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Abstract

We study the period function T of a center O of the title’s equation. A sufficient condition

for the monotonicity of T ; or for the isochronicity of O; is given. Such a condition is also

necessary, when f and g are odd and analytic. In this case a characterization of isochronous

centers is given. Some classes of plane systems equivalent to such equation are considered,

including some Kukles’ systems.
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1. Introduction

Let

x0 ¼ Pðx; yÞ; y0 ¼ Qðx; yÞ ð1Þ

be a plane differential system, with Pðx; yÞ; Qðx; yÞ functions of class C1 defined in
an open neighborhood U of the origin O: Assume the origin to be a critical point of
(1). We say that O is a center of (1) if it has a neighborhood W covered with
nontrivial cycles. When O is a center, we can define on W \fOg the period function
Tðx; yÞ; which associates to every point ðx; yÞAW the minimal period of the cycle
gðx;yÞ passing through ðx; yÞ: The study of T is strictly related to existence and

uniqueness of solutions of some boundary value, bifurcation or perturbation
problems. Moreover, the case of a constant T has a strong relationship to stability,
since a nontrivial periodic solution of the period annulus is Liapunov stable if and
only if the neighboring periodic solutions have the same period.

ARTICLE IN PRESS

E-mail address: sabatini@science.unitn.it.

0022-0396/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0022-0396(03)00067-6



The most studied systems are those equivalent to second order ODEs,

x00 þ Hðx; x0Þ ¼ 0; ð2Þ

in particular those equivalent to conservative equations,

x00 þ hðxÞ ¼ 0; ð3Þ

which are often studied by reducing the problem to the estimate of a suitable
integral. See [3,6–8,11,14] for results on the monotonicity of T in relation to
conservative equations [4] for a comparison of different results, [2] for a survey on
isochronicity.

By adding to (3) a term depending linearly on x0;

x00 þ f ðxÞx0 þ gðxÞ ¼ 0; ð4Þ

one obtains the so-called Liénard equation. Such an equation has been widely
investigated in relation to the existence of limit cycles. Not many results have
appeared about the period function of Liénard centers, probably due the fact that in
general first integrals of (4) are unknown. See [1,6] for isochronicity and [13] for
monotonicity of the period function of (4).

In this paper we consider a class of systems equivalent to second order ODEs in

which the term x02 appears,

x00 þ f ðxÞx02 þ gðxÞ ¼ 0: ð5Þ

Such a study is motivated by the interest that quadratic systems and their
generalizations have in applications.

Instead of considering the standard equivalent system,

x0 ¼ y; y0 ¼ �gðxÞ � f ðxÞy2; ð6Þ

we work on a wider class of systems

x0 ¼ yaðxÞ; y0 ¼ �bðxÞ � zðxÞy2: ð7Þ

If a40; then (7) is equivalent to a nonsingular equation of type (5). Given a ð40Þ; b
and z; the functions f and g are uniquely determined. Vice versa, given f and g; one
can arbitrarily choose a40 and successively determine b and z so that (7) is
equivalent to (5).

This allows to choose different systems in order to cope with different problems

related to (5). For instance, taking aðxÞ ¼ e�FðxÞ; bðxÞ ¼ gðxÞeFðxÞ; zðxÞ 	 0; one
obtains

x0 ¼ e�FðxÞy; y0 ¼ �gðxÞeFðxÞ; ð8Þ

which gives immediately the first integral of (5), and a sufficient condition for the
solutions of (5) to oscillate.
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As pointed out in [7], system (8) can be transformed into the system

x0 ¼ y; y0 ¼ �hðxÞ; ð9Þ

equivalent to (3). On the other hand, not every problem related to (5), (6), (8) or (7)
can be reduced to a similar problem about (9). This is the case of the existence of
polynomial isochronous centers of (7). There are no nonlinear polynomial systems of
type (9) having isochronous centers [7], while there exist polynomial systems of any
degree of type (7) having isochronous centers (see Section 3 below).

In this paper we study the monotonicity properties of the period function of (5)
and its equivalent systems, using in the various cases what seems to be the most
appropriate system. In Section 2 we find a first integral of (5) and give a sufficient
condition for the oscillation of solutions. Then we deduce a monotonicity condition
for the period function of (5), and of all its equivalent systems, from a condition on
the period function of (9), proved in [13]. We apply our results to a class of quadratic
system and to a class of Kukles’ systems. We also prove that, if f and g are odd
polynomials, then (6) has an isochronous center only if it is linear.

This is not true for system (7). In Section 3 we give a sufficient isochronicity
condition for system (7), which turns out to be also necessary when (7) is analytic
and a is an even, b and z are odd. We show that such a condition is satisfied by
polynomial systems of any degree.

Finally, we show that there exist a class of systems (7) analogous to that one
studied in [13] for Liénard systems. In other words, every Eq. (5) is equivalent to a
system having angular speed of a simple form

x0 ¼ y þ xyBðxÞ; y0 ¼ �CðxÞ þ y2BðxÞ; ð10Þ

for a suitable choice of BðxÞ and CðxÞ: Such a system can also be used to study the
period function of (5), or to study the period annulus. In some cases, it is easier to
find invariant curves for (10), than for the other systems involved. Moreover, when
CðxÞ is linear the system has constant angular speed and the center is isochronous. In
this case, we find a commutator and a linearization, without having to impose any
symmetry conditions on B:

2. Reduction to the equation x00 þ hðxÞ ¼ 0

If (1) has a center at O; we call NO the largest open connected region covered with
cycles surrounding O: We do not assume that OANO: We define a function
T : NO-R; by associating to every ðx; yÞANO the minimal period of the cycle
passing through ðx; yÞ: T is called the period function of O. T is constant on cycles.
Let M be an invariant connected subset of NO: We say that T is increasing in M if,
for every couple of cycles g1; g2CM; with g1 contained in the interior of g2; we have
Tðg1ÞpTðg2Þ: We say that T is strictly increasing in M if, for every couple of cycles
g1; g2CM; with g1 contained in the interior of g2; we have Tðg1ÞoTðg2Þ: We say that
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T is (strictly) increasing at O if it is (strictly) increasing in a neighborhood of O: We
say that O is an isochronous center if T is constant in a neighborhood of O; that is if
every cycle of the center contained in a suitable neighborhood has the same period.

We say that the plane differential system (1) is equivalent to the second order
differential equation (2) if, for every solution ðxðtÞ; yðtÞÞ to (1), the first coordinate
function xðtÞ is a solution to (2), and, vice versa, for every xðtÞ; solution to (2), there
exists yðtÞ such that ðxðtÞ; yðtÞÞ is a solution to (1). Different systems can be
equivalent to the same equation, as shown, e.g., in [13]. We say that (2) has a center if
an equivalent system (hence, every equivalent one) has a center. We say that the
period function of (2) is increasing if the period function of such a center is
increasing. Similarly for other monotonicity properties. Such a definition does not
depend on the particular equivalent system chosen.

We assume that f ; gAC1ðJ;RÞ; J open interval containing 0 (possibly, J 	 R).
Here we show that there exists a natural relationship between Eq. (5) and a

suitable conservative equation. Let us set

FðxÞ ¼
Z x

0

f ðsÞ ds; FðxÞ ¼
Z x

0

eFðsÞ ds:

Since F0ðxÞ40 for all xAJ; FðxÞ is invertible on all of J: We may define the
transformation u ¼ FðxÞ; acting on J:

Lemma 1. The function xðtÞ is a solution to (6) if and only if uðtÞ ¼ FðxðtÞÞ is a

solution to

u00 þ gðF�1ðuÞÞeFðF�1ðuÞÞ ¼ 0: ð11Þ

Proof. Let us consider the following system:

x0 ¼ e�FðxÞy; y0 ¼ �gðxÞeFðxÞ: ð12Þ

The equivalence of such a system to (5) is easily verified. The transformation u ¼
fðxÞ takes (8) into the system

u0 ¼ y; y0 ¼ �gðF�1ðuÞÞeFðF�1ðuÞÞ: ð13Þ

Such a system is equivalent to the above equation. &

Vice versa, an equation

u00 þ hðuÞ ¼ 0;

can be transformed into (5) by choosing a change of variable x ¼ OðuÞ such that

hðuÞ ¼ gðOðuÞÞeFðOðuÞÞ:
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Since conservative equations have been widely studied, several problems related to
(5), in particular, the study of the period function of a center, can be studied by
reducing to (11). As an example, consider the simplest case of an isochronous center

for (11), which occurs taking gðF�1ðuÞÞeFðF�1ðuÞÞ ¼ u: This implies

gðxÞ ¼ e�FðxÞ
Z x

0

eFðsÞ ds:

Taking f ðxÞ 	 �1; one has the equation

x00 � x02 þ ex � 1 ¼ 0: ð14Þ

By what is noted above, (14) has infinitely many solutions of period 2p: Such
equation is a perturbation of

x00 þ ex � 1 ¼ 0;

which has a monotone period function, as proved in [3,5]. In fact, we can choose

infinitely many additional terms of the type f ðxÞx02 which make the new equation
isochronous.

We first give the form of the first integral of (5), giving also a sufficient condition
for its solutions to oscillate. Since we work with several equivalent systems, we write
the first integral in terms of x and x0: Then the form of the first integral of the
particular system we consider in the following can be deduced from Iðx; x0Þ:

Theorem 1. Let f ; gAC1ðJ;RÞ: Eq. (5) is integrable on J, with first integral

Iðx; x0Þ ¼ 2

Z x

0

gðsÞe2FðsÞ ds þ ðx0eFðxÞÞ2:

If xgðxÞ40 in a punctured neighborhood of 0; then the origin is a center. Moreover, if g

is analytic, then O is a center if and only if xgðxÞ40 in a punctured neighborhood of 0:

Proof. Multiplying by eFðxÞ both components of system (8), we get a hamiltonian
system

x0 ¼ y; y0 ¼ �gðxÞe2FðxÞ: ð15Þ

The hamiltonian function is Hðx; yÞ ¼ 1
2ðy2 þ 2

R x

0 gðsÞe2FðsÞ dsÞ; that is a first integral

also for system (8). Replacing x0eFðxÞ for y in Hðx; yÞ and multiplying by 2 gives the
first integral of the statement.

System (8) has a center at O if and only if system (15) has a center at O: This
occurs if and only if Hðx; yÞ is definite in sign at O; that is equivalent to say thatR x

0 gðsÞe2FðsÞ is positive definite at 0: A sufficient condition for that is xgðxÞ40 in a

punctured neighborhood of 0:
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Such a condition is also necessary if g is analytic, because zeroes of analytic
functions cannot accumulate. &

For instance, the first integral of Eq. (14) is

Iðx; x0Þ ¼ e�2x � 2e�x þ 1þ x02e�2x:

Since limx-þN Iðx; 0Þ ¼ 1; the origin is not a global center for (14).
According to the above theorem, if xgðxÞ40 in a punctured neighborhood of 0;

then the solutions of (5) oscillate even if the order of gðxÞ at 0 is much higher than
that of f ðxÞ at 0, as in the case of

x00 þ x02 þ xn ¼ 0;

for n odd.

Corollary 1. Assume that f ; gAC1ðR;RÞ and xgðxÞ40; for xa0: Then O is a global

center of (6) if and only if limx-7N

R x

0
gðsÞe2FðsÞ ds ¼ þN:

Proof. It is sufficient to observe that system (15) is equivalent to a conservative
second order equation. Then the statement follows as usual for such a class of
systems. &

Corollary 2. Let f ; g be polynomials and xgðxÞ40; for xa0: Then O is a global center

of (6) if and only if both f and g have odd degree and f has positive leading coefficient.

Proof. It is an immediate consequence of the previous corollary. &

Several results about the period function of (5) can be deduced from results about
the period function of (11). Here we transform the condition of Corollary 5 in [13],

which gives monotonicity if, setting hnðuÞ ¼ hðuÞ � h0ð0Þu; the function uhnðuÞ �
u2h0

nðuÞ does not change sign. Observe that uhnðuÞ � u2h0
nðuÞ ¼ uhðuÞ � u2h0ðuÞ:

Let us set

sðxÞ ¼ x½gðxÞF0ðxÞ � FðxÞg0ðxÞ � FðxÞgðxÞ f ðxÞ�:

Theorem 2. Let f ; gAC1ðJ;RÞ; xgðxÞ40 for small values of jxja0: Then the origin is

a center and

(1) if sðxÞp0 for xAJ; then T is decreasing in NJ ;
(2) if (1) holds, and there exists a sequence xnAJ; xn-0 with sðxnÞo0; then T is

strictly decreasing in NJ ;
(3) if sðxÞ 	 0 in J, then T is constant in NJ ;
(4) if sðxÞX0 for xAJ; then T is increasing in NJ ;
(5) if (4) holds, and there exists a sequence xnAJ; xn-0 with sðxnÞ40; then T is

strictly increasing in NJ :
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Proof. As in Lemma 1, we perform the transformation u ¼ FðxÞ; defined on all of J:
This takes (5) into the equation u00 þ hðuÞ ¼ 0; with

hðuÞ ¼ gðF�1ðuÞÞeFðF�1ðuÞÞ:

Then we apply Corollary 5 in [13]. The monotonicity of the period function in cases

(1),y ,(5) is a consequence of a sign condition on uhðuÞ � u2h0ðuÞ: Recalling that

½F�1ðuÞ�0 ¼ e�FðF�1ðuÞÞ; we have

uhðuÞ � u2h0ðuÞ ¼ ugðF�1ðuÞÞeFðF�1ðuÞÞ � u2½gðF�1ðuÞÞeFðF�1ðuÞÞ�0

¼ ugðF�1ðuÞÞeFðF�1ðuÞÞ � u2½g0ðF�1ðuÞÞ þ gðF�1ðuÞÞ f ðF�1ðuÞÞ�

¼ u½gðF�1ðuÞÞeFðF�1ðuÞÞ � ug0ðF�1ðuÞÞ � ugðF�1ðuÞÞ f ðF�1ðuÞÞ�

¼FðxÞ½gðxÞeFðxÞ � FðxÞg0ðxÞ � FðxÞgðxÞ f ðxÞ�:

Since FðxÞ has the same sign as x; and F0ðxÞ ¼ eFðxÞ; the sign condition on uhðuÞ �
u2h0ðuÞ becomes the sign condition on sðxÞ of the statement. &

Let NOx be the projection of NO on the x-axis. Next corollary is concerned with
the global monotonicity properties of the period function. We report it without
proof.

Corollary 3. Let f ; gAC1ðJ;RÞ; xgðxÞ40 for xAN0x\f0g: Then the origin is a center

and the statements of Theorem 2 hold on all of NO:

As in [13] for Liénard equation, when f ðxÞ and gðxÞ are odd functions we can give
necessary and sufficient conditions for the monotonicity of the period function.

Corollary 4. Let f ; gACkðJ;RÞ; kX1; be odd functions, xgðxÞ40 for small values of

jxja0: Assume that there exists 1pjpk such that sð jÞð0Þa0: Then

(1) T is strictly decreasing in NJ if and only if sðxÞ has a maximum at 0;
(2) T is strictly increasing in NJ if and only if sðxÞ has a minimum at 0:

Proof. If f ðxÞ and gðxÞ are odd, then FðxÞ is odd, sðxÞ is even. Since sð jÞð0Þa0; only
two cases can occur: either sðxÞ has a maximum at 0, or sðxÞ has a minimum at 0. In
the former case, since sð0Þ ¼ 0; by Theorem 2, T is strictly decreasing. In the latter,
T is strictly increasing. &

We denote by CoðJ;RÞ the family of analytic functions defined on the real
interval J:
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Corollary 5. Let f ; gACoðJ;RÞ; be odd functions, xgðxÞ40 for small values of jxja0:
Then

(1) T is strictly decreasing in NJ if and only if sðxÞ has a maximum at 0;
(2) T is constant (isochronicity) in NJ if and only if sðxÞ 	 0;
(3) T is strictly increasing in NJ if and only if sðxÞ has a minimum at 0.

Proof. Points (1) and (3) are immediate consequences of the previous corollary,

when there exists 1pjpk such that sð jÞð0Þa0: The only remaining case is sð jÞð0Þ ¼
0 for all j; that means sðxÞ 	 0; since sð0Þ ¼ 0: Then the conclusion follows from
Theorem 2. &

When f and g are sufficiently regular, we can study the sign of sðxÞ in a
neighborhood of 0 by means of its Taylor expansion. In order to simplify the
involved calculations, we set

d ¼ gF0 � Fg0 � Fgf ;

so that sðxÞ ¼ xdðxÞ:

Corollary 6. Let fAC3ðJ;RÞ; gAC4ðJ;RÞ: Assume f ð0Þg0ð0Þ þ g00ð0Þ ¼ 0:

(i) If f 2ð0Þg0ð0Þ � 2f 0ð0Þg0ð0Þ � g000ð0Þ40; then the period function of (5) is

increasing at O;
(ii) if f 2ð0Þg0ð0Þ � 2f 0ð0Þg0ð0Þ � g000ð0Þo0; then the period function of (5) is

decreasing at O.

Proof. Denoting by sð jÞðxÞ the jth derivative of sðxÞ; we have sð jÞðxÞ ¼ xdð jÞðxÞ þ
jdð j�1ÞðxÞ; so that sð jÞð0Þ ¼ jdð j�1Þð0Þ: The first derivative of s vanishes at 0, since
s0ð0Þ ¼ dð0Þ ¼ 0: Elementary computations give

d0 ¼ �F½ð fgÞ0 þ g00�;

hence s00ð0Þ ¼ 2d0ð0Þ ¼ 0: Then we have

d00 ¼ � F0½ð fgÞ0 þ g00� � F½ð fgÞ00 þ g000�

¼ � eF ½ð fgÞ0 þ g00� � F½ð fgÞ00 þ g000�;

that gives s000ð0Þ ¼ 3d00ð0Þ ¼ �3eFð0Þ½ f 0ð0Þgð0Þ þ f ð0Þg0ð0Þ þ g00ð0Þ� ¼ �3½ f ð0Þg0ð0Þþ
g00ð0Þ� ¼ 0: Then we have

d000 ¼ � F00½ð fgÞ0 þ g00� � 2F0½ð fgÞ00 þ g000� � F½ð fgÞ000 þ giv�

¼ � eF ½ f 2g0 þ ff 0g þ 3fg00 þ 2f 00g þ 4f 0g0 þ 2g000� � F½ð fgÞ000 þ giv�;
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that gives sivð0Þ ¼ 4d000ð0Þ ¼ 8½ f 2ð0Þg0ð0Þ � 2f 0ð0Þg0ð0Þ � g000ð0Þ�; having assumed

that g00ð0Þ ¼ �f ð0Þg0ð0Þ: If f 2ð0Þg0ð0Þ � 2f 0ð0Þg0ð0Þ � g000ð0Þa0; then sðxÞ is definite
in sign in a neighborhood of 0, and the statement follows from Theorem 2. &

The first application we give is to a class of quadratic systems,

x0 ¼ y; y0 ¼ �ax � bx2 � cy2; ca0; a40: ð16Þ

Such systems are equivalent to Eq. (5) that we get for f ðxÞ ¼ c; gðxÞ ¼ ax þ bx2:

Corollary 7. If b ¼ �ac
2
; then the period function of (16) is increasing at O.

Proof. We have f ðxÞ ¼ c; gðxÞ ¼ ax þ bx2: Hence, in order to apply the previous
corollary, we impose

f ð0Þg0ð0Þ þ g00ð0Þ ¼ ca þ 2b ¼ 0:

Then we have

f 2ð0Þg0ð0Þ � 2f 0ð0Þg0ð0Þ � g000ð0Þ ¼ c2a40

by the assumption made on (16). &

In [3, pp. 316–318], the same system was studied and the monotonicity was proved
for b ¼ 7ac:

The second application is to a class of reduced Kukles systems. Reduced Kukles
systems have the following form [12]:

x0 ¼ y; y0 ¼ a1x þ a2y þ a3x2 þ a4xy þ a5y2 þ a6x3 þ a7x2y þ a8xy2:

Since we are only interested in centers, we assume a1o0; a2 ¼ 0: We bound
ourselves to systems reversible w.r.t. the x-axis, that is, we assume a4 ¼ a7 ¼ 0;

x0 ¼ y; y0 ¼ a1x þ a3x2 þ a5y2 þ a6x3 þ a8xy2: ð17Þ

Corollary 8. Assume a1a5 � 2a3 ¼ 0:

(i) If �a1ða2
5 þ 2a8Þ þ 6a640 then the period function of (17) is increasing at O.

(ii) If �a1ða2
5 þ 2a8Þ þ 6a6o0 then the period function of (17) is decreasing at O.

Proof. We have f ðxÞ ¼ �a5 � a8x; gðxÞ ¼ �a1x � a3x2 � a6x3: Hence, in order to
apply Corollary 6, we impose

f ð0Þg0ð0Þ þ g00ð0Þ ¼ a1a5 � 2a3 ¼ 0:

ARTICLE IN PRESS
M. Sabatini / J. Differential Equations 196 (2004) 151–168 159



Then we have

f 2ð0Þg0ð0Þ � 2f 0ð0Þg0ð0Þ � g000ð0Þ ¼ �a1a2
5 � 2a8a1 þ 6a6;

and the statement follows from Corollary 6. &

We can write

sðxÞ ¼ xeFðxÞgðxÞ2 FðxÞe�FðxÞ

gðxÞ

� �0

:

If sðxÞX0 ðsðxÞp0Þ in a punctured neighborhood of the origin, then the function
FðxÞe�FðxÞ

gðxÞ has a minimum (maximum) at the origin. If sðxÞ 	 0; then the center is

isochronous, and
FðxÞe�FðxÞ

gðxÞ 	 const: This is the case we deal with in the next lemma.

Lemma 2. Under the assumptions of Theorem 2 the following statements are

equivalent:

(i) sðxÞ 	 0;
(ii) gðxÞ ¼ ke�FðxÞFðxÞ; kAR; ka0;
(iii) f ðxÞgðxÞ þ g0ðxÞ ¼ k; for xa0; kAR; ka0:

Proof. In this proof we solve some linear differential equations. In every case, the
condition gð0Þ ¼ 0 is implicitly used.

ðiÞ3ðiiÞ If sðxÞ 	 0; then F0ðxÞgðxÞ � gðxÞ f ðxÞFðxÞ � g0ðxÞFðxÞ ¼ 0; and that
can be considered as a nonhomogeneous linear equation in gðxÞ: By solving it, we

have gðxÞ ¼ ke�FðxÞFðxÞ; kAR; ka0: The converse is a straightforward computa-
tion.

ðiiÞ3ðiiiÞ If (ii) holds, then verifying (iii) is immediate. Converse: If (iii) holds, we
obtain (ii) by solving w.r.t. gðxÞ the nonhomogeneous linear differential equation
g0ðxÞ ¼ k� f ðxÞgðxÞ: &

Corollary 9. Let f ; g; be odd polynomials, and let xgðxÞ40 for small values of jxja0:
Then the origin is not an isochronous center for system (6), unless f ðxÞ 	 0 and gðxÞ is

linear.

Proof. By Corollary 5, O is an isochronous center if and only if sðxÞ 	 0: By Lemma
2, this is equivalent to f ðxÞgðxÞ ¼ k� g0ðxÞ: The degree of f ðxÞgðxÞ is higher than
that of k� g0ðxÞ; unless f ðxÞ 	 0: In this case, g0ðxÞ 	 k; hence gðxÞ is linear. &

Corollary 10. Under the assumptions of Theorem 2, if gðxÞ ¼ ke�FðxÞ R x

0 eFðsÞds;

kAR; ka0; then O is an isochronous center of (6), and is the unique critical
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point of the system. Moreover, a first integral of (5) is given by

Iðx; x0Þ ¼ kFðxÞ2 þ ðx0eFðxÞÞ2:

Proof. The isochronicity of O is immediate, from Theorem 2 and Lemma 2. The

uniqueness of O as a critical point comes from the fact that gðxÞ ¼ ke�FðxÞFðxÞ; and
FðxÞ vanishes only at the origin.

The form of the first integral follows from the expression of gðxÞ and Theorem 1,
considering that

2

Z x

0

gðsÞe2FðsÞ ds ¼ 2

Z x

0

kFðsÞeFðsÞ ds ¼ k
Z x

0

2FðsÞF0ðsÞ ds ¼ kFðxÞ2: &

We do not know a commutator or a linearization of (6), when gðxÞ ¼
ke�FðxÞ R x

0 eFðsÞ ds; but we can write them for system (8). Under the hypotheses of

Corollary 10, system (8) has the following form, assuming k ¼ 1;

x0 ¼ e�FðxÞy; y0 ¼ �FðxÞ:

A commutator is

x0 ¼ FðxÞe�FðxÞ; y0 ¼ y:

A linearization is

u ¼
ffiffiffi
k

p
FðxÞ; v ¼ y:

3. Other systems related to x00 þ f ðxÞx02 þ gðxÞ

In this section we consider another class of plane systems whose study can be
reduced to that of Eq. (5). This is the case of

x0 ¼ yaðxÞ; y0 ¼ �bðxÞ � zðxÞy2; ð18Þ

with aðxÞ; bðxÞ; zðxÞ of class C1 on some interval J containing the origin,
aðxÞ40 8xAJ: In fact, we have

x00 ¼ y0aðxÞ þ ya0ðxÞx0 ¼ �bðxÞaðxÞ þ a0ðxÞ � zðxÞ
aðxÞ x02;

so that (7) is equivalent to (5), provided

f ðxÞ ¼ zðxÞ � a0ðxÞ
aðxÞ ; gðxÞ ¼ bðxÞaðxÞ: ð19Þ
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Converse: Given f ðxÞ and gðxÞ; one can arbitrarily choose aðxÞ40 and successively
determine bðxÞ and zðxÞ so that (19) holds:

z ¼ af þ a0; b ¼ g

a
:

For aðxÞ 	 1; we obtain the usual system (6).
We do not report the monotonicity condition of Theorem 2 in terms of a; b; z;

since it does not introduce any significant simplification. On the other hand, the
isocronicity condition for system (7) is quite simple, and allows to prove the
isochronicity of a family of polynomial systems.

Theorem 3. Let a; b; zAC1ðJ;RÞ; aðxÞ40 8xAJ; xbðxÞ40 for small values of

jxja0: If there exists kAR; ka0; such that zðxÞbðxÞ þ aðxÞb0ðxÞ ¼ k; then the origin

is an isochronous center of (7). If a; b; zACoðJ;RÞ; a is even, b; z are odd, then such a

condition is also necessary.

Proof. According to Theorem 1, if xgðxÞ40 in a punctured neighborhood of the
origin, then all the small amplitude solutions of (5) are cycles. Since aðxÞ40; this
occurs if and only if xbðxÞ40 in a punctured neighborhood of the origin. By the
reversibility of (7) the origin is a center.

The isochronicity condition (iii) of Theorem 2, in the form (iii) of Lemma 2 written
for f ; g as in (19), gives

k ¼ fg þ g0 ¼ ab
z� a0

a
þ a0bþ ab0 ¼ bzþ ab0;

where 0akAR: Then the conclusion comes from Theorem 2 and Corollary 5. &

We get a simple example of isochronicity by taking aðxÞ ¼ cos x; bðxÞ ¼
sin x; zðxÞ ¼ sin x: The corresponding system is

x0 ¼ y cos x; y0 ¼ �sin x � y2 sin x;

which is equivalent to equation

x00 þ ð2 tan xÞx02 þ sin x cos x ¼ 0:

This equation is singular for cos x ¼ 0; while the equivalent system has no
singularities. The system has infinitely many isochronous centers at the points
ðkp; 0Þ; k integer.

Corollary 11. Let b be a polynomial, xbðxÞ40 for small jxja0: If b has no double

roots, then there exist polynomials a; z such that (7) has an isochronous center at the

origin.
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Proof. A polynomial b has no double roots if and only if b and b0 have no common

roots, that is, if and only if b and b0 are relatively prime. In this case [9], there exist

polynomials a and z such that zðxÞbðxÞ þ aðxÞb0ðxÞ ¼ 1: Then the conclusion comes
from the previous theorem. &

Corollary 12. Let (7) be a polynomial system, a even, b and z odd, xbðxÞ40 for small

jxja0: If b has a double root, then the origin is not isochronous.

Proof. If a is even, b and z odd, then f and g are odd. By Corollary 5 isochronicity
occurs if and only if sðxÞ 	 0: As in the second part of the proof of Theorem 3, this
gives

bzþ ab0 ¼ ka0;

which is not possible if b has a double root, where b and b0 vanish
simultaneously. &

In the simplest case we have bðxÞ ¼ x; k ¼ 1: Hence, aðxÞ ¼ 1� xzðxÞ; which
gives

x0 ¼ y � xyzðxÞ; y0 ¼ �x � y2zðxÞ: ð20Þ

Choosing bðxÞ ¼ x þ bx2; k ¼ 1; one has aðxÞ ¼ 1þ 2bx; zðxÞ ¼ �4b; obtaining
a class of isochronous quadratic systems,

x0 ¼ y þ 2bxy; y0 ¼ �x � bx2 þ 4by2:

In general, given a polynomial b without double roots, one can apply the euclidean

algorithm [9], in order to find a and z satisfying zbþ ab0 ¼ 1: The following family of
cubic isochronous centers has been found in such a way.

Corollary 13. Let b; cAR; b2 � 4ca0: Then the system

x0 ¼ y 1þ bð2b2 � 7cÞx þ 2cðb2 � 3cÞx2

b2 � 4c

� �
;

y0 ¼ � x � bx2 � cx3 þ 6cxð3c � b2Þ þ 15cb � 4b3

b2 � 4c
y2

has an isochronous center at O.

Proof. Let us choose bðxÞ ¼ x þ bx2 þ cx3: If b2 � 4ca0; then bðxÞ has no double
roots. By the previous corollary, there exist polynomials aðxÞ and zðxÞ satisfying

zðxÞbðxÞ þ aðxÞb0ðxÞ ¼ 1: Applying the euclidean algorithm, we get aðxÞ and zðxÞ as
in the statement. &
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The form of system (20) is very similar to that of isochronous Liénard systems
considered in [13]. They both have constant angular speed. The only difference
consists in a factor y multiplying the nonlinearity in x0 and y0: This suggests that also
for Eq. (5) there could exist an equivalent system having angular speed of a simple
form, similar to what occurs for Liénard equation. This is actually true, as we show
in the following. As a consequence, one can study geometrically some properties of

the solutions of (5). For instance, if we take zðxÞ ¼ �x in (20), we have aðxÞ ¼
1þ x240: The corresponding equation is

x00 � 3xx02

1þ x2
þ x þ x3 ¼ 0:

The origin is a nonglobal isochronous center of such equation, since system (20) has
two invariant lines, y ¼ 71:

Let us consider system (10),

x0 ¼ y þ xyBðxÞ; y0 ¼ �CðxÞ þ y2BðxÞ:

We shall show that for a suitable choice of BðxÞ and CðxÞ; (10) is equivalent to (5).
Let us set

CðxÞ ¼
Z x

0

sf ðsÞeFðsÞ ds:

Integrating by parts one can show that

CðxÞ ¼ xeFðxÞ � FðxÞ:

Lemma 3. Let f ; gAC2ðJ;RÞ; with gð0Þ ¼ 0: Then the functions BðxÞ and CðxÞ;
defined on J by

BðxÞ ¼ � CðxÞ
x2eFðxÞ; xa0;

Bð0Þ ¼ �f ð0Þ
2
;

(
CðxÞ ¼ xgðxÞeFðxÞ

FðxÞ ; xa0;

Cð0Þ ¼ gð0Þ ¼ 0

(

are of class C1; with B0ð0Þ ¼ f ð0Þ2�2f 0ð0Þ
6

and C0ð0Þ ¼ g0ð0Þ:

Proof. The continuity of BðxÞ and CðxÞ at 0 comes from de L’Hô pital theorem.
As for the differentiability of BðxÞ at 0, we can write

B0ð0Þ ¼ lim
x-0

1

x
� CðxÞ

x2eFðxÞ þ
f ð0Þ
2

� �
¼ � lim

x-0

2CðxÞ � x2f ð0ÞeFðxÞ

2x3eFðxÞ :

ARTICLE IN PRESS
M. Sabatini / J. Differential Equations 196 (2004) 151–168164



By applying repeatedly de L’Hô pital theorem, we get

B0ð0Þ ¼? ¼ � lim
x-0

2f ðxÞ � 2f ð0Þ � f ð0Þxf ðxÞ
6x þ 2x2f ðxÞ

¼ � lim
x-0

2f 0ðxÞ � f ð0Þ f ðxÞ � f ð0Þxf 0ðxÞ
6þ 4xf ðxÞ þ 2x2f 0ðxÞ ¼ �2f 0ð0Þ � f ð0Þ2

6
:

The differentiability of CðxÞ at 0 comes again from de L’Hô pital theorem,

C0ð0Þ ¼ lim
x-0

gðxÞeFðxÞ

FðxÞ ¼ lim
x-0

g0ðxÞeFðxÞ þ gðxÞ f ðxÞeFðxÞ

eFðxÞ ¼ g0ð0Þ þ gð0Þ f ð0Þ ¼ g0ð0Þ:

The continuity of both C0ðxÞ and B0ðxÞ at 0 can also be proved by repeated
applications of de L’Hô pital theorem. &

Lemma 4. For all xAR; 1þ xBðxÞ40:

Proof. It is sufficient to prove that 1þ xBðxÞ40 for all xa0:
For xa0 we have

1þ xBðxÞ ¼ 1� CðxÞ
xeFðxÞ ¼

xeFðxÞ �CðxÞ
xeFðxÞ ¼ FðxÞ

xeFðxÞ: ð21Þ

FðxÞ has the same sign as x; so that 1þ xBðxÞ has the same sign as eFðxÞ: &

Theorem 4. Let f ; gAC2ðJ;RÞ; gð0Þ ¼ 0: Then system (10) is equivalent to (5).

Proof. We have

x00 ¼ y0ð1þ xBðxÞÞ þ yðxB0ðxÞ þ BðxÞÞx0

¼ ð�CðxÞ þ y2BðxÞÞð1þ xBðxÞÞ þ y2ðxB0ðxÞ þ BðxÞÞð1þ xBðxÞÞ

¼ ð1þ xBðxÞÞð�CðxÞ þ y2BðxÞ þ y2xB0ðxÞ þ y2BðxÞÞ

¼ � CðxÞð1þ xBðxÞÞ þ y2ð1þ xBðxÞÞðxB0ðxÞ þ 2BðxÞÞ

¼ � CðxÞð1þ xBðxÞÞ þ xB0ðxÞ þ 2BðxÞ
1þ xBðxÞ x02;

since y ¼ x0

1þxBðxÞ and 1þ xBðxÞ40: The statement is proved if we prove that

gðxÞ ¼ CðxÞð1þ xBðxÞÞ; f ðxÞ ¼ �xB0ðxÞ þ 2BðxÞ
1þ xBðxÞ : ð22Þ
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In fact, gðxÞ ¼ CðxÞ þ xBðxÞCðxÞ if and only if

gðxÞ ¼ xgðxÞeFðxÞ

FðxÞ � x
CðxÞ

x2eFðxÞ
xgðxÞeFðxÞ

FðxÞ ;

that is, after some elementary steps,

FðxÞ ¼ xeFðxÞ �CðxÞ;

which is equivalent to (21).
As for the second equation in (22), it is sufficient to prove that

xB0ðxÞ ¼ �f ðxÞ � xf ðxÞBðxÞ � 2BðxÞ:

This follows from the following equalities:

xB0ðxÞ ¼ ð�x4f ðxÞe2FðxÞ þ 2x2CðxÞeFðxÞ þ x3f ðxÞCðxÞeFðxÞÞ 1

x4e2FðxÞ

¼ ð�x2f ðxÞeFðxÞ þ 2CðxÞ þ xf ðxÞCðxÞÞ 1

x2eFðxÞ

¼ � f ðxÞ � 2BðxÞ � xf ðxÞBðxÞ: &

Working on system (10) as done in [13] on a similar system, one can give a
different proof of Theorem 2. An advantage of (10) over (6) lies in the possibility to
give a commutator and a linearization in the case of sðxÞ 	 0: By possibly

performing the transformation X ¼
ffiffiffi
k

p
x; we can reduce to the case k ¼ 1: In such a

case (10) has the following form:

x0 ¼ y þ xyBðxÞ; y0 ¼ �x þ y2BðxÞ: ð23Þ

Such a system can be obtained from system (Sx) in [10] by exchanging x and y; and
by calling B the function that in [10] was called s (not to be confused with the s of
the present paper). From system (Sy) of [10] we obtain a commutator of (23):

x0 ¼ x þ x2BðxÞ; y0 ¼ y þ xyBðxÞ:

From Corollary 2.2 in [10] we also have a linearization of (23),

u ¼ FðxÞ; v ¼ y
FðxÞ

x
;

which linearizes also the commutator. The first integral of Corollary 2.2 in [10],

Iðx; yÞ ¼ ðx2 þ y2Þ exp �
Z x

0

2BðsÞ
1þ sBðsÞ

� �
¼ ðx2 þ y2Þ FðxÞ

x

� �2

;
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can be easily shown to coincide with that one of Corollary 10, for k ¼ 1: In fact,

using y ¼ x0

1þxBðxÞ and (21), we have

x2 þ x0

1þ xBðxÞ

� �2
 !

FðxÞ2

x2
¼ 1þ x0xeFðxÞ

xFðxÞ

� �2
 !

FðxÞ2 ¼ FðxÞ2 þ ðx0eFðxÞÞ2:

If we choose f ðxÞ 	 1; we have

FðxÞ ¼ x; FðxÞ ¼ ex � 1; CðxÞ ¼ xex � ex þ 1:

Hence

BðxÞ ¼ �xex � ex þ 1

x2ex
¼ �x þ 1� e�x

x2
; CðxÞ ¼ xexgðxÞ

ex � 1
:

If, additionally, we take gðxÞ ¼ 1� e�x; we have CðxÞ ¼ x: The corresponding
system (10) is

x0 ¼ y þ y
�x þ 1� e�x

x
; y0 ¼ �x þ y2 �x þ 1� e�x

x2
:

A linearization is given by

u ¼ ex � 1; v ¼ y
ex � 1

x
:

A commutator and a first integral can be easily obtained from the linearization.

References

[1] A. Algaba, E. Freire, E. Gamero, Isochronicity via normal form, Qual. Theory Dyn. Systems 1 (2000)

133–156.

[2] J. Chavarriga, M. Sabatini, A survey of isochronous centers, Qual. Theory Dyn. Systems 1 (1999)

1–70.

[3] C. Chicone, The monotonicity of the period function for planar hamiltonian vector fields,

J. Differential Equations 69 (1987) 310–321.

[4] R. Chouikha, F. Cuvelier, Remarks on some monotonicity conditions for the period function, Appl.

Math. 26 (1999) 243–252.

[5] S.N. Chow, D. Wang, Period function of some second order equations, Casopis Pest. Mat. 11 (1986)

14–25.

[6] C.J. Christopher, J. Devlin, On the classification of Liénard systems with amplitude-independent

periods, preprint, 1998.

[7] A. Cima, A. Gasull, F. Mañosas, Period function for a class of hamiltonian systems, J. Differential

Equations 168 (2000) 180–199.

[8] E. Freire, A. Gasull, A. Guillamon, First derivative of the period function with applications, preprint,

2001.

[9] N. Jacobson, Basic Algebra I, W.H. Freeman & Co., San Francisco, 1974.

[10] L. Mazzi, M. Sabatini, Commutators and linearizations of isochronous centers, Rend. Mat. Accad.

Lincei 11 (9) (2000) 81–98.

ARTICLE IN PRESS
M. Sabatini / J. Differential Equations 196 (2004) 151–168 167



[11] F. Rothe, Remarks on periods of planar hamiltonian systems, SIAM J. Math. Anal. 24 (1993)

129–154.

[12] C. Rousseau, D. Schlomiuk, P. Thibaudeau, The centres in the reduced Kukles system, Nonlinearity

8 (1995) 338–358.

[13] M. Sabatini, On the period function of Liénard systems, J. Differential Equations 152 (1999)

467–487.

[14] R. Schaaf, A class of hamiltonian systems with increasing periods, J. Reine Angew. Math. 363 (1985)

96–109.

ARTICLE IN PRESS
M. Sabatini / J. Differential Equations 196 (2004) 151–168168


	On the period function of xPrime+f(x)xprime2+g(x)=0
	Introduction
	Reduction to the equation xPrime+h(x)=0
	Other systems related to xPrime+f(x)xprime2+g(x)
	References


