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In this paper, we develop a viscosity method for homogenization
of Nonlinear Parabolic Equations constrained by highly oscillating
obstacles or Dirichlet data in perforated domains. The Dirichlet
data on the perforated domain can be considered as a constraint
or an obstacle. Homogenization of nonlinear eigen value problems
has been also considered to control the degeneracy of the porous
medium equation in perforated domains. For the simplicity, we
consider obstacles that consist of cylindrical columns distributed
periodically and perforated domains with punctured balls. If
the decay rate of the capacity of columns or the capacity of
punctured ball is too high or too small, the limit of uε will
converge to trivial solutions. The critical decay rates of having
nontrivial solution are obtained with the construction of barriers.
We also show the limit of uε satisfies a homogenized equation
with a term showing the effect of the highly oscillating obstacles
or perforated domain in viscosity sense.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

This paper concerns on the homogenization of nonlinear parabolic equations in perforated do-
mains. Many physical models arising in the media with a periodic structure will have solutions with
oscillations in the micro scale. The periodicity of the oscillation denoted by ε is much smaller com-
pared to the size of the sample in the media having macro scale. The presence of slow and fast varying
variables in the solution is the main obstacle on the way of numerical investigation in periodic media.
It is reasonable to find asymptotic analysis of solutions as ε goes to zero and to study the macroscopic
or averaged description. In the mathematical point of view, the partial differential equation denoted
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by Lε may have oscillation coefficients and even the domains, Ωε , will have periodic structure like a
perforated domain. So for each of ε > 0, we have solutions uε satisfying

Lεuε = 0 in Ωε,

with an appropriate boundary condition. It is an important step to find the sense of convergence of
uε to a limit u and the equation called Homogenized Equation

Lu = 0 in Ω

satisfied by u. Such process is called Homogenization.
Large number of literatures on this topic can be found in [4,25]. And various notion of conver-

gences have been introduced, for example Γ -convergence of DeGiorgi [19], G-convergence of Spag-
nolo [31], and H-convergence of Tartar [33]. Two-scale asymptotic expansion method has been used
to find L formally and justified by the energy method of Tartar. He was able to pass the limit through
compensated compactness due to a particular choice of oscillating test function [32]. For the periodic
structure, two-scale convergence was introduced by Nguetseng [29] and Allaire [1], which provides
the convergence of uε(x) to a two-scale limit u0(x, y) in self-contained fashion. And recently viscos-
ity method for homogenization has been developed by Evans [22] and Caffarelli [5]. Nonvariational
problems in homogenization has been considered in [8,9]. They observe that the homogenization of
some parabolic flows could be very different from the homogenization process by energy method. For
example, there could be multiple solutions in reaction diffusion equations. It is noticeable that the
parabolic flows with initial data larger than largest viscosity elliptic solution will never cross the sta-
tionary viscosity solution and that the homogenization will happen away from a stationary solution
achieved by minimizing the corresponding energy [10,11]. And the viscosity method has been applied
to the homogenization of nonlinear partial differential equations with random data [16,12].

Now let us introduce an example of parabolic equations in perforated domains. Set Ω be a
bounded connected subset of R

n with smooth boundary. We are going to obtain a perforated do-
main. For each ε > 0, we cover R

n by cubes
⋃

m∈εZn Cε
m where a cube Cε

m is centered at m and is of
the size ε . Then from each cube, Cε

m , we remove a ball, Baε (m), of radius aε having the same center
of the cube Cε

m . Then we can produce a domain that is perforated by spherical identical holes. Let

Taε :=
⋃

m∈εZn

Taε (m),

R
n
aε

:= R
n\Taε

and

Ωaε := Ω ∩ R
n
aε

= Ω\Taε ,

Q T ,aε := Ωaε × (0, T ].
Now we are going to construct the highly oscillating obstacles. Let us consider a smooth function
ϕ(x, t) in Q T = Ω × (0, T ] which is negative on the lateral boundary ∂l Q T , i.e. ϕ � 0 on ∂l Q T and
positive in some region of Q T . Highly oscillating obstacle ϕε(x, t) is zero in Ωaε and ϕ(x, t) on each
hole Baε (m):

ϕε := ϕχTaε

=
{

ϕ(x, t) if (x, t) ∈ Taε × (0, T ],
0 otherwise.

Then ϕε(x, t) will oscillate more rapidly between 0 and ϕ(x, t) as ε goes to zero.
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We can consider the standard obstacle problem asking the least viscosity super-solution of heat
operator above the given oscillating obstacle: find the smallest viscosity super-solution uε(x, t) such
that ⎧⎪⎪⎪⎨⎪⎪⎪⎩

H[u] = �uε − ut � 0 in Q T
(= Ω × (0, T ]),

uε(x, t) = 0 on ∂l Q T
(= ∂Ω × (0, T ]),

uε(x, t) � ϕε(x, t) in Q T ,

uε(x,0) = g(x) on Ω × {0}

(Hε )

where g(x) � ϕ(x,0), ϕε(x, t) � 0 on ∂l Q T and ϕε is positive in some region of Q T . The concept of
viscosity solution and its regularity can be found at [6].

We are interested in the limit of the uε as ε goes to zero. Then there are three possible cases. First,
if the decay rate aε of the radius of column is too high w.r.t. ε , the limit solution will not notice the
existence of the obstacle. Hence it will satisfy the heat equation without any obstacle. Second, on the
contrary, if the decay rate aε is too slow, the limit solution will be influenced fully by the existence
of the obstacle and then become a solution of the obstacle problem with the obstacle ϕ(x). We are
interested in the third case when the decay rate aε is critical so that the limit solution will have
partial influence from the obstacle. Then we are able to show that there is a limiting configuration
that becomes a solution for an operator which has the original operator, i.e. heat operator, and an
additional term that comes from the influence of the oscillating obstacles. Naturally we ask what is
the critical rate a∗

ε of the size of the obstacle so that there is non-trivial limit u(x) of uε(x) in the last
case and what is the homogenized equation satisfied by the limit function u.

The elliptic variational inequalities with highly oscillating obstacles were first studied by Carbone
and Colombini [6], and developed by De Giorgi, Dal Maso and Longo [21], Dal Maso and Longo [20],
Dal Maso [17,18], H. Attouch and C. Picard [2], in more general context. The energy method was
considered by Cioranescu and Murat [13–15]. The other useful references can be found in [13–15].
The method of scale-convergence was adopted by J. Casado-Díaz for nonlinear equation of p-Laplacian
type in perforated domain and the parabolic version was studied by A.K. Nandakumaran and M. Ra-
jesh [30]. They considered the degeneracy that is closed to parabolic p-Laplacian type and that doesn’t
include the porous medium equation type. L. Baffico, C. Conca, and M. Rajesh considered homog-
enization of eigen value problems in perforated domain for the nonlinear equation of p-Laplacian
type [3].

The obstacle problems for linear or nonlinear equation of the divergence type has been studied
by many authors and the reference can be founded in [23]. The viscosity method for the obstacle
problem of nonlinear equation of non-divergence type was studied by the author [26,27].

Caffarelli and Lee [7] develop a viscosity method for the obstacle problem for Harmonic opera-
tor with highly oscillating obstacles. This viscosity method is also improved into a fully nonlinear
uniformly elliptic operator homogeneous of degree one.

The homogenization of highly oscillating obstacles for the heat equation has been extended to the
fully nonlinear equations of non-divergence type. This part is a parabolic version of the results in [7].
The same correctors constructed in [7] play an important role in the parabolic equation. On the other
hand, when we consider the following porous medium equation in perforated domain, the viscosity
method considered in [7] cannot be applied directly. The equation will be formulated in the following
form: find the viscosity solution uε(x, t) s.t.⎧⎪⎨⎪⎩

�um
ε − ∂t uε = 0 in Q T ,a∗

ε

(= Ωa∗
ε
× (0, T ]),

uε = 0 on ∂l Q T ,a∗
ε

(= ∂Ωa∗
ε
× (0, T ]),

uε = gε on Ωa∗
ε
× {0}

(PME1
ε )

with 1 < m < ∞ and a compatible gε(x) which will be defined in Section 4. The Dirichlet bound-
ary condition can be considered an obstacle problem where the obstacle imposes the value of the
solution is zero in the periodic holes. And the diffusion coefficient of (PME1

ε ) is mum−1 and will be
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zero on ∂Ωa∗
ε
, which makes important ingredients of the viscosity method for uniformly elliptic and

parabolic equations inapplicable without serious modification. Such ingredients will be correctors,
Harnack inequality, discrete gradient estimate, and the concept of convergence. Therefore the control
of the degeneracy of (PME1

ε ) is a crucial part of this paper.

One of the important observation is that Uε(x, t) = ϕ
1
m
ε (x)

(1+t)
1

m−1
will be a self-similar solution of

(PME1
ε ) if ϕε(x) satisfies the nonlinear eigen value problem:

{
�ϕε + ϕ

1
m
ε = 0 in Ωa∗

ε
,

ϕε = 0 on ∂Ωa∗
ε
.

The equation for ϕε is uniformly elliptic with nonlinear reaction term. The viscosity method in [7],
can be applied to the homogenization of ϕε with some modification because of the nonlinearity of
the reaction term. It is crucial to capture the geometric shape of ϕε saying that ϕε is almost Lipschitz
function with spikes similar to the fundamental solution of the Laplace equation in a very small
neighborhood of the holes. It is not clear whether we can find the geometric shape of ϕε if we
construct ϕε by the energy method since H1-weak solutions may have poor shapes. And then such
self-similar solution, Uε(x, t) will be used to construct super- and sub-solution of (PME1

ε ) in order to
control the solution, uε(x, t), especially the decay rate of uε(x, t) as x approaches to the holes, Taε

in Section 4. With the help of such control, we are able to prove the discrete gradient estimate of
the uε in order to compare the values of uε on a discrete lattice created periodically by a point in a
cell. And we also able to show the almost flatness saying that the values of uε at any two points in
each small cell are close to each other with an ε-error if those points are away from the very small
neighborhood of the hole in the cell.

It is noticeable that the homogenized equation is expressed as a sum between the original equation
and a term depending on the capacity and (ϕ − u)+ as the case in the heat equation, Theorem 2.3.
We also prove that such decoupling of terms will happen in the homogenization of porous medium
equations in perforated domain, Theorem 3.6. But it is not clear whether such decoupling property
holds in the general fully nonlinear equations of non-divergence type, Theorem 4.8.

This paper is divided into three part: In Section 2, we review some fact studied in [7] (highly oscil-
lating obstacle problem for Harmonic operator) and extend the results of [7] to the heat operator and
fully nonlinear parabolic operator. In Section 3, we study the elliptic eigenvalue problem in perforated
domains, which describe the behavior of solution of porous medium equations at a point close to the
boundary. And, in Section 4, we deal with the estimates for the porous medium equation in fixed
perforated domain.

Notations. Before we explain the main ideas of the paper, let us summarize the notations and defini-
tions that we will be used.

• Q T = Ω × (0, T ], ∂l Q T = ∂Ω × (0, T ].
• Taε , R

n
aε

, Ωaε and Q T ,aε are described in Section 1.
• We denote by Cε

m the cube {x = (x1, . . . , xn) ∈ R
n: |xi − mi | � ε

2 (i = 1, . . . ,n)} where m =
(m1, . . . ,mn) ∈ R

n .
• Denoting by wε the corrector described in Section 2 in [7].

• Numbers: a∗
ε = εα∗ , α∗ = n

n−2 for n � 3 and a∗
ε = e

− 1
ε2 for n = 2.

2. Highly oscillating obstacle problems

First, we review results on the correctors in [7]. Likewise Laplace operator in [7], the correctors
will be used to correct a limit u(x, t) of a solution uε(x, t) for the obstacle problems (Hε ) in this
section.
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Any possible limit, u(x, t), can be corrected to be a solution of each ε-problem, (Hε ), and it is
also expected to satisfy a homogenized equation. The homogenized equation comes from a condition
under which u can be corrected to uε . To have an oscillating corrector, let us consider a family of
functions, wε(x), which satisfy

{�wε = k in R
n
aε

= R
n\Taε ,

wε(x) = 1 in Taε

(2.1)

for some k > 0. In [7], Caffarelli and one of authors construct the super- or sub-solutions through
which they find the limit of wε depending on the decay rate of the size of the oscillating obsta-
cles, aε .

The next lemma tells us that there is a critical rate a∗
ε so that we get a nontrivial limit of correc-

tors, wε . The reader can easily check following the details in the proof of Lemma 2.1 in [7].

Lemma 2.1. Let aε = c0ε
α . There is a unique number α∗ = n

n−2 s.t.

⎧⎨⎩
lim inf wε = −∞ for any k > 0 if α > α∗,
lim inf wε = 0 for α = α∗ and k = cap(B1),

lim inf wε = 1 for any k > 0 if α < α∗.

In addition, we can also obtain the interesting property from [25].

Lemma 2.2. Set α = α∗ , then the function ŵε satisfying

ŵε = 1 − wε

converges weakly to 1 in H1
loc(R

n).

2.1. Heat operator

We are interested in the limit u of the viscosity solution uε of (Hε ) as ε goes to zero and the
homogenized equation satisfied by the limit u. As we discussed in the introduction, there will three
possible cases depending on the decay rate of aε .

Theorem 2.3. Let uε(x, t) be the least viscosity super-solution of Hε .

(1) There is a continuous function u such that uε
w−→ u in Q T with respect to L p-norm, for p > 0. And for any

δ > 0, there is a subset Dδ ⊂ Q T and εo such that, for 0 < ε < εo , uε → u uniformly in Dδ as ε → 0 and
|Q T \Dδ | < δ.

(2) Let a∗
ε = εα∗ for α∗ = n

n−2 for n � 3 and a∗
ε = e

− 1
ε2 for n = 2.

(a) For coa∗
ε � aε � Coa∗

ε , u is a viscosity solution of

H[u] + kBro
(ϕ − u)+ = 0 in Q T ,

u = 0 on ∂l Q T ,

u(x,0) = g(x) on Ω × {0}

where kBro
is the harmonic capacity of Bro if ro = limε→0

aε∗ exists.
aε
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(b) If aε = o(a∗
ε) then u is a viscosity solution of

H[u] = 0 in Q T ,

u = 0 on ∂l Q T ,

u(x,0) = g(x) on Ω × {0}.
(c) If a∗

ε = o(aε) then u is a least viscosity super-solution of

H[u] � 0 in Q T ,

u � ϕ in Q T ,

u = 0 on ∂l Q T ,

u(x,0) = g(x) on Ω × {0}.

Remark 2.4.

(1) The boundary data above can be replaced by any smooth function. And H[u] = f (x, t) can re-
placed by the heat equation.

(2) Taε = {aεx: x ∈ D} can be any domain with continuous boundary as long as there is two balls
Br1 ⊂ D ⊂ Br2 for 0 < r1 � r1 < ∞. Br1 ⊂ D ⊂ Br2 is enough to construct super- and sub-solutions
and then to find the behavior of correctors, Lemma 2.1. Then k = cap(D) and kBro

= kD .

2.2. Estimates and convergence

Every ε-periodic function is constant on ε-periodic lattice εZ
n . The first observation is that the

difference quotient of uε , instead of the first derivative of uε , is uniformly bounded. The next impor-
tant observation is that a suitable scaled uε is very close to a constant multiple of a fundamental
solution in a neighborhood of the support of the oscillating obstacle, Taε and that uε will be almost
constant outside of it. These observations will be proved in the following lemmas.

2.2.1. Estimates of uε

Lemma 2.5. For each unit direction e ∈ Z
n, set


ε
e uε(x, t) = uε(x + εe, t) − uε(x, t)

ε
.

Then ∣∣
ε
e uε(x, t)

∣∣ < C

uniformly.

Proof. uε can be approximated by the solutions, uε,δ , of the following penalized equations [23],⎧⎪⎨⎪⎩
−H[uε,δ](x, t) + βδ

(
uε,δ(x, t) − ϕε(x, t)

) = 0 in Q T ,

uε,δ(x, t) = 0 on ∂l Q T ,

uε,δ(x,0) = g(x) on Ω × {0}
(2.2)

where the penalty term βδ(s) satisfies
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β ′
δ(s) � 0, β ′′

δ (s) � 0, βδ(0) = −1,

βδ(s) = 0 for s > δ, βδ(s) → −∞ for s < 0.

Let Z = sup(x,t)∈Q T
|
ε

e uε,δ|2 and assume that the maximum Z is achieved at (x0, t0). Then we have,
at (x0, t0),

H
[∣∣
ε

e uε,δ

∣∣2] � 0, and ∇∣∣
ε
e uε,δ

∣∣2 = 0.

By taking a difference quotient, we have

−H
[

ε

e uε,δ

] + β ′
δ(·)

(

ε

e uε,δ(x, t) − 
ε
e ϕε(x, t)

) = 0.

Hence

−H
[∣∣
ε

e uε,δ

∣∣2] + 2
∣∣∇(


ε
e uε,δ

)∣∣2 + 2β ′
δ(·)

(∣∣
ε
e uε,δ(x, t)

∣∣2 − 
ε
e uε(x, t)
ε

e ϕε(x, t)
) = 0.

Since the set Taε is ε-periodic and ϕ is C1, we know |
ε
e ϕε | < C uniformly.

If Z = |
ε
e uε,δ|2 > |
ε

e ϕε |2 at an interior point (x0, t0), we can get a contradiction. There-
fore Z � |
ε

e ϕε |2 in the interior of Q T . On the other hand, uε > ϕ and then βδ(uε,δ − ϕε) = 0
on a uniform neighborhood of ∂l Q T . From the C2-estimate of the solution for the heat equa-
tion, we have |
ε

e uε,δ|2 < C supQ T
|uε,δ| < C supQ T

|ϕ| on ∂l Q T . Hence, by the maximum principle,
Z � C(‖ϕ‖C1(Q T ) + ‖g‖C1(Ω)). �
Corollary 2.6. We have |uε(x1, t) − uε(x2, t)| � C(|x1 − x2|) for a uniform constant C when x1 − x2 ∈ εZ

n.

Lemma 2.7 (Regularity in time).

∥∥Dt uε(x, t)
∥∥ � C .

Proof. Let W = sup(x,t)∈Q T
|(uε,δ)t |2 and assume that the maximum W is achieved at (x1, t1). Then

we have, at (x1, t1),

H
[∣∣(uε,δ)t

∣∣2] � 0.

By taking a time derivative in (2.2) with respect to time t , we have

−H
[
(uε,δ)t

] + β ′
δ(·)

(
(uε,δ)t − (ϕε)t

) = 0.

Hence

−H
[∣∣(uε,δ)t

∣∣2] + 2
∣∣∇(uε,δ)t

∣∣2 + 2β ′
δ(·)

(∣∣(uε,δ)t
∣∣2 − (uε,δ)t(ϕε)t

) = 0.

We also know |(ϕε)t | < C uniformly.
If W = |(uε,δ)t |2 > |(ϕε)t |2 at an interior point (x1, t1), we can get a contradiction. Therefore

W � |(ϕε)t |2 < C for some C > 0 in the interior of Q T . On the other hand, 0 = uε,δ � ϕε on ∂l Q T

and uε,δ(x,0) = g(x) � ϕ(x,0) then βδ(uε,δ − ϕε) = 0 on a small neighborhood of ∂p Q T . By the C2-
estimate of the solution of the heat equation, we get the desired bound on the boundary and the
lemma follows. �
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Lemma 2.8. When α < α∗ , uε satisfies

ϕ(x, t) − C
εβ

aβ−2
ε

� uε(x, t)

for some β > n. In addition, there is a Lipschitz function u, such that:

(1) −C
εβ

aβ−2
ε

� uε(x, t) − u � 0,

which implies the uniform convergence of uε to u.
(2) u is a least super-solution of (2.2) in Theorem 2.3.

Proof. (1) Since uε � ϕ in Taε × (0, T ], we show that the inequality can be satisfied in Q T ,aε . For a
given δ0 > 0, let

hε(x) = k sup
m∈εZ, x∈Ωε

[
εβ

|x − m|β−2
− εβ

aβ−2
ε

]
.

Then H[hε ] � c0k for β > n and a uniform constant c0. In addition, 0 � hε > − kεβ

α
β−2
ε

in Ωε . For any

point (x0, t0) in Q T ,aε , we choose a number ρ0 and large numbers k, M > 0 such that

h(x, t) = −c0k

4n
|x − x0|2 + ∇ϕ(x0, t0) · (x − x0) + ϕ(x0, t0) + hε(x) + M(t − t0) < 0 � uε(x, t)

on ∂ Bρ0 (x0) × [ 1
2 t0, t0] and Bρ0 (x0) × { 1

2 t0} and

h(x, t) < ϕ(x, t) � uε(x, t)

on {∂Taε ∩ Bρ0 (x0)} × [ 1
2 t0, t0]. By the choice of numbers, we get

H[h] = c0k

2
− M � 0.

Therefore h � uε in {Bρ0(x0)\Taε } × [ 1
2 t0, t0], which gives us ϕ(x0, t0) − C εβ

aβ−2
ε

� uε(x0, t0). Moreover,

the least super-solution v(x, t) above ϕ(x, t) is greater than uε which is the least super-solution for a

smaller obstacle. Similarly, the lower bound of uε above implies v(x, t) < uε + C εβ

aβ−2
ε

.

Since uε is a super-solution, this implies (2). �
Lemma 2.9. Set aε = (

εa∗
ε

2 )1/2 . Then

osc
∂ Baε (m)×[t0−a2

ε ,t0]
uε = O

(
εγ

)
,

for m ∈ εZ
n ∩ suppϕ and for some 0 < γ � 1.
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Proof. If we make a scale vε(x, t) = uε(aεx + m,a2
εt + t0), we have a bounded caloric function in

a large domain {Bε/2aε (0)\Ba∗
ε/aε

(0)} × [0, ε2/a2
ε ] such that vε(x, t) � ϕε(aεx + m, t) � ϕ(m, t) − Caε

on Ba∗
ε/aε

(0) × [0, ε2/a2
ε ]. We may expect almost Louville theorem saying that the oscillation on the

uniformly bounded set is of order o(εγ ). Let wε be a caloric replacement of vε in Bε/2aε ×[0, ε2/a2
ε ].

Then oscB1×[ε2/a2
ε−1,ε2/a2

ε ] wε = o(εγ ) by applying the oscillation lemma [28], of the caloric functions
inductively:

osc
B R (x0)×[t0−R2,t0]

wε < δ0 osc
B4R (x0)×[t0−(4R)2,t0]

wε

for some 0 < δ0 < 1 and γ ≈ logε(
aε
ε )− log4 δ0 = log4 δ−1

0
n−2 . It is noticeable that δ0 = 1 − 1

C1
for C1 > 0

which comes from the Harnack inequality,

sup
B R/2(x0)×[t0− 5R2

4 ,t0−R2]
w � C1 inf

B R (x0)×[t0−R2,t0]
w

for a positive caloric function w . Then the error v = vε − wε is also a caloric in {Bε/2aε (0)\Ba∗
ε/aε

(0)}×
[0, ε2/a2

ε ] and v = 0 on {∂ Bε/2aε (0)} × [0, ε2/a2
ε ] and Bε\aε (0) × {0}, we also have

0 � v � 2 sup
Q T

ϕ

in {Bε/2aε (0)\Ba∗
ε/aε

(0)} × [0, ε2/a2
ε ]. Since the harmonic function can be considered a stationary

caloric function, we have

0 � v(x, t) �
(

sup
Ω

ϕ
) (aε)

n−2

rn−2
, r = |x|

which means osc∂ B1×[0,1] v = O (εn−1). Therefore we know

osc
∂ Baε (m)×[t0−a2

ε ,t0]
uε = osc

∂ B1(0)×[(ε/aε )2−1,(ε/aε )2]
vε = o

(
εγ

)
. �

By Lemmas 2.5, 2.7 and 2.9, we get the following corollary.

Corollary 2.10. we have

∣∣uε(x, t1) − uε(y, t2)
∣∣ � C1|x − y| + C2|t1 − t2| 1

2 + o
(
εγ

)
for (x, t1), (y, t2) ∈ (

⋃
m∈εZ

∂ Baε (m) ∩ Ω) × (0, T ].

Lemma 2.11. Set aε = (
εa∗

ε
2 )1/2 . Then

osc
{Bε (m)\Baε (m)}×[t0−a2

ε ,t0]
uε = o

(
η(ε)

)
for m ∈ εZ

n ∩ suppϕ and for some function η(ε) satisfying

η(ε) → 0 as ε → 0.
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Proof. Lemma 2.9 tells us that uε is almost constant on a set {∂ Baε (m)} × [t0 − a2
ε, t0] whose radius

is greater than a critical rate a∗
ε . Let

ũε(x, t) = sup
∂ Baε ×{t}

uε,

for (x, t) ∈ {Q ε
m ∩ Ω} × (0, T ]. Then, by Corollary 2.10, we have

∣∣ũε(x, t1) − ũε(y, t2)
∣∣ � C1|x − y| + C2|t1 − t2| 1

2 + o
(
εγ

)
and

∣∣ũε(z, t) − uε(z, t)
∣∣ � Cεγ

for all (x, t1), (y, t2) ∈ Ω × (0, T ], (z, t) ∈ {⋃m∈εZn ∂ Baε (m) ∩ Ω} × (0, T ] and for some C < ∞. There-
fore there is a limit ũ(x, t) of ũε(x, t) such that

sup
{⋃m∈εZn ∂ Baε (m)∩Ω}×[0,∞)

∣∣uε(x, t) − ũ(x, t)
∣∣ = o

(
η(ε)

)
for some function η(ε) which goes to zero as ε → 0. This estimate says that the values of (ũ(x, t) −
Cη(ε))χTaε

plays as an obstacle below uε with a slow decay rate, aε 
 a∗
ε , in Lemma 2.8, which will

give us the conclusion. �
2.3. Homogenized equations

In this section, we are going to find homogenized equation satisfied by the limit u of uε through
viscosity methods.

Lemma 2.12. Let a∗
ε = εα∗ for α∗ = n

n−2 for n � 3 and a∗
ε = e

− 1
ε2 for n = 2. Then for c0a∗

ε � aε � C0a∗
ε , u is

a viscosity solution of ⎧⎨⎩
�u + κBr0

(ϕ − u)+ − ut = 0 in Q T ,

u = 0 on ∂l Q T ,

u = g(x) in Ω × {t = 0}
(2.3)

where κBr0
is the capacity of Br0 if r0 = limε→0

aε
a∗
ε

exists.

Proof. First, we are going to show that u is a sub-solution. If not, there is a quadratic polynomial

P (x, t) = −d
(
t − t0) + 1

2
aij

(
xi − x0

i

)(
x j − x0

j

) + bi
(
xi − x0

i

) + c

touching u from above at (x0, t0) and

H[P ] + κ(ϕ − P )+ < −μ0 < 0.

In a small neighborhood of (x0, t0), Bη(x0)×[t0 −η2, t0], there is another quadratic polynomial Q (x, t)
such that
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⎧⎪⎪⎨⎪⎪⎩
H[P ] < H[Q ] in Bη

(
x0) × [

t0 − η2, t0],
Q

(
x0, t0) < P

(
x0, t0) − δ0,

Q (x, t) > P (x, t) on ∂ Bη

(
x0) × [

t0 − η2, t0] and Bη

(
x0) × {

t0 − η2}.
In addition, we can choose an appropriate number ε0 > 0 so that Q satisfies

H[Q ] + κ
(
ϕ

(
x0, t0) − u

(
x0, t0) + ε0

) := H[Q ] + κξ0 < −μ0

2
< 0

and

∣∣Q (x, t) − Q
(
x0, t0)∣∣ + ∣∣ϕ(x, t) − ϕ

(
x0, t0)∣∣ < ε0

in Bη(x0, t0) × [t0 − η2, t0]. Let us consider

Q ε(x, t) = Q (x, t) + wε(x)ξ0.

Then we have

H
[

Q ε(x, t)
]
< −μ0

2
< 0

and

Q ε(x, t) = Q (x, t) + (
ϕ

(
x0, t0) − u

(
x0, t0) + ε0

)
> Q (x, t) + (

ϕ
(
x0, t0) − Q

(
x0, t0) + ε0

)
> ϕ(x, t)

on {Taε ∩ Bη(x0)} × [t0 − η2, t0]. Hence, by the maximum principle, Q ε(x, t) � ϕε(x, t) in Bη(x0) ×
[t0 − η2, t0].

Now we define the function

vε =
{

min(uε, Q ε), x ∈ Bη(x0),

uε, x ∈ Ω\Bη(x0).

Since (
εa∗

ε
2 )

1
2 = o(ε) as ε → 0, by Lemma 2.11, uε converges uniformly to u in Ω . Hence, for suffi-

ciently small ε > 0, Q ε > uε on ∂ Bη(x0) × [t0 − η2, t0]. Thus the function vε is well defined and will
be a viscosity super-solution of (2.3). Since uε is the smallest viscosity super-solution of (2.3),

uε � vε � Q ε .

Letting ε → 0, we have u(x0, t0) � Q (x0, t0) < P (x0, t0) = u(x0, t0) which is a contradiction. By an
argument similar to the proof of Lemma 4.1 in [7], we can show that u is also a viscosity super-
solution of (2.3). �
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Lemma 2.13. When aε = 0(εα) for an α > α∗ , the limit u is a viscosity solution of

⎧⎨⎩
H[u] = 0 in Q T ,

u(x, t) = 0 on ∂l Q T ,

u(x,0) = g on Ω × {0}.

Proof. For ε > 0, H[uε ] � 0. Hence the limit also satisfies H[u] � 0 in a viscosity sense. In order
to show u is a sub-solution in Q T , let us assume that there is a point (x0, t0) ∈ Q T such that
H[P ](x0, t0) � −δ0 < 0 for a quadratic polynomial P such that (P − u) has a minimum value zero
at (x0, t0). We are going to choose a small neighborhood of (x0, t0), Bη(x0) × [t0 − η2, t0], and a
quadratic polynomial Q (x, t) such that

⎧⎪⎨⎪⎩
Q (x, t) > P (x, t) on ∂ Bη(x0) × [

t0 − η2, t0
]

and Bη(x0) × {
t0 − η2},

H[Q ] > H[P ] in Bη(x0) × [
t0 − η2, t0

]
,

Q (x0, t0) < P (x0, t0) − δ0.

Let Q ε = Q (x, t)+ (wε − min wε). Then H[Q ε ] = 0 and Q ε � ϕε since 1 − min wε → ∞ as ε → 0.
Hence min(uε, Q ε) is a super-solution of (Hε ), but min(uε , Q ε)(x0, t0) < uε(x0, t0), which is a con-
tradiction against the choice of uε . �
Lemma 2.14. When aε = O (εα) for α < α∗ , the limit u is a least viscosity super-solution of

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H[u] � 0 in Q T ,

u = 0 on ∂l Q T ,

u � ϕ in Ω,

u(x,0) = g(x) on Ω.

Proof. The proof is very similar to that of Lemma 4.3 in [7]. Likewise we only need to show u � ϕ .
Let us assume there is a point (x0, t0) such that u(x0, t0) < ϕ(x0, t0). We are going to construct a
corrector with an oscillation of order 1, which is impossible in case that the decay rate of aε is slow,
Lemmas 2.1 and 2.8. For small ε > 0, we have

∣∣uε(x, t0) − u(x, t0)
∣∣ <

1

4

∣∣u(x0, t0) − ϕ(x0, t0)
∣∣

on (Bη(x0) ∩ Ωaε ) × {t0}. For a sufficiently large constant M1, we set

uε + M1|x − x0| > ϕ(x, t0)

on ∂ Bη(x0) × {t0}. Then we can set a periodic function

wε = min
m∈εZn

[{
uε(x − m, t0) + M1|x − m − x0|

}
χBη(x0−m) + M2χRn\Bη(x0−m)

]
for a sufficiently large constant M2 > 0 and then it is a super-solution such that max wε − min wε >
1
4 |u(x0, t0) − ϕ(x0, t0)| > 0 for small ε > 0 on Bη(x0) × {t0}. Hence we can extend periodically wε so
that we have global periodic super-solution. But wε will not go to 0 as ε → 0, which is a contradiction
against Lemma 2.1. �
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Proof of Theorem 2.3. (1) Set D = (
⋃

ε<εo

⋃
m∈εZn B√

εa∗
ε

2

(m)) ∩ Ω . For any δ > 0, there is εo > 0 such

that |D| < δ. Corollary 2.6 shows the uniform convergence of uε on Ω\D .
(2)(a), (2)(b), and (2)(c) come from Lemmas 2.12, 2.14 and 2.13. �

3. Elliptic eigenvalue problem in perforated domain

Before we deal with ε-problem for the porous medium equation, we consider nonlinear eigen
value problem, which will describe the behavior of the solution for the porous medium equation in a
neighborhood of ∂Ω . Let’s consider the solution ϕε(x) of⎧⎪⎨⎪⎩

�ϕε + ϕ
p
ε = 0, 0 < p < 1 in Ωa∗

ε
,

ϕε > 0 in Ωa∗
ε
,

ϕε = 0 on Ta∗
ε
∪ ∂Ωa∗

ε
.

(EVε )

3.1. Discrete nondegeneracy

We need to construct appropriate barrier functions to estimate the discrete gradient of a solution
ϕε of (EVε ) on the boundary.

Lemma 3.1. For each unit direction ei and x ∈ ∂Ω , set


ε
ei
ϕε = ϕε(x + εei) − ϕε(x)

ε

and

∥∥
ε
e ϕε(x)

∥∥ =
√√√√∣∣∣∣∑

i


ε
ei
ϕε

∣∣∣∣2

.

Then there exist suitable constants c > 0 and C < ∞ such that

c <
∥∥
ε

e ϕε(x)
∥∥ < C

uniformly.

Proof. Let h+ be a solution of {�h+ = −M p − 1 in Ω,

h+ = 0 on ∂Ω

with M � supΩ∗
aε

ϕε . Then, we have

ϕε � h+ in Ω∗
aε

by the maximum principle and

sup
∂Ω

∣∣∇h+∣∣ < C

by the standard elliptic regularity theory. Thus, for x ∈ ∂Ω ,
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∥∥
ε
e ϕε(x)

∥∥ �
∥∥∇h+(x)

∥∥ < C

when we extend ϕε to zero in R
n\Ω .

To get a lower bound, we first show that the limit function ϕ , of ϕε , is not identically zero. Let

λε = min
ϕ̃ε∈H1

0(Ωa∗
ε
),‖ϕ̃ε‖L p+1(Ωa∗

ε
)
=1

‖∇ϕ̃ε‖L2 .

For 0 � η ∈ C∞
0 (Ω) and corrector wε given in Section 2, set θ(x) = η(x)(1 − wε(x)). Then∫

Ωa∗
ε

∣∣∇η(1 − wε)
∣∣2

dx =
∫

Ωa∗
ε

∇[
η(1 − wε)

] · ∇[
η(1 − wε)

]
dx

=
∫

Ωa∗
ε

(1 − wε)
2|∇η|2 − 2η(1 − wε)∇η · ∇wε + η2|∇wε |2 dx

� 2
∫

Ωa∗
ε

(1 − wε)
2|∇η|2 + η2|∇wε |2 dx.

Since
∫
Ωa∗

ε

|∇wε |2 dx < C for some 0 < C < ∞, we get

( ∫
Ωa∗

ε

∣∣∇η(1 − wε)
∣∣2

dx

) 1
2

� C1

for some constant 0 < C1 < ∞. On the other hand,∫
Ωa∗

ε

∣∣η(1 − wε)
∣∣p+1

dx = C2,ε

for some constant C2,ε depending on ε . Since (1 − wε) ⇀ 1 in L2(Ω) we get

lim
ε→0

C2,ε = C2 < +∞.

Thus

( ∫
Ωa∗

ε

∣∣∣∣ 1

C2,ε
η(1 − wε)

∣∣∣∣p+1

dx

) 1
p+1

= 1

and

( ∫
Ωa∗

∣∣∣∣ 1

C2,ε
∇[

η(1 − wε)
]∣∣∣∣2) 1

2

� C1/C2,ε .
ε
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Therefore we have

λε <
2C1

C2
< +∞.

Then, the sequence {ε} has a subsequence which we still denote by {ε} such that

ϕ̃ε ⇀ ϕ̃ in H1
0(Ω),

λε → λ. (3.1)

Since H1
0 is compactly embedded in L p+1, ϕ̃ε → ϕ̃ in L p+1(Ω) implies ‖ϕ̃‖Lp+1(Ω) = 1. Note that

λ �= 0. Otherwise ϕ̃ satisfies {�ϕ̃ = 0 in Ω,

ϕ̃ = 0 on ∂Ω.

Then ϕ̃ = 0 which gives a contradiction since ‖ϕ̃‖Lp+1(Ω) = 1. For each λε , the function ϕε = λ
1

1−p
ε ϕ̃ε

can be the solution of (EVε ). By (3.1),

ϕε = λ
1

1−p
ε ϕ̃ε ⇀ λ

1
1−p ϕ̃ = ϕ in H1

0(Ω).

Since ‖ϕ‖Lp+1(Ω) = λ
1

1−p ‖ϕ̃‖Lp+1(Ω) > 0, there is some constant δ0 > 0 such that

ϕ � δ0 > 0 in D ⊂ Ω and |D| �= 0.

Now we consider the ϕεχD = ϕε and denote by ψε the minimizer of∫
Ωa∗

ε

|∇ψε |2 dx

in Kε = {ψε ∈ H1
0(Ωε), ψε � ϕε}. Then, by Theorem 3.21 in [25], ψε ⇀ ψ in H1

0(Ω) and{
ψ � ϕ = ϕχD � δ0 in D,

�ψ − κψ = 0 in Ω\D

for κ = cap(B1). Since ψε satisfies the harmonic equation in Ωa∗
ε
\{ψε = ϕε} with ψε = ϕε = 0 on

∂Ωa∗
ε

, we get ϕε � ψε in Ωa∗
ε
\{ψε = ϕε} and then in a neighborhood of ∂Ω by the maximum princi-

ple. On the other hand, by the Hopf principle,

inf
x∈∂Ω

∣∣∇ψ(x)
∣∣ > δ1 > 0.

Hence, there is a lower bound of ‖
ε
e ψε‖(x) if x ∈ ∂Ω , which means

∥∥
ε
e ϕε

∥∥ �
∥∥
ε

e ψε

∥∥ > δ1 > 0 for x ∈ ∂Ω.

Therefore, ‖
ε
e ϕε‖ is bounded below by some constant and the lemma follows. �
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3.2. Discrete gradient estimate

Lemma 3.2 (Discrete gradient estimate). For the solution ϕε of (EVε ),

∥∥
ε
e ϕε(x)

∥∥2 � C

for all x ∈ Ω when we extend ϕε(x) to zero in R
n\Ω .

Proof. Let GΩ and GΩ,a∗
ε

be the Green functions of the Laplace equation in Ω and Ωa∗
ε
, respectively.

We choose constant γ such that

B2γ (y) ⊂ Ωa∗
ε

(y ∈ Ωa∗
ε
)

and let the function GΩ,a∗
ε ,γ to be a solution of⎧⎪⎨⎪⎩

�GΩ,a∗
ε ,γ = 0 in Ωa∗

ε
\Bγ (y),

GΩ,a∗
ε ,γ = 0 on ∂Ta∗

ε
∪ ∂Ω,

GΩ,a∗
ε ,γ (x, y) = GΩ(x, y) on Bγ (y).

Then we get

GΩ,a∗
ε ,γ � GΩ in Ωa∗

ε
\Bγ (y).

Therefore, we obtain ∣∣
ε
e GΩ,a∗

ε ,γ

∣∣ �
∣∣
ε

e GΩ

∣∣ on ∂Ω. (3.2)

To get the estimate on ∂ Bγ (y), consider the difference

G(x, y) = GΩ(x, y) − GΩ,a∗
ε ,γ (x, y).

Then G(x, y) satisfies ⎧⎪⎨⎪⎩
�G = 0 in Ωa∗

ε
\Bγ (y),

G = 0 on ∂Ω ∪ ∂ Bγ (y),

G(x, y) = GΩ(x, y) on ∂Ta∗
ε
.

Note that GΩ(x, y) has similar behaviour to O (|x − y|2−n) as |x − y| → 0. Thus,

max
|x−y|�2γ

GΩ(x, y) <
1

2
min|x−y|=γ

GΩ(x, y)

for a sufficiently small γ > 0. Thus, there exists a constant C > 0 such that

G(x, y) � max
|x−y|�2γ

GΩ(x, y) < min|x−y|=γ
GΩ(x, y) − max

|x−y|�2γ
GΩ(x, y)

� CΓγ (x − y) = C

(
1

γ n−2
− 1

|x − y|n−2

)
on ∂Ta∗

ε
.
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Thus

G(x, y) � CΓγ (x − y) in Ωa∗
ε
\Bγ (y).

Since Γγ (x − y) = GΩ(x, y) = 0 on ∂ Bγ (y), we have

∣∣
ε
e GΩ,a∗

ε ,γ

∣∣ �
∣∣
ε

e GΩ

∣∣ + ∣∣
ε
e G

∣∣ �
∣∣
ε

e GΩ

∣∣ + ∣∣
ε
e Γγ

∣∣ on ∂ Bγ (y). (3.3)

To show the estimate at the interior points, we use the approximation method. As in [23], GΩ,a∗
ε ,γ

can be approximated by the solutions, GΩ,a∗
ε ,γ ,δ , of the following penalized equations,

�GΩ,a∗
ε ,γ ,δ + βδ

(−GΩ,a∗
ε ,γ ,δ + GΩ · ξ(x)

) = 0 in Ω\Bγ (y),

GΩ,a∗
ε ,γ ,δ = 0 on ∂Ω,

GΩ,a∗
ε ,γ ,δ(x, y) = GΩ(x, y) on Bγ (y) (3.4)

where βδ(s) satisfies

β ′
δ(s) � 0, β ′′

δ (s) � 0, βδ(0) = −1,

βδ(s) = 0 for s > δ, lim
δ→0

βδ(s) → −∞ for s < 0

and an ε-periodic function ξ(x) ∈ C∞ satisfies

0 � ξ � 1, ξ = 0 in Ta∗
ε
, ξ = 1 in R

n

ε
n−1
n−2

,

�ξ = 0 in R
N\{Ta∗

ε
∪ R

n

ε
n−1
n−2

}
, �ξ � 0, 
ε

e ξ = 0.

Similar to the proof of Lemma 2.2.1, we get

�(∣∣
ε
e GΩ,a∗

ε ,γ ,δ

∣∣2) − 2
∣∣∇(


ε
e GΩ,a∗

ε ,γ ,δ

)∣∣2

− 2β ′
δ(·)

(∣∣
ε
e GΩ,a∗

ε ,γ ,δ

∣∣2 − 
ε
e GΩ,a∗

ε ,γ ,δ · ξ
ε
e GΩ

) = 0. (3.5)

Suppose that maxΩ\Bγ (y) |
ε
e GΩ,a∗

ε ,γ ,δ|2 occurs at an interior point x0. If |
ε
e GΩ,a∗

ε ,γ ,δ|2(x0) >

|
ε
e GΩ |2(x0), then by (3.5) we get

0 > �(∣∣
ε
e GΩ,a∗

ε ,γ ,δ

∣∣2) − 2
∣∣∇(


ε
e GΩ,a∗

ε ,γ ,δ

)∣∣2

− 2β ′
δ(·)

(∣∣
ε
e GΩ,a∗

ε ,γ ,δ

∣∣2 − 
ε
e GΩ,a∗

ε ,γ ,δ · ξ
ε
e GΩ

) = 0.

Therefore

∣∣
ε
e GΩ,a∗

ε ,γ ,δ

∣∣2 �
∣∣
ε

e GΩ

∣∣2
in the interior of Ω\Bγ (y). (3.6)

By (3.2), (3.3) and (3.6)

∣∣
ε
e GΩ,a∗

ε ,γ ,δ

∣∣ �
∣∣
ε

e GΩ

∣∣ + ∣∣
ε
e Γγ

∣∣ in Ω\Bγ (y).
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By taking δ → 0 and γ → 0, we obtain

∣∣
ε
e GΩ,a∗

ε

∣∣ �
∣∣
ε

e GΩ

∣∣ + ∣∣
ε
e Γγ

∣∣ in Ωa∗
ε
.

Since

ϕε(x) =
∫

Ωa∗
ε

GΩ,a∗
ε
(x, y)ϕ

p
ε (y)dy,

we get

∣∣
ε
e ϕε(x)

∣∣ �
∣∣∣∣ ∫
Ωa∗

ε


ε
e GΩ,a∗

ε
(x, y) · ϕp

ε (y)dy

∣∣∣∣
�

∫
Ωa∗

ε

(∣∣
ε
e GΩ(x, y)

∣∣ + ∣∣
ε
e Γγ

∣∣)ϕp
ε (y)dy.

Since limε→0 |
ε
e GΩ | = |∇e GΩ | and |∇GΩ(x, y)| ≈ O (|x − y|1−n) as |x − y| → 0, we get, sufficiently

small ε > 0,

∣∣
ε
e ϕε(x)

∣∣ � C

∫
Ωa∗

ε

(|x − y|1−n + 1
)
ϕ

p
ε (y)dy < ∞

and lemma follows. �
3.3. Almost flatness

Lemma 3.3. Set aε = (
εa∗

ε
2 )1/2 . Then

osc
∂ Baε (m)

ϕε = o
(
εγ

)
for m ∈ εZ

n ∩ Ω and for some 0 < γ < 1.

Proof. If we consider the scaled function vε(x) = ϕε(aεx + m), vε will be bounded in Bε/2aε \Ba∗
ε/aε

and vε = 0 on ∂ Ba∗
ε/aε

. vε also satisfies

�vε = −a2
ε v p

ε .

Let gε be a harmonic replacement of vε in Bε/2aε \Ba∗
ε/aε

. Following the proof of Lemma 3.5 in [7]
which is similar to Lemma 2.9, we get osc∂ B1 gε = o(εγ ). Let’s consider

h(r) = M pa2
ε

2n

(
ε2

4a2
ε

− r2
)

with r = |x| and M = sup vε . Then
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�h = −a2
ε M p � −a2

ε v p
ε = �(vε − gε) in Bε/2aε \Ba∗

ε/aε
,

h � 0 = vε − gε on ∂{Bε/2aε \Ba∗
ε/aε

}.
By the maximum principle, we get

gε � vε � gε + h � gε + Cε2

for some C > 0 on ∂ B1. Thus

osc
∂ B1

vε � osc
∂ B1

gε + Cε2 � o
(
εγ

)
.

If we rescale vε back to ϕε , we can get the desired conclusion. �
Lemma 3.4. Set aε = (

εa∗
ε

2 )1/2 . Then

osc
B ε

2
(m)\Baε (m)

ϕε = o
(
εγ̃

)
for m ∈ εZ

n ∩ Ω and for some 0 < γ̃ < 1.

Proof. By Section 2.1 in [7], there is a periodic corrector wε having properties

�wε = k and |1 − wε | � Cε2− β−2
n−2 in R

n
aε

for k > 0 and n < β < 2(n − 1). Let L′, N ′ > 0 be the constants to be determined later. We define the
barrier function

w̃ε(x) = [
1 − wε(x)

] + L′|x − m|2 + M ′ + N ′ε

with

M ′ = sup
∂ Baε (m)

ϕε.

Then we can select sufficiently large numbers k, L′ 
 1 and N ′ so that w̃ε satisfies

�w̃ε � �ϕε in Ωaε ,

w̃ε � ϕε on ∂Ωaε .

By the comparison principle, we get

ϕε � w̃ε in Ωaε .

Similarly, we get

wε � ϕε in Ωaε

where
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wε = [
wε(x) − 1

] − l′|x − m|2 + m′ − n′ε, m′ = inf
∂ Baε (m)

ϕε

for sufficiently large numbers l′,n′ > 0. Since B ε
2
(m)\Baε (m) is a small region, we get

|w̃ε − wε | � o
(
εγ

)
in B ε

2
(m)\Baε (m)

with 0 < γ < 1 and lemma follows. �
3.4. Correctibility condition I

Likewise highly oscillating obstacle problems, we need an appropriate corrector. However, unlike
the highly oscillating obstacle problem, the corrector w̃ε should be a super-harmonic with

w̃ε = 0 in Ta∗
ε
.

Since the solution wε of (2.1) is sub-harmonic with wε = 1 in Ta∗
ε
, it is natural to consider the

function

w̃ε = b − bwε

for some constant b > 0.

Lemma 3.5. Let kb,ε be such that

�(b − bwε) + (b − bwε)
p = −b�wε + (b − bwε)

p = kb,ε .

Then we have

−bκBr0
= kb − bp

where kb = limε→0 kb,ε and κBr0
is the harmonic capacity of Br0 .

Proof. Set vε(x) = wε(a∗
εx + m), then vε satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
−b�vε + (

a∗
ε

)2
(b − bvε)

p = kb,ε

(
a∗
ε

)2
in C

ε
a∗
ε

0 \B1,

vε = 1 on ∂ B1,

vε = |ν · ∇vε | = 0 on ∂C
ε

a∗
ε

0 .

Thus, we have

−b

∫
C

ε
a∗
ε

0 \B1

�vε dx = (
a∗
ε

)2
∫

C

ε
a∗
ε

0 \B1

kb,ε − bp(1 − vε)
p dx.

On the other hand, from the elliptic uniform estimates [24], vε → v converges to a potential function
v of B1 in C2-norm on any bounded set where �u = 0 on R

n\B1, v = 1 on ∂ B1, and v → 0 as
|x| → ∞. Then we get
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−b

∫
C

ε
a∗
ε

0 \B1

�vε dx = −b

∫
∂{C

ε
a∗
ε

0 \B1}

∇vε · ν dσx

= −b

∫
∂ B1

∇vε · (−ν)dσx → −b

∫
∂ B1

∇v · (−ν)dσx = −bκB1 ,

as ε goes to zero. And we also have

−bκB1 = lim
ε→0

[(
kb,ε − bp)(

a∗
ε

)2 ·
(

ε

a∗
ε

)n]
= 1

rn−2
0

(
kb − bp)

(3.7)

where κB1 is the harmonic capacity of B1 and kb = limε→0 kb,ε . If we multiply Eq. (3.7) by rn−2
0 , we

obtain

−bκBr0
= kb − bp

where κBr0
is the harmonic capacity of Br0 . �

3.5. Homogenized equation

Theorem 3.6.

1. (The concept of convergence) There is a continuous function ϕ such that ϕε → ϕ in Ω with respect to
Lq-norm, for q > 0 and for any δ > 0, there is a subset Dδ ⊂ Ω and ε0 such that, for 0 < ε < ε0 , ϕε → ϕ
uniformly in Dδ as ε → 0 and |Ω\Dδ | < δ.

2. Let a∗
ε = εα∗ for α∗ = n

n−2 for n � 3 and a∗
ε = e

− 1
ε2 for n = 2. Then for c0a∗

ε � aε � C0a∗
ε , u is a viscosity

solution of ⎧⎪⎨⎪⎩
�ϕ − κBr0

ϕ + ϕp = 0 in Ω,

ϕ = 0 on ∂Ω,

ϕ > 0 in Ω

(3.8)

where κBr0
is the capacity of Br0 if r0 = limε→0

aε
a∗
ε

exists.

Proof. By an argument similar to the proof of Theorem 2.3, (1) holds.
(2) For ε > 0,

�ϕε − κBr0
ϕε + ϕ

p
ε = −κBr0

ϕε � 0.

Hence, the limit also satisfies

�ϕ − κBr0
ϕ + ϕp � 0

in a viscosity sense. Thus, we are going to show that ϕ is a sub-solution. Let us assume that there is
a parabola P touching u from above at x0 and

�P − κBr P + P p � −2δ0 < 0.

0
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In a small neighborhood of x0, Bη(x0), there is another parabola Q such that⎧⎪⎨⎪⎩
D2 Q > D2 P in Bη(x0),

Q (x0) < P (x0) − δ,

Q (x) > P (x) on ∂ Bη(x0).

In addition, for Q (x1) = minBη(x0) Q (x),

�Q − κBr0
Q (x1) + Q (x1)

p � −δ0 < 0 and
∣∣Q (x) − Q (x1)

∣∣ < Cη

in Bη(x0). Then the function

Q ε(x) = Q (x) − wε(x)Q (x1)

satisfies

�Q ε + Q p
ε � �Q − Q (x1)�wε + (1 − wε)

p Q (x1)
p + (Cη)p

in Bη(x0) ∩ Ωaε . By correctibility condition I, Lemma 3.5,

�Q ε + Q p
ε � �Q + kQ (x1),ε + (Cη)p

� �Q + kQ (x1) + δ0

4
+ (Cη)p

� �Q − κBr0
Q (x1) + Q (x1)

p + δ0

2
� −δ0

2
< 0

for small ε,η > 0. So �Q ε + Q p
ε < 0 and Q ε � uε on ∂{Bρ(x0) ∩ Ωaε } for some ρ > 0. By a compari-

son principle, we get

uε � Q ε

in Bρ(x0) ∩ Ωaε . Thus we get Q ε(x0) � ϕε(x0) and then Q (x0) � ϕ(x0). On the other hand, Q (x0) <

P (x0) − δ < ϕ(x0), which is a contradiction. Therefore ϕ is a viscosity solution of (3.8). �
4. Porous medium equations in a fixed perforated domain

Now we can consider the following porous medium equations. The main question is to find the
viscosity solution uε(x, t) s.t.⎧⎪⎨⎪⎩

�um
ε − ∂t uε = 0 in Q T ,a∗

ε

(= Ωa∗
ε
× (0, T ]),

uε = 0 on ∂l Q T ,a∗
ε

(= ∂Ωa∗
ε
× (0, T ]),

uε = gε on Ωa∗
ε
× {0}

(PME1
ε )

where 1 < m < ∞ and gε(x) = g(x)ξ(x) for a smooth function g(x) ∈ C∞
0 (Ω) satisfying

0 < δ0 < |∇g| < C on ∂Ω

and an ε-periodic function ξ(x) ∈ C∞ satisfying
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0 � ξ � 1, ξ = 0 in Ta∗
ε
, ξ = 1 in R

n

ε
n−1
n−2

,

�ξ = 0 in R
N\{Ta∗

ε
∪ R

n

ε
n−1
n−2

}
, �ξ � 0, 
ε

e ξ = 0. (4.1)

Set vε = um
ε which is a flux. Then vε satisfies⎧⎪⎪⎨⎪⎪⎩

v
1− 1

m
ε �vε − ∂t vε = 0 in Q T ,a∗

ε
,

vε = 0 on ∂l Q T ,a∗
ε
,

vε = gm
ε on Ωa∗

ε
× {0}.

(PME2
ε )

In this section, we deal with the properties and homogenization for the solution v .

4.1. Discrete nondegeneracy

Let ϕε be a solution of the boundary value problem{
�ϕε + ϕ

1
m
ε = 0 in Ωa∗

ε
,

ϕε = 0 on ∂Ωa∗
ε
.

It is easy to see that the function

Vε,λ(x, t) = αϕε(x)

(λ + t)
m

m−1
, α =

(
m

m − 1

) m
m−1

satisfies the equation

V
1− 1

m
ε,λ �Vε,λ − (Vε,λ)t = 0.

As in Lemma 3.3, the rescaled function ϕε(aεx + m) approach the harmonic function in B ε
2aε

\B a∗
ε

aε

as ε → 0. Hence, for sufficiently small ε > 0, ϕε becomes almost harmonic near Ta∗
ε
. Thus, ϕε is

equivalent to the ε-periodic function ξ in (4.1) near Ta∗
ε
, i.e., there exist some constants 0 < c � C < ∞

such that

cϕε � ξ � Cϕε near Ta∗
ε
.

Therefore, we can take constants 0 < λ2 � λ1 < ∞ such that

Vε,λ1 � vε � Vε,λ2

for the solution vε of the initial value problem (PME2
ε ). Therefore, by the nondegeneracy of ϕε in a

neighborhood of ∂Ω , we can get the following result.

Lemma 4.1. For each unit direction e and x ∈ ∂Ω , set


ε
e vε = vε(x + εe, t) − vε(x, t)

ε
.

Then there exist suitable constants c > 0 and C < ∞ such that
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c <
∣∣
ε

e vε(x, t)
∣∣ < C

uniformly.

4.2. Almost flatness

For small δ0 > 0, we consider the set

Tã∗
ε
= {vε < δ0}.

As we mentioned above, vε satisfies

Vε,λ1 � vε � Vε,λ2

for some 0 < λ2 � λ1 < ∞. Hence the function vε is trapped in between Vε,λ1 and Vε,λ2 near the Taε .
Thus, there exists a uniform constant c > 1 such that

Ta∗
ε
⊂ Tã∗

ε
⊂ Tca∗

ε
.

Therefore, the hole Tã∗
ε

is not much different from Ta∗
ε
. Since vε satisfies

0 < c < vε < C < ∞ in Ωã∗
ε
× (0, T ], (4.2)

by uniformly ellipticity of vε , (4.2) has the Harnack type inequality. Following the same argument in
Section 2.1 (Heat Operator), we have the following lemma.

Lemma 4.2. Set aε = (
εa∗

ε
2 )1/2 . Then

osc
{Bε (m)\Baε (m)}×[t0−a2

ε ,t0]
vε = o

(
εγ

)
for m ∈ εZ ∩ suppϕ and for some 0 < γ � 1.

4.3. Discrete gradient estimate

vε can be approximated by the solutions, vε,δ , of the following penalized equations [23], for suf-
ficiently large number M > 0,

�vε,δ − v
1
m −1
ε,δ (vε,δ)t + βδ

(−vε,δ + δ + Mξ(x)
) = 0 in Q T ,

vε,δ = δ on ∂l Q T (4.3)

where βδ(s) satisfies

β ′
δ(s) � 0, β ′′

δ (s) � 0, βδ(0) = −1,

βδ(s) = 0 for s > δ,

lim
δ→0

βδ(s) → −∞ for s < 0.

Using this, we obtain the following results.
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Lemma 4.3. If (vε)t is non-positive at t = 0, then (vε,δ)t � 0 for all t ∈ (0, T ].

Proof. First, we assume

(vε,δ)t(·,0) < 0.

Since vε,δ is positive, we have

�(vε,δ)t −
(

1

m
− 1

)
v

1
m −2
ε,δ (vε,δ)

2
t − v

1
m −1
ε,δ

(
(vε,δ)t

)
t − (vε,δ)tβ

′
δ(·) = 0.

Hence

(
(vε,δ)t

)
t = v

1− 1
m

ε,δ �(vε,δ)t +
(

1 − 1

m

)
(vε,δ)

2
t

vε,δ

− v
1− 1

m
ε,δ (vε,δ)tβ

′
δ(·).

Let fδ(s) be a function having the maximum value of (vε,δ)t at t = s, then there exist points x(s) =
(x1(s), . . . , xn(s)) ∈ R

n such that

fδ(s) = (vε,δ)t
(
x(s), s

)
.

Since x(s) are maximum points, we have

( fδ)s = (
(vε,δ)t

)
s = (

(vε,δ)t
)

t + ∇(vε,δ)t · x′(s) = (
(vε,δ)t

)
t .

Hence

( fδ)s �
(

1 − 1

m

)
f 2
δ

vε,δ

− v
1− 1

m
ε,δ fδβ

′
δ � Cε,δ fδ,

which implies

fδ(s) � fδ(0)eCε,δ s < 0.

When (vε,δ)t(·,0) � 0, we can approximate (vε,δ)(·,0) by a smooth initial data, (vε,δ,k)(·,0) such that
(vε,δ,k)t(·,0) < 0. By the argument above, we know that (vε,δ,k)t(·, s) < 0 and then (vε,δ,k)(·, s1) >

(vε,δ,k)(·, s2) for s1 > s2. Since the operator is uniformly elliptic on each compact subset D of Ωε , we
have uniform convergence of vε,δ,k to vε,δ . Hence (vε,δ)(·, s1) � (vε,δ)(·, s2) for s1 > s2 and lemma
follows. �
Lemma 4.4. If dvε

dt |t=0 is non-positive, then

|∇vε,δ |L∞ � Cε

with Cε satisfying limε→0 Cε = ∞.
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Proof. For i ∈ {1, . . . ,n}, we will have

�(vε,δ)xi −
(

1

m
− 1

)
v

1
m −2
ε,δ (vε,δ)xi (vε,δ)t − v

1
m −1
ε,δ

(
(vε,δ)xi

)
t − β ′(·)((vε,δ)xi − Mξxi

) = 0.

Hence

�(∣∣(vε,δ)xi

∣∣2) −
(

1

m
− 1

)
v

1
m −2
ε,δ |vε,δ|2xi

(vε,δ)t

− v
1
m −1
ε,δ

(
(vε,δ)

2
xi

)
t − 2β ′(·)(∣∣(vε,δ)xi

∣∣2 − (vε,δ)xi Mξxi

)
� 0.

Let Xi = sup(x,t)∈Q T
|(uε,δ)xi |2 and assume that the maximum Xi is achieved at (x0, t0). Then we have,

at (x0, t0),

�(uε,δ)
2
xi

� 0 and
(
(uε,δ)

2
xi

)
t � 0.

By Lemma 4.3, we get

(vε,δ)t � 0.

Thus, if Xi = |vε,δ|2xi
> |ξxi |2 at an interior point (x0, t0), we can get a contradiction. Therefore Xi �

|ξxi |2 in the interior of Q T . To get a bound of the maximum Xi on the lateral boundary ∂l Q T or at
the initial time, we consider the least super-solution f of the obstacle problem

⎧⎨⎩
� f � 0 in Ω,

f (x) � g(x) in Ω,

f (x) = δ on ∂Ω.

Then f is a stationary super-solution with f > g in Ω and f = vε,δ on ∂Ω . Hence, by the maximum
principle and Hopf principle, we get

Xi � C
(‖ξ‖C1(Q T ) + ‖g‖C1(Q T ) + ‖ f ‖C1(Q T )

)
and the lemma follows. �
Lemma 4.5. For each unit direction e, we define the difference quotient of vε at x in the direction e by


ε
e vε,δ = vε,δ(x + εe, t) − vε,δ(x, t)

ε
.

If dvε
dt |t=0 is non-positive, then

∣∣
ε
e vε,δ

∣∣ � C

uniformly in Q T .



2322 S. Kim, K.-A. Lee / J. Differential Equations 251 (2011) 2296–2326
Proof. Since Mξ(x) is ε-periodic, we will have

�(

ε

e (vε,δ)
) − 
ε

e

(
v

1
m −1
ε,δ

)
(vε,δ)t − v

1
m −1
ε,δ

(

ε

e (vε,δ)
)

t − 
ε
e (vε,δ)β

′(·) = 0.

Hence

�(∣∣
ε
e (vε,δ)

∣∣2) − 2
ε
e (vε,δ)


ε
e

(
v

1
m −1
ε,δ

)
(vε,δ)t − v

1
m −1
ε,δ

(∣∣
ε
e (vε,δ)

∣∣2)
t − 2

∣∣
ε
e (vε,δ)

∣∣2
β ′(·) � 0.

Since 
ε
e (vε,δ) and 
ε

e (v
1
m −1
ε,δ ) have different sign, we can get a contradiction if |
ε

e (vε,δ)|2 has a
maximum value in the interior. Hence,∣∣
ε

e vε

∣∣2
< C, int(Q T )

for some constant C > 0. On the lateral boundary, the estimate is obtained from Lemma 4.1. Thus we
get |
ε

e vε | < C in Q T . �
Corollary 4.6. If dvε

dt |t=0 is non-positive, then we have

(vε)t � 0

and ∣∣
ε
e vε

∣∣ � C

uniformly in Q T .

Proof. By Lemma 4.4, for each ε > 0, vε,δ converges uniformly to vε up to subsequence. Then
vε,δ(x, t1) � vε,δ(x, t2) for t1 < t2 implies vε(x, t1) � vε(x, t2) and then (vε)t(x, t) � 0. By Lemma 4.5,
we have ∣∣∣∣ vε,δ(x + εe, t) − vε,δ(x, t)

ε

∣∣∣∣ < C .

Therefore, by taking δ → 0, |
ε
e vε | � C . �

4.4. Correctibility condition II

Likewise elliptic eigenvalue problem, we need an appropriate corrector. Similar to the correctibility
condition I, we start with the following form

wε = d − dwε

where wε is given by (2.1) and for some constant d > 0.

Lemma 4.7. Let k̄c,d,ε be such that

(
(1 − wε)

p − 1
)
dpc + (d − dwε)

p�(d − dwε) = (
(1 − wε)

p − 1
)
dpc − d1+p(1 − wε)

p�wε

= k̄c,d,ε
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for some c,d > 0. Then, we have

−d1+pκBr0
= kc,d

where k̄c,d = limε→0 k̄c,d,ε and κBr0
is the harmonic capacity of Br0 .

Proof. Set vε(x) = wε(a∗
εx + m), then vε satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩
((

1 − wε

)p − 1
)
dpc − d1+p(1 − vε)

p�vε = k̄c,d,ε

(
a∗
ε

)2
in C

ε
a∗
ε

0 \B1,

vε = 1 on ∂ B1,

vε = |ν · ∇vε | = 0 on ∂C
ε

a∗
ε

0 .

Thus we get

(
a∗
ε

)2
dpc

∫
C

ε
a∗
ε

0 \B1

(
(1 − vε)

p − 1
)

dx = d1+p
∫

C

ε
a∗
ε

0 \B1

(1 − vε)
p�vε dx + (

a∗
ε

)2
∫

C

ε
a∗
ε

0 \B1

k̄c,d,ε dx.

Similar to the correctibility condition I, Lemma 3.5, letting ε → 0, we get

−d1+pκB1 = lim
ε→0

[
k̄c,d,ε

(
a∗
ε

)2
(

ε

a∗
ε

)n]
= 1

rn−2
0

kc,d (4.4)

where κB1 is the harmonic capacity of B1 and k̄c,d = limε→0 k̄c,d,ε since ŵε = (1− wε) ⇀ 1 in L2(Rn).
If we multiply Eq. (4.4) by rn−2

0 , we obtain

−d1+pκBr0
= kc,d

where κBr0
is the harmonic capacity of Br0 . �

4.5. Homogenized equation

Finally, we show the homogenized equation satisfied by the limit u of uε through viscosity meth-
ods.

Theorem 4.8. Let a∗
ε = εα∗ for α∗ = n

n−2 for n � 3 and a∗
ε = e

− 1
ε2 for n = 2. Then for c0a∗

ε � aε � C0a∗
ε , v is

a viscosity solution of

⎧⎪⎨⎪⎩
v1− 1

m (�v − κBr0
v+) − vt = 0 in Q T ,

v = 0 on ∂l Q T ,

v = gm in Ω × {t = 0}

where κBr is the capacity of Br0 if r0 = limε→0
αε∗ exists.
0 αε
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Proof. For ε > 0,

v
1− 1

m
ε (�vε − κBr0

vε) − (vε)t = −v
1− 1

m
ε κBr0

vε � 0.

Thus, the limit v of vε also satisfies

v1− 1
m (�v − κBr0

v+) − vt � 0

in a viscosity sense. So we are going to show that v is a sub-solution. Let us assume that there is a
parabola P touching v from above at x0 and

P 1− 1
m (�P − κBr0

P ) − Pt � −2δ0 < 0.

In a small neighborhood of x0, Bη(x0) × [t0 − η2, t0], we can choose another parabola Q such that

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D2 Q > D2 P in Bη(x0) × [

t0 − η2, t0
]
,

Q t < Pt in Bη(x0) × [
t0 − η2, t0

]
,

Q (x0, t0) < P (x0, t0) − δ,

Q (x, t) > P (x, t) on
{
∂ Bη(x0) × [

t0 − η2, t0
]} ∩ {

Bη(x0) × {
t0 − η2}}

and

Q
1− 1

m
1 (�Q − κ Q 1) − Q t � −δ0 < 0

for Q 1 = Q (x1, t1) = minBη(x0)×[t0−η2,t0] Q (x, t). Let us consider

Q ε(x, t) = Q (x, t) − Q 1 wε(x) + ε0 + h(x, t)

for a small number 0 < ε0 < δ
4 and a function h(x, t) we choose later. In {Bη(x0)∩Ωaε }× [t0 −η2, t0],

Q ε satisfies

Q
1− 1

m
ε �Q ε − (Q ε)t �

[
Q

1− 1
m

1 (1 − wε)
1− 1

m �Q − Q
2− 1

m
1 (1 − wε)

1− 1
m �wε − Q t

]
+ [

c(Q − Q 1 + ε0 + h)1− 1
m �Q + (Q − Q 1 wε + ε0 + h)1− 1

m �h − ht
]

:= [I] + [II]

with c = 0 if �Q < 0 and c = 1 if �Q � 0. To remove the [II], we consider the following initial value
problem

⎧⎪⎨⎪⎩
aij(x, t)Dijh̃ − h̃t = f (x, t) in R

n × (0,∞),

h̃ � 0 in R
n × (0,∞),

h̃(x,0) = Q 1 wε(x)

with



S. Kim, K.-A. Lee / J. Differential Equations 251 (2011) 2296–2326 2325
aij(x, t) =
{0 if i �= j,

[(Q − Q 1)ζ(x, t) + ε0 + h̃]1− 1
m otherwise,

f (x, t) = −c
[
(Q − Q 1)ζ(x, t) + ε0 + h̃

]1− 1
m �Q ,

ζ(x, t) ∈ C∞, 0 � ζ(x, t) � 1, ζ(x, t) = 1 in Bη(x0) × [
0, η2]

and

ζ(x, t) = 0 in
{

Bη+η2 × [
0,

(
η + η2)2]}c

.

Since the equation has non-degenerate coefficients, we can find the solution h̃(x, t) of the initial value
problem. We can also observe the fact that the solution h̃(x, t) decays rapidly in a small time because
wε ⇀ 0 as ε → 0 in H1

0(Rn). Hence, for sufficiently small ε > 0, we get

0 ≈ h̃(x, t) <
δ

4
at t = η2.

Therefore, Q ε satisfies

Q
1− 1

m
ε �Q ε − (Q ε)t � Q

1− 1
m

1 �Q + Q
1+ 1

m
1

[(
1 − w

1− 1
m

ε − 1
)]�Q

− Q
2− 1

m
1 (1 − wε)

1− 1
m �wε − Q t

in {Bη(x0) ∩ Ωaε } × [t0 − η2, t0]. By correctibility condition II, Lemma 4.7,

Q
1− 1

m
ε �Q ε − (Q ε)t � Q

1− 1
m

1 �Q + k̄�Q ,Q 1,ε − Q t

� Q
1− 1

m
1 �Q + k̄�Q ,Q 1 + δ0

2
− Q t

� Q
1− 1

m
1 (�Q − κBr0

Q 1) + δ0

2
− Q t � −δ0

2
< 0

for small ε > 0. Hence Q
1− 1

m
ε �Q ε − (Q ε)t < 0 and Q ε � uε on ∂{Bρ(x0) ∩ Ωaε } × [t0 − ρ2, t0] and

{Bρ(x0, t0) ∩ Ωaε } × {t0 − ρ2} for some ρ > 0. By a comparison principle, Q ε(x0, t0) � uε(x0, t0) and
then Q (x0, t0) + δ

2 � u(x0, t0). On the other hand, Q (x0, t0) < P (x0, t0) − δ < u(x0, t0) − δ0, which is a
contradiction. �
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