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Abstract

In this paper, we obtain the boundary pointwise C1,α and C2,α regularity for viscosity solutions of fully 
nonlinear elliptic equations. That is, if ∂� is C1,α (or C2,α) at x0 ∈ ∂�, the solution is C1,α (or C2,α) 
at x0. Our results are new even for the Laplace equation. Moreover, our proofs are simple.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Since 1980s, the fully nonlinear elliptic equations have been studied extensively (see [1] and 
[3] and the references therein). For the investigation on boundary behavior, there are usually 
two ways. One is to study the boundary regularity for viscosity solutions. Flattening the curved 
boundary by a transformation is widely applied (e.g. [9]). However, the lower order terms and 
variant coefficients arise inevitably. Moreover, only local estimates can be derived rather than 
pointwise estimates. Another way is to obtain a priori estimates first and then use the method of 
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continuity to prove the existence of classical solutions. It often requires more smoothness on the 
boundary and the boundary value (e.g. [10]). In both cases, the proofs are usually complicated. 
We note that in [8], Ma and Wang also proved the boundary pointwise C1,α regularity by a barrier 
argument and a complicated iteration procedure.

In this paper, we study the boundary regularity for viscosity solutions and prove the pointwise 
C1,α and C2,α estimates under the corresponding pointwise geometric conditions on ∂�. Our 
results are new even for the Laplace equation and these geometric conditions are rather general. 
Moreover, the boundaries don’t need to be flattened and the proofs are simple.

The perturbation and compactness techniques are adopted here. We use solutions with flat 
boundaries to approximate the solution and the error between them can be estimated by maxi-
mum principles. Then, we can obtain the necessary compactness for solutions (see Lemma 2.7). 
This basic perturbation idea is inspired originally by [1]. The application to boundary regularity 
is inspired by [7]. Based on the compactness result, we can obtain the desired estimates at the 
boundary if the boundary is “almost” flat (see Lemma 3.1 and Lemma 4.1). This compactness 
technique has been inspired by [9] and [11]. Then in aid of the scaling, the estimates on curved 
boundaries can be derived easily and the perturbation is a matter of scaling in some sense. The 
treatment for the right hand term and the boundary value is similar.

In this paper, we use the standard notations and refer to Notation 1.10 for details. Before 
stating our main results, we introduce the following notions.

Definition 1.1. Let A ⊂ Rn be a bounded set and f be a function defined on A. We say that f is 
Ck,α (k ≥ 0) at x0 ∈ A or f ∈ Ck,α(x0) if there exist a polynomial P of degree k and a constant 
K such that

|f (x) − P(x)| ≤ K|x − x0|k+α, ∀ x ∈ A. (1.1)

There may exist multiple P and K (e.g. A = B1 ∩ Rn−1). Then we take P0 with

‖P0‖ = min
{‖P‖∣∣ ∃K such that (1.1) holds with P and K

}
,

where ‖P‖ = ∑k
m=0 |DmP(x0)|. Define

Dmf (x0) = DmP0(x0),

[f ]Ck,α(x0)
= min

{
K

∣∣(1.1) holds with P0 and K
}

and

‖f ‖Ck,α(x0)
= ‖P0‖ + [f ]Ck,α(x0)

.

Next, we give the definitions of the geometric conditions on the domain.

Definition 1.2. Let � be a bounded domain and x0 ∈ ∂�. We say that ∂� is Ck,α (k ≥ 1) at x0
or ∂� ∈ Ck,α(x0) if there exist a coordinate system {x1, ..., xn} (by translating and rotating the 
original coordinate system), a polynomial P(x ′) of degree k and constants r0 and K such that 
x0 = 0 in this coordinate system,
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Br0 ∩ {(x′, xn)
∣∣xn > P(x′) + K|x′|k+α} ⊂ Br0 ∩ � (1.2)

and

Br0 ∩ {(x′, xn)
∣∣xn < P(x′) − K|x′|k+α} ⊂ Br0 ∩ �c. (1.3)

Then, define

[∂�]Ck,α(x0)
= inf

{
K

∣∣ (1.2) and (1.3) hold for K
}

and

‖∂�‖Ck,α(x0)
= ‖P‖ + [∂�]Ck,α(x0)

.

In addition, we define the oscillation of ∂�:

Definition 1.3. Let � be a bounded domain and x0 ∈ ∂�. Given r0 > 0 and ν ∈ Rn with |ν| = 1, 
set

A(ν) = {
r
∣∣{x ∈ B(x0, r0)

∣∣ (x − x0) · ν > r} ⊂ �
}

and

B(ν) = {
r
∣∣{x ∈ B(x0, r0)

∣∣ (x − x0) · ν < −r} ⊂ �c
}

If A(ν) and B(ν) are not empty, define

osc
Br0 ,ν

∂� = inf
r∈A(ν)

r + inf
r∈B(ν)

r

and

osc
Br0

∂� = inf|ν|=1
osc
Br0 ,ν

∂�.

Remark 1.4. Throughout this paper, we always assume that 0 ∈ ∂� and study the boundary 
behavior at 0. When we say that ∂� is Ck,α at 0, it always indicates that (1.2) and (1.3) hold with 
r0 = 1. Furthermore, without loss of generality, we always assume that

P(0) = 0 and DP(0) = 0.

Finally, we always assume that osc
Br

∂� exists for any r > 0 and

osc
Br

∂� = osc
Br ,en

∂� = sup
x∈∂�∩Br

xn − inf
x∈∂�∩Br

xn.
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Remark 1.5. In this definition, ∂� doesn’t need to be the graph of a function near x0. For exam-
ple, let

� = B(en,1)\
{
(x′, xn)

∣∣xn = |x′|2/2, |x| ≤ 1/2
}

.

Then ∂� is C2,α at 0 by the definition. We will prove that the solution is C2,α at 0. Hence, our 
results are new even for the Laplace equation.

Since we consider the viscosity solutions, the standard notions and notations for viscosity 
solutions are used, such as S̄(λ, �, f ), S(λ, �, f ), S(λ, �, f ), M+(M, λ, �), M−(M, λ, �)

etc. For the details, we refer to [1], [2] and [3]. Without loss of generality, we always assume 
that the fully nonlinear operator F is uniformly elliptic with ellipticity constants λ and �, and 
F(0) = 0. We call a constant C universal if it depends only on n, λ and �.

We use the Einstein summation convention in this work, i.e., repeated indices are implicitly 
summed over.

Now, we state our main results. For the boundary pointwise C1,α regularity, we have

Theorem 1.6. Let 0 < α < α1 where α1 is a universal constant (see Lemma 2.1). Suppose that 
∂� is C1,α at 0 and u satisfies

{
u ∈ S(λ,�,f ) in � ∩ B1;
u = g on ∂� ∩ B1,

where g ∈ C1,α(0) and f ∈ Ln(� ∩ B1) satisfies for some constant Kf

‖f ‖Ln(�∩Br) ≤ Kf rα, ∀ 0 < r < 1. (1.4)

Then u ∈ C1,α(0), i.e., there exists an affine function L such that

|u(x) − L(x)| ≤ C|x|1+α
(‖u‖L∞(�∩B1) + Kf + ‖g‖C1,α(0)

)
, ∀ x ∈ � ∩ Br1, (1.5)

and

|Du(0)| ≤ C
(‖u‖L∞(�∩B1) + Kf + ‖g‖C1,α(0)

)
, (1.6)

where C and r1 depend only on n, λ, �, α and [∂�]C1,α(0).

Remark 1.7. In [8], Ma and Wang only proved the boundary pointwise C1,α̃ regularity for some 
α̃ with 0 < α̃ ≤ min(α, α1) since the Harnack inequality was used. For instance, for the Laplace 
equation, we can obtain the C1,α̃ regularity for any 0 < α̃ < 1, which can not been inferred 
from [8].

For the boundary pointwise C2,α regularity, we have
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Theorem 1.8. Let 0 < α < α2 where α2 is a universal constant (see Lemma 2.2). Suppose that 
∂� is C2,α at 0 and u satisfies

{
F(D2u) = f in � ∩ B1;
u = g on ∂� ∩ B1,

where g ∈ C2,α(0) and f ∈ Cα(0).
Then u ∈ C2,α(0), i.e., there exists a quadratic polynomial P such that

|u(x) − P(x)| ≤ C|x|2+α
(‖u‖L∞(�∩B1) + ‖f ‖Cα(0) + ‖g‖C2,α(0)

)
, ∀ x ∈ � ∩ Br1, (1.7)

and

|Du(0)| + ‖D2u(0)‖ ≤ C
(‖u‖L∞(�∩B1) + ‖f ‖Cα(0) + ‖g‖C2,α(0)

)
, (1.8)

where C and r1 depend only on n, λ, �, α and ‖∂�‖C2,α(0).

Remark 1.9. Note that the convexity of F is not needed here, which is different from the interior 
C2,α regularity.

In the next section, we prepare some preliminaries. In particular, we prove the compactness 
and the closedness for a family of viscosity solutions. We obtain the boundary C1,α regularity in 
Section 3 and the boundary C2,α regularity in Section 4.

Notation 1.10.

1. {ei}ni=1: the standard basis of Rn, i.e., ei = (0, ...0, 1
ith

, 0, ...0).

2. x′ = (x1, x2, ..., xn−1) and x = (x1, ..., xn) = (x′, xn).
3. Sn: the set of n × n symmetric matrices and ‖A‖ = the spectral radius of A for any A ∈ Sn.
4. Rn+ = {x ∈ Rn

∣∣xn > 0}.
5. Br(x0) = {x ∈ Rn

∣∣|x − x0| < r}, Br = Br(0), B+
r (x0) = Br(x0) ∩ Rn+ and B+

r = B+
r (0).

6. Tr(x0) = {(x′, 0) ∈ Rn
∣∣|x′ − x′

0| < r} and Tr = Tr(0).
7. Ac: the complement of A and Ā: the closure of A, ∀A ⊂ Rn.
8. �r = � ∩ Br and (∂�)r = ∂� ∩ Br .
9. ϕi = Diϕ = ∂ϕ/∂xi and Dϕ = (ϕ1, ..., ϕn). Similarly, ϕij = Dijϕ = ∂2ϕ/∂xi∂xj and 

D2ϕ = (
ϕij

)
n×n

.

2. Preliminaries

In this section, we introduce two lemmas stating the C1,α and C2,α regularity on flat bound-
aries. We will use them to approximate the solutions on curved boundaries. In addition, we prove 
the compactness and closedness for a family of viscosity solutions.

The following lemma concerns the boundary C1,α regularity. It was first proved by Krylov [6]
and further simplified by Caffarelli (see [4, Theorem 9.31] and [5, Theorem 4.28]).
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Lemma 2.1. Let u satisfy

{
u ∈ S(λ,�,0) in B+

1 ;
u = 0 on T1.

Then there exists a universal constant 0 < α1 < 1 such that u ∈ C1,α1(0) and for some con-
stant a,

|u(x) − axn| ≤ C1|x|1+α1‖u‖L∞(B+
1 ), ∀ x ∈ B+

1/2

and

|a| ≤ C1‖u‖L∞(B+
1 ),

where C1 is universal.

The next lemma concerns the boundary C2,α regularity. We refer to [9, Lemma 4.1] for a 
proof.

Lemma 2.2. Let u satisfy

{
F(D2u) = 0 in B+

1 ;
u = 0 on T1.

Then there exists a universal constant 0 < α2 < 1 such that u ∈ C2,α2(0) and for some con-
stants a and bin(1 ≤ i ≤ n),

|u(x) − axn − binxixn| ≤ C2|x|2+α2‖u‖L∞(B+
1 ), ∀ x ∈ B+

1/2, (2.1)

F(bin) = 0 (2.2)

and

|a| + |bin| ≤ C2‖u‖L∞(B+
1 ),

where C2 is universal.

Remark 2.3. In (2.1), the Einstein summation convention is used, i.e., binxixn denotes the sum ∑n
i=1 binxixn (similarly hereinafter). In (2.2), bin denotes the matrix aij (similarly hereinafter) 

whose elements are

aij =

⎧⎪⎪⎨
⎪⎪⎩

0 i < n, j < n;
bin i < n, j = n;
2bnn i = n, j = n.
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The following lemma presents a uniform estimate for solutions, which is a kind of “equicon-
tinuity” up to the boundary.

Lemma 2.4. Let 0 < δ < 1/4. Suppose that u satisfies

{
u ∈ S(λ,�,f ) in �1;
u = g on (∂�)1,

with ‖u‖L∞(�1) ≤ 1, ‖f ‖Ln(�1) ≤ δ, ‖g‖L∞((∂�)1) ≤ δ and osc
B1

∂� ≤ δ.

Then

‖u‖L∞(�δ) ≤ Cδ,

where C is universal.

Proof. Let B̃+
1 = B+

1 − δen and T̃1 = T1 − δen. Then (∂�)1/4 ⊂ B̃+
1 . Let v solve

⎧⎪⎪⎨
⎪⎪⎩

M+(D2v,λ,�) = 0 in B̃+
1 ;

v = 0 on T̃1;
v = 1 on ∂B̃+

1 \T̃1.

Let w = u − v and then w satisfies (note that v ≥ 0)

⎧⎪⎪⎨
⎪⎪⎩

w ∈ S(λ/n,�,f ) in � ∩ B̃+
1 ;

w ≤ g on ∂� ∩ B̃+
1 ;

w ≤ 0 on ∂B̃+
1 ∩ �̄.

By Lemma 2.1,

‖v‖
L∞(B̃+

4δ)
≤ Cδ,

where C is universal. For w, by the Alexandrov-Bakel’man-Pucci maximum principle, we have

sup
�∩B̃+

1

w ≤ ‖g‖
L∞(∂�∩B̃+

1 )
+ C‖f ‖

Ln(�∩B̃+
1 )

≤ Cδ,

where C is universal. Hence,

sup
�δ

u ≤ sup
�∩B̃+

4δ

u ≤ ‖v‖
L∞(B̃+

4δ)
+ sup

�∩B̃+
1

w ≤ Cδ.

The proof for

infu ≥ −Cδ

�δ
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is similar and we omit it here. Hence, the proof is completed. �
Remark 2.5. The proof shows the idea that approximating the general solution u by a solution v
with a flat boundary. This idea is inspired by [7].

Based on the above lemma, the following corollary follows easily:

Corollary 2.6. For any 0 < r < 1 and ε > 0, there exists δ > 0 (depending only on n, λ, �, r
and ε) such that if u satisfies

{
u ∈ S(λ,�,f ) in �1;
u = g on (∂�)1,

with ‖u‖L∞(�1) ≤ 1, ‖f ‖Ln(�1) ≤ δ, ‖g‖L∞((∂�)1) ≤ δ and osc
B1

∂� ≤ δ, then

‖u‖L∞(�∩B(x0,δ)) ≤ ε, ∀ x0 ∈ ∂� ∩ Br.

Next, we prove the equicontinuity of the solutions, which provides the necessary compactness.

Lemma 2.7. For any �′ ⊂⊂ �̄∩B1 and ε > 0, there exists δ > 0 (depending only on n, λ, �, �′
and ε) such that if u satisfies

{
u ∈ S(λ,�,f ) in �1;
u = g on (∂�)1,

with ‖u‖L∞(�1) ≤ 1, ‖f ‖Ln(�1) ≤ δ, ‖g‖L∞((∂�)1) ≤ δ and osc
B1

∂� ≤ δ, then for any x, y ∈ �′

with |x − y| ≤ δ, we have

|u(x) − u(y)| ≤ ε.

Proof. By Corollary 2.6, for any ε > 0, there exists δ1 > 0 depending only on n, λ, �, ε and �′
such that for any x, y ∈ �′ with dist(x, ∂�) ≤ δ1 and |x − y| ≤ δ1, we have

|u(x) − u(y)| ≤ |u(x)| + |u(y)| ≤ ε. (2.3)

If dist(x, ∂�) > δ1, by the interior Hölder estimate,

|u(x) − u(y)| ≤ C
|x − y|α

δα
1

, (2.4)

where C and 0 < α < 1 are universal. Take δ small enough such that

C
δα

δα
1

≤ ε.

Then by combining (2.3) and (2.4), the conclusion follows. �
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Now, we give a closedness result for viscosity solutions.

Lemma 2.8. Let uk ∈ C(�̄k ∩ B1) (k ≥ 1) satisfy

{
Fk(D

2uk) ≥ (≤)fk in �k ∩ B1;
uk = gk on ∂�k ∩ B1.

Suppose that Fk → F uniformly on compact subsets of Sn, ‖fk‖Ln(�k∩B1) → 0,
‖gk‖L∞(∂�k∩B1) → 0 and osc

B1
∂�k → 0.

In addition, assume that for any �′ ⊂⊂ B+
1 ∪ T1, uk → u uniformly on �′. That is, for any 

ε > 0, there exists k0 such that for any k ≥ k0 and x ∈ �′ ∩ �̄k , we have

|uk(x) − u(x)| ≤ ε.

Then u ∈ C(B+
1 ∪ T1) and

{
F(D2u) ≥ (≤)0 in B+

1 ;
u = 0 on T1.

Proof. We only prove the case for a subsolution. From [2, Theorem 3.8], F(D2u) ≥ 0 in B+
1

holds. For any x0 ∈ T1 and ε > 0, let δ > 0 be small to be specified later and x̃ ∈ B+(x0, δ) ⊂⊂
B+

1 ∪ T1. Since uk converges to u uniformly, there exists k0 such that for any k ≥ k0 and x ∈
B+(x0, δ) ∩ �̄k , we have

|uk(x) − u(x)| ≤ ε/2.

Take k large enough such that x̃ ∈ �k and ‖gk‖L∞(∂�k∩B1) ≤ ε/4. Note that uk ∈ C(�̄k ∩ B1). 
Then we can take δ small such that |uk(x̃)| ≤ ε/2. Hence,

|u(x̃)| = |u(x̃) − uk(x̃) + uk(x̃)| ≤ |u(x̃) − uk(x̃)| + |uk(x̃)| ≤ ε.

Therefore, u is continuous up to T1 and u ≡ 0 on T1. �
3. Boundary C1,α regularity

In this section, we give the proof of the boundary C1,α regularity. First, we prove that the 
solution in Theorem 1.6 can be approximated by a linear function provided that the prescribed 
data are small enough.

Lemma 3.1. Let α1 and C1 be as in Lemma 2.1. For any 0 < α < α1, there exists δ > 0 such that 
if u satisfies

{
u ∈ S(λ,�,f ) in �1;
u = g on (∂�) ,
1



Y. Lian, K. Zhang / J. Differential Equations 269 (2020) 1172–1191 1181
with ‖u‖L∞(�1) ≤ 1, ‖f ‖Ln(�1) ≤ δ, ‖g‖L∞((∂�)1) ≤ δ and osc
B1

∂� ≤ δ, then there exists a con-

stant a such that

‖u − axn‖L∞(�η) ≤ η1+α

and

|a| ≤ C1,

where η depends only on n, λ, � and α.

Proof. We prove the lemma by contradiction. Suppose that the lemma is false. Then there exist 
0 < α < α1 and sequences of uk, fk, gk, �k such that

{
uk ∈ S(λ,�,fk) in �k ∩ B1;
uk = gk on ∂�k ∩ B1

with ‖uk‖L∞(�k∩B1) ≤ 1, ‖fk‖Ln(�k∩B1) ≤ 1/k, ‖gk‖L∞(∂�k∩B1) ≤ 1/k and osc
B1

∂� ≤ 1/k, and

‖uk − axn‖L∞(�k∩Bη) > η1+α,∀ |a| ≤ C1, (3.1)

where 0 < η < 1 is taken small such that

C1η
α1−α < 1/2. (3.2)

Note that uk are uniformly bounded. In addition, by Lemma 2.7, uk are equicontinuous. More 
precisely, for any �′ ⊂⊂ B+

1 ∪ T1, ε > 0, there exist δ > 0 and k0 such that for any k ≥ k0 and 
x, y ∈ �′ ∩�̄k with |x−y| < δ, |u(x) −u(y)| ≤ ε. Hence, there exists a subsequence (denoted by 
uk again) such that uk converges uniformly to some function u on compact subsets of B+

1 ∪ T1. 
By the closedness (Lemma 2.8), u satisfies

{
u ∈ S(λ,�,0) in B+

1 ;
u = 0 on T1.

By Lemma 2.1, there exists ā such that

|u(x) − āxn| ≤ C1|x|1+α1 , ∀ x ∈ B+
1/2

and

|ā| ≤ C1.

Hence, by noting (3.2), we have

‖u − āxn‖ ∞ + ≤ η1+α/2. (3.3)
L (Bη )
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By Lemma 2.7, for δ small and k large, we have

‖uk − āxn‖L∞(�k∩Bη∩{xn≤δ}) < η1+α.

Hence, from (3.1),

‖uk − āxn‖L∞(�k∩Bη∩{xn>δ}) > η1+α.

Let k → ∞, we have

‖u − āxn‖L∞(Bη∩{xn>δ}) > η1+α,

which contradicts with (3.3). �
Remark 3.2. As pointed out in [11, Chapter 1.3], the benefits of the method of compactness are 
that it doesn’t need the solvability of some equation, and the difference between the solution and 
the auxiliary function doesn’t need to satisfy some equation.

Now, we can prove the boundary C1,α regularity.

Proof of Theorem 1.6. We make some normalization first. Let K� = [∂�]C1,α(0). Then

|xn| ≤ K�|x′|1+α, ∀ x ∈ (∂�)1. (3.4)

Next, we assume that g(0) = 0 and Dg(0) = 0. Otherwise, we may consider v(x) = u(x) −
g(0) − Dg(0) · x. Then the regularity of u follows easily from that of v. Let Kg = [g]C1,α(0). 
Then

|g(x)| ≤ Kg|x|1+α, ∀ x ∈ (∂�)1. (3.5)

Let δ be as in Lemma 3.1. We assume that ‖u‖L∞(�1) ≤ 1, Kf ≤ δ, Kg ≤ δ/2 and K� ≤ δ/C0
where C0 is a constant (depending only on n, λ, � and α) to be specified later. Otherwise, we 
may consider

v(y) = u(x)

‖u‖L∞(�1) + δ−1
(
Kf + 2Kg

) ,

where y = x/R. By choosing R small enough (depending only on n, λ, � and K�), the above 
assumptions can be guaranteed. Without loss of generality, we assume that R = 1.

To prove that u is C1,α at 0, we only need to prove the following. There exists a sequence ak

(k ≥ −1) such that for all k ≥ 0

‖u − akxn‖L∞(�
ηk ) ≤ ηk(1+α) (3.6)

and

|ak − ak−1| ≤ C1η
kα, (3.7)
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where C1 is the universal constant as in Lemma 2.1 and η, depending only on n, λ, � and α, is 
as in Lemma 3.1.

We prove the above by induction. For k = 0, by setting a0 = a−1 = 0, the conclusion holds 
clearly. Suppose that the conclusion holds for k = k0. We need to prove that the conclusion holds 
for k = k0 + 1.

Let r = ηk0 , y = x/r and

v(y) = u(x) − ak0xn

r1+α
. (3.8)

Then v satisfies

{
v ∈ S(λ,�, f̃ ) in �̃ ∩ B1;
v = g̃ on ∂�̃ ∩ B1,

where

f̃ (y) = f (x)

rα−1 , g̃(y) = g(x) − ak0xn

r1+α
and �̃ = �

r
.

By (3.7), there exists a constant C0 depending only on n, λ, � and α such that |ak| ≤ C0/2
(∀ 0 ≤ k ≤ k0). Then it is easy to verify that

‖v‖
L∞(�̃∩B1)

≤ 1, (by (3.6) and (3.8))

‖f̃ ‖
Ln(�̃∩B1)

= ‖f ‖Ln(�∩Br)

rα
≤ Kf ≤ δ, (by (1.4))

‖g̃‖
L∞(∂�̃∩B1)

≤ 1

r1+α

(
Kgr

1+α + C0K�r1+α

2

)
≤ δ (by (3.4) and (3.5)) (3.9)

and

osc
B1

∂�̃ = 1

r
osc
Br

∂� ≤ K�rα ≤ δ.

By Lemma 3.1, there exists a constant ā such that

‖v − āyn‖L∞(�̃η)
≤ η1+α

and

|ā| ≤ C1.
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Let ak0+1 = ak0 + rαā. Then (3.7) holds for k0 + 1. Recalling (3.8), we have

‖u − ak0+1xn‖L∞(�
ηk0+1 )

= ‖u − ak0xn − rαāxn‖L∞(�ηr )

= ‖r1+αv − r1+αāyn‖L∞(�̃η)

≤ r1+αη1+α = η(k0+1)(1+α).

Hence, (3.6) holds for k = k0 + 1. By induction, the proof is completed. �
Remark 3.3. From the above proof, it shows clearly that the reason for the requirement of ∂� ∈
C1,α(0) is to estimate xn on ∂� (see (3.9)). This observation is originated from [7] and is key to 
the C2,α regularity below.

4. Boundary C2,α regularity

In the following, we prove the boundary C2,α regularity. From the proof for the C1,α regular-
ity, it can be inferred that if

osc
Br

∂� ≤ Cr2+α, ∀ 0 < r < 1, (4.1)

the C2,α regularity follows almost exactly as the C1,α regularity. However, (4.1) can’t be guar-
anteed by choosing a proper coordinate system, which is different from the C1,α regularity. 
As pointed in Remark 3.3, the requirement for ∂� is to estimate xn on ∂�. If we know that 
Du(0) = 0 beforehand, then we don’t need to estimate xn on ∂�. It indicates that the require-
ment for ∂� may be relaxed in this case. This is the key idea for the C2,α regularity.

The following lemma is similar to Lemma 3.1, but without the term xn in the estimate.

Lemma 4.1. Let α2 and C2 be as in Lemma 2.2. For any 0 < α < α2, there exists δ > 0 such that 
if u satisfies

{
F(D2u) = f in �1;
u = g on (∂�)1,

with ‖u‖L∞(�1) ≤ 1, Du(0) = 0, ‖f ‖L∞(�1) ≤ δ, [g]C1,α(0) ≤ 1, ‖g‖L∞((∂�)1) ≤ δ and 
‖∂�‖C1,α(0) ≤ δ, then there exist constants bin such that

‖u − binxixn‖L∞(�η) ≤ η2+α,

F (bin) = 0

and

|bin| ≤ C2 + 1,

where η depends only on n, λ, � and α.
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Proof. As before, we prove the lemma by contradiction. Suppose that the lemma is false. Then 
there exist 0 < α < α2 and sequences of Fk, uk, fk, gk, �k such that

{
Fk(D

2uk) = fk in �k ∩ B1;
uk = gk on ∂�k ∩ B1,

with ‖uk‖L∞(�k∩B1) ≤ 1, [gk]C1,α(0) ≤ 1, ‖gk‖L∞(∂�k∩B1) ≤ 1/k, ‖fk‖L∞(�k∩B1) ≤ 1/k, 
‖∂�k‖C1,α(0) ≤ 1/k, Duk(0) = 0 and

‖uk − binxixn‖L∞(�k∩Bη) > η2+α,∀ |bin| ≤ C2 + 1 with Fk(bin) = 0, (4.2)

where 0 < η < 1 is taken small such that

C2η
α2−α < 1/2. (4.3)

Since Fk(0) = 0 and Fk are Lipschitz continuous with a uniform Lipschitz constant depending 
only on n, λ and �, there exists F such that Fk → F on compact subsets of Sn. In addition, as 
before, uk are uniformly bounded and equicontinuous. Hence, by Lemma 2.8, we can assume 
that uk converges uniformly to some function u on compact subsets of B+

1 ∪ T1 and u satisfies

{
F(D2u) = 0 in B+

1 ;
u = 0 on T1.

By the C1,α estimate for uk (see Theorem 1.6) and noting Duk(0) = 0, we have

‖uk‖L∞(�k∩Br) ≤ Cr1+ᾱ ∀ 0 < r < 1,

where ᾱ < min(α, α1) and C is universal. Since uk converges to u uniformly,

‖u‖L∞(B+
r ) ≤ Cr1+ᾱ ∀ 0 < r < 1.

Hence, Du(0) = 0.
By Lemma 2.2, there exist b̄in such that

|u(x) − b̄inxixn| ≤ C2|x|2+α2 , ∀ x ∈ B+
1/2,

F (b̄in) = 0

and

|b̄in| ≤ C2.

Since Fk(b̄in) → F(b̄in) = 0. For k large, there exists tk with |tk| ≤ η2+α/4 and tk → 0 such 
that

Fk(b̄in + tkδnn) = 0,
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where δnn denotes the matrix aij whose elements are all 0 except ann = 1 (similarly hereinafter).
By noting (4.3), we have

‖u − b̄inxixn‖L∞(B+
η ) ≤ η2+α/2. (4.4)

By Lemma 2.7, for δ small and k large, we have

‖uk − b̄inxixn − tkx
2
n‖L∞(�k∩Bη∩{xn≤δ}) < η2+α.

Hence, from (4.2),

‖uk − b̄inxixn − tkx
2
n‖L∞(�k∩Bη∩{xn>δ}) > η2+α.

Let k → ∞, we have

‖u − b̄inxixn‖L∞(Bη∩{xn>δ}) > η2+α,

which contradicts with (4.4). �
The following is the essential result for the C2,α regularity. The key is that if Du(0) = 0, the 

C2,α regularity holds even if ∂� ∈ C1,α(0).

Theorem 4.2. Let 0 < α < α2 and ∂� be C1,α at 0. Assume that u satisfies

{
F(D2u) = f in �1;
u = g on (∂�)1,

with Du(0) = 0. Suppose that

|f (x)| ≤ Kf |x|α, ∀ x ∈ �1, (4.5)

and

|g(x)| ≤ Kg|x|2+α, ∀ x ∈ (∂�)1. (4.6)

Then u ∈ C2,α(0), i.e., there exists a quadratic polynomial P such that

|u(x) − P(x)| ≤ C|x|2+α
(‖u‖L∞(�1) + Kf + Kg

)
, ∀ x ∈ �r1, (4.7)

and

‖D2u(0)‖ ≤ C
(‖u‖L∞(�1) + Kf + Kg

)
, (4.8)

where C and r1 depend only on n, λ, �, α and [∂�]C1,α(0).
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Proof. As before, we make some normalization first. Let K� = [∂�]C1,α(0). Then

|xn| ≤ K�|x′|1+α, ∀ x ∈ (∂�)1. (4.9)

Let δ be as in Lemma 4.1. As before, we assume that ‖u‖L∞(�1) ≤ 1, Kf ≤ δ, Kg ≤ δ/2 and 
K� ≤ δ/C0 where C0 is a constant (depending only on n, λ, � and α) to be specified later.

To prove that u is C2,α at 0, we only need to prove the following. There exist sequences (bk)in
(k ≥ −1) such that for all k ≥ 0,

‖u − (bk)inxixn‖L∞(�
ηk ) ≤ ηk(2+α), (4.10)

F((bk)in) = 0 (4.11)

and

|(bk)in − (bk−1)in| ≤ (C2 + 1)ηkα, (4.12)

where C2 is the universal constant as in Lemma 2.2 and η, depending only on n, λ, � and α, is 
as in Lemma 4.1.

We prove the above by induction. For k = 0, by setting (b0)in = (b−1)in = 0, the conclusion 
holds clearly. Suppose that the conclusion holds for k = k0. We need to prove that the conclusion 
holds for k = k0 + 1.

Let r = ηk0 , y = x/r and

v(y) = u(x) − (bk0)inxixn

r2+α
. (4.13)

Then v satisfies {
F̃ (D2v) = f̃ in �̃ ∩ B1;
v = g̃ on ∂�̃ ∩ B1,

where for M ∈ Sn×n,

F̃ (M) = F(rαM + (bk0)in)

rα
, f̃ (y) = f (x)

rα
, g̃(y) = g(x) − (bk0)inxixn

r2+α
and �̃ = �

r
.

Then F̃ is uniformly elliptic with ellipticity constants λ and � and F̃ (0) = 0. By (4.12), there 
exists a constant C0 depending only on n, λ, � and α such that |(bk)in| ≤ C0/2 (∀ 0 ≤ k ≤ k0). 
Then it is easy to verify that

‖v‖
L∞(�̃∩B1)

≤ 1, (by (4.10) and (4.13))

‖f̃ ‖
L∞(�̃∩B1)

= ‖f ‖L∞(�∩Br )

rα
≤ Kf ≤ δ (by (4.5))

and

‖∂�̃ ∩ B1‖C1,α(0) ≤ K�rα ≤ δ.
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In addition, by (4.6) and (4.9), we have

‖g̃‖
L∞(∂�̃∩Bt )

≤ 1

r2+α

(
Kgt

2+αr2+α + C0K�t2+αr2+α

2

)
≤ δt2+α.

Hence,

[g̃]C1,α(0) ≤ δ ≤ 1 and ‖g̃‖
L∞(∂�̃∩B1)

≤ δ.

By Lemma 4.1, there exist constants b̄in such that

‖v − b̄inyiyn‖L∞(�̃η)
≤ η2+α,

F̃ (b̄in) = 0

and

|b̄in| ≤ C2 + 1.

Let (bk0+1)in = (bk0)in + rαb̄in. Then (4.11) and (4.12) hold for k0 + 1. Recalling (4.13), we 
have

‖u − (bk0+1)inxixn‖L∞(�
ηk0+1 )

= ‖u − (bk0)inxixn − rαb̄inxixn‖L∞(�ηr )

= ‖r2+αv − r2+αb̄inyiyn‖L∞(�̃η)

≤ r2+αη2+α = η(k0+1)(2+α).

Hence, (4.10) holds for k = k0 + 1. By induction, the proof is completed. �
Proof of Theorem 1.8. In fact, Theorem 4.2 has contained the essential ingredients for the C2,α

regularity. The following proof is just the normalization in some sense.
Assume that � satisfies (1.2) and (1.3) with P(x′) = x′ T Ax′ for some A ∈ Sn×n. By scaling, 

we can assume that ‖∂�‖C2,α(0) ≤ 1.
Let F1(M) = F(M) − f (0) for M ∈ Sn×n. (In the following proof, M always denotes a sym-

metric matrix.) Then F1 is uniformly elliptic with the same ellipticity constants and u satisfies

{
F1(D

2u) = f1 in �1;
u = g on (∂�)1,

where f1(x) = f (x) − f (0).
Next, let u1(x) = u(x) − g(0) − Dg(0) · x − xT D2g(0)x/2 and F2(M) = F1(M + D2g(0)). 

Then F2 is uniformly elliptic with the same ellipticity constants and u1 satisfies

{
F2(D

2u1) = f1 in �1;
u = g on (∂�) ,
1 1 1
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where g1(x) = g(x) − g(0) − Dg(0) · x − xT D2g(0)x/2. Hence,

|f1(x)| ≤ [f ]Cα(0)|x|α, ∀ x ∈ �1,

|g1(x)| ≤ [g]C2,α(0)|x|2+α, ∀ x ∈ (∂�)1

and

|F2(0)| = |F1(D
2g(0))| = |F(D2g(0)) − f (0)| ≤ C

(
‖D2g(0)‖ + |f (0)|

)
,

where C is universal.
Note that (see [1, Proposition 2.13]),

u1 ∈ S(λ/n,�,f1 − F2(0)).

Then by Theorem 1.6, u1 ∈ C1,ᾱ(0) for ᾱ = min(α1, α2)/2, Du1(0) = (0, ..., 0, (u1)n(0)) and

|(u1)n(0)| ≤ C
(‖u1‖L∞(�∩B1) + [f ]Cα(0) + |F2(0)| + [g]C2,α(0)

)
≤ C

(‖u‖L∞(�∩B1) + ‖f ‖Cα(0) + ‖g‖C2,α(0) + |F2(0)|)
≤ C

(‖u‖L∞(�∩B1) + ‖f ‖Cα(0) + ‖g‖C2,α(0)

)
,

(4.14)

where C is universal.
Let u2(x) = u1(x) − (u1)n(0) 

(
xn − x′ T Ax′/2

)
and F3(M) = F2(M − (u1)n(0)A). Then F3

is uniformly elliptic with the same ellipticity constants and u2 satisfies

{
F3(D

2u2) = f1 in �1;
u2 = g2 on (∂�)1,

where g2 = g1 − (u1)n(0) 
(
xn − x′ T Ax′/2

)
.

Next, let u3(x) = u2(x) + tx2
n and F4(M) = F3(M − 2tδnn). Then F4(0) = 0 for some t ∈ R

and (note that ‖A‖ ≤ ‖∂�‖C2,α(0) ≤ 1)

|t | ≤ |F3(0)|/λ ≤ C|F(D2g(0) − (u1)n(0)A) − f (0)|
≤ C

(
‖D2g(0)‖ + |(u1)n(0)|‖A‖ + |f (0)|

)
≤ C

(‖u‖L∞(�∩B1) + ‖f ‖Cα(0) + ‖g‖C2,α(0)

)
,

(4.15)

where C is universal. Moreover, u3 satisfies

{
F4(D

2u3) = f1 in �1;
u3 = g3 on (∂�)1,

where g3 = g2 + tx2
n .
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Then it is easy to verify that F4(0) = 0, Du3(0) = 0 and

|g3(x)| ≤
(
[g]C2,α(0) + |(u1)n(0)|[∂�]C2,α(0) + |t |‖∂�‖2

C2,α(0)

)
|x|2+α

≤ C
(‖u‖L∞(�∩B1) + ‖f ‖Cα(0) + ‖g‖C2,α(0)

) |x|2+α, ∀ x ∈ (∂�)1,

where C is universal.
By Theorem 4.2, u3 and hence u is C2,α at 0, and the estimates (1.7) and (1.8) hold. �
From above proof, we have the following interesting result. Roughly speaking, if Du(0) = 0, 

∂� ∈ C1,α(0) implies u ∈ C2,α(0).

Corollary 4.3. Let 0 < α < α2 and ∂� be C1,α at 0. Assume that u satisfies

{
F(D2u) = f in �1;
u = g on (∂�)1,

where f ∈ Cα(0) and g ∈ C2,α(0) with g(0) = 0, Dg(0) = 0. Suppose further that Du(0) = 0.
Then u ∈ C2,α(0) and there exist constants bin(1 ≤ i ≤ n) such that

|u(x) − binxixn| ≤ C|x|2+α
(‖u‖L∞(�∩B1) + ‖f ‖Cα(0) + ‖g‖C2,α(0)

)
, ∀ x ∈ � ∩ Br1,

and

|bin| ≤ C
(‖u‖L∞(�∩B1) + ‖f ‖Cα(0) + ‖g‖C2,α(0)

)
,

where C and r1 depend only on n, λ, �, α and [∂�]C1,α(0).
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