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Abstract

The space �d of degree d single-variable monic and centered complex polynomial vector fields can be 
decomposed into loci in which the vector fields have the same topological structure. This paper analyzes 
the geometric structure of these loci and describes some bifurcations. In particular, it is proved that new 
homoclinic separatrices can form under small perturbation. By an example, we show that this decomposition 
of parameter space by combinatorial data is not a cell decomposition.

The appendix to this article, joint work with Tan Lei, shows that landing separatrices are stable under 
small perturbation of the vector field if the multiplicities of the equilibrium points are preserved.
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Fig. 1.1. The point at ∞ is a pole of order d − 2 for vector fields ξP ∈ �d . There are 2(d − 1) trajectories γ� which meet 
at infinity with asymptotic angles 2π�

2(d−1)
, � ∈ Z/(2d − 2). There are 2d − 2 accesses to ∞ defined by the trajectories at 

infinity. An end e� is infinity with access between γ�−1 and γ� . An odd end is an end ek labeled by an odd index k, and 
an even end is an end ej labeled by an even index j .

1. Introduction

The objects we consider are the vector fields in C that in a global chart take the form P(z) d
dz

, 
with P(z) = zd + ad−2z

d−2 + · · · + a0, with z and ai ∈ C. We are interested in the global qual-
itative dynamics of the integral curves of these vector fields, or equivalently, solutions to the 
real-time, first order ordinary differential equations ż = P(z) (with P as above), where the dot is 
the derivative with respect to time, t ∈ R. The space �d � C

d−1 of these vector fields of degree 
d can be decomposed into loci C in which the vector fields have the same combinatorial data 
set (to be defined). We will prove that each of these combinatorial classes is a connected mani-
fold with well-defined (real) dimension q , which is the dimension of the combinatorial class as 
a subspace in �d .

We present now a summary of some necessary concepts and definitions. The zeros ζ of P
are the equilibrium points of ξP . If ζ is a zero of multiplicity m > 1, then it is called a multiple 
equilibrium point. If ζ is a simple zero of P , then it can only be of three types: a source if 
� 

(
f ′(ζ )

)
> 0, a sink if � 

(
f ′(ζ )

)
< 0, or a center if f ′(ζ ) is purely imaginary.

It can be shown that ∞ is a pole of order d − 2 for vector fields ξP ∈ �d . There are 2(d − 1)

trajectories γ� which meet at infinity with asymptotic angles 2π�
2(d−1)

, � ∈ Z/(2d − 2). When the 
labeling index � is even, the trajectories are called incoming to ∞, and when the index � odd, 
they are called outgoing from ∞ (see Fig. 1.1).

There are 2d −2 accesses to ∞ defined by the trajectories at infinity. An end e� is infinity with 
access between γ�−1 and γ� (see Fig. 1.1). An odd end is an end ek labeled by an odd index k, 
and an even end is an end ej labeled by an even index j .

Separatrices s� are the maximal trajectories of ξP incoming to and outgoing from ∞ (in finite 
time). They are labeled also by the 2(d − 1) asymptotic angles. A separatrix s� is called landing
if s̄� \ s� = ζ , where ζ is an equilibrium point for ξP (equivalently, a zero of P ), and s̄� means the 
closure of s� in C. A separatrix s� = sk,j is called homoclinic if s̄k,j \ sk,j = ∅. See Figs. 1.2, 1.3, 
and 1.4 for some examples of landing and homoclinic separatrices. A separatrix for a polynomial 
vector field ξP ∈ �d can only be either homoclinic or landing. A homoclinic separatrix sk,j is 
labeled by the one odd index k and the one even index j corresponding to its two asymptotic 
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Fig. 1.2. Pictured are the trajectories of a vector field with four center zones: one odd center zone (shaded) with homo-
clinic separatrices s5,0, s1,2, and s3,4 on the boundary and ends e1, e3, and e5; and three even center zones, each with 
one homoclinic separatrix on the boundary and one end. The image of a center zone (minus a curve contained in the zone 
which joins the center ζ and ∞) under � is a vertical half-strip. It is an upper vertical half-strip for a counterclockwise 
center zone, and a lower vertical half-strip for a clockwise center zone. In this figure, there is an odd center zone mapped 
to an upper vertical half-strip.

directions at infinity. It is well known that the separatrix structure of a vector field completely 
determines the topological structure of its trajectories (see, for instance, [13,3]).

1.1. Zones

The connected components Z of C \ {s̄�} are called zones. There are three types of zones for 
vector fields in �d , and the types of zones are determined by the types of their boundaries:

• A center zone Z contains an equilibrium point, which is a center, in its interior. Its boundary 
consists of one or several homoclinic separatrices. If a center zone is on the left of n ho-
moclinic separatrices sk1,j1 , . . . , skn,jn on the boundary ∂Z, then the center zone has n odd 
ends ek1, . . . , ekn at infinity on ∂Z and the zone is called either a counter-clockwise center 
zone or an odd center zone. If a center zone is on the right of n homoclinic separatrices 
sk1,j1 , . . . , skn,jn on the boundary ∂Z, then the center zone has n even ends ej1, . . . , ejn at 
infinity on ∂Z and the zone is called either a clockwise center zone or an even center zone
(see Fig. 1.2).

• A sepal zone Z has exactly one equilibrium point on the boundary, which is both the α-limit 
point and ω-limit point for all trajectories in Z (i.e. ζα = ζω). This equilibrium point is 
necessarily a multiple equilibrium point. The boundary ∂Z contains exactly one incoming 
and one outgoing landing separatrix, and possibly one or several homoclinic separatrices. If 
a sepal zone is to the left of n homoclinic separatrices sk1,j1, . . . , skn,jn on its boundary, then 
it has n + 1 odd ends: ek1, . . . , ekn and eji+1 for some corresponding ji , depending on how 
one orders the separatrices. In this case, it is called an odd sepal zone. Similarly, if a sepal 
zone is on the right of n homoclinic separatrices sk1,j1, . . . , skn,jn on its boundary, then it has 
n + 1 even ends: ej1, . . . , ejn and eki+1 for some corresponding ki , again depending on the 
ordering of the separatrices. In this case, it is called an even sepal zone (see Fig. 1.3).
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Fig. 1.3. Pictured are the trajectories of a vector field with an even sepal zone (shaded). On the boundary of the sepal zone 
is the double equilibrium point which is both the α and ω limit point of the trajectories; one incoming landing separatrix 
s4 and one outgoing landing separatrix s5; and three homoclinic separatrices s1,0, s3,2, and s7,6. There are four ends at 
infinity e0, e2, e4, and e6. There is an odd sepal zone (not shaded) which shares the equilibrium point and the landing 
separatrices with the shaded sepal zone, but it has no homoclinic separatrices on the boundary and only one odd end e5. 
The image of an odd sepal zone under � is an upper half-plane, and the image of an even sepal zone is a lower half-plane. 
In this figure, there is an even sepal zone mapped to a lower half-plane.

• An αω-zone Z has two equilibrium points on the boundary, ζα 	= ζω, the α-limit point and 
ω-limit point for all trajectories in Z. The boundary ∂Z contains one or two incoming land-
ing separatrices and one or two outgoing landing separatrices, and possibly one or several 
homoclinic separatrices. If an αω-zone is both on the left of n1 homoclinic separatrices 
sk1,j1 , . . . , skn1 ,jn1

and on the right of n2 homoclinic separatrices sk1,j1, . . . , skn2 ,jn2
on the 

boundary, then the αω-zone has n1 + 1 odd ends (ek1, . . . , ekn1
and eji+1 for some corre-

sponding ji ) and n2 + 1 even ends (ej1, . . . , ejn2
and eki+1 for some corresponding ki ) (see 

Fig. 1.4).

Remark 1. It will be important to note for an αω-zone, there are exactly one odd end and one 
even end whose indices do not coincide with any index of a homoclinic separatrix (in the notation 
above the odd and even ends are eji+1 and eki+1 respectively).

1.2. Transversals

We define in this section the important structures needed to understand definitions of a combi-
natorial data set. There are several ways to encode the combinatorial structure of a vector field. 
The author’s preferred descriptions rely on objects called transversals.

In any simply connected domain avoiding zeros of P , the differential dz
P (z)

has an antideriva-
tive, unique up to addition by a constant

�(z) =
z∫

dw

P(w)
.

z0
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Fig. 1.4. Pictured are the trajectories of a vector field with an αω-zone (shaded). On the boundary of the zone are two 
equilibrium points: one which is the α-limit point of the trajectories and the other is the ω-limit point of the trajectories. 
Also on the boundary are one incoming landing separatrix s0 and one outgoing landing separatrix s3. The zone is to the 
left of the homoclinic separatrix s1,2 and on the right of the two homoclinic separatrices s5,4, and s7,6. Finally, there are 
two odd ends e1 and e3 and three even ends e0, e4, and e6 at infinity. The image of an αω-zone under � is a horizontal 
strip.

Note that the pushforward of the vector field ξP under � is:

�∗ (ξP ) := �′ (z)P (z)
d

dz
= d

dz
. (1.1)

The coordinates w = �(z) are, for this reason, called rectifying coordinates. We will call the im-
ages of zones under rectifying coordinates rectified zones. The rectified zones and corresponding 
boundaries are of the following types:

• The image of a center zone (minus a curve contained in the zone which joins the center ζ and 
∞) under � is a vertical half-strip. It is an upper vertical half-strip for a counterclockwise 
center zone, and the odd ends and homoclinic separatrices are mapped to the lower boundary. 
It is a lower vertical half-strip for a clockwise center zone, and the even ends and homoclinic 
separatrices are mapped to the upper boundary of this half-strip (see Fig. 1.2).

• The image of an odd sepal zone under � is an upper half-plane, where odd ends and ho-
moclinic separatrices are mapped to the lower boundary of this half-plane. The image of an 
even sepal zone under � is a lower half-plane, where even ends and homoclinic separatrices 
are mapped to the upper boundary of this half-plane (see Fig. 1.3).

• The image of an αω-zone under � is a horizontal strip (see Fig. 1.4). The lower boundary 
of the strip consists of two landing separatrices, odd ends, and counterclockwise homoclinic 
separatrices on the boundary of the zone. The upper boundary of the strip consists of two 
landing separatrices, even ends, and clockwise homoclinic separatrices on the boundary of 
the zone.
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Fig. 1.5. Each αω-zone is isomorphic to a strip. There may be several transversals which avoid the equilibrium points 
and separatrices (the dashed curves), but there is exactly one distinguished transversal for each αω-zone (in this case, 
T3,0). We define the distinguished transversal to be the geodesic in the metric |dz|/|P(z)| joining the ends ek and ej (in 
this figure, e3 and e0) where ej is the left-most end on the upper boundary of the strip and ek is the right-most end on 
the lower boundary of the strip. Since these indices are the same as the indices for the two landing separatrices on the 
upper left and lower right boundary of the strip, they can never coincide with the indices for a homoclinic separatrix.

Via the rectifying coordinates, it is evident that there are a number of geodesics that connect ∞
to itself in C \ {equilibrium points} in the metric with length element |dz|

|P(z)| . Among these are the 

h homoclinic separatrices, and there are s distinguished transversals (defined below).

Definition 1. The distinguished transversal Tk,j is the geodesic in the metric |dz|
|P(z)| joining the 

ends ek and ej , avoiding the separatrices and equilibrium points, where ej is the left-most end 
on the upper boundary and ek is the right-most end on the lower boundary of the strip that is the 
image of the αω-zone in which the transversal is contained (see Fig. 1.5).

Note that the way in which the distinguished transversal is chosen, the indices of the ends it 
joins are exactly those ends whose indices will never coincide with the indices of any homoclinic 
separatrices.

1.3. Combinatorial and analytic data

One way to describe the topological structure of a vector field is by the union of homoclinic 
separatrices sk,j and distinguished transversals Tk,j . It was proved in [8] that this description 
is equivalent to the one presented in the classification (from [4]). Essentially, we want to use 
the elements of Z/(2d − 2) to stand for indices of separatrices for homoclinics, and indices of 
ends for distinguished transversals otherwise. The indices of transversals were chosen in a way 
to never conflict with the indices of homoclinic separatrices. A combinatorial data set can be 
described as a bracketing on the string 0 1 2 . . . 2d −3, where the elements paired by parentheses 
correspond to the labels of the separatrices or distinguished transversals we want to pair. Round 
parentheses (· · · ) are used to mark pairings corresponding to homoclinic separatrices, square 
parentheses [· · · ] are used to mark pairings corresponding to a distinguished transversal in each 
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Fig. 1.6. Disk models for three examples of vector fields of degree d = 4 having sepal zones or/and homoclinic sepa-
ratrices. The pairing of the ends is marked by the dashed curves. The representation of the combinatorics in brackets is 
displayed below each figure.

Fig. 1.7. Example of possible metric graph defining a complex polynomial vector field. The combinatorics can be de-
scribed by the bracketing (0[1[2 3]4]5) and the analytic invariants are the (2 + 1)-tuple (1 + i, 3i, 3) ∈H

2+ ×R
1+ .

αω-zone, and elements that are not paired correspond to the ends in sepal-zones (see Fig. 1.6 for 
some examples).

The analytic invariants are an (s + h)-tuple in Hs ×R
h+ where to each homoclinic separatrix 

sk,j is assigned a number τ = ∫
sk,j

dz
P (z)

> 0, and to each distinguished transversal T is assigned 

a number α = ∫
T

dz
P (z)

∈H.
Putting the combinatorial and analytic data together, one can uniquely describe a vector field 

in �d by a metric graph with a single vertex (corresponding to the pole at infinity), h solid loops 
(corresponding to homoclinic separatrices), and s dashed loops (corresponding to distinguished 
transversals). Each of the solid loops is assigned a positive real number and each dashed loop is 
assigned a complex number in H, corresponding to the analytic invariants (see Fig. 1.7). Such 
a metric graph is a complete set of realizable invariants for the classification of these vector 
fields [4]. Another interesting fact about this representation is that each connected component of 
the plane minus this transversal flower contains exactly one equilibrium point.

We decompose the parameter space �d into classes C of vector fields that have the same 
separatrix graph with the labeling (equivalently, the same non-metric transversal graph).

Our goal is to understand bifurcations of the global trajectory structure, which means we 
need to understand changes in separatrix structure under small perturbation. That is, we will 
pick and arbitrary ξP0 ∈ �d , and try to answer which classes C intersect every arbitrarily small 
neighborhood of ξP . In this paper, we will partially answer this question.
0
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1.4. Quasiconformal maps and the integrability theorem

The main tool used in the main theorem of this paper (Theorem 2.1) is the so-called Inte-
grability Theorem, also known as the Measurable Riemann Mapping Theorem. An important 
application of this theorem, and indeed the application we will use in this paper, is proving the 
existence of a family of holomorphic maps with certain prescribed properties. We introduce here 
enough basic terminology and theorems in order to understand the use of quasiconformal maps 
and integrability in this article. The presentation best suited to the purposes of this paper is similar 
to that in [5] and [10]. For the original treatment of the theorems and concepts, see for example 
[1] and [12].

Definition 2 (K-quasiconformal mapping). Let K ≥ 1 and U ⊆ C be a domain. A homeo-
morphism f : U → f (U) ⊆ C is K-quasiconformal if and only if the distributional partial 
derivatives

fz = ∂f/∂z, fz̄ = ∂f/∂z̄ (1.2)

can be represented by locally integrable functions which satisfy |fz̄| ≤ k|fz| almost everywhere, 
where k = (K − 1)/(K + 1).

In particular, if we are given a homeomorphism f with continuous partial derivatives almost 

everywhere and can show directly by computation that 
∣∣∣∂f/∂z̄
∂f/∂z

∣∣∣ ≤ k < 1, we can conclude that f
is K-quasiconformal.

Definition 3. The real number K is called the dilatation of the map f .

Remark 2. Two useful properties of K-quasiconformal maps are:

1. if f is a K-quasi-conformal map, then f −1 is also K-quasi-conformal, and
2. if f is a K-quasi-conformal map, than any left or right compositions of conformal maps with 

f are also K-quasi-conformal.

1.4.1. Almost complex structures, Beltrami coefficients, and pullbacks
Let U ⊂ C, and let TU = ⋃

u∈U

TuU be the tangent bundle over U (likewise for V ⊂ C). The 

tangent space TuU over a point u ∈ U is isomorphic as a real vector space to R2. We want to 
define what it means to endow R2 with a conformal structure, which sums up to defining what it 
means to “multiply by i.” This is defined by a family of concentric ellipses, as described below. 
Choose an ellipse in R2 with center at the origin. This ellipse, with scaling by positive real 
constants, spans R2. For any z = (x, y) ∈ R

2, there is a unique ellipse intersecting z. We define 
iz to be the point on the same ellipse such that z and iz are on conjugate diameters, turning from 
z in the counter-clockwise direction at an angle < π to iz. This family of concentric ellipses 
defines a conformal structure on R2, making it isomorphic to the complex plane C. In the special 
case where the family of ellipses is the family of circles, we call this the standard conformal 
structure on TuU , where multiplication by i is the counter-clockwise rotation by π/2 that we are 
used to.

An important quantity that quantifies the shape of an ellipse is the Beltrami coefficient.
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Definition 4. The Beltrami coefficient μ(E) of an ellipse E is defined by

μ(E) = M − m

M + m
ei2θ , (1.3)

where M and m are respectively the lengths of the major and minor axes of E, and θ is the angle 
of the minor axis of E relative to the real axis.

If we have a conformal structure as defined above on TuU for almost every u ∈ U , then we 
say we have an almost complex structure on U . A more precise definition is given below.

Definition 5. An almost complex structure σ on U is a measurable field of infinitesimal ellipses 
E ⊂ TU. That is, for almost every u ∈ U , there is an ellipse Eu ⊂ TuU defined up to scaling, 
such that the map u �→ μ(u) : U → D is Lebesgue measurable, where μ(u) denotes the Beltrami 
coefficient of Eu.

The standard complex structure σ0 is the special case of a measurable field of infinitesimal 
circles on U .

A quasi-conformal homeomorphism f : U → V (where V is endowed with the standard 
complex structure σ0) induces a new almost complex structure σ on U . Indeed, the differen-
tial Duf : TuU → Tf (u)V is a linear map defined almost everywhere which can be written as

Duf = ∂f

∂z
(u)dz + ∂f

∂z̄
(u)dz̄. (1.4)

A regular linear map (and hence its inverse) maps circles to ellipses, so if Duf is regular at u, 
then the inverse image of circles in Tf (u)V under Duφ are ellipses Eu ⊂ TuU . This defines a 
new conformal structure in TuU , for almost every u ∈ U , where the ratio

μf (u) = ∂f

∂z̄
(u)/

∂f

∂z
(u) (1.5)

is the Beltrami coefficient of Eu.
We say that σ is the pullback of σ0 by f and write σ(u) = f ∗σ0(u), for almost every u ∈ U . 

Of course, the definition of pullback can be defined on other complex structures besides σ0.

Remark 3. If there exists a quasiconformal homeomorphism f such that f ∗σ0 = σ0, then f is 
holomorphic.

Remark 4. If σα is an almost complex structure that depends analytically on a parameter α and 
f is a conformal map, then the pullback σ̃α = f ∗(σα) depends analytically on α and has the 
same dilatation as σα .

Now we are ready to state the main theorem.

Theorem 1.1 (The measurable Riemann mapping theorem with dependence on parameters as 
presented in [10]. (Ahlfors–Bers)). Let U be a domain of the Riemann sphere.
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(i) Given a measurable function μ : U →D such that ‖μ‖∞ < 1, there exists a quasiconformal 
homeomorphism f : U → V that is a solution to the Beltrami equation

∂f/∂z̄ = μ∂f/∂z. (1.6)

Two such solutions differ by post-composition with a holomorphic diffeomorphism. In par-
ticular, if U is the whole Riemann sphere then there exists a unique homeomorphic solution 
that fixes three points.

(ii) Let � be an open set of some complex Banach space and consider a map � × C → D, 
(λ, z) �→ μλ(z), satisfying the following properties.
(a) For every λ, the mapping C →D given by z �→ μλ(z) is measurable and ‖μ‖∞ ≤ k for 

some fixed k < 1.
(b) For Lebesgue-almost-all z, the mapping � →D given by λ �→ μλ(z) is holomorphic.

For each λ, let fλ be the unique quasiconformal homeomorphism of the Riemann sphere 
that fixes 0, 1, and ∞ and whose Beltrami coefficient is μλ. Then the mapping λ �→ fλ(z) is 
holomorphic for all z.

Equivalently, this means that given any almost complex structure σλ depending holomorphi-
cally on λ, there exists a quasi-conformal homeomorphism fλ depending holomorphically on λ, 
such that f ∗

λ σ0 = σλ.
We will be using this theorem for quasi-conformal mappings constructed out of piecewise 

linear mappings (Section 2) where the Beltrami coefficients can be computed explicitly and are 
seen to depend holomorphically on the parameters.

2. Topological and analytic structure of the Loci

The classification in [4] gives a bijection between a combinatorial class C and Hs ×R
h+. The 

following theorem proves the type of bijection.

Theorem 2.1. There exists a real analytic isomorphism GC :Hs ×R
h+ → C, which is C-analytic 

in the first s coordinates and R-analytic in the last h coordinates. It is the restriction of a holo-
morphic mapping in (s + h) complex variables: G̃C : Hs × V h

R+(ε) → �d , where the image 

G̃C
(
Hs × V h

R+(ε)
)

⊃ C.

In particular, each C is naturally foliated by C-analytic leaves of complex dimension s.

Proof. We prove, that GC is a restriction of a holomorphic function in s + h variables. Let

VR+(ε) = {z | �(z) > 0, |�(z)| < ε}, (2.1)

for ε sufficiently small. We prove the existence of a holomorphic function

G̃C :Hs × V h
R+(ε) → �d

α �→ ξα, (2.2)

α = (α1, . . . , αs, τ1, . . . , τh) ∈ H
s × V h (ε).
R+
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Fig. 2.1. Some examples of canonical rectified zones (left) and their images under Aα or Aτ , the distorted rectified zones 
(right).

By Hartog’s Theorem [11], it is enough to show that G̃C is holomorphic in each α and τ in 
the single-variable sense (we drop the indices on the α and τ to simplify notation) in order to 
conclude G̃C is holomorphic in the (s +h)-variable sense. We will construct families of surfaces 
Mα , Mτ and maps Gα , Gτ such that

Gα :Mα → C, (Gα)∗
(

d

dz

)
= ξα, ξα ∈ �d, (2.3)

Gτ :Mτ →C, (Gτ )∗
(

d

dz

)
= ξτ , ξτ ∈ �d, (2.4)

and we will prove that each family is holomorphic in the one complex variable α or τ by utilizing 
holomorphic dependence of parameters in the Measurable Riemann Mapping Theorem [1].

We first define the rectified surface M0(C) associated to the vector field ξ0 ∈ C and with 
analytic invariant the (s + h)-tuple α0 = (α0

1, . . . , α0
s , τ

0
1 , . . . , τ 0

h ). Without loss of generality, we 
can take α0 = (i, . . . , i, 1, . . . , 1) to simplify presentation. This combinatorial class has a number 
of rectified zones Z with analytic invariants α0 (see the left side of Fig. 2.1). Each separatrix has 
exactly two representations on the boundary of the rectified zones: one on the upper boundary of 
a rectified zone and one representation on the lower boundary of a (possibly the same) rectified 
zone. There are also several representations of ∞ on the boundaries of the rectified zones, called 
the ends. Let

M∗
0(C) :=

[(� Z̄

)
/ ∼

]
\ {E}, (2.5)
Z
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where Z̄ means the closure in C of each rectified zone, ∼ is the appropriate identification of 
the two representations of each separatrix and the identification of all ends to a single point E
(which we then remove). We let M0(C) � C be the compactification of the ends of the manifold 
corresponding to the equilibrium points (but not the end of the manifold corresponding to E). 
For more details, see [4].

We now define distorted rectified surfaces Mα(C) and Mτ (C) respectively by the following. 
We consider first the case where we allow one α0 = i to vary. Choose the strip Z0 associated 
to α0. Choose a complex number α ∈ H. We define a piecewise affine mapping Aα , α ∈ H, on 
the rectified zones Z as follows. Let Aα be the piecewise affine mapping which is the identity on 
all rectified zones Z 	= Z0, and on Z0, it is defined by i �→ α and 1 �→ 1. Then on Z0

Aα(z) = 1

2
(1 − iα)z + 1

2
(1 + iα)z̄. (2.6)

The mapping Aα maps Z0 onto the distorted rectified zone Z′
0 := Aα(Z0). As before, we define 

Mα(C) via the compactification of

M∗
α(C) :=

[(
Z̄′

0 � �
Z 	=Z0

Z̄

)
/ ∼

]
\ {E}. (2.7)

The argument is similar but slightly more complicated for Mτ (C), where we allow exactly one 
τ0 ∈ R+ to vary. A homoclinic separatrix sk,j is on the boundary of exactly two zones, so we 
have two rectified zones Z1 and Z2 with the rectified homoclinic separatrix sk,j with length 
τ0 = 1 on their boundaries that will be distorted when we allow τ0 to vary holomorphically (see 
the right-hand side of Fig. 2.1). These two zones can be a combination of strips, half-planes, and 
vertical half-strips (cylinders). For an sk,j on the boundary of either an upper (respectively lower) 
half-plane or vertical half-strip, let Zk,j be the vertical half-strip of width τ0 = 1, such that sk,j

is on the boundary. We let Aτ , τ ∈ VR+(ε), be the piecewise affine map that is the identity on 
all rectified zones Z 	= Z1 or Z2 and the identity (perhaps with some translation) on Z1 \ Zk,j

or Z2 \ Zk,j , and on Zk,j , it is defined by 1 �→ τ ∈ VR+ and ±i �→ ±i. This affine map takes the 
form

Aτ (z) = 1

2
(τ + 1)z + 1

2
(τ − 1)z̄. (2.8)

If sk,j is on the lower boundary of a strip, then we distort the strip by a (three-piece) piecewise 
mapping by the construction below. Details are included for completeness, but the idea is much 
easier to understand by consulting Figs. 2.2 and 2.3. Let �j be the triangle in the strip with 
vertices i, −j , and −j +1 on the boundary of the strip. One edge of �j is on the lower boundary 
of the strip. Let ∇j be the triangle in the strip with vertices 0, i + (j − 1), and i + j . One edge 
of ∇j is on the upper boundary of the strip. In either case, let U� be the part of the strip to the 
left of either �j or ∇j , and Ur to the right. If we distort some τ0 = 1 on the lower edge of some 
�j , then on U�, the affine map Aτ is defined by −1 �→ −1 and j + i �→ τ + j − 1 + i. This 
corresponds to the affine map

Aτ (z) = 1
(2 + i − iτ)z + 1

(−i + iτ)z̄. (2.9)

2 2
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Fig. 2.2. The triangle �2 has vertices i, −2, and −1 on the boundary of the strip. Let U� be the part of the strip to the left 
of �2 and Ur to the right. If we distort some τ0 = 1 on the lower edge of �2, then on U� , the affine map Aτ is defined 
by −1 �→ −1 and 2 + i �→ τ + 1 + i. On �2, the affine map is defined by −1 �→ −τ and 1 + i �→ 1 + i. On Ur , Aτ is the 
identity.

Fig. 2.3. The triangle ∇3 has vertices 0, i + 2, and i + 3 on the boundary of the strip. Let U� be the part of the strip to 
the left of ∇3 and Ur to the right. If we distort some τ0 = 1 on the upper edge of ∇3, then on U� , the affine map Aτ

is the identity. On ∇3, the affine map is defined by 1 �→ τ and −2 − i �→ −2 − i. On Ur , Aτ is defined by 1 �→ 1 and 
−3 − i �→ −τ − 2 − i.

On �j , the affine map is defined by −1 �→ −τ and j − 1 + i �→ j − 1 + i. This corresponds to 
the affine map

Aτ (z) = 1

2
(τ + 1 + i(j − 1)[τ − 1])z + 1

2
(τ − 1 − i(j − 1)[τ − 1])z̄. (2.10)

On Ur , Aτ is the identity. The construction is similar for ∇j .
The mapping Aτ sends Z1 and Z2 to the distorted rectified zones Z′

1 := Aτ (Z1) and Z′
2 :=

Aτ (Z2). As before, we define Mτ (C) via the compactification of

M∗
τ (C) :=

[(
(Z̄′

1 � Z̄′
2) � �

Z 	=Z1,Z2

Z̄

)
/ ∼

]
\ {E}. (2.11)

The Beltrami coefficients μα and μτ associated to the piecewise linear maps Aα and Aτ are 
holomorphic in α and τ respectively. Indeed, μα = 1+iα

1−iα , for z ∈ Z0, and μα = 0 elsewhere 
where Aα is the identity. Similarly, corresponding to the different cases mentioned previously, 
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μτ = τ−1
τ+1 , μτ = −i+iτ

2+i−iτ , or μτ = τ−1−i(j−1)[τ−1]
τ+1+i(j−1)[τ−1] where Aτ is not the identity, and μτ = 0

where Aτ is the identity. The Beltrami coefficients μα and μτ furthermore satisfy ‖μα‖∞ < 1, 
‖μτ‖∞ < 1, for all α ∈ H and for all τ ∈ V h

R+(ε).
We endow Mα with the standard almost complex structure σ0. We pullback by Aα , giving 

us a new almost complex structure σα in M0 that depends holomorphically on α (since μα

does). The rectifying coordinates for ξ0 extend by Morera’s Theorem to a holomorphic mapping 
φ : C → M0. Under pullback, we induce a new almost complex structure σ̃α in C, holomorphic 
in α.

Let ζ 0
i be the points in C which correspond to the compactified ends of M0. By the Measur-

able Riemann Mapping Theorem (Theorem 1.1), there exists a family of quasiconformal maps 
fα :C → C, normalized such that

∑
i

fα(ζ 0
i ) = 0, and (2.12)

fα(s0) is asymptotic to R+, (2.13)

such that (fα)∗σ0 = σ̃α . The mapping Gα = (fα ◦ φ−1 ◦ A−1
α ) is holomorphic in z since 

(Gα)∗σ0 = σ0, and by holomorphic dependence of parameters in Theorem 1.1, fα is holomor-

phic in α for each fixed z. We endow M∗
α with the vector field d

dz
. Then (Gα)∗

(
d
dz

)
= Pα(z) d

dz
, 

where Pα is holomorphic in C and can be holomorphically extended to the value 0 at ζi = fα(ζ 0
i )

(for a more detailed argument that the ends correspond to punctures that are equilibrium points 
of the proper multiplicity for the vector field, please see [4]). The above is summarized in the 
diagram

(
Mα, σ0,

d
dz

)
Gα

(M0, σα)
Aα

(C, σ0,Pα
d
dz

) (C, σ̃α).
fα

φ

The index of the vector field at infinity is −(d−2) (look about the ends in rectifying coordinates), 
so infinity must be the only pole of order d − 2 for the vector field. We can conclude that P is 
a degree d polynomial, which by the above normalizations is monic and centered. So for fixed 

α, Pα takes the form Pα(z) =
d∏

i=1
(z − ζi), ζi = fα(ζ 0

i ). We need to show that Pα is holomorphic 

in α, and it is enough to show that the ζi are analytic functions of α. We can conclude that the 
roots ζi are analytic functions of α since fα is holomorphic in α for fixed z.

Therefore, G̃C is holomorphic in each α, τ and is hence holomorphic in (s + h) complex 
variables. Therefore, G̃C is an open mapping. The restriction GC : Hs × R

h+ → C is an open 
mapping and is furthermore bijective by the classification in [4]. Hence GC is an isomorphism 
which is C-analytic in the first s coordinates, and R-analytic in the last h coordinates. �
Corollary 2.2. Each C is connected. The (real) dimension of each C is dimR(C) = 2s + h, and 
the codimension (with respect to �d ) is codimR(C) = 2(d − 1) − (2s + h).
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Remark 5. By Corollary 2.2 and the enumeration of combinatorial classes in [8], we know 
exactly how many loci there are altogether and how many loci there are of a particular dimension.

2.1. Cone structure of Loci

Each combinatorial class C ∼=H
s ×R

h+ is an R+ cone with zd d
dz

∈ �d as base point. We need 
the following proposition stated in Pilgrim [15].

Proposition 2.3 (Pilgrim). Let P(z) =
d∏

j=1
(z − ζj ) and C � ξP . For every c > 0, ξ

P̃
∈ C for 

P̃ (z) =
d∏

j=1
(z − cζj ).

Proof. If γ (t) is a real trajectory of the vector field given by P(z), i.e. γ ′(t) = P(γ (t)), then for 
every c > 0, η(t) = cγ (cd−1t) is a real trajectory of the vector field given by P̃ (z). Indeed, 
η′(t) = cdγ ′(cd−1t) = cdP (cd−1t) = P̃ (cγ (cd−1t)) = P̃ (η(t)). Since c > 0, the trajectories 
η(t) are reparameterizations by time of the γ (t), preserving orientation. �
Corollary 2.4. The minimal stratum 0 ∈ C

d−1 corresponding to the vector field zd d
dz

is on the 
boundary of every locus (combinatorial class).

Proof. We use Proposition 2.3, note that P̃ is continuous in c, and let c → 0. �
This cone structure is also reflected in the analytic invariants for a class. We note what happens 

to the analytic invariants when roots of the polynomial are multiplied by the constant c.

Proposition 2.5. The analytic invariants α̃ for P̃ (z) =
d∏

j=1
(z − cζj ) are equal to 1/cd−1 times 

the analytic invariants α for P(z) =
d∏

j=1
(z − ζj ).

Proof. The Res(1/P, ζ ) are conformal invariants (Brickman and Thomas [6]), so the ana-
lytic invariants are too. Therefore, since P̃ d

dz
and cd−1P d

dz
are conformally equivalent under 

�(z) = cz (indeed � ′(z)cd−1P(z) = cdP (z) = P̃ (cz)), then P̃ d
dz

has the same analytic invari-

ants as cd−1P d
dz

, and

α̃ =
∫
T̃

dz

cd−1P(z)
= 1

cd−1

∫
T

dz

P (z)
= 1

cd−1
α, (2.14)

where α̃ and α are the corresponding analytic invariants for P̃ d
dz

and P d
dz

respectively and T̃
and T are the corresponding transversals separating the roots. �
3. Structural stability and bifurcations

It is natural to consider the possible bifurcations for these vector fields. More specifically, 
we want to understand: given an arbitrary ξ0 ∈ �d , which combinatorial classes intersect every 
arbitrarily small neighborhood of ξ0. So we need to consider changes in the separatrix structure 
for small perturbations of ξ0.
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3.1. Structurally stable vector fields

Proposition 3.1. The structurally stable vector fields in �d are the vector fields with neither 
multiple equilibrium points nor homoclinic separatrices.

Proof. The vector fields without homoclinic separatrices or multiple equilibrium points are 
structurally stable, which follows immediately from Theorem A.1. By Theorem 2.1, the vector 
fields with either a homoclinic separatrix or multiple equilibrium point form loci of dimen-
sion strictly less than the maximal dimension and must therefore belong to the bifurcation 
locus. �

Note that this result is a special case of Shafer’s theorem on structural stability of real planar 
polynomial vector fields in the plane (Theorems 3.2 and 3.3 in [16]). Indeed, complex polynomial 
vector fields with no homoclinic separatrices or multiple equilibrium points have only finitely 
many critical points, and they are hyperbolic (a center would necessarily lead to a homoclinic 
separatrix). Furthermore, there can be no periodic orbits without a homoclinic separatrix. There 
are also no finite saddles for complex analytic vector fields and no homoclinics at infinity, so 
there can be no saddle connections. Lastly, Theorem 5.1 in [2] proves that the d − 1 critical 
points on the line at infinity of the Poincaré vector field are all hyperbolic saddles.

Corollary 3.2. The structurally stable vector fields are dense in �d .

In general, bifurcations can be complicated when we allow multiple equilibrium points to 
split (see Section 4 for an example). We therefore consider first the possible bifurcations when 
the multiplicities of the equilibrium points are preserved under small perturbation. Theorem A.1
in Appendix A of this paper proves that a landing separatrix cannot be lost under small perturba-
tion when preserving multiplicity, so the non-splitting bifurcations must be those involving only 
breakings of one or more homoclinic separatrices.

3.2. Some non-splitting bifurcations

The construction in the proof of Theorem 2.1 in fact tells us more than is stated in the theo-
rem. Since non-splitting bifurcations can only involve breakings of homoclinic separatrices, all 
non-splitting bifurcations can be understood by analyzing the combinatorics of the deformed 
zones. We describe in the following certain non-splitting bifurcations, and an exhaustive analysis 
of these is to be considered in a future paper.

We start by explaining what can happen if exactly one analytic invariant associated to a ho-
moclinic separatrix is allowed to take values in ±H, instead of being restricted to R+, while the 
rest of the analytic invariants are preserved. That is, we consider the possible bifurcations when 
exactly one homoclinic separatrix sk,j breaks. A homoclinic separatrix sk,j is on the boundary 
of exactly two zones. We consider the distorted zones as the proof of Theorem 2.1, where we 
allow τ0(sk,j ) �→ τ ∈ VR+(ε) \ R+. We know that the distorted zones endowed with the vector 
field d

dz
correspond to some monic and centered polynomial vector fields in a neighborhood of 

the given combinatorial class. When we allow a single τ0(sk,j ) to vary holomorphically, then this 
causes the separatrices sk and sj to land. If τ ∈ +H, then instead of coming back into infinity 
(resp. outgoing from) infinity, the separatrix sk (resp. sj ) now lands at the equilibrium point on 
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Fig. 3.1. Some examples of distorted zones endowed with the vector field d
dz

. The separatrices are the trajectories going 
out of and coming into the ends, so these may not necessarily be on the boundary of the distorted zones. Each of the 
two separatrices which were a homoclinic separatrix for the non-distorted zones enter opposite zones on which the 
homoclinic separatrix was part of the boundary. In the top picture, sj lands at either the source or multiple equilibrium 
point to which the strip is associated. In the middle picture, sk,j belonged to the lower boundary of an upper half-strip, 
and after perturbation, sk now lands at the equilibrium point which was on the boundary of the half-strip, making the 
center a sink (one should see the points marked by the crosses and circles in the figure as being identified). In the bottom 
picture, sk now lands at the multiple equilibrium point which had sk,j on the upper boundary of one of its associated 
half-planes.

the boundary of the zone having sk,j as part of its upper (resp. lower) boundary in rectifying 
coordinates. If τ ∈ −H, then instead of coming back into (resp. outgoing from) infinity, the sep-
aratrix sk (resp. sj ) now lands at the equilibrium point on the boundary of the zone having sk,j

as part of its lower (resp. upper) boundary in rectifying coordinates. The equilibrium point at 
which sk (resp. sj ) lands is either a sink (resp. source) or multiple equilibrium point, depending 
on whether the lower or upper (resp. upper or lower) rectified zone having sk,j on the boundary 
was a vertical half-strip or strip in the first case, or in the latter case, a half-plane. Notice that if 
sk,j is on the boundary of a vertical half-strip, then the associated center becomes either a sink 
or source. See Fig. 3.1 for some examples.

If we allow more than one analytic invariant associated to a homoclinic separatrix to vary at 
the same time, more complicated things can happen. In particular, new homoclinic separatrices 
can form. In order to understand this situation, we need to define H -chains. These H -chains turn 
out to be the structures we need to understand exactly which homoclinic separatrices can form 
under small perturbation, so we define them here

Definition 6. An H -chain of length n is a sequence of n consecutive homoclinic separatrices 
{ski ,ji

}, i = 1, . . . , n, i.e. homoclinic separatrices ski ,ji
such that for each i, either ki+1 = ji + 1

(upper) or ki+1 = ji − 1 (lower). In particular, a sequence ski ,ji
such that ki+1 = ji + 1 for all i

is called a clockwise H -chain, and a sequence ski,ji
such that ki+1 = ji − 1 for all i is called a 

counter-clockwise H -chain.
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Fig. 3.2. An example of a distorted strip whose corresponding perturbed vector field has a homoclinic separatrix sk1 ,j4
which was not there before perturbation. The separatrices sj3 and sj1−1 land at the equilibrium points in the other zones 
which had the homoclinic separatrices sk4,j4 and sk2,j2 on the upper or lower boundary before perturbation. From the 
figure, it seems we are distorting the τ(ski ,ji

) by a non-trivial amount, but they should all be seen as having imaginary 
part distorted by some small εi .

Remark 6. Note that any counter-clockwise H -chain is necessarily contained in the lower 
boundary of a single zone, and a clockwise H -chain is contained in the upper boundary of a 
single zone.

Definition 7. A closed H -chain of length n is an H -chain in which ski+n,ji+n
= ski ,ji

, for all 
i = 1, . . . , n. An open H -chain is one that is not closed.

Remark 7. The separatrices in an open H -chain have a natural ordering, according to the order-
ing from left to right in the rectifying coordinates (direction of the flow). The separatrices in a 
closed H -chain do not have a well-defined ordering.

We first explain the situation where sk,j0 and sk0,j have a clockwise H -chain in common. We 
number the H -chain with these separatrices at the edges: sk,j0 = sk1,j1 , sk2,j2 , . . . , skn,jn = sk0,j . 
The separatrix sk,j forms under small perturbation if and only if all partial sums satisfy Tm :=
m∑

i=1
�(τi) > 0, for all m = 1, . . . , n − 1 and Tn = 0 (see Fig. 3.2).

It is also possible for a homoclinic separatrix to form under small perturbation if the two initial 
homoclinics are on the boundary of different zones.

Proposition 3.3. The separatrix sk,j can form under small perturbation if and only if sk,j0 and 
sk0,j have an H -chain in common (belong to some H -chain), and for an open H -chain, sk is to 
the left of sj .

Proof. Either sk,j0 and sk0,j belong to a closed H -chain, in which case we can define an H -chain 
such that sk,j0 is to the left of sk0,j ; if they do not belong to some closed H -chain, then we 
assume for an open H -chain that sk,j0 is to the left of sk0,j . This gives a natural ordering of an 
H -chain with sk,j0 and sk0,j at it’s ends: sk,j0 = sk1,j1 , sk2,j2 , . . . , skn,jn = sk0,j . For i = 2, . . . , n, 
there is a sequence Ii of length n − 1 with elements in {+, −} corresponding to whether ki+1 =
ji ± 1, i = 1, . . . , n − 1. We consider I1 not defined. If there are q sign changes in this itinerary, 
then the H -chain can be decomposed into a sequence of q + 1 clockwise and counterclockwise 
H -chains, which overlap on the ends (see Fig. 3.3). We can then allow sk,j to form by the 
following conditions on perturbations of the associated τi , i = 1, . . . , n. For i = 1, . . . , n − 1, if 

Ii+1 = +, then 
i∑ �(τi) < 0; if Ii+1 = −, then 

i∑ �(τi) > 0; and 
n∑ �(τi) = 0 (see Fig. 3.4). 
j=1 j=1 j=1



646 K. Dias, L. Tan / J. Differential Equations 260 (2016) 628–652
Fig. 3.3. There a natural ordering of an H -chain with sk,j0 and sk0,j at its ends: sk,j0 = sk1,j1 , sk2,j2 , . . . , sk7,j7 = sk0,j . 
In this example, the sequence Ii for i = 2, . . . , n is I = +, +, +, −, −, +. We consider I1 not defined. There are 2 sign 
changes in this itinerary, so there are three zones corresponding to the three counterclockwise and clockwise H -chains, 
which overlap on the ends.

Fig. 3.4. For the H -chain as in Fig. 3.3, sk,j can form if the appropriate conditions on partial sums of perturbations of 
the associated τi , i = 1, . . . , 7, are satisfied.

If sk,j0 and sk0,j do not have an H -chain in common, then there is no overlapping sequence of 
zones through which sk can have access to sj . �

In general, several homoclinic separatrices can form simultaneously under small perturbation. 
An exhaustive analysis of the non-splitting bifurcations is an aim of future work.

4. No cell-decomposition

It turns out that stratifying parameter space by combinatorial invariants does not lead to a 
cell-decomposition of parameter space.

Definition 8. Combinatorial classes C1 and C2 are called adjacent if either C1 ∩ ∂C2 	= ∅ or 
C2 ∩ ∂C1 	= ∅.

In general, C1 ∩ ∂C2 	= ∅ does not imply C1 ⊂ ∂C2. We show this by showing that two loci of 
the same dimension can be adjacent, as demonstrated by the following example.

Consider the slice of the combinatorial class C1 ∈ �4 having combinatorial invariant 
[0 1]2[3 4]5 (see Fig. 4.1). Note that dim(C1) = 2s1 + h1 = 2(2) + 0 = 4.



K. Dias, L. Tan / J. Differential Equations 260 (2016) 628–652 647
Fig. 4.1. A class C1 with combinatorics [0 1]2[3 4]5 having a double equilibrium point and two simple equilibrium points 
ζ[0] and ζ[3] . There are two αω-zones and no homoclinic separatrices, so dim(C1) = 2s1 + h1 = 2(2) + 0 = 4.

Fig. 4.2. A class C2 with combinatorics [0(1 2)3](4 5) having one sink ζ[3] , one source ζ[0] , and two centers ζ[2] and 
ζ[5] . There is one αω-zone and two homoclinic separatrices, so dim(C2) = 2s2 + h2 = 2(1) + 2 = 4.

This combinatorial class is adjacent to the combinatorial class C2 having combinatorial invari-
ant [0(1 2)3](4 5), and dim(C2) = 2s2 + h2 = 2(1) + 2 = 4 (see Fig. 4.2). If in C2 ∼=H ×R

2+, set 
τ1 = τ2 = x and let �(α) = −x, let x → ∞. Then we go to the boundary of the class C2 while 
the residues Res(1/P, ζ[0]) = τ1 + α and Res(1/P, ζ[3]) = −τ2 − α stay fixed and the residues 
Res(1/P, ζ[2]) and Res(1/P, ζ[5]) for the centers having s1,2 and s5,4 respectively on the bound-
aries of their basins go to infinity. By Lemma 4.1 below, at least two points must collide, but 
these include neither ζ[0] nor ζ[3]. This shows that C1 ∩ ∂C2 	= ∅. Since these two loci have the 
same dimension, C1 	⊂ ∂C2.

Lemma 4.1. If we stay in a bounded subset of any combinatorial class C, i.e. the roots of P stay 
bounded, then Res(1/P, ζ ) → ∞ if and only if |ζ − ζi | → 0 for at least one other root ζi .

Proof. Each residue Res(1/P, ζ ) is a rational function of the (ζ − ζi), whose denominator has 
strictly larger degree than the numerator and takes the form

(
d−m∏

(ζ − ζi)

)2(m−1)

, (4.1)

i=1
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where some of the ζi might be identical and m is the multiplicity of ζ . Since by assumption the 
|ζ − ζi | < ∞, then Res(1/P, ζ ) → ∞ if and only if the denominator → 0, i.e. at least one of the 
(ζ − ζi) → 0. �

The example above furthermore shows that possible bifurcations depend not only on the com-
binatorial data, but also on the analytic data.
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Appendix A. Landing separatrices are stable (with Tan Lei)

The main result in this appendix shows that the combinatorial structure given by landing 
separatrices is stable in some sense. Specifically, an equilibrium point which receives a landing 
separatrix cannot lose this separatrix under small perturbation, unless it is a multiple equilibrium 
point which splits.

Definition 9. The non-splitting set Bζ 0(P̃0) for ξ
P̃0

with respect to the equilibrium point ζ 0 is the 

subset of the sufficiently small neighborhood of ξ
P̃0

∈ �d such that for every ξ
P̃

∈ Bζ 0(P̃0), there 

is exactly one equilibrium point ζ for ξ
P̃

where ζ → ζ 0 for P̃ → P̃0 in the coefficient topology 
(multiplicity(ζ 0) = multiplicity(ζ )). The non-splitting set B(P̃0) for ξ

P̃0
is the intersection of 

Bζ 0(P̃0) for all ζ 0.

The main theorem we aim to prove is the following:

Theorem A.1. Given ξ
P̃0

∈ �d , if s0
� for ξ

P̃0
lands at ζ 0, P̃0(ζ

0) = 0, then for every ξ
P̃

in the 

non-splitting set Bζ 0(P̃0) such that P̃ is “close enough” (to be defined) to P̃0 (in the coefficient 
topology), then s� for ξ

P̃
lands at ζ , P(ζ ) = 0, where lim

P̃→P̃0

ζ = ζ 0 (P̃ → P̃0 in the coefficient 
topology).

We will also need the following definition for inverses of rectifying coordinates:

Definition 10. For a pair (P, γ ), where P is a polynomial and γ is a trajectory of infinity, define 
�P,γ to be the inverse branch of the rectifying coordinates �P in a sector neighborhood of 0 as 
follows:

• for an outgoing γ +, �P,γ + is defined on D(ε) \R− and coincides with γ + on ]0, ε[;
• for an incoming γ −, �P,γ − is defined on D(ε) \R+ and coincides with γ − on ] − ε, 0[.
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A.1. Preparation of forms

It is enough to consider P0 and P of the form

P0(z) = zkQ0(z), Q0(0) 	= 0

P(z) = zkQ(z), Q(0) 	= 0. (A.1)

First of all, any arbitrary ξ
P̃0

with an equilibrium point ζ 0 of multiplicity k is conformally con-

jugate to a unique ξP0 with P0(z) = zkQ0(z), Q0(0) 	= 0, by the translation Tζ 0 : z �→ z − ζ 0, 
and any ξ

P̃
in the non-splitting set Bζ 0(P̃0) has an equilibrium point ζ of multiplicity k such that 

lim
P̃→P̃0

ζ = ζ 0, so each P̃ in the non-splitting set can be uniquely conformally conjugated to ξP

with P(z) = zkQ(z), Q(0) 	= 0, by the translation Tζ : z �→ z − ζ . Conjugating by translations 
does not change the asymptotic directions, and hence labeling of the separatrices, as compared 
to the original vector fields ξ

P̃0
and ξ

P̃
.

We will write P(z) = (1 + s(z))P0(z), and when we say that P is close enough to P0, we 
mean that we have a uniform bound on s: ‖s‖∞,U ≤ ε′′, where U is a restriction of �0(S(α))

such that we avoid a neighborhood of the roots of P and P0 (except for 0). It is possible to 
demand such a uniform bound if P and P0 are close in terms of coefficients or roots by the 
following. Since s(z) = P(z)

P0(z)
− 1 and U avoids the roots of P0, there is a uniform bound on s on 

any compact subset of U bounded away from 0 and ∞. Notice that near ∞, both P(z) =O(zd)

and P0(z) = O(zd), so s ≈ 0 near z = ∞ (recall P and P0 are monic). Near z = 0, the dominating 
terms are the constant terms, so s(z) ≈ a0/a

0
0 − 1 ≈ 0 since we demand P0 and P are close in 

terms of coefficients.
Theorem A.1 hinges on the idea of α-stability, as described in [7] (note that the α here is not 

the same as the analytic invariants α in the rest of the paper). The notion of alpha-stability as 
presented in [7] is included here for completeness, and it should be compared to the notion of 
tolerant angle in [9]. For α ∈]0, π2 [, let us define a sector neighborhood of R± by

S+(α) = {w ∈C
∗ | | arg(w)| < α} (A.2)

and

S−(α) = {w ∈C
∗ | |π − arg(w)| < α}. (A.3)

Definition 11 (α-stability as in [7]). Given a polynomial P and a trajectory at infinity γ , we 
say that P is (α, γ )-stable, for α ∈]0, π2 [, if �P,γ extends holomorphically to the entire sector 
S+(α) (if γ is outgoing from infinity), or S−(α) (if γ is incoming to infinity). We will denote by 
�P,γ : S±(α) → C this extension.

Remark 8. We will only prove the theorem for outgoing landing separatrices since the proof is 
completely analogous for incoming separatrices. Therefore, we will only be looking at positive 
sectors S+(α), and will use the simpler notation S(α) for such a sector.
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Fig. A.1. If s0
�

is a landing separatrix, there exists an angle α such that ξP0 is (α, γ 0
�
)-stable. This can be seen in rectifying 

coordinates. There are only three situations, depicted by the two figures above and Fig. 4.2. The left-hand figure is the 
case where s0

�
is on the boundary of two sepal zones (half-planes). The right-hand figure is the case where s0

�
is on the 

boundary of one sepal zone (half-plane) and one αω-zone (strip). In both cases, it is easy to see that there is an α such 
that all singularities lie outside of the sector S(α).

A.2. Landing separatrices are stable

The idea of the main theorem is to show that if s0
� lands for ξP0 , then there exists a protec-

tive sector from infinity to 0 on the Riemann sphere where all trajectories that enter that sector 
converge to 0 (the equilibrium point). Small enough perturbations of P0 guarantee that the cor-
responding s� is also trapped in this sector, and hence must converge to 0 as well.

Assume that the separatrix s0
� is landing at the multiplicity k equilibrium point ζ = 0 for ξP0 . 

We first show the existence of the protective sector S(α) in rectifying coordinates �P0 .

Proposition A.2. If a separatrix s0
� is landing, then there exists an α such that ξP0 is 

(α, γ 0
� )-stable.

Proof. There are only three situations for landing separatrices (see Figs. A.1 and 4.2):

1. The separatrix s0
� lands at a multiple equilibrium point and is on the boundary of two sepal 

zones (half-planes). In this case, it is obvious that there exists such an α (see Fig. A.1).
2. The separatrix s0

� lands at a multiple equilibrium point and is on the boundary of one sepal 
zone (half-plane) and one αω-zone (strip). There might be several strips between this strip 
and the next half-plane that corresponds to the multiple equilibrium point. Such an α exists 
if by taking the minimum argument of the partial sums of the analytic invariants in these 
strips (easier understood by referring to Fig. A.1).

3. The separatrix s0
� lands at a sink or source and is on the boundary of two αω-zones (strips). 

The basin of the sink or source at which s0
� lands is a union of n strips with an identification 

(cylinder), which we can unfold in the plane as a repeating sequence of strips. Let Ai be the 
partial sums of the associated 

∫
T

dz
P (z)

∈ H, where T is a transversal joining the rightmost 
odd and even ends in a strip (for a sink). Let α = min

i=1,...,n
arg(Ai). Let Aj be the partial sum 

associated to α. No singularities fall inside the sector S(α). Indeed, the “worst” singularities 
are those at cAn + Aj , c ∈ N. Since arg(An) ≥ α, then arg(cAn + Aj) ≥ α. The same must 
be done for the reverse partial sums. Take α to be the smallest from the forward and reverse 
minimum angles. See Fig. 4.2. �

Proposition A.3. The set �0(S(α)) is completely contained in the basin of attraction for ζ 0 = 0.
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Fig. 4.2. If s0
�

is a landing separatrix, there exists an angle α such that ξP0 is (α, γ 0
�
)-stable. This can be seen in rectifying 

coordinates. There are only three situations, depicted by the two figures in Fig. A.1 and the figure above. The figure 
above is the case where s0

�
is on the boundary of two αω-zones (strips). In this case, it can be seen that there is an α such 

that all singularities lie outside of the sector S(α).

Proof. The set �0(S(α)) intersects the basin of ζ 0 since it contains separatrix s0
� which lands at 

ζ 0. Furthermore, this set is connected, so if not entirely contained in the basin, it must intersect 
the boundary of the basin somewhere, which is not possible by Proposition A.4 below. �
Proposition A.4. (See [7].) �0 (S(α)) intersects neither the zeros nor the incoming trajectories 
γ − of P0.

Proof. The first part is due to that fact that it takes an infinite time to reach a zero. For the second 
part, assume �0(w0) ∈ γ − for some incoming γ − and some w0 ∈ S(α′) for 0 < α′ < α Then, by 
definition of incoming γ −, the trajectory with initial point �0(w0) reaches ∞ at some positive 
finite time t0. However, by uniqueness of solution, this trajectory coincides with �0(w0 + t0). 
The fact that �0 is defined on a neighborhood of w0 + t0 implies that �0(w0 + t0) 	= ∞. This 
leads to a contradiction. �

Summarizing the above in terms of what we need: If s0
� for P0 lands at 0, a multiplicity k

equilibrium point, then there exists a protective sector S(α) such that all sequences going to 
infinity in S(α) have images under �0 that limit at ζ 0 = 0 (in the z-plane).

We will compare the trajectories for ż = P(z) and ż = P0(z) in the sector S(α) for P0. Under 
the rectifying coordinates �0, ż = P0(z) conjugates to the constant vector field ẇ = 1, and ż =
P(z) becomes ẇ = 1 + s ◦ �0(w).

Since s� for P is defined in a neighborhood of infinity, we know that there exists a solution 
γ� in a neighborhood of zero in S(α) for ẇ = 1 + s ◦ �0(w) which corresponds to part of 
the separatrix s�. It enters the sector S(α) since perturbation does not change the asymptotic 
direction. We finish the proof of Theorem A.1 by proving the following proposition.

Proposition A.5. The trajectory γ� for ξP mentioned above:

i. γ� is defined for infinite forward time,
ii. γ� does not leave S(α) for all time (γ�(t) ∈ S(α) for all t > 0), and

iii. |γ�(t)| → ∞ for t → ∞



652 K. Dias, L. Tan / J. Differential Equations 260 (2016) 628–652
Proof. Item i. follows from continuation of solutions for ordinary differential equations (see 
for instance [14]). Indeed �0 is holomorphic in S(α) and s(z) := P(z)

P0(z)
− 1 is holomorphic in 

�0(S(α)) (hence, so is 1 + s ◦ �0(w)), and hence continuously differentiable in R := S(α) ×
(−∞, ∞). So the solution γ�(t) can be continued to a time interval a ≤ t < b, where b = +∞
unless one of the following two happen: (a) |γ�(t)| → ∞ as t → b− < ∞ (blows up in finite 
time), or (b) (γ�(t), t) leaves R. Situation (a) cannot occur, since by ẇ ≈ 1 uniformly, neither 
the real nor imaginary parts can blow up in finite time. Situation (b) cannot occur by item ii. 
Therefore, γ�(t) can be extended for infinite forward time, which proves item i. Item ii. follows 
immediately from the fact that we can control s uniformly so that ẇ ≈ 1, since we can choose P
close enough to P0 so that arg(1 + s ◦ �0(w)) < α. Item iii. follows from item i. and again from 
the fact that we can control s uniformly so that ẇ ≈ 1. �
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