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Abstract

In this paper we study an initial-boundary-value problem for a hyperbolic integro-
differential equation with random memory and a random noise. We establish the existence,
uniqueness and exponential stability of solutions. Our method consists of finite-dimensional
approximation and energy estimates.
© 2004 Elsevier Inc. All rights reserved.

MSC: 35R60; 45K05; 60H15

Keywords: Hyperbolic integro-differential equation; Random memory; Random noise; Brownian motion;
Exponential stability

0. Introduction

In this paper we will study an initial-boundary-value problem for the following
integro-differential equation:

wa =Lt [ plts5 oW Dan(s), D2uts)) i)
0

+ i A dﬁf*" for (t,x)e(0,T) x G, (0.1)

i=1
u(t,x) =0 for (¢,x)el0,T] x 0G, (0.2)
u(0,x) = up(x) u(0,x) =uy(x) for xeg@, (0.3)
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where G is a bounded domain in R" with smooth boundary, L=
> o1 Oilag(t,x)9;), Dyu and D?u represent the set of all first- and second-order

derivatives in x of u, respectively. B;(¢) and B,;(¢)’s are mutually independent
standard Brownian motions. A;’s are affine first-order differential operators. Various
conditions on the given functions and functional setting for stochastic processes will
be specified later. The second term in the right-hand side of (0.1) is an Ito stochastic
integral and the third term stands for a random noise. If these terms are replaced by
a deterministic memory integral and deterministic force, the resulting equation was
essentially investigated by Heard [4] and Hrusa [5]. Also see Priiss [11] and Renardy
et al. [12] for its association with physical models in viscoelasticity, and for extensive
references on related equations. On the other hand, Berger and Mizel [1] investigated
a general finite-dimensional stochastic integro-differential equation, and Mizel and
Trutzer [10] discussed stochastic hereditary equations. In some sense, our equation
(0.1) is a combination of the equations considered in the above-mentioned works.
Clément et al. [2] studied linear integro-differential equations with a random noise
with applications to viscoelasticity. Their main results are based on the analysis of
the stochastic convolutions. This approach is not applicable to our equation (0.1).

In this work we will address two issues. The first issue is the existence and
uniqueness of global solutions of (0.1)—(0.3). For deterministic hyperbolic equations,
it is well known that if the principal part of the equation is quasi-linear, global
solutions do not exist in general even if the initial data are sufficiently smooth and
small. However, if the principal part is linear, the memory integral may depend on
Diu and D.u, for the existence of global solutions, which highlights the results of
[4,5]. This is due to the fact that integration in ¢ has the effect of reducing the order of
space derivatives. But it is not obvious how this mechanism will be affected by a
stochastic integral. Our goal is to show that there is indeed a stochastic version of the
known results from deterministic equations.

Our second issue is the stochastic stability of solutions. Here we will focus only on
the following special case where there is some internal damping, and |¢;| and |¢;| are
sufficiently small, but independent of initial data:

uy = Lu — o, + & /t p(t, 530\ (Dyus(s), Diu(s)) dB) (s)
0

o0

B .

+e )y Au d df"’ for (1,x)e€(0,T) x G, (0.4)
i=1

where L is assumed to be independent of ¢, and o is a positive constant. We also
assume that for some positive constants M and k,

p(t,5;0)| + |p,(1, 5;0) | < Me™ ), (0.5)

for all ¢, s>0 and for almost all w. For the deterministic case, the memory integral
under suitable assumptions on the functions p and ¥ can dissipate energy. In
particular, if p(t,s) = e (=9 and y satisfies some conditions, the energy decays
exponentially fast. This was shown in [5]. But we do not expect such dissipation
mechanism from the stochastic integral. In the meantime, it is well known that for
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the deterministic case with o >0, ¢; = & = 0, the energy decays exponentially fast. We
will show that when |e;| and |e;| are sufficiently small, the mean energy decays
exponentially fast for every initial data in a suitable function space. The exponential
stability in probability follows as a by-product. Here we do not assume p(t,s) =
e ¥(=3) Condition (0.5) is sufficient for our purpose. If p(¢,s) = e ¥=%) | then (0.4) is
equivalent to a system of equations without a memory integral. For various definitions
of the stability of stochastic processes, see Has’minskii [3] and Kushner [7]. These
monographs present some general results on the stability of solutions of stochastic
differential equations. For stochastic functional differential equations, see [8,10]. In
these works, stochastic Lyapunov functionals were constructed with the super-
martingale property. We do not know whether it is possible to find such a stochastic
Lyapunov functional for Eq.(0.4). Here we establish the exponential stochastic
stability by direct energy estimates. Our procedure does not require the super-
martingale property of energy functionals.

Finally, we note that essentially the same analysis applies to the case where L is of
non-divergence form and y depends on (u, u;, Dyu, Dyu,, D%u) But for the stability of
solutions, the coefficients of L must satisfy additional conditions if L is of non-
divergence form. We also remark that if L is independent of the time variable, the
existence proof can be substantially simpler by a different approach to energy
estimates. Specifically, all the necessary estimates can be directly obtained from
approximate solutions if L is independent of .

In Section 1, we present some preliminaries, and state the main results. In
Sections 2 and 3, we present the proofs of the main results.

1. Preliminaries and statement of the main results

We will use the following notation:

Ou 0] .
8,u—ul—E, ai_ax,;’ i=1,...,n,
Lhy(1) =" Oi(ay(t, x)9h(1,x)),  Lhy(0 (a0, x)9;h, (0, x)),
i,j=1 i, j=1
Lih(t) = 0,((9hay(t,x))9;h(z, x)), = i(a;(0,x)0
i, j=1 i, j=1
L, h( 0i((Onaii(t,x))05h(t,x)),

i, j=1
H"(G) = H)(G)nH™(G) for each integer m>2,

¢+,+> = the dot product in L*(G).
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(Q,7,%,,P) is a given stochastic basis, where P is a probability measure, # is a o-
algebra and {F},.  is a right-continuous filtration on (Q, #) such that %, contains
all P-negligible subsets. B;(f) and B,;(¢)’s are mutually independent standard
Brownian motions over (2, %, % ,, P). E(-) stands for expectation with respect to the
probability measure P. When @ is a Borel subset of R, %(() denotes the Borel
c-algebra over (. The following formula is a special version of the differentiation
rule established by Berger and Mizel [1], and will be used throughout this paper.

Lemma 1.1. Let h(t,s;w) be B([0,T] x [0, T]) ® F -measurable and adapted to {7 ;}
in s for each t. Suppose that for almost all weQ, h is absolutely continuous in t, and

T rion, |
/ / —(t,8)| dsdt< oo for almost all v, (L.1)
o Jo |0t
t
/ \h(t,5)]* ds< oo for almost all o, (1.2)
0
for each t. Let
t
z(t):/ h(t,s) dB(s). (1.3)
0

Then, it holds that
(1) :/o dz(s) :/0 h(s,s)dBl(s)+/0 ( O‘Y%(s,n) dBl(n)> ds. (1.4)

We also need the following fact.

Lemma 1.2. Let {B;(1)},2, be a sequence of mutually independent standard Brownian
motions over (Q,F ,F,, P), and let H# be a separable Hilbert space. Suppose that
F(t), Gi(t)’s, @(t) and ¥V (t)’s are # -valued stochastic processes adapted to {F ,} such
that they all belong to L*(Q; L*(0, T; #)), and

o0
> E(11GH 0. + 1Pl 0.0 ) < o0 (1.5)
i=1

Let #-valued stochastic processes X (t) and Y (t) on [0, T| be defined by

dXdeH—Z G;dB; and dY = @dz+z ¥, dB;.
i=1 i=1

Then, it holds that

X, YeL*(Q;C([0,T]; #)) (1.6)
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and

AKX, YY) =Y, dX > + (X, dY )y + Y (G W) pdt. (L7
i=1

This is a known fact. The idea of proof is to approximate # -valued functions in
terms of a complete orthonormal basis for # to derive the following inequality:

; /0 Gi(s) dBi(s) )
o0 2 t .
< Z i E( sup /0 Gi(s) dB;

i=1 0<t<T
by the Burkholder—Davis—Gundy inequality

<y 2 ( [ G0l ar)<oe

2
E| sup

0<t<T

s) I>izlz (1.8)

This, together with the same inequality for {¥;}.7,, yields (1.6). Again through
approximation by a complete orthonormal basis for #, (1.7) follows from the
integration by parts formula for scalar-valued stochastic processes; see [6]. In fact, if
F =& and G; =V, for all i, (1.7) is simply a consequence of Ito’s rule.
Throughout this paper we make the following assumptions:
(I) Each a;(1,x) e C* ([0, o0) x G), i,j = 1, ...,n, and for some positive constant a,

n

> ay(t,x)Eg = al
ij=1
for all (z,x)€[0, ) x G and for all ¢ = (&, ...,&,)eR".
(IT) For almost all w, p(¢,s;w) and p,(z,s;®) are continuous in (z,5)€[0, c0) X
[0, o0).
For each 1, p(t,s;-) is adapted to {Z,} in s, and for each T >0, there is some
positive constant My such that

lo(t,s;0)| + |p,(t,8;0)| < M7 (1.9)

for all (¢,5)€[0,T] x [0, T] and for almost all w.

(IT1) ¥y, z) is continuous in (y,z) e R" x R""*1)/2 and for some positive constant
M

)

W,z1) =y (2, 22)[SM ([ — y2| + |21 — z2]) (1.10)

for all (y1,z1), (2,22) € R" x R"1/2,
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(IV) 4; is defined by

A = b (t, x) + by (1, x)v + by (2, x)v, + Z bj+2,i(t, X)), (1.11)
=

where each b;; and D.b;; belong to C([0, 0) x G) such that by;(7,x) =0 and
bii(t,x)=0,j=3,...,n+2, for all (¢,x)€[0, c0) x IG, and

0 nt2 ) )

Z i (”bﬁ,iHC([o.,T]xG) + ||Dxbj,f||c<[o,r]xc‘;>> < (1.12)

Jj=0

for each T'>0.
Under these assumptions, we have the following existence and uniqueness result.

Theorem 1.3. Let T >0 be given. Suppose that uy and u; are F y-measurable such that
upe L*(Q; HA(G)),  wieL*(2;H)(G)). (1.13)

Then, there is a unique solution u of (0.1)~0.3) such that u(t,-;-) is H>(G)-valued F ,-
measurable for each t, and

ueL? (Q; ([0, T]; H2(G)) n C\ ([0, T];H(}(G))). (1.14)

Here (0.1) is satisfied in the following sense: for almost all weQ,
t
w(t) — 1y = / Lu(s) ds
t
/ / &) dBy (&) ds + Z / Au(s)dByi(s)  (1.15)

for all te[0, T.
For the stability result, we need additional assumptions.
(V) There are positive constants M and k such that

lp(t,5;0)| + |p,(1,5,0)| < Me™¥=9 for all (1,5), and for almost all . (1.16)
(VI) (0,0) =0, by; = 0 for all i, and

> 5

i=1

TM+

(183l 00110+ IDBillc 0,015) < - (1.17)

(VII) The coefficients a; of L are independent of .
Under assumptions (I)-(VII), we have the following stability result.
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Theorem 1.4. Suppose that uy and uy are F y-measurable such that
upe L*(2; HX(G)),  weL*(Q;H}(G)). (1.18)

Then, there is a positive constant ¢ independent of uy and u, such that for any ¢ and ¢,
satisfying |e1| <e and |e3| <e, the solution u of (0.2)—~0.4) satisfies

2 2
E(sup (1O B + 5 )
<Me"”( (ol ) + ECla |1y )) for all >0, (1.19)
for some positive constants M and ¢ independent of ¢y, e, uy and u.

It is evident that (1.19) implies the exponential stability in probability:

(s (6 + 1) B9

<M et (E(haliieg) + Ellnly o) (1.20)

for all >0, and all 6 >0. For the proof of (1.19), the following weaker estimate will
be first established.

E([u()|326)) + Eu(O)lz6)

2o +E(||u1||i,({(c))) for all 7>0. (1.21)

<Me ! (E(|Juo]

2. Proof of Theorem 1.3

We begin by considering the following linear problem:

t o0 dBZ[
Uy = Lu+/ p(t,s)f(s)dBy(s) + gi(t n (0,7) x G, (2.1)
0 i=1
u=0 on [0,T] x 0G, (2.2)
u(0) = uy, u,(0) =u; inG. (2.3)

Here f and g;’s are given such that f(¢,-) is L?(G)-valued and adapted to {#,}, and
gi(t,-)’s are H}(G)-valued and adapted to {#,}. We suppose that

feL*(Q;L*0,T; L*(G))), gie L*(Q; L*(0, T; Hy(G))) foralli (2.4)
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and

izE(ng‘\ |iZ(O,T;Hé(G))) <. (2.5)
1

I

We assume that uy is H2(G)-valued #(-measurable and u; is H}(G)-valued 7 -
measurable and that

upe L*(Q; HA(G)),  wieL*(2;H)(G)). (2.6)

We then have the following existence result.

Proposition 2.1. There is a unique solution u of (2.1)~(2.3) such that u(t,-) is H>(G)-
valued and adapted to {F,} such that

ue L*(Q; C([0, T); HZ(G)) n C!([0, T]; Hy(G))). (2.7)
Furthermore, it holds that

lull z2escqo e + 10l 2@icqo.rim o))

LE(Q;LZ(O.,T:LZ(GD))

© 1/2
+M <Z izE(||gi||2LZ(0,T;H[{(G)))> (2.8)

i=1

<M (lloll 2 gz + bl z@umycon + 1

for some positive constant M independent of ug,uy,f and {g;}7,.
We will first prove this under the following stronger assumptions.

[elP(@;L2(0,T; H(G))),  ¢:ieL*(Q;L°(0,T; HZ(G))) for all i, (2.9)

"
>~ 2E(llgil 0 riay ) < (2.10)
i=1

upe L*(Q; HX(G)),  L(0)upe L*(Q; H)(G)) (2.11)

and

w e L*(Q; H*(G)). (2.12)
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Let us set

w=u-— 2/0 /Os 9i(&) dB (&) ds. (2.13)
i=1

Then, (2.1)—(2.3) can be rewritten as, for almost all w,

w,,_Lw—i—LZ//g, ) dBs (&) ds

= [ sy am) i 0.7) % 6 (214)
w=0 on [0,7]x G (2.15)
w(0) = uy, wi(0) =u; in G. (2.16)

Let {ex}2, be a complete orthonormal system for L?(G), where each ¢ is an
eigenfunction of

—L(0)ey = ke, in G,
{ (0)ex k€ 1N (2.17)
e, =0 on 0G.
We write
Wiy = Z Cke (1, @) e (x), (2.18)
k=1
where ¢,;’s satisfy, for almost all w,
0 t N
Oucms = Ly + (LY [ [ (&) dBas(
i—=1 Y0 JO
t
+/ p(t,9)f (s) dBl(s),ek>, k=1,..,m, (2.19)
0
ka(O) = <u07ek>7 atcmk(o) = <ul7ek>7 k= 1; ceey . (220)
We can put (2.19) in the form
d2
sz A)Y + F(t, w), (2.21)
where Y is the transpose of (¢c1, -+, Cum), A(f) is an m x m matrix whose entries are

deterministic and continuously differentiable in 7€ [0, 7], and F is an m-dimensional
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random vector function such that it is adapted to {Z,} and belongs to
L*(2;C([0,T])) by Lemma 1.2. Thus, the existence and uniqueness of ¢,;’s in
L*(Q; C?(]0, T))) follow easily. Furthermore, ¢,;’s are adapted to {Z#,}.

Next we set for k=1, ....,m

)

{ Xk = 6ttcmk7

X (0) = CL(0)w,, (0), ex > (2.22)

It then follows from Lemma 1.1 that

AXomie = {LOW (1) + Liwyy (1), e ) dt

+< / gl dBZz +Lt / / g, de, dS ek> dt

+ p(t,1) <f(l)7ek> dB,
+ </Otp,(t,s)f(s) dBl(S),€k> d, k=1,...,m. (2.23)

By Ito’s rule, we have for almost all we @,

m

Z | mk | _Z |ka | _2/ <La Wm ) 8ssz( )> ds
1

k=

+ 2 / LW (8), OssWin(s) > ds
0

2/01<L§:/Osgi(é) dB,(¢)
L L Z/ / gi(n) dBa.i(n) dE, Dyswin(s )>

+2/0 p(5,5) <F(5), Dugwn(s) > dB1(s)
= < [ pscr@ am@) dumis) as

m

£ 30 [P ds

k=1
for all te[0, T]. (2.24)

We now handle each integral in the right-hand side. In the sequel, M stands for
positive constants independent of €0, 7], @€ Q, m,uo,us,f and {g;},2,, but they
may depend on 7.
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(i) The first integral

2 / I { LOWn (8), OssWin (8) > ds
0
= LW (1), 0w (t) > — LW (0), 0w, (0) >

t
_/ <Lsaswm(s)7 as-Wm(S)> dS7
0

where

t t
2
/0 {LsOsWin(s), Oswi(s) > ds gM/o ||avwm(s)||H[‘)(G) ds

(i1) The second integral

> /0 Lo (s), wim(s) > ds
=2 Liwp (1), 0w (1) >

— 2 (Lwm)(0), 0wy, (0 —2/ L Os(Lswp) (), Oswin(s) > ds.

Hence, we have, for each ¢>0,

‘2 /Ot LWy (), OssWin (s) > ds

<ellown(1) By ) + (M + M/e)

t
2 2 2
x (||wm<o>|H(g<G) 10OV By + [ 106 By ds).
0

(ii1) The third integral

211

(2.25)

(2.26)

(2.27)

(2.28)

t 0 s o0 s &
2 /0 <LZ /0 1€ 4B:.(0) + LY /0 /0 gf(n)de,f(n)dii,f’)sswm(S)>ds

:2<LZ/ gi(s) dBa(s +L, //g, &) dBy (& ds@,wm()>



212 J.U. Kim | J. Differential Equations 201 (2004) 201-233

— ZZ/() {Lgi(s), 0w (s) > dBa(s)
i=1

- 42/< [ 0 dBai0). 2t ds
- zil / <L I " gi(n) dBa () dé,aswm<s>> i (229)

where we have used, according to Lemma 1.1,

d(L /O "i(s) dB;,(s)) — Lgi(t) dBas(t) + (L, /0 0i(5) de,,-(s)) dt (2.30)

and Lemma 1.2. Thus, it follows that for each ¢>0,

</ng)de, +L//g, dBQ,()dgauwm()>ds

2

o0

<e||afwm<z>||il;<c> (M- M/ D sup
s€(0,]

s

gi(n) dBa,i(n)

H;(G)

i1
—|—M/ 18wy g ds+2z (2.31)

/0 CLgi(s), Dwm(s) > dBas(s)],

where, by the Burkholder—Davis—Gundy inequality,

) s 2 t
Z i2E<sup /0 gi(&) dB»i(&) e > MZ 12E</0 ||g,-(s)||ilé(G) ds) (2.32)

s€0,7] i=1

and

i E( sup /OX {Lgi(&), 0:wim (&) > de,i(f)D

i=1 S€E [0,),‘]

o) t 1/2
<M Y E( [ 1060y 100m 5y &

i=1
< sup 10m®IBe | +LE(S Allail? (2.33)
& Sup Wi (S Hé(G) P l gl 2 T 6 )) 9 .

s€0,1] i=1

for each ¢>0.
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(iv) The fourth integral
Again by the Burkholder—Davis—Gundy inequality, we have

E| sup

s€[0,7]

12

<ME<sup ||asswm<s>||Lz<G>>(/ (5.1 ) B ) )
s€0,1] 0

M
<3E(sup ||8sswm(s)||iz(0>> +?E(Hf||i2(0,T;L2(G))) for each ¢>0. (2.34)

/0 p(£.8)<F(E), Beewm(E) > d&(é)D

se(0,7]

(v) The fifth integral

E(Ss;[l(g] / < / e (n) dBy () awm<5>> dsD
<E<SSJ[10% /0 </0§p¢(é,17)f(n) dB, (n),aéswm(é)>‘ dé)

<E( A < [ e dBl<5>,asswm<s)> ds)
< /0 tE(||agswm(s>Hiz(G>) ds

+/OIE< S

2
ds, (2.35)
L2(G)

0 ps(sa é)f(é) dBl(é)

where

(H/ p,(s, ) (£) dB1 (2)

We also need the following estimates:

(G>> = [ (WOl d 236)

m

Z<u1,€k>€k

m

< M; [ Cur, e > P i < Ml ) (237)

10w (0 ||H1

Hi(G)
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and

m

> Xk OF = [1LO)wn(0)]l72(6,
k=1
m 5 5
= > |uo, ey A< Mol 326 (2.38)
k=1

Combining all these and the Gronwall inequality, we obtain

2 2
E([0uwmllco,71:02(6)) T ENOwmll o110 (6)))

2 2
<M<E(||u0||H3(G)) + E(||”1HH3(G))

i=1

+ E(f o razien) + 3 7 E<|gi||iz<o,T;H(;<G>>>>. (2.39)

Next we note that

< 6trwm7 ey = Lwy, e

+<L; / / g:(8) By (&) ds + / p<r,s>f<s>dBl<s>,ek> (2.40)

forallte[0, T),k =1, ...,m, for almost all w € Q. Hence, for each A€ 7,0, T] and
k=1,....,m,

/ {OWm(t) — Owm(0), ex > dP = / /t {Win(s), Lex > ds dP
y 4Jo

LU Lo

+ /0 p(s,Of (&) dBl(é>,ek>ds dpP (2.41)

holds. By virtue of (2.39), there is some function ®eL?(Q; L*(0, T; H}(G))) and a
subsequence still denoted by {w,,} such that

dwm—®  weakly in L*(Q; L*(0, T; H)(G))) (2.42)
and

Duwm— 0@ weakly in L2(Q; L*(0, T; L*(G))). (2.43)
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We now define
t s
W =up + tu; + / / 0:P(&) dé ds. (2.44)
0o Jo

Since wy,(¢)’s are H}(G)-valued #,-measurable for each re[0, 7], and #, contains
all P-negligible sets, w(¢) is also H}(G)-valued 7 ,-measurable for each €0, 7).
It follows from (2.42)—(2.44) that

/ Ow(t) —uy,exy dP
A

:/A/OI <w(s), Ley dsdP+/A/0t<L2/os/oégi('7) dBy () d¢
+ /O pls (@) d31<5>,ek> ds dP (245)

for each A€ % ,t€[0,T] and k>1. Thus, for almost all weQ,

COow(t) —uy,er

:/0 <w(s),Lek>ds—|—/0 <L;/O /0 g:(n) dBa(n) dé
+ / Xp(s,é)f(é)dBl(é), ek> ds (2.46)
0

holds for all k=1 and all ¢ in a countable dense subset of [0, 7. Since each term of
(2.46) is continuous in ¢, it holds for all t€[0, 7] and all k> 1, for almost all weQ.
This implies that for almost all weQ,

duw=Lw+ LY /0 t /0 " i) dBas(&) ds + /0 oS (s) dBi(s)  (247)
i=1

holds. We now set

u:WJrZ//g, )dBo(& (2.48)

Then, u satisfies (2.1)—(2.3). It follows from (2.42) and (2.48) that
due*(Q; L*(0, T; H}(G))) (2.49)

and that u(¢) is H}(G)-valued # ,-measurable for each 7€0, T7.
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Since d,we L*(Q; L*(0, T; L*(G))), we infer from (2.47) and (2.48)
LueL*(Q; L*(0, T; L*(G))) (2.50)
and hence,
ue L*(Q; L*(0, T; HX(G))). (2.51)

Next we will improve the regularity of u to justify energy estimates. We set

(= a,w—// (s, E)f (&) dBy (&) ds (2.52)

and consider the initial-boundary-value problem.
ZII—LZ“FL/ / S 6 dBl(f)
+ LZ/ gi(s) dBa (s +Lr / / 9i(&)dB i(E)ds + L,(t)w(0)

(/ ds+/// & nf dB]()déds> in (0.7)x G, (2.53)

z=0 on [0,T] x G, (2.54)

z(0) = uy, 0,z(0) = L(0)w(0) in G. (2.55)

We can write (2.53) as
t
zp =Lz + L,/ z(s) ds
0
o0 t
> / gi(s) dBa.i(s) + h, (2.56)
i=1 70

where /1 is obviously defined and he L*(Q; C'([0, T]; L*(G))). For problem (2.54)-
(2.56), we can apply the same method as for (2.14)—(2.16). Here, the first integral in
the right-hand side of (2.56) gives rise to an integro-differential system in place of
(2.21), which is the only noticeable difference in the procedure. But the existence of
solutions is also well known for such an integro-differential system. Hence, without
repetition of the details, we can obtain a solution z of (2.53)—(2.55) such that

zae LP(Q L7(0, T; L°(G))),  zeL*(25L°(0,T; Hy(G))) (2.57)
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and thus,
z+ /tL(z)‘lL,(t)z(s) dse L*(Q; L*(0, T; H*(G))), (2.58)
0

where L(r)"'L,(1) is a bounded linear operator on H}(G), and also on H2(G). The
operator norms are uniformly bounded in 7€0, T]. By the well-known theory of
Volterra integral equations, we have

ze [*(Q; L0, T; HX(G))). (2.59)
In the meantime, { also satisfies (2.53)—(2.55). Thus, I' = { — z satisfies

rel*(Q;L*0,T; H)(G))), TI,eL*(Q;L*0,T;L*G))) (2.60)

and, for almost all weQ,

t
Iy = LF+L,/ I'(s)ds in (0,T) x G, (2.61)
0
I'=0 onl0,7]x0G, (2.62)
ro=0 r,0 =0 inG. (2.63)

By the same argument as in [9, pp. 268-270], we conclude that I' = 0, for almost all
, which yields

oue L*(Q;C([0,T); HY(G))),  LoueL*(Q;L*(0,T;L*(G))).  (2.64)

We now set X' = dyu so that (2.1) can be written as
t 0
dX = (Lu) dr + < / p(t,$)f (s) dB, (s)> di+ " gidB,;. (2.65)
0 i=1
Let us define for each £¢>0,
Yé(t) = L(1)(I — eL(0)) "X (2). (2.66)

Then, we have

dY® = (LI — ¢L(0)) "' X) dt + L(I — ¢L(0))"" dX. (2.67)
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We now apply Lemma 1.2 to X and Y*, and pass ¢ to zero to find that for almost all
weQ,

— (V=LOX (0, V=LOX (1) + </=L0)X(0), V=L(0)X (0))
/0t<X(S),LSX(S)>dS
2 [t Lxe as+2 [ [ pts. @ amo, Lx) ) s
4 221 /0 CLX(8),0.9) dBas) + 3 /0 (g:(5), Lai(s)) ds (2.68)

for each t€[0, T]. By Lemma 1.1, the third integral in the right-hand side can be
written as

/o < /0 pls, ) () dBy (2), Lasu(s)> s
- [{[ reor@ame
//péé” ) dBy( )di,LBSu(s)>ds
= ([ oty ams > [ <ot 19>
([ [noromis )
- /0 < /0 py(s, ) (&) dBi (&), L (S)>ds
- [{ [ ear@anie).Lac) ) as
/ </ / pe(&n)f (n) dB ( )d§7L.sM(S)>ds, 69)

where we can estimate the integrals in the right-hand side as follows:

([ tssir(oyams). Lutn)|

<ol +1| [ o(5.9/6) ity

2
(2.70)

L2(G)
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2
E| sup
s€(0,7] L(G)

M/O E(lp(5,5)/ () 226) s,

for every ¢>0

)f (&) dBy (&)

sup
s€0,7]

SME (/0 [1Lu(3)| 172010 (3, ) ()22 dS)

Cp(E,O)f(E), Lu(¢) ) dB (&)
[ )

1/2

M t
<3E< s1[10p] |Lu(s)|iZ(G>> +?/0 E(||p(s, S)f(s)‘liz(G)) ds
sel0,r

for every ¢>0

sup
s€[0,7]

i)

£) dB; (¢ )

and

(oo

ds+/ ||L”(S)||22(G) ds
12(G) 0

<G>> = 5( [ 06 42

219

(2.71)

(2.72)

(2.73)

(2.74)

We can also handle the other similar integrals in (2.68) and (2.69) in the same way as

above. We also note that

2/0 (Lu(s), LX () > ds = || Lu(0)||72(g) — [[Lu(0)][72)

- Z/OI { Lgu(s), Lu(s) > ds,

and that (2.64) implies ue L*(Q; C([0, T); H>(G))).

(2.75)
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It follows from (II) and (2.68)—(2.75) that

E( SL[I()I;](Hu(s)H?{g(G) + ||asu(s)|%1(}(0))>
se |0,z

2 2
SME([[uol[r2(6)) + Ellwr|[z736)))

t
+ M [ B + 0y ) s

t
+ ME(/O 116, ds)
[ee] t 5
+ MZ i2E</0 9131 (6) ds>. (2.76)
i=
By the Gronwall inequality and the inequality:

sup (|[u(s)lz2(6)) + sup (10u(s)I[z6) <2 sup (I[us)|[z2.6) + 105u(5) 17 6)):

s€(0,1] s€[0,1] se(0,1]
we derive
[l 20,7102y + ||at”||L2<Q;c<[o,r];H[§(G)>>

<M (Jluoll 2 @uran) + It lzxq@urion + Wl a0 rzcan)

i=1

0 1/2
+ M(Z izE(|gi||iz(0,T;Hé(G)))> . (2.77)

Since a closed ball of finite radius in H2(G) is closed in H}(G), u(t) is H*(G)-valued
Z ~-measurable for each € [0, T]. We now suppose that ug, u;, f and g are given as in
Proposition 2.1. Let us define

m m
Uom = Z <u07ek>eka Ulm = Z <u1aek>ek (278)
k=1 k=1
and
m m
fm = Z <f; €k>€k, Jim = Z <givek>ek- (279)
k=1 k=1

Then, for each m=>=1, ugm, uim, fim and g;,’s satisfy (2.9)~(2.12). Furthermore, it
holds that as m— oo,

Upm—uy in L*(Q; H(G)), (2.80)

U —up  in L*(Q; Hy (G)), (2.81)
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Jm—f in LZ(Q§ LZ(O, T; Lz(G)))a

gim— g in L*(Q; L*(0, T; Hy(@))).
It also follows from (2.5) and (2.79) that

o0
Z izE(”gi,m - gi,kHzLZ(O,T;Hé(G))> -0 as mk— 0.

i=1

221

(2.82)

(2.83)

(2.84)

Let vy, be the solution of (2.1)~(2.3) corresponding to o m, Ui m, fm and {gim}:-,

Then, by virtue of (2.77), we obtain the solution u as the limit of {v,,},._,

It s

apparent that u satisfies (2.7) and (2.8), and u(¢) is H>(G)-valued # -measurable for
each re[0,T]. The uniqueness is also obvious. The proof of Proposition 2.1 is

complete.
We now proceed to prove Theorem 1.3. For an iteration scheme, let

and u", m>1, be the solution of

! d
Uy :Lu+/ ,O(Z,S)f m—1) dB] Z (m— 1) 21 in (0’ T) x G,
0

u=0 on [0,7] x 0G,

u(0) =uy u(0)=wu; in G,

where, for m>1,
and

We also set for m=>1,

On(t) = E( sup ([[u™ (s) = 1™V ()l z26) + 1™ (5) - uﬁ”’_”(S)IIéwG))) :

s€[0,7] 0
It follows from (2.77) and (2.85)—(2.91) that for some positive constant K,

O1(t)<K for all 1[0, T).

(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)
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By (ID)—(IV), (2.76) and Gronwall’s inequality, we find that for each m>2,
t
t)<M/ Om-1(s)ds for all €0, T], (2.93)
0

for some positive constant M independent of m. By induction, we derive for each
m=2,

O () SKM™ 't~V /(m — 1) for all te|0, T). (2.94)

Therefore, we have

zoo: On(T)< 0, (2.95)

m=1

and consequently, the sequence {u('”)} _, converges as m— oo in the strong norm
of L*(Q; C([0, T); H*(G))) n L*(%; C‘([O, T); H{(G))). The limit u is a solution of
(0.1)+0.3), and u(¢) is H?(G)-valued Z,-measurable for each re[0, T]. For the
uniqueness, we argue as follows. Let v; and v, be two solutions of (0.1)-(0.3)
satisfying (1.14). Then, { = v; — v, is a solution of

! dei
= LEt [ ple5) = ) dBs (s Z (A — )22 (296)
where ¢, = Y (Dy0wj, D2v;), j = 1,2. We may consider { as a solution of the linear

problem where Y, — ¥, and A;v; — A;v; are given random functions. Since the
solutions are unique in Proposition 2.1, the estimates in the proof of Proposition 2.1
can be applied to {. Hence, by virtue of (II)-(IV) and (2.76), we have

s€(0,7]

E( sup (1¢(5)l[726) + |ayc<s)||i,;<6>>>
t
<M [ EQRO e + 1104 ) . (2.97)
for all t€[0, T], which implies that { =0, for almost all we Q. This concludes the
proof of Theorem 1.3.
3. Proof of Theorem 1.4
We assume the conditions (I)-(VII). We will first prove (1.21). It follows from
Theorem 1.3 that for any given 7>0, there is a unique solution of (0.2)—(0.4)

satisfying (1.14). The extra term ou, does not change the argument. Here is our
strategy to justify manipulations for energy estimates.
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(i) We fix any 7>0, and fix y(Dyu,, D>u) and ¢; = A;u as given random functions
adapted to {Z,} such that

peL?(Q;C(0, T LX(G))), e L*(Q; C((0, T]; Hy(G))). (3.1)

(i1) We define

Y = /zm:1 Yreder,  gim= ;’":l {qis ex ) ex, (3.2)
Uo,m = I\Z’; Cup,exyex, Ui = g} Cur, ey e (3.3)
(iii) Let u,, be the solution of the linear problem
uy; =Lu — ou; + ¢ /Ot o(t, ), (s) dB;(s) + & ,zmlz qi,m%
for (1,x)e(0,T) x G, (3.4)
u(t,x) =0 for (t,x)el0,T] x G, (3.5)
u(0, x) = upm(x), u(0,x) = uym(x) for xe@G. (3.6)

From the proof of Proposition 2.1, the sequence {u,,} converges to some function v
as m— oo, strongly in L*(Q; C([0, T); H2(G))) n L*(Q; C'([0, T]; HL(G))), where v is
the solution of

by = Lo — ow, + &1 /Otp(t, W (s) dBi (s)

. dBy,;
+ & ; g~ for (1,x)€(0,T) x G, (3.7)
v(t,x) =0 for (¢,x)€[0,T] x 0G, (3.8)
v(0, x) = up(x), v,(0,x) = uy(x) for xeG. (3.9)

By the uniqueness of solutions of the linear problem where { and ¢;’s are given
functions, this v coincides with the original solution u at the outset.

(iv) Since each u,, has additional regularity: Lou,, € L*(Q;L*(0,T;L*(G))), we
first set up energy identities for u,,, from which we derive necessary energy identities
for u.
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From the proof of Proposition 2.1, we have, for almost all we Q,

- <\/—_Larum(l2); Eatum(t2)> + <\/__Latum(ll)7 \/_—Lafum(tl)>

=2 /tz { Lty (8), Lty () — 00Oty (5) Y ds

5]

2 [ (Loum(s) e / (5. DY) dBI(0) ds

141

- Zi ’ (V=L (s), 2V~ L qiu(s) > dBai(s)

i=1 “/h

[ee] 15
— g% Z <\/—Lq,~m( ) V- q,m( )> ds for all l1,l‘2€[0, T],

i=1 “/h

where

2/t2 { Lty (8), Lty (8) — 0Oty (5) > ds

= <Lun1(12)7Lum(12)> - <Lum(t1)aLum(tl)>

=7 (VLo (5) vV =Lytn(s) ds

and, by Lemmas 1.1 and 1.2,

At2<Lasu,n(s) /0 p(s, O, (0) dBy (¢ )>d

= (L) [ o501 a8 6))
(Lt [ ot s105) 1))

-/ " Liin(s), e1p (s )m(s) > dBi(s)

_ / '2<Lum(s),gl /0 ' P (8, O, (O) dBl(C)>ds for all #1, €0, ).

Let us define

E(1) = {V=Luy(1), V=Lu,(t)y + {Lu(t), Lu(1) »

+ 2L, [ p(es) aBi()

(3.10)

(3.11)

(3.12)

(3.13)
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Since  {u,} converges to wu strongly in L*(Q;C([0,T); H3(G)))n

L*(Q; C'([0, T); HY(G))), it then follows from (3.10)—(3.12) that

B8(0) ~ BE(0)) = ~ 20 [ B/ Taalo), V=Lu(0))

14

2 /tltzE<<Lu(t),/0[p,(l,s)«//(s) dBl(s)>) dr

+ezi/E<Fq,<>¢“q,<>>

for all #1, 2€]0, T]. Thus, we have

ﬁE(s( 1) = — 20E({V—=Lu,(t),V—Luy (1) »)

dt
T 231E<<Lu(z),/Otp,(l,S)l//(S) dBl(S>>)
L2 o

i=1

Next let 0< A< 1. Since Lou,, € L*(Q; L*(0, T; L*(G))), we have
d(Luy,) = (LO,uy,) dt.
We also have

d(Outy,) = (Ltty, — 0Oty dt

+ (81/0 p(t, )Y, (s) dB; (s)) dt + & Z Gim dBa ;.
i=1

It follows from Lemma 1.2 that for almost all w,

)“<Lum(l2)7 81“171(12) > - ;“<Lum(ll )7 8Ium(l‘l) >
_ / N TN Lo, di
v / ® Latn(0), Lt (1) — aBum(1) > dt

+ /1/[1[2<Lum(t),81 /Otp(l,s)(//m(s) dB, (s)> dr

0 12}
+Ay / Lt (1), 82qim(1) > dBi(t) for all 11, 2,€[0, T).
i=1

E({N—=Lqi(t),v—Lqi(1)») for all t€(0,T).

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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By the convergence of {u,,} to u, it holds that for almost all o,

A Lu(ty), u(t2) > — AL Lu(ty), u(t1) >
_ i/” (V=L =Ly > di

+ 2/12 {Lu(t), Lu(t) — ou,(t) > dt

+ )h/tlt2<Lu(t),81 /Orp(t,s)tﬁ(s) dBl(s)> dr

+)Z <Lu Le2qi(1)> dBy(r) for all 1;,6,€[0,T].  (3.19)

i=1 7t
We now define
F(1) = (V=Lu (1), V=Tu(1)y + < Lu(t), Lu(t) (3.20)
and

R(1) = F(1) = A Lu(t), u (1) >

+ 2Lt | o) ZIo) (3:21)

We note that E(F(¢)) cannot be directly used to control E(R(¢)) because of the integral
term which is non-local. It follows from (3.15), (3.19)+(3.21) that for all 1€ (0, T),

%E(R(z)) = (=204 A)E({V=Lu,(t),V—Lu,(t) )

— AE({Lu(t), Lu(t) Y) + AaE({ Lu(t),u, (1) ))

+ 2E(<Lu(t),81 /,p,(t,s)l//(s) dBl(S)>>

te i E({V=Lqi(1),V~Lqi()). (3.22)

i=1

For the fourth and fifth term of the right-hand side, we use (I1I), (V) and (VI) to obtain

iE(<Lu(t),81 /Otp(f,s)l//(s) dBl(S)>)‘
+ ‘2E(<Lu(t),81 /Otp,(LSW(S) d31(5)>)’

E(F(1)) + & (M2 + M/ 7) /tezk("")E(F(s)) ds for all te[0,T]. (3.23)
0

<

ool >
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Here and below, M;’s denote positive constants independent of T, uo, u1, €1,& and A.
In the same way, we derive from (3.21) that for all r€[0, T,

t
|E(F(t)) — E(R(1))| S AME(F(t)) + &2 (My/2) /0 e KUSE(F(s)) ds.  (3.24)
We choose A small such that
A<k, AM3<1/2 (3.25)
and such that

(=204 2)E({N=Lu,(1),V=Lu, (1) »)

— AE({Lu(t), Lu(t) y) + AaE( Lu(t),u,(t) »)
< —gE(F(t)) for all z€[0, T, (3.26)

where 4 is independent of T'. From now on, we fix such small 0</1<1. We also take
ler| so small that

et Myl <k/2. (3.27)
Then, we have for all 1€[0, 77,
E(F(1))<2E(R(t)) + k /0 t e I E(F(s)) ds. (3.28)
Set (1) = E(F(t))e** and R(t) = E(R(t))e**. Then, we have
F(t)<2R(1) + k /0 IF(S) ds. (3.29)
By Gronwall’s inequality, it holds that for all 1[0, T,
F(1)<2R(1) + 2k /0 tzé(s)ek(H> ds. (3.30)
Hence, for all €10, T,
E(F(1))<2E(R(t)) + 2k /0 t e M= E(R(s)) ds, (3.31)

which yields

, ¢
/ e—zk(t—s)E(F(S)) ds< 2/ e—2k(t—S)E<R(S)) ds
0

0
t N

+2k/ e*Zk(H')/ e KM E(R(n)) dn ds
0 0

by changing the order of integration

=2 /O Ie”‘(”‘Y)E(R(s)) ds. (3.32)
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Hence, it follows from (3.24), (3.25) and (3.32) that
3

E(R(1))<ZE(F(1)) + (263 M4/ 7) /0 t e M= E(R(s)) ds.

2
By (IV) and (VI), it holds that for all €10, T},

S E(V=La),V=Lai(t) ) < MsE(E(1).

Let us choose |¢;| so small that
£§M5 < }/8

Then, we have

230 E(CVLa(0.V=La0)>) <5 E(F().

This, together with (3.22), (3.23), (3.26), (3.32) and (3.33), yields
d A ! ,
SER())< ~ % E(R()) + ¢ / eI E(R(s)) d,
0
where
Let us set
R (1) = WO E(R(1)).

It follows from (3.37)

t
iR*(l)Ss*/ eHO=R=9) R*(5) ds.
dt 0

Let Z(t) be the solution of

with the initial condition

Then, it holds that for all t€[0, T,
R (1)< Z(1).

Meanwhile, by the Laplace transform, we find
Z(t) = (Kie" + Kye®")R*(0)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

for some constants K; and K, depending only on 1/6 — k and ¢*. Here ¢; can be made
arbitrarily close to zero and ¢, can be made arbitrarily close to 1/6 — k by taking |¢;]
smaller. At the same time, K is closer to 1 and K is closer to 0 as |¢;| becomes smaller.
We now conclude that there are positive numbers ¢ and ¢ <k independent of 7', uy and
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u; such that for each ¢ and ¢, with |¢;|, |e2] <e,

E(R(1)) < Mge “E(F(0)) for all €[0,T]. (3.45)

We also derive from (3.31) and (3.45) that

E(F(1)) < M7e E(F(0)) for all €0, T}, (3.46)

which, together with (3.13) and (3.23), yields

E(E(t))< Mge “E(F(0)) for all te0, T7. (3.47)

Since M;’s are independent of 7', all the above inequalities are valid for all 0. Also,
M;’s can be chosen independently of ¢ and ¢, because we may assume ¢< 1. Hence, we
have established (1.21).

We proceed to prove (1.19). We infer from (3.10)—(3.12) that for almost all @, and
forall 0<t<tr, <ty + 1,

2(t) =E(11) — 20 /[2 (V—=Lu,V—Lu,y dt

+2 [ 12<Lu(t),81 /0 i) (s) dBy (s)>dz

[5)

+2 [ (Lu(t),e1p(t, (1) ) dBi(1)

+2Z/ (V=Lu(t),e2vV'—Lqi(t)y dBa(t)

s / (V=Lqi(t),V=Lqi(t)> dr. (3.48)
i=1 Y1
Therefore, for almost all w,

/ CLus),e1pls,)(s) > dBi ()

141

sup E(6)< E(#;))+ sup 2

n<t<h n<t<n

+2 / ; <Lu(l),£1 / o6 (s) dBl(s)> dr
23 sup /<¢_us (), e0V=Lai(s)> dBa(s)
i— 1 Hh<t<h

+ 832/ (V=Lgi(1), V—Lai(t) ) d. (3.49)
i=1 71
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By assumptions (II)~(VI), and the Burkholder—Davis—Gundy inequality, we derive

E( sup E(z))gE(E(tl))%-iE( sup F(t))

Hh<ISh Hh<ISh

+ (ef—i—s%)M/tzEFs
+€2M/ (/ p,(1,5) ||//()||2ds> d.  (3.50)

Here and below, M denotes positive constants independent of ¢, &, 11, t2, up and u;.
For brevity, || - || means [[ - |[;2). It follows from (III), (V), (VI) and (3.46) that

/ CE( [ PP i) di e B O)) (3.51)

where we have used the fact that O<c<k.
In the meantime, we find from (3.13) that

" 2
sup F(1)<2 sup E(l)+s%M sup /p(t,s)lp(s) dB(s) (3.52)
H<tisth H<t<th Hn<t<th 0
We will estimate the integral term in the right-hand side.
t 2
sup || [ pl0(s) dB(s)
n<t<nl|lJo
h 2 t
<2|| [ ot ai(s) |+ sup 2| [ ol 5p(s) dBi(s)
0 n<Isnh 0
N 2
= [t owis) g (3.53)
0
The last term is further broken into two parts.
t 15 2
sup || [ p(t,s)ils) aBi(s)~ [ plnnws) di(s)
n<r<nllJo 0
t 2
< sup 2| [ (p(t.5) = plr1,5))bls) dB()
Hh<tsn 0
t 2
+ sup 2’/p(11,s)!//(s)d31(s) (3.54)
n<t<n f
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)

2

E( sup || (0(t,5) — plin, )W (s) dBy(s)

(sup / / Py (1, ) (s) dn dB (s)
H<t<nh

by the stochastic Fubini theorem

( sup //pn n,s)Y(s) dBi(s) dn
H<t<th
2
<E< sup /
H<ts<th Jn

dn since 1, — 11 <1,
163
/ E| sup
n<I<n

2
)
<M// (0 (1,521 (5)]2) dls iy

< Me™“"E(F(0)) since el?~9)(=n) g o2k—¢, (3.55)

t 2 tr
E(; sup /Ip(lbs)lp(s)dBl(S) ><ME</[ p(t, )| (s )IIZdS)

<Me "E(F(0)) since e!F=(=0) g p2h=¢, (3.56)

E( ) =E(/0 ORI >||2ds)

< Me “"E(F(0)). (3.57)
Combining (3.46)—(3.47) and (3.50)—(3.57), we arrive at

5 Pn(’% s)(s) dBi(s)

N

/ (1,5 (s) By (5

/ " pt1,5)0(s) By (s)

E(I sup F(t)) <Me="E(F(0)). (3.58)

Now let >0 be given. We set t,, =t+ (m— 1), m=1,2,... . Then, it is apparent
that

supF(s)szoo:< sup F(s)) (3.59)

s>t o\t <5<ty
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and hence, it follows from (3.58) that

E(supF > ii:E( sup F(s)>

s>t b SS<ps
m=1
< Me “E(F(0)). (3.60)

This proves (1.19), and the proof of Theorem 1.4 is complete.

Final Remark. If « = 0, then we do not expect stability of the natural energy. Let us
consider a very simple example where G = (0,7), L = A, ¢; = 0 and & #0.

dB
Uy = Uy + & (u+ u,)TZZ n (0,00) x G, (3.61)
u=0 on [0,0) x 0G, (3.62)
u(0, x) = a sin(x), u,(0,x) = Bsin(x) for xe@. (3.63)

If o 4+ >0, then the mean energy of u grows exponentially fast for any small
|82| >0.

We can easily show this. First of all, the solution can be written as
u(t, x) = y(t) sin(x), (3.64)

where y is a solution of the stochastic differential equation

dB
Yu=-y+eal+ yt)le, (3.65)
y(0)=0a,  y(0)=4. (3.66)
By the same argument as above, we can derive
d 2 2
—E(; + (1 -8)y") = 5E(0* +17), (3.67)

dt

for all £>0. Hence, if o> + >0 and 0<|ey| <1, the mean energy E(»* + 3?) grows
exponentially fast.
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