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Abstract

The Cahn–Hilliard/Allen–Cahn equation with noise is a simplified mean field model of stochastic mi-
croscopic dynamics associated with adsorption and desorption-spin flip mechanisms in the context of 
surface processes. For such an equation we consider a multiplicative space-time white noise with diffu-
sion coefficient of linear growth. Applying techniques from semigroup theory, we prove local existence 
and uniqueness in dimensions d = 1, 2, 3. Moreover, when the diffusion coefficient satisfies a sub-linear 
growth condition of order α bounded by 1

3 , which is the inverse of the polynomial order of the nonlinearity 
used, we prove for d = 1 global existence of solution. Path regularity of stochastic solution, depending on 
that of the initial condition, is obtained a.s. up to the explosion time. The path regularity is identical to that 
proved for the stochastic Cahn–Hilliard equation in the case of bounded noise diffusion. Our results are also 
valid for the stochastic Cahn–Hilliard equation with unbounded noise diffusion, for which previous results 
were established only in the framework of a bounded diffusion coefficient.

As expected from the theory of parabolic operators in the sense of Petrovsk˘ıı, the bi-Laplacian operator 
seems to be dominant in the combined model.
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1. Introduction

1.1. The stochastic equation

We consider the Cahn–Hilliard/Allen–Cahn equation with multiplicative space-time noise:⎧⎪⎨
⎪⎩

ut = −��
(
�u − f (u)

)
+

(
�u − f (u)

)
+ σ(u)Ẇ in D × [0, T ),

u(x,0) = u0(x) in D,
∂u
∂ν

= ∂�u
∂ν

= 0 on ∂D × [0, T ).

(1.1)

Here, D is a rectangular domain in Rd with d = 1, 2, 3, � > 0 is a “physical diffusion” constant, 
f is a polynomial of degree 3 with a positive leading coefficient, such as f = F ′ where F(u) =
(1 − u2)2 is a double equal-well potential. The “noise diffusion” coefficient σ(·) is a Lipschitz 
function with sub-linear growth, Ẇ is a space-time white noise in the sense of Walsh [20], and ν
is the outward normal vector. In addition, we assume that the initial condition u0 is sufficiently 
integrable or regular, depending on the desired results on the solution. Obviously, when σ := 1, 
the noise in (1.1) becomes additive.

In this paper, as in [3], we will analyze the more general case of multiplicative noise. However, 
unlike [3], we consider a more general Lipschitz coefficient σ with sub-linear growth such that

|σ(u)| ≤ C(1 + |u|α), (1.2)

for some α ∈ (0, 1] and a positive constant C.
In the sequel, we will give sufficient conditions on the initial condition u0 so that:

(1) a unique local maximal solution exists when d = 1, 2, 3, for α = 1, that is when σ satisfies 
the classical linear growth condition;

(2) when α < 1
3 , i.e. when α is strictly smaller than the inverse of the polynomial order of the 

nonlinear function f , a global solution exists with Lipschitz path-regularity for d = 1.

The stochastic Cahn–Hilliard equation can be considered as a special case of our model. 
Therefore, when the function σ satisfies the aforementioned sub-linear growth assumption, our 
method extends all the results of [3] on existence and uniqueness of a local maximal solution 
when d = 1, 2, 3, and on global existence and path-regularity, when d = 1, for the solution of the 
stochastic Cahn–Hilliard equation with a multiplicative noise; in reference [3] C. Cardon-Weber 
considered a bounded diffusion coefficient. It seems to us that there is a gap in the proof of global 
existence given in reference [3], on page 793. Indeed the various constraints imposed on the pa-
rameters d , a, q , r and γ ′ lead to a contradiction; however we did not disprove the statement of 
the corresponding Theorem 1.3. The argument we use in this paper to prove global existence is 
different from that in [3] and is based on the Gagliardo Nirenberg inequality. Using the factor-
ization method for the stochastic term, we derive a path regularity similar to that obtained in [3]. 



D.C. Antonopoulou et al. / J. Differential Equations 260 (2016) 2383–2417 2385
The path regularity can also be obtained a.s. in dimensions d = 2, 3 for any time interval [0, T ]
where T is strictly smaller than the explosion time T ∗(ω).

1.2. The physical background

Surface diffusion and adsorption/desorption consist the micromechanisms that are typically 
involved in surface processes or on cluster interface morphology. Chemical vapor deposition, 
catalysis, and epitaxial growth are surface processes involving transport and chemistry of pre-
cursors in a gas phase where the unconsumed reactants and radicals adsorb onto the surface of a 
substrate so that surface diffusion, or reaction and desorption back to the gas phase is observed. 
Such processes have been modeled by continuum-type reaction diffusion models where inter-
actions between particles are neglected or treated phenomenologically, [16,11]. Alternatively, 
a more precise microscopic description is provided in statistical mechanics theories, [13]. For in-
stance we can consider a combination of Arrhenius adsorption/desorption dynamics, Metropolis 
surface diffusion and simple unimolecular reaction; the corresponding mesoscopic equation is:

ut −D∇ ·
[
∇u−βu(1−u)∇J ∗u

]
−

[
kap(1−u)−kdu exp

(−βJ ∗u
)]+kru = 0 . (1.3)

Here, D is the diffusion constant, kr , kd and ka denote respectively the reaction, desorption and 
adsorption constants while p is the partial pressure of the gaseous species. The partial pressure 
p is assumed to be a constant, although realistically it is given by the fluids equations in the gas 
phase. Furthermore, J is the particle-particle interaction energy and β is the inverse temperature.

Stochastic microscopic dynamics such as Glauber and Metropolis dynamics have been an-
alyzed for adsorption/desorption-spin flip mechanisms in the context of surface processes; for 
more details we refer to the review article [18]. In addition, the Kawasaki and Metropolis stochas-
tic dynamics models describe the diffusion of a particle on a surface, where sites cannot be 
occupied by more than one particle. Stochastic time-dependent Ginzburg–Landau type equa-
tions with additive Gaussian white noise source such as Cahn–Hilliard and Allen–Cahn appear 
as Model B and Model A respectively in the classical theory of phase transitions according to the 
universality classification of Hohenberg and Halperin [15]. A simplified mean field mathematical 
model, associated with the aforementioned mechanisms that describes surface diffusion, particle-
particle interactions and as well as adsorption to and desorption from the surface, is a partial 
differential equation written as a combination of Cahn–Hilliard and Allen–Cahn type equations 
with noise. The Cahn–Hilliard operator is related to mass conservative phase separation and sur-
face diffusion in the presence of interacting particles. On the other hand, the Allen–Cahn operator 
is related to adsorption and desorption and serves as a diffuse interface model for antiphase grain 
boundary coarsening.

At large space-time scales the random fluctuations are suppressed and a deterministic pattern 
emerges. Such a deterministic model has been analyzed by Katsoulakis and Karali in [17]. The 
so called mean field partial differential equation has the following form:⎧⎨

⎩ ut = −ε2��

(
�u − f (u)

ε2

)
+ �u − f (u)

ε2
,

u(x,0) = u0(x),

(1.4)

where f (u) = F ′ for F = (1 − u2)2/4 a double-well potential with wells ±1, � > 0 is the 
diffusion constant and 0 < ε � 1 is a small parameter. In [17], the authors rigorously derived 
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the macroscopic cluster evolution laws and transport structure as a motion by mean curvature 
depending on surface tension to observe that due to multiple mechanisms an effective mobility 
speeds up the cluster evolution.

Remark 1.1. The stochastic equation analyzed in this work is a simplified mean field model for 
interacting particle systems used in statistical mechanics. These systems are Markov processes 
set on a lattice corresponding to a solid surface. A typical example is the Ising-type systems de-
fined on a multi-dimensional lattice; see [12]. Assuming that the particle-particle interactions are 
attractive, then the resulting system’s Hamiltonian is nonnegative (attractive potential). Hence, 
the diffusion constant � of the SPDE (1.1) is considered positive, as in [17].

Remark 1.2. Ginzburg–Landau type operators are usually supplemented by Neumann or peri-
odic boundary conditions. In order to obtain an initial and boundary value problem we consider 
the SPDE (1.1) with the standard homogeneous Neumann boundary conditions on u and �u. 
These conditions are frequently used for the deterministic or stochastic Cahn–Hilliard equation; 
see e.g. [10,6,3].

1.3. Main results

As a first step for a rigorous mathematical analysis of the stochastic model, in Section 2, we 
will prove the existence and uniqueness of a local maximal solution to (1.1) when the initial 
condition u0 belongs to Lq(D) for q ∈ [3, ∞) if d = 1, 2 and q ∈ [6, ∞) if d = 3. Section 4
describes some possible general assumptions on the domain D which would lead to the same 
result obtained in dimensions 2, 3, and presents the stochastic Cahn–Hilliard equation as a special 
case of a Cahn–Hilliard/Allen–Cahn stochastic model. Note that the approach used in this paper 
to solve this nonlinear SPDE with a polynomial growth is similar to that developed by J.B. 
Walsh [20] and I. Gyöngy [14] for the stochastic heat equation and related SPDEs. Unlike these 
references, the smoothing effect of the bi-Laplace operator enables us to deal with a stochastic 
perturbation driven by a space-time white noise in dimension 1 up to 3.

The existence-uniqueness proof is similar to that of Cardon-Weber in [3], and relies on upper 
estimates of the fundamental solution, Galerkin approximations and the application of a cut-off 
function. However, the fact that the diffusion coefficient σ is unbounded requires to multiply σ
by the cut-off function in order to estimate properly the stochastic integral, and then to use a 
priori estimates for the remaining part.

With our method we prove existence of a unique local maximal solution under the require-
ment that σ satisfies the classical linear growth condition: |σ(u)| ≤ C(1 + |u|) for some positive 
constant C. Furthermore, if σ satisfies a sub-linear growth condition |σ(u)| ≤ C(1 + |u|α) with 
0 < α < 1

3 , we prove global existence and path regularity for d = 1. Here, we point out that the 
supremum of α coincides with the inverse of the polynomial order of the nonlinearity f . Our 
argument does not extend in dimensions d = 2, 3 even if we know that the L2 norm of the local 
maximal solution remains bounded on any given time interval, and if we have not proved that 
explosion of the Lq norm takes place in finite time.

The upper estimates on the Green’s function stated in Sections 2 and 3 obviously show that 
all the results in [3] can be extended to our framework if σ is bounded. Note that in many papers 
dealing with some multiplicative random perturbation of a PDE with polynomial non-linearity, 
when the diffusion coefficient σ is defined “point-wise” and the driving noise is a space time 
white noise or a gaussian noise which is white in space and colored in time, then σ is bounded. 
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This is the case for the Burgers equation in [14] and subsequent papers, in [7,3] and [4] for the 
2 and 3D Cahn–Hilliard equation and related parabolic equations. Therefore, one of the main 
contributions of this paper is to deal with some unbounded noise coefficient σ for the stochastic 
Cahn–Hilliard equation and Cahn–Hilliard/Allen–Cahn equations. Certain attempts to go beyond 
the fact that σ is bounded were done by S. Cerrai in [5] for the stochastic Allen–Cahn equation 
(see also the work of M. Kunze and J. van Neerven, [19], for a more general framework). In 
these papers, the authors first proved the existence of a global solution when σ is sub-linear. 
Then using dissipativity, they extended this result to the linear growth assumption on σ as in 
the classical case of SDEs. Note that we could not apply the technique introduced by [5] for the 
stochastic Allen–Cahn equation to go from sub-linear to linear growth; this is due to the fact 
that in our model, in contrast to the Allen–Cahn equation, the Laplace operator is applied to the 
nonlinearity. However, we believe that global solutions with an analogous path regularity could 
exist in higher dimensions for smoother noise in space; for example the formal derivative of a 
Fourier series of Brownian motions. Moreover, the nonlinear function f could be defined as the 
derivative of a general double equal well potential of higher polynomial order.

Our method based on the factorization method for the deterministic and random forcing terms, 
yields for d = 1 the same regularity as that proven in [3], where σ is bounded.

As usual we denote by C a generic constant and by C(s) a constant depending on some 
parameter s. For p ∈ [1, ∞], the Lp(D)-norm is denoted by ‖ · ‖p . Finally, given real numbers 
a and b we let a ∨ b (resp. a ∧ b) denote the maximum (resp. the minimum) of a and b.

2. The corresponding evolution equation

2.1. Preliminaries

For simplicity and to ease notation, without restriction of generality, we will assume that the 
“physical diffusion” constant � is equal to 1 and that D is the unitary cube. Extension to more 
general domains will be addressed in the next section.

In order to give a mathematical meaning to the stochastic PDE (1.1) we integrate in time and 
space and use the initial and boundary conditions (see e.g. [20]). For a strict definition of solution, 
we say that u is a weak (analytic) solution of the equation (1.1) if it satisfies the following weak 
formulation:∫

D

(
u(x, t) − u0(x)

)
φ(x) dx =

t∫
0

∫
D

(
− �2φ(x)u(x, s) + �φ(x)[f (u(x, s)) + u(x, s)] − φ(x)f (u(x, s))

)
dxds

+
t∫

0

∫
D

φ(x)σ (u(x, s)) W(dx, ds), (2.1)

for all φ ∈ C4(D) with ∂φ
∂ν

= ∂�φ
∂ν

= 0 on ∂D. Note that this u stands as a probabilistic ‘strong so-
lution’ since we keep the given space-time white noise and do not only deal with the distribution 
of the processes.
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The random measure W(dx, ds) is the d-dimensional space-time white noise, that is in-
duced by the one-dimensional (d + 1)-parameter (with d space variables and one time variable) 
Wiener process W defined as W := {

W(x, t) : t ∈ [0, T ], x ∈ D
}
. For every t ≥ 0 we let 

Ft := σ
(
W(x, s) : s ≤ t, x ∈ D

)
denote the filtration generated by W , cf. [20,3,2]. Furthermore, 

we assume that the coefficient σ : R → R is a Lipschitz function and satisfies the following 
growth condition for some α ∈ (0, 1] and C > 0:

|σ(x)| ≤ C(1 + |x|α), ∀x ∈R.

2.2. Estimates for the Green’s function

Let � denote the Laplace operator; we shall use the Green’s function for the operator T :=
−�2 + � on D with the homogeneous Neumann conditions, that is the fundamental solution to 
∂tu −T u = 0 on D with the boundary conditions ∂u

∂ν
= ∂�u

∂ν
= 0 on ∂D×[0, T ). Let k = (ki, i =

1, · · · , d) denote a multi-index with non-negative integer components ki and let ‖k‖2 :=
∑

i

k2
i . 

We set ε0(x) := 1√
π

, and for any positive integer j we define εj (x) :=
√

2
π

cos(jx). Finally for 

k = (ki) ∈ N
d and x ∈ D let εk(x) :=

∏
i

εki
(xi). Then (εk, k ∈ N

d) is an orthonormal basis 

of L2(D) consisting on eigenfunctions of T corresponding to the eigenvalues −λ2
k − λk where 

λk = ‖k‖2. Of course, ε0 is related to the null eigenvalue.
Let S(t) := e(−�2+�)t be the semi-group generated by the operator T ; if u := ∑

k(u, εk) εk

then

T u =
∑

k

−(λ2
k + λk)(u, εk)L2(D) εk,

and (see e.g. [6,3]) the convolution semigroup is defined by

S(t)U(x) :=
∑

k

e−(λ2
k+λk)t (U, εk)L2(D)εk(x),

for any U in L2(D) with the associated Green’s function given by

G(x,y, t) =
∑

k

e−(λ2
k+λk)t εk(x) εk(y), (2.2)

for t > 0, x, y ∈ D. Using the Definition 1.3 of [9], we deduce that T = −�2 + � is uniformly 
strongly parabolic in the sense of Petrovskı̆ı. Thus, as proved in [8], the following upper estimates 
of the Green function G and its various derivatives hold true. Notice that they are similar to those 
of the Green’s function used in [3] for the operator −�2.

Lemma 2.1. Let G be the Green’s function defined by (2.2). Then there exist positive constants 
c1 and c2 such that for any t ∈ (0, T ], any x, y ∈ D and any multi-index k = (ki, i = 1, · · · , d)

with |k| = ∑d
ki ∈ {1, 2}, the next inequalities are satisfied:
i=1
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|G(x,y, t)| ≤ c1 t−
d
4 exp

(
− c2 |x − y| 4

3 t−
1
3

)
, (2.3)

|∂k
xG(x, y, t)| ≤ c1 t−

d+|k|
4 exp

(
− c2 |x − y| 4

3 t−
1
3

)
, (2.4)

|∂tG(x, y, t)| ≤ c1 t−
d+4

4 exp
(

− c2 |x − y| 4
3 t−

1
3

)
. (2.5)

Furthermore, given any c > 0 there exists a positive constant C(c) such that

∫
Rd

exp
( − c|x| 4

3 t−
1
3
)
dx = C(c)t

d
4 . (2.6)

Let us also define for x ∈ D and t > s ≥ 0

h(x, t, s) := −c2 |x| 4
3 (t − s)−

1
3 . (2.7)

The following lemma gathers several estimates for integrals of space (respectively time) in-
crements of G. Note once more that the results are the same as those of Lemma 1.8 in [3] and 
are deduced from the explicit formulation (2.2) of G by using similar arguments.

Lemma 2.2. Let G be the Green’s function defined by (2.2). Given positive constants γ , γ ′ with 
γ < (4 − d), γ ≤ 2 and γ ′ < 1 − d

4 , there exists a constant C > 0 such that for any t > s ≥ 0
and any x, y ∈ D the next estimates hold true:

t∫
0

∫
D

|G(x, z, t − r) − G(y, z, t − r)|2 dzdr ≤ C|x − y|γ , (2.8)

s∫
0

∫
D

|G(x, z, t − r) − G(x, z, s − r)|2 dzdr ≤ C|t − s|γ ′
, (2.9)

t∫
s

∫
D

|G(x, z, t − r)|2 dzdr ≤ C|t − s|γ ′
. (2.10)

2.3. Integral representation

Using the Green’s function, we can present the solution of equation (2.1) in an integral form 
for any x ∈D and t ∈ [0, T ], that is the following mild solution:

u(x, t) =
∫
D

u0(y)G(x, y, t) dy

+
t∫ ∫ [

�G(x,y, t − s) − G(x,y, t − s)
]
f (u(y, s)) dyds
0 D
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+
t∫

0

∫
D

G(x,y, t − s)σ (u(y, s)) W(dy, ds). (2.11)

Application of the inequality (2.6) and Hölder’s inequality lead to the following bound for the 
term involving the initial condition.

Lemma 2.3. Let G(x, y, t) be the Green’s function defined by (2.2). For every 1 ≤ q < ∞ and 
T > 0 there exists a constant C := C(T , q) such that

sup
t∈[0,T ]

‖Gtu0‖q ≤ C‖u0‖q, (2.12)

where G0 = Id and Gtu0 is defined for t > 0 by

Gtu0(x) :=
∫
D

u0(y)G(x, y, t) dy. (2.13)

2.4. Well posedness of the truncated equation

In order to prove the existence of the solution u to (2.11), as a first step we consider an 
appropriated cut-off SPDE, cf. [3]. Let χn ∈ C1(R, R+) be a cut-off function satisfying |χn| ≤ 1, 
|χ ′

n| ≤ 2 for any n > 0 and

χn(x) =
{

1 if |x| ≤ n,

0 if |x| ≥ n + 1.

For fixed n > 0, x ∈ D, t ∈ [0, T ] and q ∈ [3, +∞), we consider the following cut-off SPDE:

un(x, t) =
∫
D

u0(y)G(x, y, t) dy

+
t∫

0

∫
D

[
�G(x,y, t − s) − G(x,y, t − s)

]
χn(‖un(·, s)‖q) f (un(y, s)) dyds

+
t∫

0

∫
D

G(x,y, t − s)χn(‖un(·, s)‖q) σ (un(y, s)) W(dy, ds). (2.14)

In this section we suppose that σ satisfies (1.2) with α ∈ (0, 1], and that the following condi-
tion (Cα) holds:

Condition (Cα) One of the following properties (i) or (ii) is satisfied:

(i) d = 1, 2 and q ∈ [3, +∞), or d = 3 and q ∈ [6, +∞),
(ii) d = 3 and q ∈ (

3 ∨ [6(1 − α)], 6)
.
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We show the existence and uniqueness of the solution to the SPDE (2.14) in the set HT defined 
by

HT :=
{
u(·, t) ∈ Lq(D) for t ∈ [0, T ] : u is (Ft )-adapted and ‖u‖HT

< ∞
}
,

where

‖u‖HT
:= sup

t∈[0,T ]

(
E‖u(·, t)‖β

q

) 1
β
, (2.15)

for β ∈ (
q
α
, ∞) if Condition (Cα)(i) holds, or for β ∈ (

q
α
, 6q

(6−q)
) if Condition (Cα)(ii) holds.

Remark 2.4. In order to present our results in a more general framework we consider the growth 
condition (1.2) with α ∈ (0, 1]; the upper bound of α will be restricted in the sequel.

Remark 2.5. Note that if d = 3, the inequality 6(1 − α) < q < 6 implies that the interval 
(
q
α
, 6q

(6−q)
) is not empty.

Theorem 2.6. Let σ be globally Lipschitz and satisfy the assumption (1.2) with α ∈ (0, 1], let 
u0 ∈ Lq(D) and let Condition (Cα) hold. Furthermore, let β ∈ (

q
α
, +∞) if Condition (Cα)(i) 

is satisfied (resp. β ∈ (
q
α
, 6q

6−q
) if Condition (Cα)(ii) is satisfied). Then the SPDE (2.14) admits 

a unique solution un in every time interval [0, T ] and un ∈ HT . Moreover, if for some stop-
ping time τ a local process 

(
Ũ (., t), t ∈ [0, τ)

)
is a local solution to (2.14), then the processes 

un(., t)|[0,τ )×� and Ũ|[0,τ )×� are equivalent.

Proof. We define the operators Mn and Ln on HT by

Mn(u)(x, t) :=
t∫

0

∫
D

[�G(x,y, t − s) − G(x,y, t − s)]χn(‖u(·, s)‖q)f (u(y, s)) dyds,

(2.16)

Ln(u)(x, t) :=
t∫

0

∫
D

G(x,y, t − s)χn(‖u(·, s)‖q) σ (u(y, s)) W(dy, ds), (2.17)

with u ∈HT . Then obviously (2.14) is written as

un(x, t) =
∫
D

u0(y)G(x, y, t) dy +Mn(un)(x, t) +Ln(un)(x, t). (2.18)

We claim that if T > 0 is sufficiently small, then the operator Mn +Ln is a contraction mapping 
from HT to HT .

First we consider the mapping Mn. For an arbitrary function u ∈ HT , by Minkowski’s in-
equality, (2.3) and (2.4) we have
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‖Mn(u)(·, t)‖q ≤ c1

t∫
0

(t − s)−
d+2

4

×
{∫
D

∣∣∣ ∫
D

exp
(

− c2
|x − y| 4

3

(t − s)
1
3

)
χn(‖u(·, s)‖q)f (u(y, s)) dy

∣∣∣q dx
} 1

q
ds.

By using Young’s inequality with exponents ρ and r in [1, ∞) such that 1
ρ

+ 1
r

= 1
q

+ 1, we 

obtain for h(x, t, s) := −c2
|x| 4

3

(t−s)
1
3

defined by (2.7)

‖Mn(u)(·, t)‖q ≤ c1

t∫
0

(t − s)−
d+2

4 ‖ exp(h(·, t, s))‖r

∥∥∥χn(‖u(·, s)‖q)f (u(., s))

∥∥∥
ρ

ds

≤ C

t∫
0

(t − s)−
d+2

4 + d
4r

∥∥∥χn(‖u(·, s)‖q)f (u(., s))

∥∥∥
ρ

ds, (2.19)

where the last inequality follows from (2.6). We now choose ρ = q
3 ≥ 1 since q ∈ [3, ∞) and 

r ∈ [1, ∞) satisfying 1
ρ

+ 1
r

= 1
q

+ 1. The function f is a polynomial of degree 3, so, for n ≥ 1
we have ∥∥∥χn(‖u(·, s)‖q)f (u(., s))

∥∥∥
q
3

≤ Cn3. (2.20)

Since q > d we deduce that − d+2
4 + d

4r
> −1; hence the above inequalities yield

‖Mn(u)‖HT
= sup

t∈[0,T ]
E

(
‖Mn(u(·, t))‖β

q

) 1
β ≤ C n3 T − d

4 + d
4r

+ 1
2 . (2.21)

Therefore, Mn is a mapping from HT to HT .
Moreover, for arbitrary u and v in HT such that ‖u(·, s)‖q ≤ ‖v(·, s)‖q , we shall prove that 

for q ∈ [3, ∞) and ρ = q
3 the next inequality holds true:

∥∥∥χn(‖u(·, s)‖q)f (u(·, s)) − χn(‖v(·, s)‖q)f (v(·, s))
∥∥∥

ρ
≤ C n3‖u(·, s) − v(·, s)‖q . (2.22)

Indeed, we have∥∥∥χn(‖u(·, s)‖q)f (u(·, s)) − χn(‖v(·, s)‖q)f (v(·, s))
∥∥∥

ρ

≤
∥∥∥[

χn(‖u(·, s)‖q) − χn(‖v(·, s)‖q)
]
f (u(·, s))

∥∥∥
ρ

+
∥∥∥χn(‖v(·, s)‖q)

[
f (u(·, s)) − f (v(·, s))]∥∥∥

ρ
.
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Note that ‖v(·, s)‖q ≥ ‖u(·, s)‖q and

χn(‖u(·, s)‖q) − χn(‖v(·, s)‖q) = 0 if ‖u(·, s)‖q ≥ n + 1.

Hence, for n ≥ 1 and ρ = q
3 we obtain the existence of C > 0 such that for all n ≥ 1

∥∥∥[
χn(‖u(·, s)‖q) − χn(‖v(·, s)‖q)

]
f (u(·, s))

∥∥∥
ρ

≤ C
(

1 + (n + 1)3
)∣∣∣‖u(·, s)‖q − ‖v(·, s)‖q

∣∣∣
≤ C n3 ‖u(·, s) − v(·, s)‖q .

Using again the inequality ‖v(·, s)‖q ≥ ‖u(·, s)‖q , then for any n ≥ 1 we deduce the existence 
of C > 0 such that∥∥∥χn(‖v(·, s)‖q)

[
f (u(·, s)) − f (v(·, s))]∥∥∥

ρ

≤ Cχn(‖v(·, s)‖q)
(

1 + ‖v(·, s)‖2
q + ‖u(·, s)‖2

q

)
‖u(·, s) − v(·, s)‖q

≤ Cn2 ‖u(·, s) − v(·, s)‖q,

holds for any n ≥ 1. Thus, (2.22) is valid.
Inequality (2.22) and an argument similar to that used for proving (2.19) yield

‖Mn(u)(·, t) −Mn(v)(·, t)‖q

≤
t∫

0

|t − s|− d+2
4 + d

4r

∥∥∥χn(‖u(·, s)‖q)f (u(·, s)) − χn(‖v(·, s)‖q)f (v(·, s))
∥∥∥

ρ
ds

≤ C n3

t∫
0

|t − s|− d+2
4 + d

4r ‖u(·, s) − v(·, s)‖q ds. (2.23)

Therefore, by inequality (2.23) and Hölder’s inequality, since β ∈ [q, ∞), we deduce

‖Mn(u) −Mn(v)‖HT

≤ C n3 sup
t∈[0,T ]

{
E

∣∣∣
t∫

0

|t − s|− d+2
4 + d

4r ‖u(·, s) − v(·, s)‖q ds

∣∣∣β}1/β

≤ C n3 sup
t∈[0,T ]

{( t∫
0

(t − s)−
d+2

4 + d
4r ds

)β−1
t∫

0

(t − s)−
d+2

4 + d
4r E‖u(., s) − v(., s)‖β

q ds
} 1

β

≤ C n3 T (− d+2
4 + d

4r
+1) sup

t∈[0,T ]

(
E‖u(·, t) − v(·, t)‖β

q

) 1
β

≤ C n3 T − d+2
4 + d

4r
+1‖u − v‖H . (2.24)
T
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Obviously, by (2.21) and (2.24) it follows that for fixed n ≥ 1 and T > 0, the map Mn is Lips-
chitz from HT to HT .

For the mapping Ln defined in terms of a stochastic integral, at first notice that since α ∈
(0, 1], the inequality β >

q
α

yields β ∈ (q, ∞). Thus, the Hölder, Burkholder and Minkowski 
inequalities, and the growth condition (1.2) on σ yield

E‖Ln(u(·, t))‖β
q ≤ C

∫
D

E|Ln(u(x, t)|β dx

≤ C

∫
D

E

∣∣∣
t∫

0

∫
D

∣∣G(x,y, t − s)χn(‖u(·, s)‖q) σ (u(y, s))|2 dyds

∣∣∣β/2
dx

≤ C
(
E

t∫
0

∥∥∥∫
D

G2(·, y, t − s)χn(‖u(·, s)‖q)
[
1 + |u(y, s)|2α

]
dy

∥∥∥
β/2

ds
)β/2

.

Since β ∈ (
q
α
, ∞), we have 2α

q
> 2

β
and we may choose r̄ ∈ (1, ∞) such that 2α

q
+ 1

r̄
= 2

β
+ 1.

Let once more h(x, t, s) be defined by (2.7); Young’s inequality and (2.3) imply

E‖Ln(u(·, t)‖β
q ≤ C

(
E

t∫
0

(t − s)−
d
2

∥∥∥ exp(h(·, t, s))
∥∥∥

r̄
χn(‖u(·, s)‖q)

∥∥[1+|u(·, s)|2α
]∥∥

q
2α

ds
)β/2

≤C
(
E

t∫
0

(t − s)−
d
2 + d

4r̄ (1 + n2α)ds
)β/2

.

Note that the inequalities d < 4, q ≥ 3, α ∈ (0, 1] and β >
q
α

yield − d
2 + d

4r̄
> −1. Hence, for 

any u ∈HT we obtain the existence of C > 0 such that

‖Ln(u)‖HT
≤ C(1 + nα)T

1
2 [− d

2 + d
4r̄

+1], (2.25)

holds for every n ≥ 1. Therefore, Ln is also a mapping from HT to HT .
Recall that σ is Lipschitz. Therefore, an argument similar to that used to prove (2.22) with q

instead of ρ shows that for u, v ∈HT , we have

‖δ(u, v, ·, s)‖q ≤ C(1 + nα)‖u(·, s) − v(·, s)‖q, (2.26)

for

δ(u, v, y, s) := χn(‖u(·, s)‖q)σ (u(y, s)) − χn(‖v(·, s)‖q)σ (v(y, s)).

Recall that α ∈ (0, 1] and β >
q
α

, so that β > q; thus the Hölder, Burkholder–Davis–Gundy and 
Minkowski inequalities together with (2.3) yield for u, v in HT
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E‖Ln(u)(·, s) −Ln(v)(·, s)‖β
q ≤ C

∫
D

E|Ln(u)(·, s) −Ln(v)(·, s)|β dx

≤ CE

∫
D

∣∣∣
t∫

0

∫
D

G2(x, y, t − s)δ2(u, v, y, s)dyds

∣∣∣β/2
dx

≤ CE

∣∣∣
t∫

0

(t − s)−
d
2

∥∥∥ exp(h(·, t, s)) ∗ δ2(u, v, ·, s)
∥∥∥

β/2
ds

∣∣∣β/2
.

The inequality β > q implies the existence of r2 ∈ (1, ∞) such that 2
β

+ 1 = 2
q

+ 1
r2

. Using once 
more the assumptions on q , α and β in Condition (Cα), in particular the assumption β(6 − q) <
6q and q ∈ [3, 6) for d = 3, we deduce − d

2 + d
4r2

> −1. Thus Young’s inequality and (2.26)
imply

E‖Ln(u)(·, s) −Ln(v)(·, s)‖β
q ≤ CE

∣∣∣
t∫

0

(t − s)
− d

2 + d
4r2 ‖δ(u, v, ·, s)‖q/2ds

∣∣∣β/2

≤ C(1 + nαβ)T
(− d

2 + d
4r2

+1)
β
2 sup

t∈[0,T ]
E‖u(·, s) − v(·, s)‖β

q ,

and therefore,

‖Ln(u) −Ln(v)‖HT
≤ C (1 + nα)T

− d
4 + d

8r2
+ 1

2 ‖u − v‖HT
. (2.27)

So, for fixed n and T > 0, the map Ln is also a Lipschitz mapping from HT to HT .
The upper estimates (2.24) and (2.27) imply that the mapping Mn +Ln is Lipschitz from HT

to HT with the Lipschitz constant bounded by

C(n,T ) := C
[
n3T − d+2

4 + d
4r

+1 + CnαT
− d

4 + d
8r2

+ 1
2
]
.

For fixed n ≥ 1, there exists T0(n) sufficiently small (which does not depend on u0) such that 
C(n, T ) < 1 for T ≤ T0(n), so that Mn + Ln is a contraction mapping from the space HT into 

itself. Thus for T ≤ T0(n), the map Mn + Ln has a unique fixed point in the set 
{
u ∈ HT :

u(·, 0) = u0

}
. This implies that in [0, T ], for T ≤ T0(n), there exists a unique solution un for the 

SPDE (2.14).
If T > T0(n), let ū0(x) = un(x, T0(n)) and W̄ (t, x) = W(T0(n) + t, x); then ˙̄W is a space-time 

white noise related to the filtration (FT0(n)+t , t ≥ 0) independent of FT0(n). A similar argument 
proves the existence and uniqueness of the solution ūn to an equation similar to (2.14) with u0
and W replaced by ū0 and W̄ respectively. Hence, (2.14) has a unique solution un on the interval 
[0, 2T0(n)], defined by un(x, t) := ūn(x, t − T0(n)) for t ∈ [T0(n), 2T0(n)]. Since there exists 
N ≥ 1 such that NT0(n) ≥ T an easy induction argument proves existence and uniqueness of the 
solution to (2.14) on any given time interval [0, T ].
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Finally, to prove the last assertion, let τ be a stopping time and let T0(n) > 0 be defined as 
above. Then the fixed point theorem proves that for τ1 = τ ∧T0(n), the processes un(., t)|[0,τ1)×�

and ˜U(., t)|[0,τ1)×� are equivalent. We then deduce by induction that for every positive integer 
k and τk = τ ∧ (kT0(n)), the processes Ũ |[0,τk)×� and un(., t)|[0,τk)×� are equivalent. Since the 
sequence τk increases to τ , the proof is complete. �
2.5. Local maximal solutions of the stochastic equation

Our aim is to prove the existence of a local maximal solution to equation (2.11). For every 
positive integer n, let Tn be the stopping time defined by

Tn = inf
{
t ≥ 0 : ‖un(., t)‖q ≥ n

} ∧ n.

Then replacing in (2.14) the deterministic time t by the random one t ∧ Tn, and using the fact 
that for s ≤ t ∧ Tn we have χn(‖un(., s)‖q) = 1, using the local property of stochastic integrals, 
we deduce that the process (un(., t ∧ Tn), t ≥ 0) is a solution of the equation:

un(x, t ∧ Tn) =
∫
D

u0(y)G(x, y, t) dy

+
t∧Tn∫
0

∫
D

[
�G(x,y, t ∧ Tn − s) − G(x,y, t ∧ Tn − s)

]
f (un(y, s)) dyds

+
t∧Tn∫
0

∫
D

G(x,y, t ∧ Tn − s)σ (un(y, s)) W(dy, ds).

Therefore, the process (un(., t), t < Tn) is a solution to (2.11).
Let us fix two positive integers n, k with n < k; then the processes un(., t)|[0,Tn∧Tk] and 

uk(., t)|[0,Tn∧Tk] are both solutions of equation (2.14); the uniqueness stated in Theorem 2.6
proves that they are indistinguishable. Let T ∗ := lim supn Tn; then for any ε > 0 the processes 
un(., t) and uk(., t) agree on the time interval [0, (T ∗ − ε) ∨ 0] for any n and k such that 
Tn ≥ (T ∗ − ε) ∨ 0 and Tk ≥ (T ∗ − ε) ∨ 0. This proves the existence of a solution u(., t) to 
the equation (2.11) on the time interval [0, T ∗); this solution is defined by the limit value of the 
truncated processes along a subsequence (which depends on ω). Furthermore, for almost every 
ω, there exists a strictly increasing sequence ni(ω) of integers such that Tni(ω)(ω) converges to 
T ∗(ω) and for i large enough u(., Tni(ω))(ω) = uni(ω)(., Tni(ω)(ω)), so that

sup{‖u(., t)(ω)‖q : t ≤ T ∗(ω)} ≥ sup{‖u(., t)(ω)‖q : t ≤ Tni(ω)(ω)} = ni.

Hence, sup{‖u(., t)‖q : t < T ∗} = ∞ a.s. and u is a maximal solution to (2.11) on [0, T ∗).
In the sequel, we will give sufficient conditions such that T ∗ = ∞ a.s., and thus, to obtain that 

the equation (2.11) admits a unique global solution. This requires to first prove some bounds of 
the stochastic integral.
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2.6. Bound for the stochastic integral

Our aim will be to prove moment estimates for the (space-time) uniform norm for Ln(un)

which will be needed later.
This norm is defined as follows:

‖Ln(un)‖L∞ := sup
t∈[0,T ]

sup
x∈D

|Ln(un)(x, t)|.

Lemma 2.7. Let σ satisfy Condition (1.2) with α ∈ (0, 1], let Condition (Cα) hold, and let un

be the solution to the SPDE (2.14). Furthermore, suppose that q ≥ q̃ > 2αd
4−d

. Then for any p ∈
[1, ∞) there exists a positive constant Cp(T ) such that for every n ≥ 1, we have:

E
(
‖Ln(un)‖2p

L∞
)

≤ Cp(T )
[
n2αp ∧ sup

t∈[0,T ]
E

(‖un(., t)‖2αp

q̃

)]
. (2.28)

Proof. Since d < 4, α ∈ (0, 1] and q ∈ [3, ∞), we have q > 2α and may choose q̃ ≤ q with 
q̃ > (2α) ∨ 2αd

4−d
. For t ∈ [0, T ], using the Burkholder–Davis–Gundy inequality, (2.3), the growth 

condition (1.2) on σ and Hölder’s inequality with conjugate exponents q̃
2α

and q̃
q̃−2α

, we obtain 
for any t ∈ [0, T ] and x ∈D

E|Ln(un)(x, t)|2p

≤ CpE

∣∣∣
t∫

0

∫
D

(t − s)−
d
2 exp(h(x − y, t, s))χn(‖un(·, s)‖q)[1 + |un(y, s)|2α]dyds

∣∣∣p

≤ CpE

∣∣∣
t∫

0

(t − s)−
d
2

∥∥∥ exp(h(·, t, s))
∥∥∥

q̃
q̃−2α

χn(‖un(·, s)‖q)[1 + ‖un(y, s)‖q̃ ]2αds

∣∣∣p

≤ Cp

∣∣∣
t∫

0

(t − s)
− d

2 + d(q̃−2α)
4q̃ [1 + E

(
χn(‖un(·, s)‖q)‖un(., s)‖q ]2α

)
ds

∣∣∣p

≤ Cp(T )
[
1 + sup

t∈[0,T ]
E

(
χn(‖un(·, s)‖q)‖un(., t)‖2αp

q̃

)]
,

where as above we let h(x, t, s) be defined by (1.2). The last inequality is valid provided that 

− d
4

(
1 + 2α

q̃

)
> −1, which holds true since q ≥ q̃ > 2αd

4−d
∨ (2α).

Similar computations using (2.3), (2.4) and the Taylor formula imply that for x, ξ ∈ D and 
t ∈ [0, T ], we have for λ ∈ (0, 1), q̃ ≤ q , p ∈ [1, ∞) and n ≥ 1:

E|Ln(un)(x, t)−Ln(un)(ξ, t)|2p ≤ CpE

∣∣∣
t∫

0

∫
D

|G(x,y, t − s)−G(ξ, y, t − s)|2χn(‖un(·, s)‖q)

×[
1 + |un(y, s)|2α

]
dy ds

∣∣∣p
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≤ Cp|x − ξ |2λpE

∣∣∣
t∫

0

(t − s)−
(d+1)λ

2 (t − s)−
d
2 (1−λ)χn(‖un(·, s)‖q)

×‖ exp(h(·, t, s))‖ q̃
q̃−2α

[1 + ‖un(·, s)‖q̃ ]2αds

∣∣∣p

≤ Cp,q |x − ξ |2λp
∣∣∣

t∫
0

(t − s)
− d+λ

2 + d(q̃−2α)
4q̃ ds

∣∣∣p[
1 + sup

s∈[0,T ]
E

(
χn(‖un(·, s)‖q)‖un(., s)‖2pα

q̃

)]

≤ Cp,q(T )|x − ξ |2λp
[
1 + sup

s∈[0,T ]
E

(
χn(‖un(·, s)‖q)‖un(., s)‖2pα

q̃

)]
, (2.29)

provided that − d+λ
2 + d(q̃−2α)

4q̃
> −1, which holds true if 0 ≤ λ <

(
2 − d

2

)
∧ 1 and q̃ > 2αd

4−d−2λ
. 

Hence, for q ≥ q̃ > 2αd
4−d

one can find λ ∈ (0, 1) small enough to fulfill this constraint.
Using again the Taylor formula, (2.3) and (2.5), we obtain, for 0 ≤ t ′ ≤ t ≤ T and μ ∈ [0, 1]

E|Ln(un)(x, t)−Ln(un)(x, t ′)|2p ≤CpE

∣∣∣
t∫

0

∫
D

[|G(x,y, t − s)|2(1−μ) +|G(x,y, t ′ − s)|2(1−μ)
]

×|G(x,y, t − s) − G(x,y, t ′ − s)|2μχn(‖un(·, s)‖q)[1 + |un(y, s)|2α]dyds

∣∣∣p

≤ |t − t ′|2μpE

∣∣∣
t∫

0

(t − s)−2μ( d
4 +1)−(1−μ) d

2 ‖ exp(h(·, t, s))‖ q̃
q̃−2α

×(
1 + ‖un(·, s)‖2α

q̃

)
χn(‖un(·, s)‖q)ds

∣∣∣p
≤ Cp,q(T )|t − t ′|2μp

[
1 + sup

s∈[0,T ]
E

(
χn(‖un(·, s)‖q)‖un(., s)‖2pα

q̃

)]
, (2.30)

where the last inequality holds true if − d
2 −2μ + d

4

(
1 − 2α

q̃

)
> −1; this is similar to the previous 

requirement used to prove (2.29) replacing λ
2 by 2μ. Thus, since q ≥ q̃ > 2αd

4−d
, we may find 

μ ∈ (0, 1) which satisfies this constraint, and such that (2.30) holds for any p ∈ [1, +∞).
The upper estimates (2.29), (2.30) yield the existence of some positive constants λ and μ, and, 

given p ∈ [1, ∞), of some positive constant Cp(T ) (independent of n) such that for x, x ′ ∈ D
and t, t ′ ∈ [0, T ], we have for every n ≥ 1

E|Ln(un)(x, t) −Ln(un)(x
′, t ′)|2p ≤ Cp(T )

[|x − ξ |2λp + |t − t ′|2μp
]

×
[
1 + sup

s∈[0,T ]
E

(
χn(‖un(·, s)‖q‖un(., s)‖2pα

q̃

)]
.
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Therefore, the Garsia–Rodemich–Rumsey Lemma yields the upper estimate (2.28). Indeed, 
for every n ≥ 1 we have ‖χn‖∞ ≤ 1 and q̃ ≤ q; hence, Hölder’s inequality gives

χn(‖un(·, s)‖q)‖un(·, s)‖λ
q̃ ≤ nλ ∧ C sup

s∈[0,T ]
‖un(·, s)‖λ

q̃ ,

for every s ∈ [0, T ], and λ > 0. �
3. Investigation of global existence and uniqueness of solution

In this section, we investigate the existence and uniqueness of a global solution for the stochas-
tic evolution equation (2.1). This requires some stronger integrability assumption on the initial 
condition u0, which should belong to L4(D). More precisely, we suppose that the following 
Condition (C̃α) is satisfied.

Condition (C̃α) One of the following properties is satisfied:

(i) d = 1, 2 and q ∈ [3, ∞).
(ii) d = 3 and q ≥ 4 is such that q ∈ (

6(1 − α) ∨ (6α), ∞).

Note that if Condition (C̃α)(ii) is satisfied for d = 3, we have ‖ · ‖4 ≤ C‖ · ‖q for some positive 
constant C, while this upper estimate fails in dimensions d = 1, 2.

The proof is decomposed in two steps. We at first upper estimate the L4(D) norm of (un) by 
that of Ln(un) and some constant defined in terms of the basis of eigenfunctions (εk) presented 
in Subsection 2.2. This is achieved by using the Galerkin approximation. Then for α ∈ (0, 13 ), 
when d = 1, we derive global existence of solution.

3.1. Galerkin approximation and L4(D) estimate of un

For any n ≥ 1, let us define

vn := un −Ln(un).

Then, formally, vn satisfies the following equation:

∂tvn + [�2 − �]vn − (� − Id)
(
χn(‖vn +Ln(un)‖q)f (vn +Ln(un)

)
= 0 in D × [0, T ),

vn(x,0) = u0(x) in D,

∂vn

∂ν
= ∂�vn

∂ν
= 0 on ∂D × [0, T ). (3.1)

For a strict definition of solution, we say that vn is a weak solution of the above equation (3.1) if 
for all φ ∈ C4(D) with ∂φ

∂ν
= ∂�φ

∂ν
= 0 on ∂D, we have:

∫
D

(
vn(x, t)−u0(x)

)
φ(x)dx =

t∫
0

∫
D

{[ − �2 +�
]
φ(x) vn(x, s)

+ [
�φ(x)−φ(x)

]
χn(‖vn +Ln(un)‖q)f (vn +Ln(un))

}
dxds.
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Using the Green’s function G defined by (2.2), we deduce the integral form of this equation:

vn(x, t) =
∫
D

u0(y)G(x, y, t) dy +
t∫

0

∫
D

[
�G(x,y, t − s) − G(x,y, t − s)

]

× χn(‖vn +Ln(un)‖q)f
(
vn(y, s) +Ln(un)(y, s)

)
dyds. (3.2)

We will use the Galerkin method to prove the existence of the solution vn for the equation 
(3.1). Let us denote by 0 = λ0 < λ1 ≤ λ2 ≤ · · · the eigenvalues of Neumann Laplacian operator 
inducing {wi}∞i=0 as an orthonormal basis of L2(D) of eigenfunctions, i.e., (wi, wj)L2(D) = δij

and

−λiwi = �wi in D,
∂wi

∂ν
= 0 on ∂D for i = 0,1,2, · · · . (3.3)

Let Pm denote the orthogonal projection from L2(D) onto span{w0, w1, · · · , wm}. For every 
m = 0, 1, 2, · · · we consider the function vm

n

vm
n (x, t) =

m∑
i=0

ρm
i (t)wi(x),

defined by the Galerkin ansatz, where

{
∂
∂t

vm
n + (

�2 − �
)
vm
n − (

� − Id
)[

χn(‖vm
n +Ln(un)‖q)Pm

(
f (vm

n +Ln(un))
)] = 0,

vn
m(x,0) = Pm(u0) in D,

∂vm
n

∂ν
= ∂�vm

n

∂ν
= 0 on ∂D.

(3.4)

This yields an initial value problem of ODE satisfied by ρm
i (t) for i = 0, 1, · · · , m. By stan-

dard arguments of ODE, this initial value problem has a local solution. We will show that a global 
solution exists.

Multiplying by vm
n both sides of (3.4) and integrating in space, we obtain

1

2

d

dt
‖vm

n (·, t)‖2
2 + ‖�vm

n (., t)‖2
2 + ‖∇vm

n (·, t)‖2
2

= χn(‖vm
n (·, t)+Ln(un)(·, t)‖q)

∫
D

f
(
vm
n (x, t)+Ln(un)(x, t)

)[
�vm

n (x, t)−vm
n (x, t)

]
dx

=
3∑

i=1

Ti(t), (3.5)

where

T1(t) = χn(‖vm
n (·, t) +Ln(un)(·, t)‖q)

∫
D

[
f

(
vm
n (x, t) +Ln(un)(x, t)

) − f
(
vm
n (x, t)

)]

×[
�vm(x, t) − vm(x, t)

]
dx,
n n
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T2(t) = χn(‖vm
n (·, t) +Ln(un)(·, t)‖q)

∫
D

f
(
vm
n (x, t)

)
�vm

n (x, t)dx,

T3(t) = −χn(‖vm
n (·, t) +Ln(un)(·, t)‖q)

∫
D

f
(
vm
n (x, t)

)
vm
n (x, t)dx.

Since f is a polynomial of degree 3, then we have for x, y ∈R:

|f (x + y) − f (x)| ≤ c|y|(1 + x2 + y2).

Thus, by Cauchy–Schwarz and Young inequalities we obtain for any ε > 0

T1(t) ≤ Cχn(‖vm
n (·) +Ln(un)(·, t)‖q)

∫
D

|Ln(un)(x, t)| [1 + |vm
n (x, t)|2 + |Ln(un)(x, t)|2]

×[|�vm
n (x, t)| + |vm

n (x, t)|]dx

≤ C χn(‖vm
n (·, t) +Ln(un)(·, t)‖q)‖Ln(un)(·, t)‖∞

[
1 + ‖vm

n (·, t)2‖2 + ‖Ln(un)(·, t)2‖2
]

×[‖�vm
n (·, t)‖2 + ‖vm

n (·, t)‖2
]

≤ ε
[‖�vm

n (·, t)‖2
2 + ‖vm

n (·, t)‖2
2

]
t

+ C

ε
χn(‖vm

n (·, t) +Ln(un)(·, t)‖q)‖Ln(un)(·, t)‖2∞

×[
1 + ‖vm

n (·, t)‖4
4 + ‖Ln(un)(·, t)‖4

4

]
. (3.6)

Observe that f (x) = ax3 + g(x), where a > 0, and g is a polynomial of degree 2. Hence, it 
follows that f ′(x) = 3ax2 + 2bx + c for some real constants b, c, and f ′(x) ≥ 2ax2 − c̃ for 
some non-negative constant c̃. So, an integration by parts yields for any ε > 0

T2(t) = −χn(‖vm
n (·, t) +Ln(un)(·, t)‖q)

∫
D

f ′(vm
n (x, t))|∇vm

n (x, t)|2dx

≤ Cχn(‖vm
n (·, t) +Ln(un)(·, t)‖q)

∫
D

[ − 2a|vm
n (x, t)|2|∇vm

n (x, t)|2 + c̃|∇vm
n (x, t)|2]dx

≤ −Cχn(‖vm
n (·, t) +Ln(un)(·, t)‖q)

∫
D

vm
n (x, t)�vm

n (x, t)dx

≤ ε‖�vm
n (·, t)‖2

2 + C

ε
χn(‖vm

n (·, t) +Ln(un)(·, t)‖q)‖vm
n (·, t)‖2

2. (3.7)

Finally, since xf (x) ≥ 7
8ax4 − C̃ with a, C̃ > 0, we obtain

T3(t) ≤ χn(‖vm
n (·, t) +Ln(un)(·, t)‖q)

[∫
−7

8
a|vm

n (x, t)|4dx + C̃|D|
]
. (3.8)
D
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The above upper estimates of Ti(t), i = 1, 2, 3, imply that for ε > 0 small enough,

1

4

d

dt
‖vm

n (·, t)‖2
2 + 1

2
‖�vm

n (·, t)‖2
2 + ‖∇vm

n (·, t)‖2
2 ≤ Cχn(‖vm

n (·, t) +Ln(un)(., t)‖q)

×
(
‖Ln(un(·, t))‖2∞

[
1 + ‖vm

n (·, t)‖4
4 + ‖Ln(un(·, t))‖4

4

] + ‖vm
n (·, t)‖2

2 + 1
)
. (3.9)

Since

‖vm
n (·,0)‖2 = ‖Pmu0‖2 ≤ ‖u0‖2,

integrating (3.9) from 0 to t ∈ (0, T ], and using Hölder’s and Young’s inequalities, we finally 
obtain that for some positive constants C, C0:

‖vm
n (·, t)‖2

2 +
t∫

0

‖�vm
n (·, s)‖2

2 ds ≤ ‖u0‖2
2 + CT

(
1 + ‖Ln(un)‖6

L∞
)

+ C0

(
1 + ‖Ln(un)‖2

L∞
) t∫

0

χn(‖vm
n (·, s) +Ln(un)(·, s)‖q)

(‖vm
n (·, s)‖4

4 + 1
)
ds. (3.10)

Note that the H 2(D)-norm is equivalent to 
(∫

D
(|�u(x)|2 + |u(x)|2) dx

) 1
2

under the bound-

ary condition ∂u
∂ν

= ∂�u
∂ν

= 0 on ∂D.
Let q ∈ [3, 4) in dimensions d = 1, 2; then the Gagliardo–Nirenberg inequality implies that 

for any function U ∈ Dom(�) we have:

‖U‖4 ≤ C‖�U‖a
2 ‖U‖1−a

q + C‖U‖q,

for some positive constant C and a ∈ (0, 1) such that 1
4 = ( 1

2 − 2
d

)
a + 1−a

q
, that is a =

4−q
2[q(4−d)+2d] . Then for d = 1, 2 we have 4a < 2; for any ε > 0, we deduce that for some positive
constant C(a)

‖U‖4
4 ≤ ε‖�U‖2

2 + C(a)ε− 2a
1−2a ‖U‖

4(1−a)
1−2a

q + C‖U‖q .

Hence, for any ε > 0 we have for the constant C0 appearing in (3.10):

C0

(
1 + ‖Ln(un)‖2

L∞
) t∫

0

χn(‖vm
n (·, s) +Ln(un)(·, s)‖q)

(‖vm
n (·, s)‖4

4 + 1
)
ds

≤ C0ε
(

1 + ‖Ln(un)‖2
L∞

) t∫
0

‖�vm
n (., s)‖2

2ds

+ C0C(a)ε− 2a
1−2a

(
1+‖Ln(un)‖2

L∞
) t∫

χn(‖vm
n (·, s) +Ln(un)(·, s)‖q)‖vm

n (·, s)‖
4(1−a)
1−2a

q ds
0
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+ C0C
(

1 + ‖Ln(un)‖2
L∞

) t∫
0

χn(‖vm
n (·, s) +Ln(un)(·, s)‖q)‖vm

n (·, s)‖4
q ds. (3.11)

If the cut-off function χn applied to the ‖.‖q norm of some function U is not zero, then we can 
deduce that

‖U‖4 ≤ C̄(n + 1) ≤ Cn.

Recall that |χn| ≤ 1; hence, the triangular inequality implies that

χn(‖vm
n (·, s) +Ln(un)(·, s)‖q)‖vm

n (·, s)‖q ≤ C
(‖Ln(un)‖L∞ + n

)
.

Choose ε−1 = 2C0ε
(

1 + ‖Ln(un)‖2
L∞

)
; plugging the inequality (3.11) in (3.10) and using the 

above upper estimate of ‖vm
n (·, s)‖q , we deduce:

‖vm
n (·, t)‖2

2 + 1

2

t∫
0

‖�vm
n (·, s)‖2

2 ds ≤ ‖u0‖2
2 + CT

(
1 + ‖Ln(un)‖6

L∞
)

+ C(q, d,T )
(

1 + ‖Ln(un)‖2
L∞

)1+ 2a
1−2a

(
n

4(1−a)
1−2a + ‖Ln(un)‖

4(1−a)
1−2a

L∞
)
. (3.12)

Suppose now that q ≥ 4; a similar simpler argument based on the triangular inequality and 
properties of the cut-off function χn yields

t∫
0

χn(‖vm
n (·, s) +Ln(un)(·, s)‖q)

(‖vm
n (·, s)‖4

4 + 1
)
ds ≤ CT

(
1 + ‖Ln(un)‖4

L∞
)

+ C

t∫
0

χn(‖vm
n (·, s) +Ln(un)(·, s)‖q)‖vm

n (·, s) +Ln(un)(·, s)‖4
4 ds

≤ CT
(
1 + ‖Ln(un)‖4

L∞ + n4). (3.13)

The upper estimates (3.12) or (3.10) and (3.13) imply that

sup
t∈[0,T ]

‖vm
n (·, t)‖2

2 ≤ ‖u0‖2
2 + C

(
1 + ‖Ln(un)‖6

L∞
) + CT nN1

(
1 + ‖Ln(un)‖N2

L∞
)
,

and
T∫

0

[‖vm
n (·, t)‖2

2 + ‖�vm
n (·, t)‖2

2]dt ≤ (T + 1)‖u0‖2 + C(T 2 + 1)(1 + ‖Ln(un)‖6
L∞)

+C(T 2 + 1)nN1(1 + ‖Ln(un)‖N2
L∞), (3.14)

for some exponents N1 and N2 which do not depend on m.
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Note that the right-hand sides of both inequalities in (3.14) depend on n but are independent of 
the index m. Thus, a standard weak compactness argument proves that for fixed n, as m → ∞, a 
subsequence of (vm

n , m ≥ 1) converges weakly in L2(0, T ; H 2(D)) to a solution vn of (3.1) with 
homogeneous Neumann boundary conditions.

Let (εk) denote the orthonormal basis defined in Section 2.2 and set

B(u0) := 1

2

∥∥∥ ∑
k∈Nd

[λk + 1]− 1
2 (u0, εk)L2(D)εk

∥∥∥2

2
= 1

2

∑
k∈Nd

[λk + 1]−1(u0, εk)
2
L2(D)

. (3.15)

Note that if D is the unitary cube, we have B(u0) ≤ 1
2‖u0‖2

2. The following lemma provides 
estimates of the L4(D)-norm of un properly localized in terms of that of Ln(un).

Lemma 3.1. Let σ be Lipschitz and satisfy the sub-linearity condition (1.2) with α ∈ (0, 1], and 
let u0 ∈ Lq(D) where q satisfies Condition (C̃α). Let un be the solution to the SPDE (2.14) and 
B(u0) be defined by (3.15). Then, there exists a constant C := C(t, D) independent of the index 
n satisfying almost surely

t∫
0

χn(‖un(·, s)‖q)‖un(·, s)‖4
4ds ≤ C

{
1 + B(u0) +

t∫
0

χn(‖un(·, s)‖q)‖Ln(un)(·, s)‖4
4ds

}
.

(3.16)

Proof. Using the orthonormal basis (εk) defined at the beginning of Section 2.2, we write vn ∈
L2(D) as

vn(x, t) =
∑
k∈Nd

ρk(t)εk(x).

To ease notation, for x ∈D and s ∈ [0, T ] we set

Q(x, s) := χn(‖vn(·, s) +Ln(un)(·, s)‖q)f (un(x, s)).

Then the equation (3.1) is written as follows

∂tvn + (−� + Id)(−�)vn + (−� + Id)Q = 0, (3.17)

with the boundary conditions vn(x, 0) = u0(x) in D, and ∂vn

∂ν
= ∂�vn

∂ν
= 0 on ∂D × [0, T ).

We set A = −� + Id, apply A−1 to (3.17) and take the L2-inner product with vn(·, t). The 
L2-orthogonality of the eigenfunctions εk of � gives

∑
k∈Nd

[λk + 1]−1ρk(t)∂tρk(t) +
∑
k∈Nd

λkρk(t)
2 + (

Q(·, t), vn(·, t)
) = 0.

Integrating this identity from 0 to t yields

t∫ (
Q(·, s), vn(·, s)

)
ds =

∑
d

1

2
[λk + 1]−1ρ2

k (0) −
∑

d

[
[λk + 1]−1 ρ2

k (t) +
t∫
λkρ

2
k (s)ds

]
.

0 k∈N k∈N 0
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Since λk ≥ 0 for all k, we obtain

t∫
0

(
Q(·, s), vn(·, s)

)
L2 ds ≤ 1

2

∑
k∈Nd

[λk + 1]−1ρ2
k (0) = B(u0). (3.18)

Furthermore, f is a polynomial of degree 3; therefore, f (un) ≥ 4
5u4

n − c for some non-negative
constant c. This yields

t∫
0

χn(‖un(·, s)‖q)‖un(·, s)‖4
4ds ≤ C

{
1 +

t∫
0

∫
D

χn(‖un(·, s)‖q)f (un(·, s))un(·, s)dxds
}
.

Since Q = χn(‖vn+Ln(un)‖q)f (un) and un = Ln(un) +vn, using (3.18) in the previous identity 
we obtain

t∫
0

χn(‖un(·, s)‖q)‖un(·, s)‖4
4 ds ≤ C

{
1 +

t∫
0

∫
D

χn(‖un(·, s)‖q)f (un(·, s))Ln(un(·, s)) dxds

+ B(u0)
}
. (3.19)

Using once more the fact that f (un) is a third degree polynomial, Young’s inequality implies 
that for any ε > 0 and s ∈ [0, T ],

∫
D

χn(‖un(·, s)‖q)f (un(x, s))Ln(un(x, s)) dx ≤ ε

∫
D

χn(‖un(·, s)‖q)|f (un(., s))|4/3dx

+ C

ε

∫
D

χn(‖un(·, s)‖q)|Ln(un(x, s))|4 dx

≤ Cεχn(‖un(·, s)‖q)‖un(·, s)‖4
4 + C + C

ε
χn(‖un(·, s)‖q)‖Ln(un(·, s))‖4

4.

Consequently, plugging this upper estimate in (3.19) and choosing ε small enough, we complete 
the proof of (3.16). �
3.2. Some L2-estimates of un

The Sobolev embedding theorem implies that for d = 1, 2, 3, H 2(D) ⊂ L4(D). Hence, com-
putations similar to that used to prove (3.10) using analogues of (3.6)–(3.8) with the weak 
H 2(D)-limit vn of vm

n taken instead of vm
n , show that for any ε > 0 we have

1

2
‖vn(·, t)‖2

2 +
t∫
‖�vn(·, s)‖2

2 ds ≤ 1

2
‖u0‖2

2 + C

t∫
T̃1(s)ds + ε

t∫
‖�vn(·, s)‖2

2ds
0 0 0
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+ C(1 + ε−1)
[
T +

t∫
0

χ2
n(‖vn(·, s) +Ln(un)(·, s))‖q)‖vn(·, s)‖4

4ds
]
,

where the Cauchy–Schwarz and Young inequalities yield for any ε > 0

T̃1(s) ≤ ε
[‖�vn(·, s)‖2

2 + ‖vn(·, s)‖2
2

] + C

ε
χn(‖vn(·, s) +Ln(un)(·, s))‖q)T̄1(s),

for T̄1(s) defined by

T̄1(s) :=
∫
D

|Ln(un(x, s))|2[1 + |vn(x, s)|4 + |Ln(un(x, s))|4]dx

≤ C
[
1 + ‖Ln(un(·, s))‖6∞ + ‖Ln(un(·, s))‖2∞‖vn(·, s)‖4

4

]
.

Recall that un = vn + Ln(un). Choosing ε small enough, using the Gronwall Lemma and 
Lemma 3.1, we deduce that for t ∈ [0, T ] there exists a positive constant C(T ) such that

‖vn(·, t)‖2
2 +

t∫
0

‖�vn(·, s)‖2
2ds ≤ C(T )

(
‖u0‖2

2 + 1

+
t∫

0

χn(‖un(·, s)‖q)
[
1 + ‖Ln(un(·, s))‖6

6 + (‖Ln(un)‖2
L∞ + 1

) ‖vn(·, s)‖4
4

]
ds

)

≤ C(T )
[
‖u0‖2

2 + 1 + ‖Ln(un)‖6
L∞

+ (
1 + ‖Ln(un)‖2

L∞
) t∫

0

χn(‖un(·, s)‖q)
(‖un(·, s)‖4

4 + ‖Ln(un(·, s))‖4
4

)
ds

]

≤ C(T )
[
1 + ‖u0‖2

2 + ‖Ln(un)‖6
L∞ + (1 + ‖Ln(un)‖2

L∞
)
B(u0)

]
≤ C(T )

[
1 + ‖u0‖2

2 + ‖Ln(un)‖6
L∞ + ‖u0‖2

2‖Ln(un)‖2
L∞

]
≤ C(T )

[
1 + ‖u0‖4

2 + ‖Ln(un)‖6
L∞

]
, (3.20)

holds for every n ≥ 1, where the last inequality is a consequence of (3.16), of Young’s inequality 
and of the upper bound B(u0) ≤ C‖u‖2

0.
The above upper estimate and bounds of moments of the stochastic integral proved in Sec-

tion 2.6 yield the following lemma.

Lemma 3.2. Let σ be Lipschitz and satisfy the sub-linear growth condition (1.2) with α ∈ (
0, 1] ∩(

0, 4−d
)
. Let u0 ∈ Lq(D) where q satisfies the Condition (C̃α); then, for every p ∈ [2, ∞) there 
d
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exists a positive constant Cp(T ) such that for every n ≥ 1 we have the estimate

E
(

sup
t∈[0,T ]

‖un(·, t)‖p

2

)
≤ Cp(T )

[
1 + ‖u0‖λ

2 + (1 + ‖u0‖p

2 )E
(

sup
t∈[0,T ]

‖un(., t)‖3αp

2

)]
. (3.21)

Proof. Since un = vn +Ln(un), the inequality (3.20) and the Cauchy Schwarz inequality imply 
that for any t ∈ [0, T ],

‖un(·, t)‖2 ≤ ‖vn(·, t)‖2 + C‖Ln(un)(·, t)‖L∞

≤ C(T )
[
1 + ‖u0‖2 + ‖Ln(un)‖3

L∞ + ‖u0‖2‖Ln(un)‖L∞
]
.

Note that the assumption α < 4−d
d

implies that for q̃ := 2, we have q ≥ 3 ≥ q̃ > 2αd
4−d

. Thus, 
using the upper estimate of moments of the ‖Ln(un)‖q̃ proved in (2.28), we deduce that for any 
p ∈ [2, ∞), we have

E
(‖un(·, t)‖p

2

) ≤ Cp(T )
[
1 + ‖u0‖p

2 + E
(‖Ln(un)‖3

L∞
) + ‖u0‖p

2 E
(‖Ln(un)‖p

L∞
)]

≤ Cp(T )
[
1 + ‖u0‖p

2

][
1 + E

(
sup

t∈[0,T ]
‖un(·, t)‖3αp

2

)]
.

This completes the proof. �
This lemma yields an upper bound of the L2-norm of un which does not depend on n.

Lemma 3.3. Let σ be Lipschitz and satisfy the sub-linear growth condition (1.2) with α ∈ (
0, 13

)
. 

Let u0 ∈ Lq(D) where q satisfies the Condition (C̃α); then, for every p ∈ [2, ∞) there exists a 
positive constant Cp(T ) such that for every n ≥ 1 we have

E
(

sup
t∈[0,T ]

‖un(·, t)‖p

2

)
≤ Cp(T )

[
1 + ‖u0‖

p
1−3α

2

]
. (3.22)

Proof. First note that for d = 1, 2, 3, we have 1
3 ≤ 4−d

d
so that Lemma 3.2 can be used to deduce 

that by Hölder’s inequality,

E
(

1 + sup
t∈[0,T ]

‖un(., t)‖p

2

)
≤ Cp(T )

[
1 +‖u0‖p

2

]+ [
1 +‖u0‖p

2

]{
E

(
1 + sup

t∈[0,T ]
‖un(., t)‖p

2

)}3α]
.

Dividing by 
{
E

(
1 + supt∈[0,T ] ‖un(., t)‖p

2

)}3α

we deduce that

E
(

1 + sup
t∈[0,T ]

‖un(., t)‖p

2

)1−3α ≤ 2Cp(T )
[
1 + ‖u0‖p

2

]
,

which concludes the proof. �
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3.3. Existence of a global solution for d = 1

We now suppose that d = 1; using the Gagliardo–Nirenberg inequality and results from the 
previous section, we will derive the existence of a global solution in Lq for q ∈ [3, ∞). We first 
prove an Lq estimate for Mn(un)(·, t) uniformly in t ∈ [0, T ].

Lemma 3.4. Let d = 1 and σ be Lipschitz and satisfy the sub-linearity condition (1.2) with 
α ∈ (0, 13 ), u0 ∈ Lq(D), where q ∈ [3, ∞). Let un be the solution of the SPDE (2.14) and let 
β ∈ [2, ∞). Then for Mn(un) defined by (2.16) there exists a positive constant C := C(T , ‖u0‖2)

such that for and every n ≥ 1:

E
(

sup
0≤t≤T

‖Mn(un)(·, t)‖β
q

)
≤ C. (3.23)

Proof. Computations similar to those used when proving (2.19), yield for 1
ρ

+ 1
r

= 1
q

+ 1,

‖Mn(un)(·, t)‖q ≤ C

t∫
0

(t − s)−
3
4 + 1

4r

∥∥∥χn(‖un(·, s)‖q)f (un(., s))

∥∥∥
ρ

ds.

Since f is a third degree polynomial, choosing ρ = q
3 as before, we get

∥∥∥χn(‖un(·, s)‖q)f (un(., s))

∥∥∥
q
3

≤ C
(

1 + ‖un(·, s)‖3
q

)
.

Thus, for ρ = q
3 and r such that 2

q
+ 1

r
= 1, we obtain for any t ∈ [0, T ]:

‖Mn(un)(·, t)‖q ≤ C

t∫
0

(t − s)−
3
4 + 1

4r

(
1 + ‖un(·, s)‖3

q

)
ds.

Let γ ∈ (1, ∞) be such that (− 3
4 + 1

4r
)γ > −1, and let γ ′ be the conjugate exponent of γ . Then 

γ ′ > 2q
q−1 and Hölder’s inequality yields the existence of a positive constant C such that

‖Mn(un)(·, t)‖q ≤ C(T )
{

1 +
( t∫

0

‖un(·, s)‖3γ ′
q ds

) 1
γ ′ }

. (3.24)

Let ã = q−2
4q

; then the Gagliardo–Nirenberg inequality (see [1]) implies the existence of a con-

stant C such that for any function φ ∈ H 2(D), we have

‖φ‖q ≤ C‖D2φ‖ã
2 ‖φ‖1−ã

2 + C‖φ‖2.

The Dirichlet boundary conditions we have imposed imply that the norms ‖φ‖H 2 and 
(‖φ‖2 +

‖�φ‖2) are equivalent; therefore, we obtain

‖φ‖q ≤ C‖�φ‖ã ‖φ‖1−ã + C‖φ‖2. (3.25)
2 2
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Note that since 3(q−2) < 4(q −1), we can choose the conjugate exponents γ and γ ′ such that 
3γ ′ã < 2. Thus, the identity un = Ln(un) + vn, (3.25) and (3.20) imply that for any t ∈ [0, T ], 
we have

( t∫
0

‖un(·, s)‖3γ ′
q ds

)1/γ ′
≤ C

( t∫
0

(‖Ln(un)‖3γ ′
L∞ + ‖vn(·, s)‖3γ ′

q )ds
)1/γ ′

≤ C(T )
[
‖Ln(un)‖3

L∞ + sup
s∈[0,T ]

‖un(·, s)‖3
2

]

+ C sup
s∈[0,T ]

‖vn(·, s)‖3(1−ã)
2

( t∫
0

‖�vn(·, s)‖3ãγ ′
2 ds

)1/γ ′

≤ C(T )
[
‖Ln(un)‖3

L∞ + sup
s∈[0,T ]

‖un(·, s)‖3
2

]

+ C
[
‖Ln(un)‖3(1−ã)

L∞ + sup
s∈[0,T ]

‖un(·, s)‖3(1−ã)
2

]( t∫
0

‖�vn(·, s)‖2
2ds

)3ã/2

≤ C(T )
[
‖Ln(un)‖3

L∞ + sup
s∈[0,T ]

‖un(·, s)‖3
2

]

+ C(T )
(

1 + ‖u0‖6ã
2 + ‖Ln(un)(·, s)‖9ã

L∞
)(

‖Ln(un)‖3(1−ã)
L∞ + sup

s∈[0,T ]
‖un(·, s)‖3(1−ã)

2

)

≤ C(T )(1 + ‖u0‖6ã
2 )

(
‖Ln(un)‖3

L∞ + sup
s∈[0,T ]

‖un(·, s)‖3
2

)

+ C(T )‖Ln(un)‖6ã+3
L∞ + C(T )‖Ln(un)‖9ã

L∞ sup
s∈[0,T ]

‖un(·, s)‖3(1−ã)
2 . (3.26)

Thus, choosing the conjugate exponents γ and γ ′ such that γ ′ >
2q

q−1 and 3γ ′ã < 2, plugging 
the upper estimate (3.26) into (3.24), using Hölder’s inequality, (3.22) and (2.28) we deduce that 
for any β ∈ [1, ∞) and α ∈ (0, 13 ), we have

E
(

sup
t∈[0,T ]

‖Mn(un)(., t)‖β
q

)
≤ C

[
1 + E

(‖Ln(un)‖(6ã+3)β
L∞

) + E
(

sup
s∈[0,T ]

‖un(., s)‖3β

2

)

+
{
E

(
‖Ln(un)‖9β

L∞
)}ã{

E
(

sup
s∈[0,T ]

‖un(., s)‖3β

2

)}1−ã]
,

for some constant C depending on T , ‖u0‖2 and β . Since 2 > 2α
3 for any α ∈ (0, 1], we deduce 

from (2.28) applied with q̃ = 2 that

E
(‖Ln(un)‖p∞

) ≤ Cp(T )E
(

sup
t∈[0,T ]

‖un(., t)‖αp

2

)
,

for every p ∈ [2, ∞). The inequality (3.22) concludes the proof. �
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Remark 3.5. Note that the above arguments highly depend on the fact that d = 1. Indeed, for d =
2, 3 the choice of γ to ensure time integrability gives an exponent γ ′ too large to be compatible 
with that of the Laplace operator coming from the Gagliardo–Nirenberg inequality. Dimensions 
d = 2, 3 would require a more regular noise, such as a noise white in time but colored in space.

By using Lemmas 2.7 and 3.4 we can complete the proof of existence of a global solution of 
(2.11) for d = 1 and α ∈ (

0, 13
)
.

Indeed, for every integer n ≥ 1 let us define the stopping time Tn as follows:

Tn := inf
{
t ≥ 0 : ‖un(·, t)‖q ≥ n

}
. (3.27)

Then for every integer n ≥ 1, the process u(·, t) = un(·, t) is a solution of (2.11) on the interval 
[0, Tn ∧ T ]. Assuming that α ∈ (0, 13 ), we will show that lim

n→∞Tn = ∞ a.s., which will enable us 

to solve (2.11) on [0, T ] a.s. for any fixed T .

Theorem 3.6. Let d = 1, and suppose that σ is globally Lipschitz and satisfies the sub-linearity 
condition (1.2) with α ∈ (0, 13 ). Let u0 ∈ Lq(D) where q satisfies Condition (C̃α). Then for 
any T > 0 there exists a unique solution u to the SPDE (2.11) in the time interval [0, T ]
(or equivalently if Tn is defined by (3.27), Tn → ∞ a.s. as n → ∞); this solution belongs to 
L∞([0, T ]; Lq(D)

)
a.s. Furthermore, given any β ∈ [2, ∞) we have

E
(

1{T ≤Tn} sup
t≤T

‖u(., t)‖β
q

)
≤ C,

for some constant C depending on T , β, q and ‖u0‖2.

Proof. The sequence Tn is clearly non-decreasing. Fix T > 0; by the definition of Tn, on the set 
{Tn < T } we have for any β ∈ [2, ∞)

sup
t∈[0,T ]

‖un(·, t)‖β
q ≥ nβ.

Thus, the Chebyshev inequality, (2.12), (2.18), (2.28) and (3.23) yield the existence of a constant 
C depending on T , ‖u0‖q , ‖u0‖2 and β such that for every n ≥ 1 the next inequality holds true

P(Tn < T ) ≤ n−βE
(

sup
t∈[0,T ]

‖un(·, t)‖β
q

)
≤ Cn−β. (3.28)

Since β ∈ [2, ∞), the Borel–Cantelli Lemma implies that P(lim sup
n→∞

{Tn < T }) = 0, that is 

lim
n→∞Tn ≥ T a.s. Since T is arbitrary, this yields Tn → ∞ a.s. as n → ∞. The uniqueness of 

the solution to (2.14) implies that a process u can be uniquely defined setting u(·, t) = un(·, t) on 
[0, Tn]. Since Tn → ∞ a.s., we conclude that for any fixed T > 0, equation (2.11) has a unique 
solution and the upper estimate of moments of the q-norm of the solution follows from (2.12), 
(2.18), (2.28) and (3.23). �
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Remark 3.7. In a future work we aim to treat the problem in its full generality, investigating 
also equal-well potentials of higher polynomial order 4 + k for k > 0, resulting to a higher order 
nonlinearity (of order 3 + k), together with the restriction on the growth α. Based on this paper’s 
results we conjecture that global solutions exist for α ∈ [

0, 1
3+k

)
in dimension 1 and that a larger 

dimension d would require a driving noise more regular in the space variable.

4. Generalization

The stochastic local existence proof for the Cahn–Hilliard/Allen–Cahn equation with noise, 
could easily be modified to hold for domains with more general geometry, cf. in [2] the proposed 
eigenvalue-formulae-free approach for the stochastic Cahn–Hilliard equation.

Furthermore, all our results proven so far, are also valid for the more general model

⎧⎪⎨
⎪⎩

ut = −��
(
�u − f (u)

)
+ q̃

(
�u − f (u)

)
+ σ(u)Ẇ in D × [0, T ),

u(x,0) = u0(x) in D,
∂u
∂ν

= ∂�u
∂ν

= 0 on ∂D × [0, T ),

(4.1)

for some constants � > 0 and q̃ ≥ 0. The proof is very similar with the following simple modifi-
cations:

(1) We have to replace the Green’s function G defined by (2.2) by the following �, q̃-dependent 
one

G�,q̃ (x, y, t) :=
∑
k∈Nd

e(−�λ2
k+q̃λk)t εk(x)εk(y).

All the estimates used on G also hold for G�,q̃ , since the operator −��2 + q̃� is parabolic 
in the sense of Petrovsk˘ıı.

(2) The estimate (3.16) also holds for � > 0 and q̃ > 0 when B(u0) is defined as

B(u0) := 1

2

∥∥∥ ∑
k∈Nd

[�λk + q̃]− 1
2 (u0, εk)L2(D)εk

∥∥∥2

2
.

Since � > 0 and λk ≥ 0, one may also invert �λk + q̃ if q̃ > 0 for any k ∈ N
d .

If q̃ = 0 (for � = 1 we get the Cahn–Hilliard equation) then

B(u0) := 1

2

∥∥∥ ∑
k∈N∗d

[�λk]− 1
2 (u0, εk)L2(D)εk

∥∥∥2

2
,

and �λk , for any k ∈ N
∗d , is invertible.

While the stochastic Cahn–Hilliard equation is a special case for our analysis (with ρ = 1 and 
q̃ = 0), this is not true for the stochastic Allen–Cahn equation. In our model the assumption that 
� > 0 is crucial; indeed, since the fourth order operator is still acting, the operator −ρ�2 + q̃� is 
also parabolic in the sense of Petrovskı̆ı. Thus, the higher order differential operator is dominating 
and all the upper estimates of the Green’s function and their derivatives stated in Section 2.2
remain valid.
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5. Path regularity

In this section, we investigate the path regularity for the global solution to stochastic solution 
of (1.1) when d = 1 under certain regularity assumptions for the initial condition u0. Our argu-
ments will also provide a.s. regularity of the maximal solution of the solution to (1.1), that is 
when restricted to the time interval [0, T ∗) defined in Section 2.5.

More precisely, we prove that when the coefficient σ has an appropriate sub-linear growth, 
the paths of the solution to equation (1.1) have a.s. a Hölder regularity depending on that of the 
initial condition. The path regularity proven here is the same as that obtained for the stochastic 
Cahn–Hilliard equation obtained in [3], where the coefficient σ was supposed to be bounded. We 
follow the main lines of the proof presented in [3]; nevertheless some modifications are needed. 
Indeed, the factorization method is used both for the deterministic and stochastic integrals.

In this section we suppose that the assumptions of Theorem 3.6 are satisfied. Let us recall that 
the integral form of the solution u given by (2.11) can be decomposed as follows:

u(t, x) = Gtu0(x) + I(x, t) +J (x, t), (5.1)

where Gtu0 is defined by (2.13), and

I(x, t) =
t∫

0

∫
D

[�G(x,y, t − s) − G(x,y, t − s)]f (u(y, s)) dyds,

J (x, t) =
t∫

0

∫
D

G(x,y, t − s)σ (u(y, s)) W(dy, ds). (5.2)

Let us study the regularity of each term in the decomposition (5.1) of u.
The series decomposition of G given in (2.2) is similar to that in [3]; hence an argument 

similar to the proof of Lemma 2.1 of [3] if u0 is continuous, and to the first part of Lemma 2.2 
of [3] if u0 is δ-Hölder continuous, yields the following regularity result for G·u0(·).
Lemma 5.1. If u0 is continuous, then the function Gtu0 is continuous. If u0 belongs to Cδ(D)

for 0 < δ < 1, then the function (x, t) → Gtu0(x) is δ-Hölder continuous in the space variable 
x and δ

4 -Hölder continuous in the time variable t .

Let us now consider the drift term I(x, t) and use the factorization method (see e.g. [7] or [3]).
We remark that, as proved in Theorem 3.6, if u0 is bounded, then u belongs a.s. to 

L∞(0, T ; Lq(D)) for any q < ∞ large enough.
The definition of the Green’s function yields

�G(x,y, t) =
∫
D

G(x,y, t − s)�G(z, y, s) dz, (5.3)

and

G(x,y, t) =
∫

G(x,y, t − s)G(z, y, s) dz. (5.4)
D
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For some a ∈ (0, 1) define the operators F and H on L∞(0, T ; Lq(D)) as follows:

F(v)(t, x) :=
t∫

0

∫
D

G(x, z, t − s)(t − s)−av(z, s) dzds,

H(v)(z, s) :=
s∫

0

∫
D

[
�G(z, y, s − s′) − G(z,y, s − s′)

]
(s − s′)a−1f (v(y, s′)) dyds′.

Therefore, using relations (5.3) and (5.4) we deduce that

I(x, t) = caF(H(u))(x, t),

where ca := π−1 sin(πa) obviously depends only on a.
First we claim that, for q satisfying Condition (C̃α), the operator H maps L∞(0, T ; Lq(D))

into itself. Indeed, the estimates on the Green’s function in Lemma 2.1 and arguments similar 
to those used in Section 2.4 to prove (2.19) with ρ = q

3 (based on the Minkowski and Young 
inequalities) prove that if v ∈ L∞(0, T ; Lq(D)) then

‖H(v)(·, t)‖q ≤
t∫

0

(t − s)
−1+a− 1

2 − d
2q

(
1 + ‖v(·, s)‖3

q

)
ds.

For the boundedness of the above integral we need that −1 +a− 1
2 − d

2q
> −1. Since q > d , this 

inequality holds for some a ∈ ( 1
2 + d

2q
, 1

)
. Then, an argument similar to that used in [3] proves 

that if v ∈ L∞([0, T ]; Lq(D)) then F(v) belongs to Cλ,μ(D × [0, T ]) for any λ < 1 and μ < 1
2 . 

Indeed, the upper estimates of the Green’s function from Lemma 2.2 are the same as that for the 
Green’s function of the Cahn–Hilliard equation which only involves the fourth order derivatives.

Considering the stochastic integral J defined in (5.2), we observe that the fact that σ is not 
bounded any more does not allow us to use the related argument from the proof of Lemma 2.2 in 
[3] stated on page 797. Instead, we also use the factorization method for the stochastic integral. 
Let T ∗ be defined by Section 2.5; recall that given any n ≥ 1, for

Tn = inf{t ≥ 0 : ‖un(., t)‖q ≥ n} ∧ T ∗,

we have 1{T <Tn}u(., t) = 1{T <Tn}un(., t), where un is the solution to (2.14). The local property 
of stochastic integrals implies that for any n and t ∈ [0, T ]:

1{T <Tn}J (x, t) = 1{T <Tn}
t∫

0

∫
D

G(t − s, x, y)1{s≤Tn}σ(un(y, s))W(dy, ds).

The process un is adapted and since u0 is bounded Condition (C̃α) holds true for q large enough. 
Furthermore, if γ > 0 and β ∈ (1, ∞) are such that βγ ∈ [2, ∞), using the inequalities (2.28)
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and (3.2) we have E
∣∣ ∫ T

0 ‖un(., t)‖γ
q dt |β ≤ C(n, T ). Fix a ∈ (0, 1), let K(un) be defined as fol-

lows:

K(un)(x, t) =
t∫

0

∫
D

G(x,y, t − s)(t − s)a−11{s<Tn}σ(un(y, s))W(dy, ds).

We first check that this stochastic integral makes sense for fixed t ∈ [0, T ] and x ∈ D, and that 
a.s. K(un) ∈ L∞(0, T ; Lq(D)), so that 1{T ≤Tn}J (x, t) = 1{T ≤Tn}caF(K(un))(x, t).

Indeed, for fixed t ∈ [0, T ], x ∈D and p ∈ [1, ∞), the Burkholder inequality yields

E|K(un)(x, t)|2p ≤ E

∣∣∣
t∫

0

∫
D

G2(x, y, t − s)(t − s)2(a−1)1{s≤Tn}σ 2(un(s, y))dyds

∣∣∣p

≤ C(n)

∣∣∣
t∫

0

(t − s)−
d
2 +2(a−1)+ d

4 ds

∣∣∣p

Let a ∈ ( 1
2 + d

8 , 1); then we have − d
2 + 2(a − 1) + d

4 > −1, which yields

E|K(un)(x, t)|2p < ∞, ∀p ∈ [1,∞). (5.5)

Let us now prove moment upper estimates of increments of K(un); this together with (5.5)
will imply by Garsia’s Lemma that

E
(‖K(un)‖2ρ

L∞(D×[0,T ])
)
< ∞.

Arguments similar to those used in the proof of (2.29) prove that for λ̃ ∈ (0, 1), q̃ ∈ (2α, q)

and n ≥ 1, we have for t ∈ [0, T ], x, ξ ∈D:

E
∣∣K(un)(x, t) −K(un)(ξ, t)

∣∣2p ≤ Cp|x − ξ |2λ̃p

×
∣∣∣

t∫
0

(t − s)−
d+1

2 λ̃− d
2 (1−λ̃)+2(a−1)1{s≤Tn}‖ exp(h(., t, s)‖ q̃

q̃−2α

[
1 + ‖un(., s)‖2α

q̃

]
ds

∣∣∣p

≤ Cp(n)|x − ξ |2λ̃p
∣∣∣

t∫
0

(t − s)
− d+λ̃

2 +2(a−1)+ d(q̃−2α)
4q̃ ds

∣∣∣p

≤ Cp(n,T )|x − ξ |2λ̃p

for some finite constant Cp(n, T ), provided that the time integrability constraint − d+λ̃
2 + 2(a −

1) + d(q̃−2α)
4q̃

> −1 holds true. Recall that for d = 1, 2 we have q ∈ [2, ∞) while for d = 3 we 

have required q > 6α; in both cases we deduce that α < q
( 2

d
− 1

2

)
. Thus, given λ̄ ∈ (

0, 2 −
d − dα

) ∩ (0, 1) one can find q̃ ∈ (2α, q) and a ∈ ( 1 + d , 1
)

such that the time integrability 
2 q 2 8
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is fulfilled. Furthermore, if we may choose q as large as we want (because the initial condition 
is bounded) and λ̄ ∈ (

0, 
[
2 − d

2

] ∧ 1
)
, then the choice of q̃ < q and a < 1 ensuring the time 

integrability is still possible.
Let 0 ≤ t ′ ≤ t ≤ T , x ∈D and μ̃ ∈ (

0, 12 − d
8

)
; arguments similar to that proving (2.30) imply

E
∣∣K(un)(x, t) −K(un)(x, t ′)

∣∣2p ≤ Cp|t − t ′|2μ̃p

×
∣∣∣

t∫
0

(t − s)−2( d
4 +1)μ̃− d

2 (1−μ̃)+2(a−1)1{s≤Tn}‖ exp(h(., t, s)‖ q̃
q̃−2α

[
1 + ‖un(., s)‖2α

q̃

]
ds

∣∣∣p

≤ Cp(n)|t − t ′|2μ̃p
∣∣∣

t∫
0

(t − s)
− d

2 −2μ̃+2(a−1)+ d(q̃−2α)
4q̃ ds

∣∣∣p

≤ Cp(n,T )|t − t ′|2μ̃p,

for some finite constant Cp(n, T ), provided that − d
4 − 2μ̃ − 2(1 − a) − αd

2q̃
> −1. Once more, 

given μ̃ ∈ (
0, 12 − d

8 − αd
4q

)
, we can find q̃ ∈ (2α, q) and a ∈ ( 1

2 + d
8 , 1

)
such that this inequality 

holds true. Furthermore, if we may choose q as large as we want (because the initial condition is 
bounded) and μ̄ ∈ (

0, 12 − d
8

)
, then the choice of q̃ < q and a < 1 ensuring the time integrability 

is still possible.
Hence, given a bounded initial condition u0, λ̄ ∈ (

0, 
[
2 − d

2

] ∧ 1
)

and μ̄ ∈ (
0, 12 − d

8

)
, for 

every n ≥ 1 and p ∈ [1, ∞), we can find some positive constant Cp(n, T ) such that

E|K(un)(x, t) −K(un)(ξ, t ′)|2p ≤ Cp(n,T )
(|ξ − x|2λ̃p + |t − t ′|2μ̃p

)
,

for 0 ≤ t ′ ≤ t ≤ T and x, ξ ∈D.
The Garsia–Rodemich–Rumsey lemma implies that

E
(‖K(un)‖2p

L∞(D×[0,T ])
)
< ∞, ∀p ≥ 1,

and

E
(‖K(un)‖2p

q

) ≤ E
(‖K(un)‖2p

L∞(D×[0,T ])
)
< ∞, ∀p ≥ 1.

This gives on one hand the stated time and space Hölder regularity, and on the other hand the 
previous space-time Hölder moments estimates of K(un) ∈ L∞(0, T , Lq(D)) a.s.

Since F maps L∞(0, T ; Lq(D)) into Cλ,μ(D × [0, T ]) for λ <
[
2 − d

2

] ∧ 1 and μ < 1
2 − d

8 , 
and since J (x, t) = caF(K(un))(x, t) on the set {T < Tn}, we deduce that J ∈ Cλ,μ(D×[0, T ])
a.s. on the set {T < Tn}.

Finally, Theorem 3.6 implies that as n → ∞ the sets {T < Tn} increase to � when d = 1
and to t < T ∗ for d = 2, 3; this proves that a.s. J ∈ Cλ,μ(D × [0, T ]) for λ <

[
2 − d

2

] ∧ 1 and 
μ < 1 − d .
2 8
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As a consequence (cf. [3]), we obtain the following regularity of the trajectories for d = 1.

Theorem 5.2. Let d = 1, σ be globally Lipschitz and satisfy the sub-linearity condition (1.2)
with α ∈ (0, 13 ), and let u0 ∈ L∞(D). Then we have:

(i) If u0 is continuous, then the global solution of (2.11) has almost surely continuous trajecto-
ries.

(ii) If u0 is β-Hölder continuous for 0 < β < 1, then the trajectories of the global solution to 
(2.11) are almost surely β ∧ (

2 − d
2

)
-continuous in space and β

4 ∧ ( 1
2 − d

8

)
-continuous in 

time.

A similar result holds for the maximal solution of (2.11) in dimension d = 2, 3.

Theorem 5.3. Let d = 2, 3, σ be globally Lipschitz and let u0 ∈ L∞(D). Let T ∗ denote the 
stopping time introduced in Section 2.5; then we have:

(i) If u0 is continuous, then the local maximal solution of (2.11) has almost surely continuous 
trajectories on D × [0, T ∗).

(ii) If u0 is β-Hölder continuous for 0 < β < 1, then the trajectories of the global solution to 
(2.11) are almost surely β ∧ (

2 − d
2

)
-continuous in space and β

4 ∧ ( 1
2 − d

8

)
-continuous in 

time on D × [0, T ∗).
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