B,
and
la| < Cj.
Hence, by noting (3.2), we have

i = axnll oo gy <0 /2. (3.3)
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By Lemma 2.7, for § small and k large, we have

lug — @xnllLoo@unB,nie<sp <n' T
Hence, from (3.1),
lug — axnll Lo @una,nim>op > ' T
Let k — oo, we have
lu — @xnll oo (B, n,=sp > 0"+
which contradicts with (3.3). O
Remark 3.2. As pointed out in [11, Chapter 1.3], the benefits of the method of compactness are
that it doesn’t need the solvability of some equation, and the difference between the solution and
the auxiliary function doesn’t need to satisfy some equation.
Now, we can prove the boundary C'* regularity.
Proof of Theorem 1.6. We make some normalization first. Let Ko = [0 Qlcre- Then
IXu] < Kalx'|'T%, ¥V x € (39);. 34
Next, we assume that g(0) =0 and Dg(0) = 0. Otherwise, we may consider v(x) = u(x) —

g(0) — Dg(0) - x. Then the regularity of u follows easily from that of v. Let Kg = [g]c1.e(g)-
Then

lg(0)] < Kglx|'™*®, V x € 091 (3.5

Let 8 be as in Lemma 3.1. We assume that |[u||fe@) <1, Ky <§, K, <6/2and Kg <6/Cy
where Cy is a constant (depending only on n, A, A and &) to be specified later. Otherwise, we
may consider

u(x)
lullLooy +81 (Kf +2K,)’

v(y) =

where y = x/R. By choosing R small enough (depending only on n, A, A and Kg), the above
assumptions can be guaranteed. Without loss of generality, we assume that R = 1.
To prove that u is C!'* at 0, we only need to prove the following. There exists a sequence aj
(k > —1) such that forall k >0
lu = axall o ) < n*0F (3.6)

and

lay — ax—1] < C1n*?, (3.7)
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where C is the universal constant as in Lemma 2.1 and 7, depending only on n, A, A and «, is
as in Lemma 3.1.

We prove the above by induction. For k = 0, by setting ag = a_; = 0, the conclusion holds
clearly. Suppose that the conclusion holds for k = ky. We need to prove that the conclusion holds
for k =ko+ 1.

Let r = 5%, y =x/r and

U(y) = T. (38)
Then v satisfies

{veS(A,A,f) in QN By;

v=2g on 9QN By,
where
z fx) . g(x) — agyx . Q
fM =" 80= WO" and &= —.

By (3.7), there exists a constant Cy depending only on 7, A, A and « such that |a;| < Cy/2
(V0 <k <ko). Then it is easy to verify that

101l oo (@npy) < 1 (by (3.6) and (3.8))

z I fllLn@ns,
1 Ny = = < Ky <8, (by (1.4))
- 1 CoKerJra
181 o2nmy) = ~i7a (Kgr”"‘ + e ) S8y GHand 35) (39

and

~ 1
0sc 0Q = —osc 92 < Kqr® <.
By r B,

By Lemma 3.1, there exists a constant a such that
_ = . 14+a
lv—ayn ”LOO(Qn) =7
and

lal < Cy.
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Let ajy4+1 = ak, + r*a. Then (3.7) holds for ko + 1. Recalling (3.8), we have

lu — Ako+1Xn ||L°°(an0+l)

=|ju— AkoXn — ra&xn ||L°°(S2
1

nr)
l -
=|Ir Ty —r +<xayn ”LOO(Qn)

< r1+a’71+a (ko+D)(1+a)

=1
Hence, (3.6) holds for k = ko + 1. By induction, the proof is completed. 0O

Remark 3.3. From the above proof, it shows clearly that the reason for the requirement of 92 €
C1%(0) is to estimate x,, on 92 (see (3.9)). This observation is originated from [7] and is key to
the C>* regularity below.

4. Boundary C>“ regularity

In the following, we prove the boundary C>¢ regularity. From the proof for the C'* regular-
ity, it can be inferred that if

osc IR<CrtY, vo<r <1, 4.1

the C> regularity follows almost exactly as the C!-* regularity. However, (4.1) can’t be guar-
anteed by choosing a proper coordinate system, which is different from the C'® regularity.
As pointed in Remark 3.3, the requirement for 92 is to estimate x, on d<2. If we know that
Du(0) = 0 beforehand, then we don’t need to estimate x, on d€2. It indicates that the require-
ment for 9$2 may be relaxed in this case. This is the key idea for the C>* regularity.

The following lemma is similar to Lemma 3.1, but without the term x,, in the estimate.

Lemma 4.1. Let oy and Cy be as in Lemma 2.2. For any 0 < a < ap, there exists § > 0 such that
if u satisfies

F(D’w)y=f in Qi;
u=g on (01,

with |ullLe) <1, Du(0) =0, [[fllre@) <93 [glere@) < 1, lIgllLeqon),) < § and
10€2]| 1.0y < 8, then there exist constants bin such that

2
llu — binxixnllLo,) <17,

F(bin)=0
and
[bin] < C2 +1,

where n depends only on n, A, A and «.
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Proof. As before, we prove the lemma by contradiction. Suppose that the lemma is false. Then
there exist 0 < o < ap and sequences of Fy, ux, fx, &k, 2 such that

Fe(D*up) = fi  in QN By;

Uk = gk on 992 N By,

with |[ugllLo@ng) < 1, [8klerey = 1. lgkllLeoeins) < 1/k, Nl fillLeng) < 1/k,
189l c1og) < 1/K, Dug(0) =0 and

luk — binxixnllLoo@inB,) > 02t ¥ |bin| < Cy + 1 with Fi(bin) =0, 4.2)

where 0 < n < 1 is taken small such that
Con™™% < 1/2. 4.3)
Since Fj(0) = 0 and Fy are Lipschitz continuous with a uniform Lipschitz constant depending
only on n, A and A, there exists F such that F; — F on compact subsets of S”. In addition, as

before, u; are uniformly bounded and equicontinuous. Hence, by Lemma 2.8, we can assume
that u; converges uniformly to some function # on compact subsets of BlJr U T and u satisfies

F(D*u)=0 in B};
u=0 on Ti.
By the C!* estimate for uy (see Theorem 1.6) and noting Duy (0) = 0, we have
lukll Lo (ung,y < Crit® VO<r <1,
where @ < min(a, 1) and C is universal. Since uy converges to u uniformly,
IIMIILQQ(B;)fCrH& VO<r<l1.

Hence, Du(0) = 0. B
By Lemma 2.2, there exist b;;, such that

|u(x) — binxixn| < Calx**®2, Vx € B}

1/2°
F(bin) =0

and
|bin| < C>.

Since Fk(l;m) — F(l;,-,,) = 0. For k large, there exists #; with || < 772+°‘/4 and t; — 0 such
that

Fi(bin + tkdpn) =0,



1186 Y. Lian, K. Zhang / J. Differential Equations 269 (2020) 1172-1191

where §,,, denotes the matrix a;; whose elements are all 0 except a;,,, = 1 (similarly hereinafter).

By noting (4.3), we have
et — bini Xl oo ity < 17/ 2.
By Lemma 2.7, for § small and & large, we have
g — binXixn — texy | Loo(@unBy N <s)) <1
Hence, from (4.2),
lluk = binxixn — texpllLoo@unB N xn=sp > 17 T%
Let kK — oo, we have
e = BinXixnll Lo (B, =6 > 1%,

which contradicts with (4.4). O

4.4)

The following is the essential result for the C>¢ regularity. The key is that if Du(0) = 0, the

C>“ regularity holds even if 3Q € C1%(0).

Theorem 4.2. Let 0 < o« < o and 32 be C'* at 0. Assume that u satisfies

F(D*’u)=f in Qu;
u=g on (9€2)1,

with Du(0) = 0. Suppose that
lfOOI < Kplxl®, VxeQi,
and
8] < Kglx*™, Vx e @1
Then u € C>*(0), i.e., there exists a quadratic polynomial P such that
lu(x) = P < ClxI*™ (lullze@y + K5+ Kg) . ¥x €9y,
and
ID*u ()] = C (llullze@) + Ky +Ky).

where C and ry depend only on n, A, A, o and [8Q]C1_a(0).

4.5)

(4.6)

4.7

(4.8)
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Proof. As before, we make some normalization first. Let K = [0€2]¢1.0(g). Then
nl < Kolx'|'™*, ¥ x € (09)1. (4.9)

Let 6 be as in Lemma 4.1. As before, we assume that ||| o) <1, Ky <4, K; <§/2 and
Kq <§/Co where C is a constant (depending only on n, A, A and «) to be specified later.

To prove that u is C> at 0, we only need to prove the following. There exist sequences (by);,
(k > —1) such that for all £ >0,

lu = Binixnll L@, ) < 1+, (4.10)
F((br)in) =0 4.11)

and
|(bk)in — (be—1)in| < (C2 + Dn*?, (4.12)

where C3 is the universal constant as in Lemma 2.2 and 7, depending only on n, A, A and «, is
as in Lemma 4.1.

We prove the above by induction. For k = 0, by setting (bg);, = (b—1)in = 0, the conclusion
holds clearly. Suppose that the conclusion holds for k = k. We need to prove that the conclusion
holds for k = ko + 1.

Letr =n%, y =x/r and

_u(x) = (bigy)inXiXn

(= e (4.13)
Then v satisfies
F(D*>v)=f in QNBy;
{ v=g on 992N By,
where for M € S"*",
F(M) = F(r“Mrt(ka)m) Fly) = f(x) B = g(x) —r(il_cg)inxixn nd O — grz

Then F is uniformly elliptic with ellipticity constants A and A and F(0) = 0. By (4.12), there
exists a constant Co depending only on n, A, A and « such that |(bg)in| < Co/2 (V 0 <k < ko).
Then it is easy to verify that

IVl oo (@np,) < 1o (by (4.10) and (4.13))

Il f1l oo @nB,)
rD(

”f”LDO(S:ZﬂEﬁ) = = Kf = 3 (by (45))

and

102 N Billcragy < Kar® <6.
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In addition, by (4.6) and (4.9), we have

1 COKQt2+ar2+a
<th2+otr2+a + < 8f2+a.

o ~ <
”g”Lw(E)QﬂBt) = r2+a 2
Hence,

[Zlcra) <8< 1and 3], xanp,, <O
By Lemma 4.1, there exist constants b;n such that
lv— Bin}’i}’n”Loo(Qn) <n*te,
F(bin) =0
and
|bin| < C2 4 1.

Let (brg+1)in = (bry)in + r%b;,. Then (4.11) and (4.12) hold for kg + 1. Recalling (4.13), we
have

llu — (bko+1)inxixn||L°°(an0+1)
= |lu — (biy)inXiXn — rbinXiXn|l L (Q,,)
||r2+otv _ r2+0(5

inYiYn ”Lao(fzn)
< r2+an2+a — n(k0+l)(2+0[).
Hence, (4.10) holds for k = kg + 1. By induction, the proof is completed. O

Proof of Theorem 1.8. In fact, Theorem 4.2 has contained the essential ingredients for the C>¢
regularity. The following proof is just the normalization in some sense.
Assume that  satisfies (1.2) and (1.3) with P(x") = x'T Ax’ for some A € §"*". By scaling,
we can assume that [[ 02| c2.e(g) < 1.
Let Fi(M) = F(M) — f(0) for M € §"*". (In the following proof, M always denotes a sym-
metric matrix.) Then Fj is uniformly elliptic with the same ellipticity constants and u satisfies
F(D’w)=fi in Q
u=g on (9€2)1,
where f1(x) = f(x) — f(0).

Next, let u1(x) = u(x) — g(0) — Dg(0) - x —xT D?*g(0)x/2 and F>»(M) = F;(M + D?*g(0)).
Then F; is uniformly elliptic with the same ellipticity constants and u satisfies

{Fz(D2u1)=f1 in Qp;
up=g| on (992)1,
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where g1 (x) = g(x) — g(0) — Dg(0) - x — x” D?g(0)x/2. Hence,
1O < [fleelx]®, Y xeQi,
1810 < [gle2a(o)lx 7T, ¥ x € (3

and

[R0)| = Fi(D?gO)| = [F(D(@) — O] = € (1D +1/ O,

where C is universal.
Note that (see [, Proposition 2.13]),

ur € S(A/n, A, fr — F2(0)).
Then by Theorem 1.6, u; € Cch2(0) fora = min(exy, @2)/2, Du1(0) = (0, ..., 0, (u1),(0)) and
|)n(0)] < C (llurllLe@nay + [flce) + 1F2(0)] + [glc2a (o))

< C (lullzo@nsy + 1Lflce©) + gl c2a) + [F2(0)]) (4.14)
< C (lullzo@nsy + 1flceo) + lIgllc2e)) »
where C is universal.

Let up(x) = uy(x) — (u1)n(0) (xn —x/TAx//Z) and F3(M) = Fo(M — (u1),(0)A). Then F3
is uniformly elliptic with the same ellipticity constants and u; satisfies

!F3(D2M2) =fi inQp;
Uy =g2 on (89)1,
where g2 = g1 — (1), (0) (x, — x'T Ax'/2).

Next, let uz(x) = ux(x) + tx,% and F4(M) = F3(M — 2t8,,). Then F4(0) =0 for some ¢ € R
and (note that [|A[| < [0 c2eg) < 1)

1l  IF3O)I/% = CIE(D*8(0) = u)a (0)4) = fO)
= € (ID% O] + 1@ O Al + £ )] (4.15)
< € (lullz=@ns) + 1f e + 1glcze)

where C is universal. Moreover, u3 satisfies

{F4(D2u3)=f1 in Qp;
u3 = g3 on (0L2),

where g3 = g2 + tx,%.
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Then it is easy to verify that F4(0) =0, Du3(0) =0 and

lg3(x)| < ([g]cz,a(o) + [@D)n (0)|[0R] 200y + |r|||asz||§2,a(0)) x>
< C (lull@nsy + 1f lcxo + 18l czay) X174,V x € (091,

where C is universal.
By Theorem 4.2, u3 and hence u is C%® at 0, and the estimates (1.7) and (1.8) hold. O

From above proof, we have the following interesting result. Roughly speaking, if Du(0) =0,
9 € C1*(0) implies u € C>%(0).

Corollary 4.3. Let 0 < a < ap and dQ be C% at 0. Assume that u satisfies

F(D’w)y=f in Qi;
u=g on (01,

where f € C%(0) and g € C>*(0) with g(0) =0, Dg(0) = 0. Suppose further that Du(0) = 0.
Then u € C**(0) and there exist constants bi, (1 <i <n) such that

|u(x) = binxixa| < Clx"* (Il Lo(@npy) + | fllcao) + 18l c2aq) » ¥V x €N By,

and

|bin] < C (lullLo@nay) + I1Lf e + gl c2e)) -
where C and ry depend only on n, A, A, @ and [8Q]C|,a(0).
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