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Abstract

In this paper we focus on the initial-boundary value problem of the 2-D isentropic Euler equations with
damping. We prove the global-in-time existence of classical solution to the initial-boundary value problem
for small smooth initial data by the method of local existence of solution combined with a priori energy
estimates, where the appropriate boundary condition plays an important role.
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1. Introduction

In this paper we concern the global-in-time well-posedness of solutions to the initial-
boundary value problem (IBVP) of the following isentropic Euler equations with damping in
two-dimensional space:

{,5t+div(,512)=O, x>st, yeR, t>0, n

(ouj)e +div(puij) + P(p)z; = —kpuj, j=1,2.
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Here u(x,t) = (uy, u2)(x,t), p(x,t), P = P(p) represent the velocity, fluid density and pres-
sure, respectively, k > 0 is a positive constant, s is a real number. As is well known, (1) in one
dimension can be written into the p-system with damping in the Lagrangian coordinates,
{v,—uxzo, xeRT, >0, )

U+ P()y =—ku, k=>0.

Here v(x, ) > 0 and u(x, t) represent the specific volume and velocity, respectively; the pres-
sure P(v) is assumed to be a smooth function of v with P(v) > 0, P’(v) < 0. In [9] Nishihara
and Yang studied the boundary effect on the asymptotic behavior of solution to (2) with the
Dirichlet boundary condition u|,—o = 0. In [12] Wang and Yang considered the time-asymptotic
behavior of solutions to the Cauchy problem for the isentropic Euler equations with damping
in multi-dimensions, where the global existence and pointwise estimates of the solutions are
obtained, moreover they also obtained the optimal L? (1 < p < oo) convergence rate of the
solution when it is a perturbation of a constant state. In [11] Sideris, Thomases and Wang con-
sidered the effect of damping on the large-time behavior of solutions to the Cauchy problem for
the three-dimensional compressible Euler equations, where they proved that damping prevents
the development of singularities in small amplitude classical solutions by using an equivalent
reformulation of the Cauchy problem to obtain effective energy estimates, and the full solution

relaxes in the maximum norm to the constant background state at a rate of 17 , moreover they
also exhibited the formation of singularities for large data, and proved that the full solution does
not decay exponentially, while the fluid vorticity decays to zero exponentially fast in time. In [2]
Fang and Xu considered the existence and asymptotic behavior of C! solutions to the Cauchy
problem of the multi-dimensional compressible Euler equations with damping on the framework
of Besov space for initial data with relatively weaker regularity, where the main analytic tools
are the Littlewood—Paley decomposition and Bony’s para-product formula. Moreover, in [3,6-8],
Matsumura et al. studied the viscous shock wave and the asymptotic behaviors of solutions to
the IBVP of the p-system with viscosity. For the IBVP of the Navier—Stokes equations, there
are some results. In [4] Kagei and Kobayashi studied the large-time behavior of solutions to
the compressible Navier—Stokes equations in the half-space in R3. In [5] Kagei and Kawashima
studied the stability of planar stationary solutions to the IBVP of the Navier—Stokes equations on
the half-space. However there are few works on the IBVP in multi-dimensional case to the Euler
equations with linear damping (1) as far as we know.

As for the IBVP, how to give the appropriate boundary conditions, which is a key point to
close the energy estimates, is a difficulty we meet with, since the IBVP may be ill-posed under
some boundary conditions (see [1]). What and how many boundary conditions to give are two
problems we have to solve at first. Because the increase of the spatial dimensions and the number
of the equations, we cannot simply propose the Dirichlet condition on the velocity as in one-
dimensional case (see [9]). By diagonalizing the coefficient matrix of the normal (with respect to
the boundary) derivative of the unknown variables, we give the boundary conditions on the linear
combination of the unknown variables, and find that the number of the boundary conditions to
give is determined by the number of the positive eigenvalues of the coefficient matrix of the
normal (with respect to the boundary) derivative of the unknown variables.

A matter worthy of note is that the process of making a priori estimates for IBVP is more
complex than that for Cauchy problem. Especially in dealing with the boundary terms composed
of the higher-order normal derivatives, we have to take the original system into consideration.
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Moreover, the complexity increases as the order of the derivatives grows higher. In order to close
the energy estimates, we make use of some techniques in dealing with the boundary terms.

Another matter to mention is about the local existence of solutions. In general, for Cauchy
problem of symmetric hyperbolic systems, the local existence of classical solutions could be
obtained without the assumption of small initial data (see [10]), while for IBVP, there is some
difference. Since the boundary terms could affect the symmetric structure of the system in the
process of making energy estimates, there exists some difficulty (essential or technical) in ob-
taining the local existence of solutions without the assumption of small initial data. However,
this does not affect our ultimate results, because the global-in-time a priori estimates require that
the initial data be small. So what we need is to prove the local existence of classical solutions in
the case of small initial data, and this could be obtained by using the iterative scheme.

The rest of the paper is as follows. After we state the notations, in Section 2 we give the
a priori estimates by energy methods. In Section 3 we give the main theorems and show the
global existence of the classical solution to the IBVP.

Notations. We denote generic constants by C, 9% £ (3%, 9513, ..., 9%), 2, 2Rt x R x
[0,7]. L? (1 < p < 00) is the usual Lebesgue space with the norm | - |,, and WP, m € A
p € [1, oo], denotes the usual Sobolev space with its norm

1
m

I £l & <Z|a§f|g>;.

k=0

In particular, we use W > = H™ with its norm || - ||,,, and || - |lo = || - ||. Since we cope with the
initial-boundary value problem, for convenience, we denote || f ||2(O, L2 fR | £(O,y, t)|2 dy,

IF1P@) 2 g for 1 (x,y, D dxdy.
2. Energy estimates

In this paper we consider the small perturbation near the constant state (o, u®), without loss
of generality we choose p? = 1, u® = 0. The real number s play an important role in proposing
the appropriate boundary conditions. The comparison between s and r decides the number of
the boundary conditions we could propose. In this paper we consider the case 0 < s < r, and the
other cases can be studied in the future. Correspondingly we study the following initial-boundary
value problem,

o +div(pi) =0, x>st, yeR, >0,
(puy); +div(puiy) + P(p)z = —kpiu,

(pit2); +div(puiiz) + P(p)y = —kpiiz,

(P, iy, U2) (X, y,t)|r=0 = (po + 1, ru1o, ruzo) (%, y),

oo2)

where r2 = P’(1) > 0, po, u19, Uz are given functions, and inf(, yyer+xRr P0(x, ¥) + 1> 0. We
assume that the pressure P () is smooth in a neighborhood of p% = 1.

Next we will make a series of transformations to the coordinates and unknown variables. First,
X — x+st,y — y,t — t, changes the domain we study from a wedge to the half-space. Second,

3)

:l,

X=st
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the translation transformation (p, i1, u2)(X, y,t) = (o + 1, uy, u2)(x, y, t) linearizes (3). Last,
the scaling transformation p — p, u; — ruj, uo — rus, reformulates the problem (3) to the
following system,

Pt — Spx +ruiy +ruzy =—rdiv(ou), x>0, yeR, >0,

1 P'(1+
Uy — suiy +rpx +kuy = —ru-Vuy +;(r2— M)px,

I+p
1 P'(1+p) 4)
uzz—Suzx+pr+kM2=—ru'VM2+;(i’2—ﬁ)ﬂy,
(o, ur,u2)(x, y, 0)li=0 = (00, 10, 420)(X, y),
(p+uplx=0=0,
whereu:(ul,uz).DenoteB:rz—P/%:p),
—s r 0 0 0 r 0 0 O
A1:<r —s 0), A2=(0 0 0), A3:<O k 0),
0 0 -—s r 0 0 0 0 %
hy —rdiv(pu) 0
H:(hz): —ru-Vu1+§px s W:(u1>
h3 —ru-Vuy + g,oy uz

Then we can rewrite (4) as following,
Wi+ AWy + AW, + AW =H.

In order to diagonalize the coefficient matrix A, we introduce an orthogonal transform. Let

RV N
2 2
=] 2 V2
So=12 % 0
0 0 1

NG
—s+r 0 0 0 0 %
Slz( 0 —s—r o), =0 o Lr|.

0 0 - gr %r 0
i 50 Lo+tun)
— k k — Y
S5=|-% 5 0] V=[Lp-u —<“2)’
0 0 & v3
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Vix,y,0) 2 Vo(x, y), thus we reformulate (4) to the following problem,

Vi+S1Ve+8$Vy + 83V =SH,
V(x,y,0)=V(x,y), @)
v1(x,y,)lx=0=0.

Specifically, (5) can be written into the following form,

V2 k V2
v — (8 —r)vix + — T3y + E(Ul —v) = 7(1’11 + h2),

V2 k V2
vy — (s +r)vae + — T3y + E(vz —v) = T(hl —hy),

V2 (6)
U3 —SU3x + Tr(my + v2y) + kvz = h3,
V2 V2
(v1,v2,v3)(x, y,0) = (7(00 + u10), 7(,00 —ujo), uzo) (x,y),
vi(x, y,)|x=0=0.
In the following we will estimate (o, u1, u3) under the a priori assumption
N2 sup {IWIF(O} <80, 0<do<1,1>4. (7)

O<t<T

By Sobolev inequality and the system (4), we know that

> suplfakaPw| < Cé,
0<k +hko+hy<l—2 52T

2 P'(1+ p)

|B| =
l+p

< Clpl < Cdo.

Now we will obtain a series of estimates corresponding to the k-order derivatives (k =
0,1,2,3,4), denoted by Estimate A, B, C, D and E, and higher-order derivatives of the solu-
tion in order to close the energy estimates. In the process of energy estimates, we use the fact
that |05V || = ||akW ||, k > 0 is an integer, since Sy is an orthogonal matrix.

2.1. Estimate A

Multiplying (5) by V and integrating it over £2;, since

r 00 o0
///H-dedydt
0 —00 0

we get that

t

< cao/(||p||2(0, SO+ uli @) + 11Vl A1) dx,
0
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t
ARG +/(||W||2(o, L)+ llul () de

0
t

< C||Wo||2+cao/(||u||%<r>+ IVpl?(r))dx. (8)
0

2.2. Estimate B

By direct calculation we obtain the estimates on the nonlinear terms.

Lemma 1. Assume (7) holds, then

t o0 o0
///ayH~8dexdydt
0 —o0 0
!

< cao(||ayp||2<t) + [13y poll* + /[nwn%(o, S T) + ullfr) + ||Vp||2<r>]dr>
0

and

[ e oliee]
///axHoBXdedydt
0 —o0 0
t

<cao<||axp||2<r)+ ||axpo||2+/[||wn%<o, LT+ ullf (o) + ||Vp||2<r>]dr>.
0

As for the boundary terms we have the following estimates.
Lemma 2. Assume (7) holds, then
18501170, -, 1) S C(IW 1% + [13yu2]1%) 0, -, 1) + CSO W (0, -, 1). ©)
Proof. By virtue of (6)1, we get that

135011120, -, 1) < C(I13y w3l + lv2ll* + llA1 + hall*) (0, -, 1)
< (IWI2 + 118yu211*) (0, -, 1) + C8| W3 (O, -, 1).

Thus (9) is proved. O

Multiplying 0y(5) by 9,V and integrating it over £2;, combined with Lemma 1, yields that
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t
18, W% (¢) +/(||ayW||2(0, )+ |dyull*(0)) de
0

t
< CllayWoll? +cao/[||ayW||2<o, SO+ (VeI + lullf) (D] dz. (10)
0

Multiplying 9, (5) by 9,V and integrating it over £2;, combined with Lemma 1, yields that

t

||axW||2(r>+/[(Uax(p—u1)uz+ I13x22117)(0, -, T) + [13cul|* ()] d=
0

t
<c<||axwo||2+/||axv1||2<o,-,r)dr>
0

1
+ CSOf[Ilalelz(O, ST+ VIR () + ul ()] d. (1)
0

Choose X1 suitably small such that (10) + A;(11), combined with (9) and (8) yields that

t
||8W||2(r>+/[(||aywn2+ |9:(0 — un)|* + 105u20%) (0, -, 7) + l0u]*(1)] d=
0
t

<C||Wo||%+cso/[||aW||2<0, SO+ (VeI + ull}) (0] dx. (12)
0

(12), (9) and (8) yield that

t

IWI20) +/[||W||%<0, A0+l )] dr

0
t
<C||Wo||%+cso/||Vp||2(r>dr. (13)
0
From (4), we have that
IW 10, -, 0) S CIWITO, - 1), W) < CIWI ().

Thus (13) yields that
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t
IWI3) + ||Wt||2<t)+/[(||W||%+ W 1I12)(0, -, T) + llull3 (x)] dT
0

t
<C||W0|I%+C80/IIVpllz(f)dT- (14)
0

Since

U1 px = (W10x)r — @101)x + U1xPr, ur py = (U20y)r — U201)y + U2y 01,
by virtue of Cauchy inequality, (4)10; + s(4)20x + (4)30y yields that

t

/ (Io:1>(@) + IVl (x)) d

0

t
< c(||wo||%+ (IVoll* + ||u||2)(r>+/[(||pt||2+ lull?)(0, -, ) + ||u||%<r)]dr>
0

t

+caof(||u||%+ IVpl?)(z)dx. (15)
0

Choose X, suitably small such that (14) 4+ A»(15) yields that

t
W3 () + ||wz||2<t)+/[(||vv||%+ IW:12)(0, -, ©) + (o> + IV oI + lul?) (x)] de
0

< CWoll}. (16)
From (4) we know that [lu,[|?(t) < C(I[Vpl|* + [lull3)(?), thus (16) yields that

t
W3 + ||Wf||2(t>+/[(||W||%+ IW:12) (0, - T + (IW: I + IV ol + lull}) (v)] d7
0

< ClIWoll3. (17)
2.3. Estimate C

By direct calculation we have the following estimates on the nonlinear terms.
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Lemma 3. Assume (7) holds, then

t oo

[l

< Céy

o0
/a H-9Wdxdydr
0

t

|8200]” + 820 <r>+/[||azw||2(o,~,r>+(||Vp||%+||u||%)(r)]dr>,

0

-

t

[

< Cdp

8\3

o
/BYSXH -0y, Wdxdydr
0

t

118y 3y poll* + 113, pII* () + f[||azw|\2<o, SO+ (IVollf + ||u||%)<r)]dr>,
0

P

o\ﬁ
8\8

o
/a H-9’°Wdxdydt
0

t

< cso<||a$po||2 + 0207 +/[||azw||2<o, SO+ (IVel? + ||u||§)(r)]dr>.

0

As for the boundary terms we have the following estimates.
Lemma 4. Assume (7) holds, then
18y, v1 120, - 1) < C>IW I3 + 82u2|*) (0. -, 1) + C8 I WI3(0, -, 1), (18)
[82v1 0.0y SCIWIZ + 82 (0 — un)||* + 18y By102]?) 0. - 1) + CEO W30, -, 7). (19)
Proof. In view of 9,(6)1, we get that
18y 01120, -, 1) < C (|23 |* + |y (o1 — v2)|* + 8y (1 + h2) | }) (O, - 1)
<CIWI3 + [92u2]*) (0, -, 1) + CIWIIB(O, -, 0).

Thus (18) is proved.
In view of 9, (6)1, we get that

[o2vi[*©. 1)
< C (19001 1% + 19,0, 03117 + [0 w1 — v2)||* + |9 (h1 + 7)) (0, -, 1)
< CNac3 v 1120, -, 1) + C>IWIIT + 118y dcu2l1*) (0, -, ) + CSo W 3(0, -, 1)
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< ClIBy3 V3170, -, ) + C>IWIF + 113y 35u2]1%) O, -, 1) + Co | W50, -, 1)
<CIWIR+ 920 —up) | + 18yd,u2112) (0, -, 1) + CHIW3(0, -, ).
Thus (19) is proved. O
Multiplying 33 (5) by 3§V and integrating it over £2;, we have that

t

3wl + [Tla3wl .0+ [gul’ ] ar

0
t o0 00
f//af,H-zﬁdedydz
0 —o0 0

<cJml +

) . (20)

Similarly, we have that

t

18,8 WII* (1) + f[(Hayax(p —u)|® + 10,04212)(0, -, T) + 13, 8,u]*(1)] dT
0

t
<C<||ayaxwo||2+/||ayaxv1||2(o,-,r>dr
0

t o0 o0
[] /ayaxH.ayadoxdyd,) on
0 —oc0 0

+

and

t
2w+ [T(Ja3 = un | + 03] 0.0+ o2 0] ax
0

t
< C<||3§Wo||2+/||a§v1||2(0, L 1)dT
0
t

oo o0
f//afH-a§dedydr). (22)
0 —o0 0

Choose A3, A4 suitably small such that (20) 4+ A3(21), combined with (18) and (17), yields
that

+
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t
[o3w [P0 + 10,0010 + [ [(13W I + 0560 =0
0

+ 118y 3xu202) (0, -, ) + ([|82u|* + 19y 0xull?) (v)] d e

t
C(||Wo||§+aof||W||§<o,~,r)dr

o0
/ByH ;W dxdydr
0

8,0, H - 9,0, W dx dydt

), (23)

8\;8 8\;8

t

* /
0 —

and (23) + A4(22), combined with (19) and (17), yields that

1
2w+ 13w 17 + Jar.0 = o
0

+ 110, 05u211> + 020 — un) | + [02u2]*) (0, -, ) + [[0%u]* (x)] d=

///HH Bdedydr

0 —o0 0

(IIW0||2+50/IIWII2(0, ,T)dT +

+ 3,0, H - 0,0, W dxdydt

) (24)

Combined with (17), Lemmas 3 and 4, (24) yields that

o"\

0; H - 8 Wdxdydr

+
\

1]
/1]

t

||W||%<r)+f[||W||§<0,-,r)+ lul3()]dr < C||Wo||%+cso/ IVpli(r)dr.  (25)
0

From (4) it is easy to know that
W30, -, 1) S CIWI30, -, 1), W 3(0) < CIIWI3(0),

so (25) yields that
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t

IWI3@) + ||Wt||%<t)+/[(||W||§+ W II7)(0, -, T) + llull3(x)] dT
0

t
< ClIWol2 + Co / IVol2() dr. 26)
0

By similar calculation to (15), V(4)1 Vo, + sV (4)2Vpx + V(4)3V py yields that

t

/(||th||2 +IVoylI? + IVou %) (x) de
0

< c(n Woll3 + (IV ol + llull?) (1)

t

+f[(||pt||% + W3, -, )+ ||u||%(r>]dr>
0

t

+Cé f (lul3 + 1Vol?) () dz. Q27)
0

Choose A5 suitably small such that (26) 4+ 15(27) yields that

t

IW I3 + W13 () +/[(||W||% + W) O, - ) + (Lo 1T + 1Vl + ull3) ()] dT
0

< CWoll3. (28)
From (4) we know that [Ju, |13 (t) < C(I|Vpll} + [lull3) (), thus (28) yields that

t
W13 + ||W,||%(r>+/[(||W||%+ IW:IT) (0, - T + (IW: 1T + IV pl13 + lull3)(v)] de
0

< ClIWoll3. (29)
2.4. Estimate D

By direct and a little tedious calculation, we get the following estimates on the nonlinear
terms.
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Lemma 5. Assume (7) holds, then

t oo

[1

< cao<||83po||2+ ||a§p||2(r>+/[||a3w||2<0,-,r)+ (IVpl3+ ||u||§)<r)]dr),

/

(o)
/8;H-8;dedydr
0

8\8

oo
/agaxH -070, Wdxdydt
0

t

cao(||a§axpo||2+ |828.0 (1) +/[|}a3w||2(0, L)+ (IVel; + ||u||§)<r>]dr>,

0
r o0 o0
///ByafH«ayadexdydt
—00 0
1

c(so(Haya,%pon + 8,020 @) +/[Ha3wuz(o, SO+ (IVol3 + ||u||§)(z)]dr>,

0

and

r o0

[

t
< cao(uaipoyf +[830] @ +/[Ua3wy|2<o, L+ (IVel3 + ||u||§)(r>]dr).

0

o
/aﬁH-33dedydr
0

As for the estimates on the boundary terms, we have the following results.

Lemma 6. Assume (7) holds, then

|820,01 [0, -, 1) < C(IWIE + | 93u2 | ) (0, - 1) + CaIW 130, -, 1), (30)
[ayazvr 2. 5y < (WIS + 8032 |* + 9 (0 — u)[*) 0.,
+Col W30, -, 1), (31)
[, <CUWIB + |00 ]* + [ 0,03u2

+[020:(0 — un) |*) (0. -, 1) + CSIIW 30, -, 1). (32)
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The proof of Lemma 6 is similar to that of Lemma 4, so we omit here.
Multiplying 8y3 (5) by 8y3 V and integrating it over £2;, we have that

t
||83W||2<f>+/[||83W|}2<o, Lo+ 03] de
0
1

[1]

O H - }Wdxdydt

<C(||a;’wo||2+ ;

). (33)

Similarly, we have that

1
Ja3a.w "0+ [(J230: (0 —un | + [020s0a]) 0. ) + 330, (o)) e
0

t
<c<|\a§axwo||2+/na§axvlH%o,.,f)df

0
), (34)
t

R RO / (195930 = un)|* + 8,022 ]*) 0. - o) + [3y03u | (1) ] de
0

+ O30 H - 070, Wdxdydrt

t 00 00
0

0 —o0

t
<c(faml+ [Tasnl' ..
0

), (35)

+ 3yd2H - 8,02W dx dydr

/

0 —o0

t oo XX
0
and

t
[o3w | + f (1030 = un|* + [83u2 ) . o) + 93| *(©)] e
0

t

[ olee]
///afH-adexdydz
—00 0

0

). (36)

t
<c(fawel*+ [lonPo..oars
0
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Choose Ag, A7, Ag suitably small such that (33) 4+ A¢(34), combined with (29) and (30), yields
that

t
Jow P+ zaow P+ [T+ 125000 - |
0

+ (85052 |) (0,0 + ([05u]* + 300 %) ()] d

t
<c<||wo||§+ao/||W||§(o,~,r)dr
0

+ O H - ;W dxdydt

o _

030 H - 0,0, W dxdydt

é\g é\,g
S— g S —y

_|_
o _

), (37

(37) + A7(35), combined with (31) and (29), yields that

(lo3w [+ Jo5a.w | + |, 02w [ *) )
!
3 2 2 2 2 2 2 2
b [UEW P+ 182806 — 0 + |23l + [0 — )
0

10002 ) 0,7+ (o3 + 020 ] + 3,02 ]) (0]

t
<C<||Wo||’§‘+so/||W||§(o,-,r>dr
0

+ O H -, Wdxdydt

o

030 H - 030, W dxdydt

+
o
0\8 0\8

é\g é\g é\g

+
S

39,02H - 8,02W dx dydr ) (38)

and (38) + Ag(36), combined with (32) and (29), yields that
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t
oW P+ [T Wl + 93000 -
0

#2000 P + o,0%us] + 2,820 — )|
+ 830 —un[* + [ 93uz ) 0. o) + [ 0%u]* ()]

o0 o0
///3;H~83dedydt

0 —o0 0

t
< C<||W0I|§ +80/ IWI30. -, T)dt +
0

+ 00, H - 070, W dx dydt

o _

dy02H - 3,02W dx dydr

) . (39)

Combined with Lemmas 5, 6 and (29), (39) yields that

+
O\N

BH-3>Wdxdydr

—3 é\g E‘%\g

+
St— .
0\8 0\8 0\8

!
3

t

||W||§(r)+f[||W||§(o,~,r)+(||p,||%+ IVol2 + lul3)(v)] de
0

t
< CIWol2 + Cso / IVl dx. (40)
0

From (4) it is easy to know that
W50, -, 1) < CIWI30, -, 1),  [WilI3(0) < CIW3(0),
so0 (40) yields that

t

NAHOESNALG! +/[(||W||§ + W 13) O, -, ) + (Lo + Vol + llull3) (x)] dT
0

t
< CIWoI2 + Cso f IVol2() dr. 1)
0

By similar calculation to (15), 3%(4)19%p; + 53%(4)28% py + 3%(4)39%p,, yields that
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t

[4#al? + 10,1 + |26 )0 dx
0
t

< c<||Wo||%+ (VI3 + llul3) (r) +/[(||pt||%+ IW113)(0, -, 7) + ||u||%<r)]dr>
0
t

+Céo / (lul3 + 1Vol3) () dz. (42)
0

Choose X9 suitably small such that (41) + Ag(42) yields that

t

IWI3@) + ||Wt||§(t>+f[(||vv||§+ IW:113) (0, -, T) + (I 13 + 1V 0lI3 + lull3) ()] dT
0

< C[IWoll3. (43)
From (4) we know that [lu,[|3(t) < C(||Vpl13 + [[u]|3)(?), thus (43) yields that

t
IWI3@) + ||W,||%(r)+f[(||vv||§+ IW:13) (0, -, T) + (IW: I3 + IV o113 + lull3) (v)] de
0
< C|[Woll3. (44)

2.5. Estimate E

By direct and a little tedious calculation, we get the following estimates on the nonlinear
terms.

Lemma 7. Assume (7) holds, then

t o0 o0
/ffa;‘H-a;‘dedydr
0 —00 0
t

< cao(||a;‘pouz+ ||a;?pH2<r>+/[H84WH2<0, L0+ (VeI + ||u||ﬁ)(r>]dr>,

0
t oo 00
/f/agaxH.agadoxdydr
0 —o0 0

t
< cao(||agaxpo||2+ ||a§axp||2<t)+f[|84w||2<0, L0+ (IVeld+ ||u||ﬁ)(r>]dr>,
0
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(e ole ]
//a}%afH-aga)%dedydr
o0 0

t

< cso<||a§.a§po|!2 + 02020 %) + f[;|a4w||2(o, L0+ (IVeld+ ||u||3)(r>]dr>,

0

t

[

\8

o0
/aya;H - 9y3W dx dydr
0

3

t

< laaiml*+ a2+ [T1sW 0.0+ (901 + 1ido]ar).

0
and

t

[ olee)
///a;‘H.adexdydr
0 —o0 0
t

<o latml? + oto P+ ({1100 (901 + s ).
0

As for the estimates on the boundary terms, we have the following results.

Lemma 8. Assume (7) holds, then
|830x01] 20, -.1) < CIWIE + 932 *) (0, -, 1) + CSoI W3O, -, 1),

[930301 7.0 S CUWIE + 850,02 * + 030 — un) ) O, -, 1)
+ C8IW 300, -, 1),
[ay0301 20,0y < CUW I + |0 03uz |* + |95z |* + 930 (0 — ) |*) 0. -, 1)
+CoIW 300, -, 1),
oo ..oy < COUWIS + |35 00ua|” + [ yodua|* + 0303 (o —un) |

+ 820 — un) |*)(0. -, 1) + CS W30, -, 1).

The proof of Lemma 8 is similar to that of Lemma 4, so we omit here.

(45)

(46)

(47)

(48)
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Multiplying 8;‘ (5) by 8;1 V and integrating it over §2;, we have that
t

50+ [11sw0. o+ 5 o

t o0

[l

<||a4wo|| .

)

o0
/8 H - 84dedyd1:
0

Similarly, we have that

t

|83a.w |*(0) + /[(|| 830 (p —un)|* + 839512 *) (0. -, ) + |930xu|* (0] de

0

t
(G [T

)

t o0 00
+ ///af,axﬂ.ajaxwa'xdydr
0 =00 0

t

[z w|* () + / (183030 = un)[* + 93032 ) 0. . 1) + [0 07u]|* ()] v

<ol / a2 0.

)

r o0 o0
+ ///aaH 030;Wdxdydt
0 —o0 0

t

Jovoiw @+ [ (I3 = un | + [as08ua)0.-.0)+ 03] e

0

t
<c(faazml+ [lpn oo

)

r o0

I

o0
/ayaiH -9, W dx dydr
0

and

2495

(49)

(50)

(51

(52)
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t
latw () + / [l G0 = un)[* + 2] ) .. 1) + odu]* ()] av

0

t
c(||a;w0||2+ [1atu 0. ora
t oo o0

+ fffaH 84dedydr) (53)
0 —o0 0

Choose 119, A11, A2, A13 suitably small such that (49) 4+ A19(50), combined with (44) and
(45), yields that

t
Jogwl@ -+ 3w o + [ (13w + 18300 — |
0

+ 833w |*)0. 0 + (o] + 9300 |*) @] de

< C(IIWolli + 30/ W3, -, ) dr

t
.
t

.

(54) + A11(51), combined with (44) and (46), yields that

oo
/8)H Oy W dxdydt
0

030 H - 070, Wdxdydrt

) , (54)

8\3 8\8

(laiw]>+ 3w + 9203w |P) o
t
) 3 2 3 2 242 2
+ [T + 10300~ un |+ 830 + 03030 — )|
0

+ [0202ua])*) (0. -, o) + (|du|* + |830,u|* + | 0202 *) (r)] d

<c<||Wo||%;+ao/||W||Z(o,~,r)dr

r oo

/4

(0.¢]
/8 H - 84dedyd1:
0
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330 H - 9,0, W dx dydrt

+
O\N

0707 H - 9;0; W dx dydt ) (55)

é\g é\g
0\8 0\8

+
O\N

(55) + A12(52), combined with (44) and (47), yields that

(3w [+ 32w [ + 3202w P + 3,030 )
1
+ 9w + 30000 -0 |+ 3000l + 25200 — )
0

+ 102020+ 0,030 — ) + 0,032 ) 0. )

+ (| ]® + 0300w | + [9202u])* + 8y 03ull?) (0)] d

t
< C(IIWolli +80/ IW[30, -, ) dr
0

+ OyH - 9y W dxdydt

y

S— .

0J0 H - 00, Wdxdydr

+
St .

030 H - 950; W dx dydt

+
O\N

dyOH - 3,03 W dx dydr ) (56)

é\g é\g é\g é\g

+
St— .
0\8 0\8

and (56) + A13(53), combined with (44) and (48), yields that

t
Ja*wlo+ [T(Jatw]” + 1538, = un | + |30l
0

+ 1020200 = un P+ 13202 P + 3,030 = un |+ oy 030
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+ 80 —un|” + ot ) 0. o) + a*u]*0) ] dx

t [ e elie el
<c(||Wo||i+ao/||W||£<o,-,z)df+ // O3 H - 04 W dx dyde
0 0 —o0 0

+ 00, H - 0,0, W dx dydt

o _

0307 H - 930; W dx dydt

+
o

dyOH - 3,03 W dx dydr

) : (57)

Combined with Lemmas 7, 8 and (44), (57) yields that

+
T\"N | |
—g 87—y 3T™—3g 8Ty

OH - 0}Wdxdydr

+
St

\
3

t

IWI5@) + /[nwni(o, SO+ (o3 + VoI5 + llullf) ()] dr
0

t
< ClIWol2 + Cso / IVol2(r) dr. (58)
0

From (4) it is easy to know that
W30, -, 1) S CIW(3(0, -, 1),  [[WilI3(0) < CIW |3 (),
so (58) yields that

t

IWI5@) + W50 + /[(nwui + W 13) 0, -, ) + (Ilor 3 + IV oll3 + llullf) ()] dT
0

t
< ClIWol2 + Co / IVol3(0) dr. (59)
0

By similar calculation to (15), 3%(4)13% o, + 533 (4)28% py + 3°(4)39° o, yields that
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t

f(||33pr I*+ 10y | + 120 *) () dx
0

< c(n%n?1 + (IVoll3 + luli3) @)

t

+/[(||p,||§ + IWI3)(0, -, T) + ||u||ﬁ(r>]dr)
0

t

+C8 / (1l + Vo 12) (1) d. 60)
0

Choose 114 suitably small such that (59) 4+ A14(60) yields that

t

IWI5@) + W 130 + /[(nwnﬁ +IW13) (0, -, ) + (lloell3 + IV pl3 + lull3) (v)] de
0

< C|IWoll3- (61)
From (4) we know that [lu,[|13(t) < C(I V|13 + llull3)(*), thus (61) yields that

t
IWI3@) + W 130 + f[(uwni + W 13)(0, -, ) + (W, 13 + 1Vl + llull) ()] dT
0

< Cl|Woll3. (62)
2.6. Estimates on higher-order derivatives

By the similar arguments we can get the following estimates, for any positive integer [ > 4 as
long as 4§y is sufficiently small,

IWIF @)+ W7 ()
t

+ f[(nvvn,2 +UWAI71) O, -, ) + (IW 7y + I Voll7_, + lull?) ()] dT
0

< CIWoll?. (63)
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3. Theorems of existence
3.1. Local existence

We are first going to obtain the local existence of solution to the initial-boundary problem (4)
by making use of iterative scheme. Consider the following linear system,

o — spmtl +rum‘H +ru”"H —r(V,om+1 u™ +p dlvu’"H)

W — sy oMt g = ™ VT iBmp’"“,

wh = suy bkt = —rd™ vyt %B’",o;”H, (64)
(0" g ) Gy 0 g = (0 g ) ()

(0" up )]y =0,

! m
where B" = r? — %J;f,’,), ,06”+1 u’lno+l u%“ are functions of class C*® and ), ||pm+1 ol

Yom ||um+l —upll, D, ||uerl — uy; || converge with the respective limits po, 10, #20.
.Denote. wn = . (", ul', uy'), Wy = (p{)’l, u’lﬂp, u’y,). By the similar process to the a priori
estimates in Section 2, we have the following estimate,

t

w17+ wr )@ +/[(|| LA S L7 [
0

+ (W 19+ e ) @] de
2 2
c(wg ) Iwg 7+ cdw™ @) [ve™ i o

"‘/tC(”Wm !

0

W @)W o, o

+ (Ve [y + [+ 19 7y + e ) @] dr. (65)
From (65) we get the following lemma for the system (64).

Lemma 9. Let [ be an integer, | > 4. Assume that pg, u10, u20 € H'(RT x R), and || polls, llu10lls,

llu20ll; are sufficiently small. Then there exist a time T and a number Ry, such that for allm > 0,
we have

sup W™, (1) < Ry sup || W"|,_, (1) <R
0T

<r<T

where the numbers Ry, T\ depend both on the system (64) and on the initial data || poll;, l|lu10lls,
lu20ll:-
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Now we are going to show the convergence of the iterative scheme in L>(RT x R) on a
smaller time interval T*, then we conclude the convergence in H" (R* x R) for all 0 < r < by
interpolation.

First we define the difference W™ £ W™+! — W™ and other denotations can be similarly
defined. We form the difference of two successive equations of the scheme,
i —spy +ritf +riy, =hi,
W — sl +rplt + ki = hY,
iy, — sity, +rpy +kity =hY, (66)
(5" ) . v, D] g = (7 W ) . ),
(0" +a7')],_o =0,

where
}_1’1" = —r(V,om+1 U 4 o diva™t — vyl - m_ldivum)
=—r(Vp"™ - u™ + p"diva™ + V" i+ o divu™),
rm m m—+1 1 m m—+1 m—1 m 1 m—1
o =-—ru" - Vu —i—;B oy tru -Vuy — B ol

X

1 1
=—r(um-va§"+ﬁm—‘.VMQ")JF;B%?JF —B"tpm,
- 1 1
?:—rum.Vu?H—i—;Bmp;"H—l—ru - Vu?y' ——Bm 'y }
1
- —m—1 1
=—r(" - Viy +a" -Vué”)—i—;Bm o+ — Bm oy

By the similar process to the a priori estimates in Section 2, we get the following estimate for
the system (66),

t
|w™ ”2@) < CI(RI)/” wn! ||2(r)dr

+c2<R1>/|| W™ |*(x) dr + C3(R) [ W' |- (67)

Denote

Ym £ sup ”WmHZ(I),
0T

then we have from (67),

S C2RDT*ym + CL(R)T* ym—1 + B,
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where 8, = C3(Ry)|| W(’)" |>. We choose T* to be such that

N =

(C1(R1) + C2(R))T* <

It yields that
> v <2 B (68)
m m

By using Lemma 3.6.5 in [10, p. 98], we know that {B,},>0 has a finite sum. From (68)
we deduce that {y,},>0 equally has a finite sum, that is to say W™ converges at least in
L%([0, T*]; L3Rt x R)). We denote the limit as W = (p, uy, uz), then W e L*°([0, T*];
L?>(RT x R)). By an interpolation formula between H 0= 12%and H', we have forall 0 < r <,

1-r r
[wm —wl, <[w"—wl, T[w" —w|].

So the sequence {W™},,>¢ tend to W in L*([0, T*]; H" (R x R)) for all r <. Since [ > 4,
we have the result that W is a regular solution of the initial-boundary value problem (4). So we
obtain the following theorem of local existence.

Theorem 10. Let [ be an integer, | > 4. Assume that pg, U0, U0 € H'{(RT x R), and leolls,
l10llz, Nluooll; are sufficiently small. Then there exists a time T > O such that the problem (4)
has a unique classical solution

(p,ur,uz) € C'([0, T] x RY x R).
In addition, (p,uy,u2) € C1([0, TT; H=1(RT x R)) N C%([0, T]; H'(RT x R)).

Remark. As mentioned in the section of the introduction, for the initial-boundary value problem
to the isentropic Euler equations with damping, we obtain the local existence of the classical
solution only in the case of the small initial data due to some essential or technical difficulties,
while for the Cauchy problem of symmetric hyperbolic systems, the local existence of classical
solutions can be proved by using the fixed point mapping theorem or the iteration method without
the assumption that the initial data are small (see [10]).

3.2. Global existence

In order to obtain the global existence of classical solution to the system (4), we only need to
prove the a priori estimate. Based on the preceding estimates in Section 2, (63) yields the a priori
assumption (7) for any time 7. Therefore we have the following theorem of global existence.

Theorem 11. Assume that po, u19, U9 € HI(IR+ x R), [ > 4 is a positive integer, and || poll1,
ltoll, Nluaoll; are sufficiently small. Then there exists a unique, global, classical solu-
tion (p,uy, uy) to the initial-boundary value problem (4) which satisfies (63) and

(p,u1,u2) € C'([0, 00); HT'(R' x R)) N C([0, 00); H' (RT x R)).
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Remark. 1. In this paper, although we study the IBVP for 2-D Euler equations with damping, in
fact the corresponding results still hold in the case of n-D (n > 3).

2. In this paper, we assume that the boundary function in (3) is constant, and it results in
the homogeneous boundary condition in (4), so the estimates of the solution can be controlled
only by the initial data, otherwise they should be controlled by both the initial and the boundary
functions.
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