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Abstract

The main purpose of this paper is to establish the first and second order necessary optimality conditions 
for stochastic optimal controls using the classical variational analysis approach. The control system is gov-
erned by a stochastic differential equation, in which both drift and diffusion terms may contain the control 
variable and the set of controls is allowed to be nonconvex. Only one adjoint equation is introduced to 
derive the first order necessary condition; while only two adjoint equations are needed to state the second 
order necessary conditions for stochastic optimal controls.
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1. Introduction

Let T > 0 and (�, F, F, P) be a complete filtered probability space (satisfying the usual 
conditions), on which a 1-dimensional standard Wiener process W(·) is defined such that F =
{Ft }0≤t≤T is the natural filtration generated by W(·) (augmented by all the P -null sets).

Let us consider the following controlled stochastic differential equation{
dx(t) = b(t, x(t), u(t))dt + σ(t, x(t), u(t))dW(t), t ∈ [0, T ],
x(0) = x0 ∈ K,

(1.1)

with the cost functional

J (u(·), x0) = E

[ T∫
0

f (t, x(t), u(t))dt + g(x(T ))
]
. (1.2)

Here u(·) is the control variable with values in a closed nonempty subset U of Rm (for some 
fixed m ∈ N), x(·) is the state variable with values in Rn (for some given n ∈ N), K is a closed 
nonempty subset in Rn, and b, σ : [0, T ] ×R

n ×R
m ×� → R

n, f : [0, T ] ×R
n ×R

m ×� →R

and g : Rn × � → R are given functions (satisfying suitable conditions to be stated later). As 
usual, when the context is clear, we omit the ω (∈ �) argument in the defined functions.

Denote by 〈·, ·〉 and | · | respectively the inner product and norm in Rn or Rm, which can be 
identified from the contexts, by B(X) the Borel σ -field of a metric space X, and by Uad the 
set of B([0, T ]) ⊗F -measurable and F-adapted stochastic processes with values in U such that 
E 
∫ T

0 |u(t, ω)|2dt < ∞. Any u(·) ∈ Uad is called an admissible control, the corresponding state 
x(·; x0) of (1.1) with initial datum x0 ∈ K is called an admissible state, and (x, u, x0) is called 
an admissible triple. An admissible triple (x̄, ū, x̄0) is called optimal if

J (ū(·), x̄0) = inf
u(·)∈Uad

x0∈K

J (u(·), x0). (1.3)

The purpose of this paper is to establish first and second order necessary optimality condi-
tions for problem (1.3). We refer to [4,5,16,21] and references cited therein for some early works 
on this subject. Although the stochastic optimal control theory was developing almost simul-
taneously with the deterministic one, its results are much less fruitful than those obtained for 
the deterministic control systems. The main reasons are due to some essential difficulties (or new 
phenomena) when the diffusion term of the stochastic control system depends on the control vari-
able and the control region lacks convexity. In contrast with the deterministic case, for stochastic 
optimal control problems when spike variations are used as perturbations, the cost functional 
needs to be expanded up to the second order and two adjoint equations have to be introduced to 
derive the first order necessary optimality conditions. A stochastic maximum principle for this 
general case was established in [27]. On the other hand, to derive the second order necessary 



JID:YJDEQ AID:8637 /FLA [m1+; v1.239; Prn:6/12/2016; 13:46] P.3 (1-48)

H. Frankowska et al. / J. Differential Equations ••• (••••) •••–••• 3
optimality conditions, the cost functional needs to be expanded up to the forth order and four ad-
joint equations have to be introduced, see [34]. Consequently, these necessary conditions narrow 
the field of applications, since they require so many adjoint equations and considerably strong 
smoothness assumptions (with respect to the state variable x) on the coefficients of the control 
system and the cost functional.

Can we use just one adjoint equation (resp. two adjoint equations) to derive a first (resp. sec-
ond) order necessary condition for the above general stochastic optimal control problem? To 
answer this question, let us first turn back to the special case of convex control constraint. When 
the control region is convex, the usual convex variation can be used to construct a control per-
turbation. Only one adjoint equation is needed to establish the first order necessary condition 
(see [4]) and two adjoint equations are needed to establish the second order necessary condition 
(see [33]) for stochastic optimal controls. The main advantage of using the convex variations 
instead of the spike ones, is the fact that, it avoids efficiently the difficulties brought by perturba-
tions with respect to the measure. However, when the control region is nonconvex, the traditional 
convex variations cannot be used, since there may exist a control u(·) in the set of admissible 
controls Uad such that v := u − ū is not an admissible direction to construct a control pertur-
bation (of the optimal control ū). Nevertheless, if the perturbation direction v is chosen so that 
for any ε > 0 one can find a vε converging to v (in a suitable sense) when ε → 0+ and satis-
fying ū + εvε ∈ Uad , then the variational approach can be adopted to deal with some optimal 
control problems having nonconvex control regions (we call it the classical variational analysis 
approach). Indeed, this method has been used extensively in optimization and optimal control 
theory in the deterministic setting. Using this method, in [17,11], some second order integral 
type necessary conditions for deterministic optimal controls were established. It was shown in 
[10,12] that these necessary conditions imply pointwise ones.

In this paper, we shall use the classical variational analysis approach to establish the first 
and second order necessary optimality conditions for stochastic optimal controls in the general 
setting, that is, when the control region is allowed to be nonconvex and the control variable enters 
also into the diffusion term of the control system. Let us recall that, when the diffusion term does 
NOT depend on the control variable, cf. [1,23,30], the situation is more or less similar to the 
deterministic setting like the one in [11,22]. Compared to the existing results for the case of 
general control constraints obtained by the spike variations [27,34], the main advantage of the 
classical variational analysis approach is due to weaker smoothness requirements imposed on the 
coefficients of the control system and the cost functional (with respect to the state variable x) and 
to fewer adjoint equations needed to state these conditions. Previously the first and second order 
integral type necessary conditions for stochastic optimal controls with convex control constraints 
were derived in [6] using the convex (first order) variations of optimal control. In the difference 
with [6], our variational approach is also valid when the control region is nonconvex and, since 
the second order variations of the control region are used in this paper, the corresponding second 
order necessary condition is more effective than the one of [6] even in the case of convex control 
constraints (see Example 4.1 below).

In a sense, our work can be viewed as a refinement of known optimality conditions for stochas-
tic control problems. To see it, let us return, for a moment, to the deterministic optimal control 
problem, i.e., when the functions σ(·) ≡ 0, b(·), f (·), g(·), x(·) and u(·) in (1.1)–(1.2) are in-
dependent from the sample point ω, and also, for the sake of simplicity, let K = {x0} for some 
fixed x0 ∈ R

n. Consider an optimal pair (x̄, ū) and the solution ψ(·) to the following ordinary 
differential equation,
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{
ψ̇(t) = −bx(t, x̄(t), ū(t))�ψ(t) + fx(t, x̄(t), ū(t)), t ∈ [0, T ],
ψ(T ) = −∇g(x̄(T )).

(1.4)

Define the (deterministic) Hamiltonian

H(t, x,u,ψ) := 〈ψ,b(t, x,u)〉 − f (t, x,u), ∀ (t, x,u,ψ) ∈ [0, T ] ×R
n ×R

m ×R
n.

Then the following Pontryagin maximum principle [28] holds

H(t, x̄(t), ū(t),ψ(t)) = max
v∈U

H(t, x̄(t), v,ψ(t)), a.e. t ∈ [0, T ]. (1.5)

Clearly, when U is a finite set, condition (1.5) provides an effective way to compute “ū(·)”; while 
when U is convex, condition (1.5) yields〈

Hu(t, x̄(t), ū(t),ψ(t)), v − ū(t)
〉 ≤ 0, ∀ v ∈ U, a.e. t ∈ [0, T ]. (1.6)

What about other types of U? Are there other necessary conditions for optimal pairs? The 
classical monograph [28] was followed by numerous works addressing the above issues and 
refinements of known results on optimal control problems in the deterministic finite dimensional 
setting. In this respect, we refer to [3,7,10,14,15,17,19,20,26] for high order necessary condi-
tions when the first-order necessary conditions turn out to be trivial and to [26] for a discussion 
on “bang-bang” controls which are very useful in applications. A very natural question concerns 
the stochastic counterpart of the above results. Surprisingly, very little is known about high order 
conditions in the stochastic framework! Indeed, as an interesting comparison, we mention that, 
there exists at least five research monographs [3,7,14,19,26] devoted to deterministic high order 
necessary conditions but one can find only a very few published articles [1,6,23,30,33] for their 
stochastic analogues.

The outline of the paper is as follows. In Section 2, we collect some notations and introduce 
some spaces and preliminary results that will be used later. In Section 3, we derive the first order 
necessary conditions for stochastic optimal controls. Section 4 is devoted to establishing second 
order necessary conditions. Finally, in the Appendix, we give the proofs of two technical results 
from Sections 3 and 4.

Some of preliminary results of this paper are announced (without proofs) in [13].

2. Preliminaries

This section is of preliminary nature, in which we shall introduce some useful notations and 
spaces, and recall some concepts and results from the set-valued analysis and the Malliavin 
calculus.

2.1. Notations and spaces

In this subsection, we introduce some notations and spaces which will be used in the sequel.
Denote by C∞

b (Rn; Rm) the set of C∞-smooth functions from Rn to Rm with bounded partial 
derivatives. Let Rn×m be the space of all n × m-real matrices. For any A ∈R

n×m, denote by A�
its transpose and by |A| = √

tr{AA�} the norm of A. Also, write Sn := {
A ∈ R

n×n
∣∣ A� = A

}
.
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Let ϕ : [0, T ] ×R
n ×R

m ×� → R
d (d ∈ N) be a given function. For a.e. (t, ω) ∈ [0, T ] ×�, 

we denote by ϕx(t, x, u, ω) and ϕu(t, x, u, ω) respectively the first order partial derivatives of ϕ
with respect to x and u at (t, x, u, ω), by ϕ(x,u)2(t, x, u, ω) the Hessian of ϕ with respect to (x, u)

at (t, x, u, ω), and by ϕxx(t, x, u, ω), ϕxu(t, x, u, ω) and ϕuu(t, x, u, ω) respectively the second 
order partial derivatives of ϕ with respect to x and u at (t, x, u, ω).

For any α, β ∈ [1, +∞) and t ∈ [0, T ], we denote by Lβ

Ft
(�; Rn) the space of Rn-valued, 

Ft measurable random variables ξ such that E |ξ |β < +∞; by Lβ([0, T ] × �; Rn) the space of 

R
n-valued, B([0, T ]) ⊗ F -measurable processes ϕ such that ‖ϕ‖β := [

E 
∫ T

0 |ϕ(t, ω)|βdt
] 1

β <

+∞; by Lβ

F
(�; Lα(0, T ; Rn)) the space of Rn-valued, B([0, T ]) ⊗ F -measurable, F-adapted 

processes ϕ such that ‖ϕ‖α,β := [
E

( ∫ T

0 |ϕ(t, ω)|αdt
) β

α
] 1

β < +∞; by Lβ

F
(�; C([0, T ]; Rn)) the 

space of Rn-valued, B([0, T ]) ⊗F -measurable and F-adapted continuous processes ϕ such that 

‖ϕ‖∞,β := [
E

(
supt∈[0,T ] |ϕ(t, ω)|β)] 1

β < +∞; by L∞([0, T ] ×�; Rn) the space of Rn-valued, 
B([0, T ]) ⊗ F -measurable processes ϕ such that ‖ϕ‖∞ := ess sup(t,ω)∈[0,T ]×�|ϕ(t, ω)| < +∞
and by Lβ(0, T ; Lβ

F
([0, T ] × �; Rn)) the Rn-valued, B([0, T ]) ⊗ B([0, T ]) ⊗ F measurable 

functions ϕ such that ‖ϕ‖β := [
E 
∫ T

0

∫ T

0 |ϕ(s, t, ω)|βdsdt
] 1

β < +∞ and for any t ∈ [0, T ], the 
process ϕ(·, t, ·) is F-adapted.

Let us recall that on a given filtered probability space, any F-progressively measurable process 
is B([0; T ]) ⊗F -measurable and F-adapted, and every B([0; T ]) ⊗F -measurable and F-adapted 
process has an F-progressively measurable modification (see [32, Proposition 2.8]).

2.2. Some concepts and results from the set-valued analysis

In this subsection, we recall some concepts and results from the set-valued analysis. We refer 
the reader to [2] for more details.

Let X be a Banach space with norm ‖ · ‖X , and denote by X∗ the dual space of X. For any 
subset K ⊂ X, denote by ∂K , intK and clK its boundary, interior and closure, respectively. 
K is called a cone if αx ∈ K for any α ≥ 0 and x ∈ K . Define the distance between a point 
x ∈ X and K by dist (x, K) := inf

y∈K
‖y − x‖X . Define the metric projection of x onto K by 

�K(x) := {y ∈ K | ‖y − x‖X = dist (x, K)}.

Definition 2.1. For x ∈ K , the adjacent cone T b
K(x) to K at x is defined by

T b
K(x) :=

{
v ∈ X

∣∣∣ lim
ε→0+

dist (x + εv,K)

ε
= 0

}
.

If in the above limε→0+ is replaced by lim infε→0+ , then we obtain a larger cone, the so called 
contingent cone T B

K (x) to K at x. When K is convex, the adjacent cone and the contingent cone 
coincide with each other, and

T b
K(x) = cl

{
α(y − x)

∣∣∣ α ≥ 0, y ∈ K
}
.

It is not difficult to realize that v ∈ T b
K(x) if and only if for any ε > 0 there exists a vε ∈ X

such that vε → v (in X) as ε → 0+, and x + εvε ∈ K .
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Definition 2.2. For any x ∈ K and v ∈ T b
K(x), the second order adjacent subset to K at (x, v) is 

defined by

T
b(2)
K (x, v) :=

{
h ∈ X

∣∣∣ lim
ε→0+

dist (x + εv + ε2h,K)

ε2
= 0

}
.

Similarly to the above, h ∈ T
b(2)
K (x, v) if and only if for any ε > 0 there exists an hε ∈ X such 

that hε → h (in X) as ε → 0+ and x + εv + ε2hε ∈ K .

Remark 2.1. Clearly, 0 ∈ T b
K(x) for any x ∈ K and αv ∈ T b

K(x) for any α > 0 and v ∈ T b
K(x). 

Therefore, T b
K(x) is a nonempty closed cone. T b

K(x) = X for any x ∈ intK . Also, T b(2)
K (x, 0) =

T b
K(x). When K is convex, y − x ∈ T b

K(x) and 0 ∈ T
b(2)
K (x, y − x) for any x ∈ K and y ∈ K . 

When v �= 0, the set T b(2)
K (x, v), in general, may not be a cone and it may be an empty set (some 

examples can be found in [2, section 4.7]).

The dual cone of the tangent cone T b
K(x), denoted by Nb

K(x), is called the normal cone of K
at x, i.e.,

Nb
K(x) :=

{
ξ ∈ X∗

∣∣∣ 〈ξ, v〉 ≤ 0, ∀ v ∈ T b
K(x)

}
.

When K is convex, Nb
K(x) reduces to the normal cone NK(x) of the convex analysis, where

NK(x) :=
{
ξ ∈ X∗

∣∣∣ 〈ξ, y − x〉 ≤ 0, ∀ y ∈ K
}
.

When X is a Hilbert space, for any ξ ∈ Nb
K(x) the second order normal cone to K at (x, ξ) is 

defined by

N
b(2)
K (x, ξ) :=

{
ζ ∈ S(X)

∣∣∣ 〈ξ,h〉 + 1

2
〈ζv, v〉 ≤ 0, ∀ v ∈ T b

K(x) ∩ {ξ}⊥, ∀ h ∈ T
b(2)
K (x, v)

}
,

where S(X) is the space of symmetric, continuous linear operators from X to X and {ξ}⊥ :=
{v ∈ X | 〈ξ, v〉 = 0}.

In the following, we recall a classical example in which the closed set K is defined by finitely 
many equalities and inequalities.

Example 2.1. When K ⊂ R
n is given by inequality and equality constraints and a constraint 

qualification holds true, there are exact expressions for the first and second order tangent sets. 
More precisely, consider twice continuously differentiable functions ϕ1, ..., ϕp : Rn → R and 
ψ1, . . . , ψr : Rn → R (for some p, r ∈ N), set ϕ = (ϕ1, ..., ϕp) and define

K = {
x ∈R

n
∣∣ϕ(x) = 0, ψj (x) ≤ 0, ∀ j = 1, ..., r

}
.

If there are no equality, resp. inequality, constraints in the definition of K , then the terms involv-
ing ϕ, ϕi , resp. ψj , are absent in the discussion below and p, resp. r , is equal to zero.
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Let x ∈ K and denote by I (x) the set of all active indices, i.e. j ∈ I (x) if and only if 
ψj(x) = 0. We assume that the Mangasarian–Fromowitz constraint qualification holds true: the 
Jacobian ϕ′(x) is surjective and there exists a v0 ∈R

n such that

ϕ′(x)v0 = 0, 〈∇ψj(x), v0〉 < 0, ∀ j ∈ I (x).

In the absence of equality constraints this is equivalent to the assumption that {∇ψj(x) | j ∈
I (x)} are positively independent or, equivalently, 0 /∈ co {∇ψj(x) | j ∈ I (x)}. Then it is well 
known, see for instance [2, pp. 150–151] that

T b
K(x) = {

v ∈ R
n
∣∣ ϕ′(x)v = 0, 〈∇ψj(x), v〉 ≤ 0, ∀ j ∈ I (x)

}
,

Nb
K(x) =

p∑
i=1

R∇ϕi(x) +
∑

j∈I (x)

R+∇ψj(x).

If there are no equality constraints and I (x) = ∅, then T b
K(x) = R

n and therefore Nb
K(x) = {0}.

Fix any v ∈ T b
K(x) and consider the set Iv(x) = {j ∈ I (x) | 〈∇ψj (x), v〉 = 0}. Then the same 

proof as in [2, p. 177] (given there only for the second order contingent set) implies that

T
b(2)
K (x, v) =

{
h ∈ R

n

∣∣∣∣ 〈∇ϕi(x), h〉 + 1

2
〈ϕ′′

i (x)v, v〉 = 0, ∀ i = 1, · · · ,p

and 〈∇ψj(x),h〉 + 1

2
〈ψ ′′

j (x)v, v〉 ≤ 0, ∀ j ∈ Iv(x)

}
.

Thus, under our assumptions, T b(2)
K (x, v) �= ∅ for all v ∈ T b

K(x).

Observe that Nb(2)
K (x, 0) is equal to the set of all symmetric (n × n)-matrices that are semi-

negative on T b
K(x).

If I (x) �= ∅, denote by i1, ..., ik all the active indices (for some k ≤ r). In the expressions 
below the terms involving ϕi , resp. ψij , are absent when there are no equality constraints, resp. 
when I (x) = ∅.

Fix any 0 �= q ∈ Nb
K(x). Then for some reals {μi}pi=1, λj ≥ 0, j = 1, ..., k

q =
p∑

i=1

μi∇ϕi(x) +
k∑

j=1

λj∇ψij (x).

To express Nb(2)
K (x, q) we could apply the same method as in [11]. In order to simplify the dis-

cussion, we assume that {∇ϕ1(x), · · · , ∇ϕp(x)} ⋃{∇ψj(x) | j ∈ Iv(x)} are linearly independent 
for every v ∈ T b

K(x) ∩ {q}⊥ different from zero.
Let v ∈ T b

K(x) ∩ {q}⊥. If I (x) �= ∅, then 0 = 〈q, v〉 = 〈∑k
j=1 λj∇ψij (x), v

〉
, which yields 

λj 〈∇ψij (x), v〉 = 0 for every j = 1, ..., k. Hence, λj = 0 whenever ij /∈ Iv(x). Furthermore, if 
the equality constraints are absent, then Iv(x) �= ∅ for every v ∈ T b

K(x) ∩ {q}⊥. Consequently,

〈q,h〉 + 1

2

p∑
μi〈ϕ′′

i (x)v, v〉 + 1

2

k∑
λj 〈ψ ′′

ij
(x)v, v〉 ≤ 0, ∀ h ∈ T

�(2)
K (x, v).
i=1 j=1
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Therefore, by arbitrariness of v ∈ T b
K(x) ∩ {q}⊥,

Q :=
p∑

i=1

μiϕ
′′
i (x) +

k∑
j=1

λjψ
′′
ij
(x) ∈ N

b(2)
K (x, q).

Observe that if a symmetric (n ×n)-matrix Q is so that 〈Qv, v〉 ≤ 〈Qv, v〉 for every v ∈ T b
K(x) ∩

{q}⊥, denoted by Q ≤ Q, then Q ∈ N
b(2)
K (x, q).

We show next that Q is the largest second order normal in the above sense. Fix any Q ∈
N

b(2)
K (x, q). Let v ∈ T b

K(x) ∩ {q}⊥. If v = 0, then 〈Qv, v〉 ≤ 〈Qv, v〉. Assume next that v �= 0. 
If Iv(x) �= ∅, consider the set {j1, ..., jm} of all the indices that belong to Iv(x). Define the 
(n × (p + m))-matrix A such that its s-th column is ∇ϕs(x) for 1 ≤ s ≤ p and ∇ψjs−p (x) for 
p + 1 ≤ s ≤ p + m (we set m = 0 if Iv(x) = ∅). By the linear independence assumption, we 
show that for any 0 �= v ∈ T b

K(x) ∩ {q}⊥ there exists zv ∈ R
n satisfying

z�
v A = −1

2

(
〈ϕ′′

1 (x)v, v〉, ..., 〈ϕ′′
p(x)v, v〉, 〈ψ ′′

j1
(x)v, v〉, ..., 〈ψ ′′

jm
(x)v, v〉

)
.

Hence zv ∈ T
b(2)
K (x, v) and 〈q, zv〉 = − 1

2

∑p

i=1 μi〈ϕ′′
i (x)v, v〉 − 1

2

∑k
j=1 λj 〈ψ ′′

ij
(x)v, v〉. Thus

〈q, zv〉 + 1

2
〈Qv,v〉 ≤ 0 = 〈q, zv〉 + 1

2

p∑
i=1

μi〈ϕ′′
i (x)v, v〉 + 1

2

r∑
j=1

λj 〈ψ ′′
j (x)v, v〉.

Consequently Q ≤ Q in the above sense.
However, in general, closed sets do not have the above representation. We refer to [11] for a 

very simple example of a set K given by union of two intervals in R2, where the first and second 
order tangents can be easily computed, but, at the same time, K does not satisfy the constraint 
qualification assumption.

We would like to underline here that to prove the celebrated Pontryagin maximum principle 
in optimal control just a particular subset of tangents to the set of controlled trajectories was 
used. The computation of the whole tangent cone is, in general, not possible. Similarly, we do 
not need to know the whole set of the second order tangents to eliminate some candidates for 
optimality.

Let (�, G ) be a measurable space, and F : � � 2X be a set-valued map. For any ξ ∈ �, 
F(ξ) is called the value of F at ξ . The domain of F is the subset of all ξ ∈ � such that F(ξ)

is nonempty, i.e., Dom (F ) := {ξ ∈ � | F(ξ) �= ∅}. F is called measurable if F−1(A) := {ξ ∈
� | F(ξ) ∩ A �= ∅} ∈ G for any A ∈ B(X). Clearly, the domain of a measurable set-valued map 
is measurable.

The following result is a special case of [2, Theorem 8.5.1].

Lemma 2.1. Suppose (�, G , μ) is a complete σ -finite measure space, X is a separable Banach 
space, p ≥ 1 and K is a closed nonempty subset in X. Define

K := {
ϕ(·) ∈ Lp(�,G ,μ;X)

∣∣ ϕ(ξ) ∈ K, μ-a.e. ξ ∈ �
}
.
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Then for any ϕ(·) ∈K, the set-valued map T b
K(ϕ(·)): ξ � T b

K(ϕ(ξ)) is G -measurable, and

T := {
ψ(·) ∈ Lp(�,G ,μ;X)

∣∣ ψ(ξ) ∈ T b
K(ϕ(ξ)), μ-a.e. ξ ∈ �

} ⊂ T b
K(ϕ(·)).

The following result is a special case of [2, Corollary 8.2.13].

Lemma 2.2. Suppose (�, G , μ) is a complete σ -finite measure space, X is a separable Ba-
nach space, K is a closed nonempty subset in X and ϕ(·) is a G -measurable single-valued 
mapping. Then the projection mapping ξ � �K(ϕ(ξ)) is G -measurable. Moreover, if for ev-
ery ξ , �K(ϕ(ξ)) �= ∅, then there exists a G -measurable, X-valued selection ψ(·) such that 
‖ψ(ξ) − ϕ(ξ)‖X = dist (ϕ(ξ), K), μ-a.e.

As in [18], we call a measurable set-valued map ζ : (�, F) � 2R
m

a set-valued random vari-
able, and, we call a map � : [0, T ] × � � 2R

m
a measurable set-valued stochastic process if 

� is B([0, T ]) ⊗ F -measurable. We say that � is F-adapted if �(t) is Ft -measurable for any 
t ∈ [0, T ]. Define

G := {
A ∈ B([0, T ]) ⊗F

∣∣ At ∈ Ft , ∀ t ∈ [0, T ]}, (2.1)

where At := {ω ∈ � | (t, ω) ∈ A} is the section of A. Obviously, G is a sub-σ -algebra of 
B([0, T ]) ⊗F . As pointed in [18, p. 96], the following result holds.

Lemma 2.3. A set-valued stochastic process � : [0, T ] ×� � 2R
m

is B([0, T ]) ⊗F -measurable 
and F-adapted if and only if � is G -measurable.

Obviously, Uad is a nonempty closed subset of the Banach space L2
F
(�; L2(0, T ); Rm). Using 

Lemmas 2.1 and 2.3, the following result was derived in [31]. It is useful later in getting the 
desired pointwise first order necessary condition.

Lemma 2.4. ([31, Lemma 4.6]) Let U be closed, ũ(·) ∈ Uad , and F : [0, T ] × � → R
m be a 

B([0, T ]) ×F -measurable and F-adapted process such that

E

T∫
0

〈F(t), v(t)〉dt ≤ 0, ∀ v(·) ∈ T b
Uad

(ũ(·)).

Then,

〈F(t,ω), v〉 ≤ 0, ∀ v ∈ T b
U (ũ(t,ω)), a.e. (t,ω) ∈ [0, T ] × �.

2.3. Some concepts and results from the Malliavin calculus

In this subsection, we recall some concepts and results from the Malliavin calculus (see [25]
for a detailed discussion on this topic).
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For any η ∈ L2(0, T ), write W(η) = ∫ T

0 η(t)dW(t). Define

S :=
{
ζ = ϕ(W(η1), W(η2), · · · , W(ηd))

∣∣∣ ϕ ∈ C∞
b (Rd;Rn),

η1, η2, · · · , ηd ∈ L2(0, T ), d ∈ N

}
.

(2.2)

Clearly, S is a linear subspace of L2
FT

(�; Rn). For any ζ ∈ S (as in (2.2)), its Malliavin derivative 
is defined as follows:

Dsζ :=
d∑

i=1

ηi(s)
∂ϕ

∂xi

(W(η1), W(η2), · · · , W(ηd)), a.e. s ∈ [0, T ], a.s.

Write

|||ζ |||2 :=
[
E |ζ |2 +E

T∫
0

|Dsζ |2ds
] 1

2
.

Obviously, ||| · |||2 is a norm on S . It is shown in [25] that the operator D has a closed extension 
to the space D1,2(Rn), the completion of S with respect to the norm ||| · |||2. When ζ ∈D

1,2(Rn), 
the following Clark–Ocone representation formula holds:

ζ = E ζ +
T∫

0

E (Dsζ | Fs)dW(s). (2.3)

Furthermore, if ζ is Ft -measurable, then Dsζ = 0 for any s ∈ (t, T ].
Let L1,2(Rn) denote the space of processes ϕ ∈ L2([0, T ] × �; Rn) such that

(i) for a.e. t ∈ [0, T ], ϕ(t, ·) ∈ D
1,2(Rn);

(ii) the function D·ϕ(·, ·) : [0, T ] × [0, T ] × � → Rn admits a B([0, T ] × [0, T ]) ⊗ F -
measurable version;

(iii) |||ϕ|||1,2 := [
E 

T∫
0

|ϕ(t, ω)|2dt +E 

T∫
0

T∫
0

|Dsϕ(t, ω)|2dsdt
] 1

2 < +∞.

Denote by L1,2
F

(Rn) the set of all F-adapted processes in L1,2(Rn).
In addition, write

L
1,2
2+ (Rn) :=

{
ϕ ∈ L

1,2(Rn)

∣∣∣ ∃ D+ϕ ∈ L2([0, T ] × �;Rn) s. t. for any small ε > 0,

fε(s) := sup
s<t<(s+ε)∧T

E
∣∣Dsϕ(t,ω) −D+ϕ(s,ω)

∣∣2 < ∞, a.e. s ∈ [0, T ],

fε(·) is measurable on [0, T ], and lim
ε→0+

T∫
fε(s)ds = 0

}
;

0
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L
1,2
2− (Rn) :=

{
ϕ ∈ L

1,2(Rn)

∣∣∣ ∃ D−ϕ ∈ L2([0, T ] × �;Rn) s. t. for any small ε > 0,

gε(s) := sup
(s−ε)∨0<t<s

E
∣∣Dsϕ(t,ω) −D−ϕ(s,ω)

∣∣2 < ∞, a.e. s ∈ [0, T ],

gε(·) is measurable on [0, T ], and lim
ε→0+

T∫
0

gε(s)ds = 0

}
.

Set L1,2
2 (Rn) = L

1,2
2+ (Rn) ∩L

1,2
2− (Rn) and define

∇ϕ =D+ϕ +D−ϕ, ∀ ϕ ∈ L
1,2
2 (Rn).

When ϕ is F-adapted, Dsϕ(t, ω) = 0 a.s. for any t < s. In this case, D−ϕ = 0 and ∇ϕ =D+ϕ

a.e. t ∈ [0, T ], a.s. Denote by L1,2
2,F

(Rn) the set of all F-adapted processes in L1,2
2 (Rn).

Roughly speaking, an element ϕ ∈ L
1,2
2 (Rn) is a stochastic process whose Malliavin derivative 

has suitable continuity on some neighborhood of {(t, t) | t ∈ [0, T ]}. Examples of such processes 
can be found in [25]. Especially, if (s, t) �→ Dsϕ(t, ω) is continuous from Vδ := {(s, t)∣∣ |s −
t | < δ, s, t ∈ [0, T ]} (for some δ > 0) to L2

FT
(�; Rn), then ϕ ∈ L

1,2
2 (Rn) and, D+ϕ(t, ω) =

D−ϕ(t, ω) = Dt ϕ(t, ω) a.e. t ∈ [0, T ], a.s.

3. First order necessary conditions

In this section, we study the first order necessary optimality conditions for the optimal control 
problem (1.3). Firstly, we introduce the notion of local minimizer for the problem (1.3).

Definition 3.1. An admissible triple (x̄, ū, x̄0) ∈ L2
F
(�; C([0, T ]; Rn)) × Uad × K is called a 

local minimizer for the problem (1.3) if there exists a δ > 0 such that J (u, x0) ≥ J (ū, x̄0) for 
any admissible triple (x, u, x0) ∈ L2

F
(�; C([0, T ]; Rn)) × Uad × K satisfying ‖u − ū‖2 < δ and 

|x̄0 − x0| < δ.

In this section, we need the following assumptions:

(C1) The control region U is nonempty and closed.
(C2) The functions b, σ , f and g satisfy the following:

(i) For any (x, u) ∈R
n ×R

m, the stochastic processes b(·, x, u, ·) : [0, T ] ×� →R
n and 

σ(·, x, u, ·) : [0, T ] × � → R
n are B([0, T ]) ⊗ F -measurable and F-adapted. For 

a.e. (t, ω) ∈ [0, T ] × �, the functions b(t, ·, ·, ω) : R
n × R

m → R
n and σ(t, ·, ·, ω) :

R
n ×R

m → R
n are differentiable and

(x,u) �→ (bx(t, x,u,ω), bu(t, x,u,ω), σx(t, x,u,ω), σu(t, x,u,ω))

is uniformly continuous in x ∈ R
n and u ∈ R

m. There exist a constant L > 0 and a 
nonnegative η ∈ L

β

F
(�; L2(0, T ; R)) with η(T , ·) ∈ L

β

FT
(�; R) and β ≥ 1 such that 

for a.e. (t, ω) ∈ [0, T ] × � and for any x ∈R
n and u ∈R

m,
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⎧⎪⎨⎪⎩
|b(t,0, u,ω)| + |σ(t,0, u,ω)| ≤ L(η(t,ω) + |u|),
|bx(t, x,u,ω)| + |bu(t, x,u,ω)| ≤ L,

|σx(t, x,u,ω)| + |σu(t, x,u,ω)| ≤ L;

(ii) For any (x, u) ∈ R
n × R

m, the stochastic process f (·, x, u, ·) : [0, T ] × � → R

is B([0, T ]) ⊗ F -measurable and F-adapted, and the random variable g(x, ·) is 
FT -measurable. For a.e. (t, ω) ∈ [0, T ] ×�, the functions f (t, ·, ·, ω) : Rn ×R

m →R

and g(·, ω) : R
n →R are differentiable, and for any x, x̃ ∈R

n and u, ũ ∈R
m,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

|f (t, x,u,ω)| ≤ L(η(t,ω)2 + |x|2 + |u|2),
|fx(t,0, u,ω)| + |fu(t,0, u,ω)| ≤ L(η(t,ω) + |u|),
|fx(t, x,u,ω) − fx(t, x̃, ũ,ω)| + |fu(t, x,u,ω) − fu(t, x̃, ũ,ω)|

≤ L(|x − x̃| + |u − ũ|),
|g(x,ω)| ≤ L(η(T ,ω)2 + |x|2), |gx(0,ω)| ≤ Lη(T ,ω),

|gx(x,ω) − gx(x̃,ω)| ≤ L|x − x̃|.

When the condition (C2) is satisfied, the state x (of (1.1)) is uniquely defined by any given 
initial datum x0 ∈R

n and admissible control u ∈ Uad , and the cost functional (1.2) is well-defined 
on Uad . In what follows, C represents a generic positive constant (depending only on T , β , η(·)
and L), which may be different from one place to another.

The following known result [24] is useful in the sequel.

Lemma 3.1. Assume (C2). Then, for any x0 ∈R
n, β ≥ 1 and u ∈ L

β

F
(�; L2(0, T ; Rm)), the state 

equation (1.1) admits a unique solution x ∈ L
β

F
(�; C([0, T ]; Rn)), and for any t ∈ [0, T ] the 

following estimate holds:

E

(
sup

s∈[0,t]
|x(s,ω)|β

)
≤ CE

[
|x0|β +

( t∫
0

|b(s,0, u(s),ω)|ds
)β

+
( t∫

0

|σ(s,0, u(s),ω)|2ds
) β

2
]
. (3.1)

Moreover, if x̃ is the solution to (1.1) corresponding to (x̃0, ũ) ∈ R
n × L

β

F
(�; L2(0, T ; Rm)), 

then, for any t ∈ [0, T ],

E

(
sup

s∈[0,t]
|x(s,ω) − x̃(s,ω)|β

)
≤ CE

[
|x0 − x̃0|β +

( t∫
0

|u(s,ω) − ũ(s,ω)|2ds
) β

2
]
. (3.2)

Now, let us introduce the classical first order variational control system. Let ū, v, vε ∈
L

β

F
(�; L2(0, T ; Rm)) (β ≥ 1) and ν0, νε

0 ∈ R
n satisfying vε → v in Lβ

F
(�; L2(0, T ; Rm)) and 

νε → ν0 in Rn as ε → 0+. For uε := ū + εvε and xε := x0 + ενε , let xε be the state of (1.1)
0 0 0
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corresponding to the control uε and the initial datum xε
0 , and put δxε = xε − x̄. For ϕ = b, σ, f , 

denote

ϕx(t) = ϕx(t, x̄(t), ū(t)), ϕu(t) = ϕu(t, x̄(t), ū(t)).

Consider the following linearized stochastic control system:{
dy1(t) = (

bx(t)y1(t) + bu(t)v(t)
)
dt + (

σx(t)y1(t) + σu(t)v(t)
)
dW(t), t ∈ [0, T ],

y1(0) = ν0.
(3.3)

We first establish the following estimates.

Lemma 3.2. Let (C2) hold and β ≥ 1. Then, for any ū, v, vε , ν0, νε
0 and δxε as above

‖y1‖β
∞,β ≤ C

(|ν0|β + ‖v‖β

2,β

)
, ‖δxε‖β

∞,β = O(εβ).

Furthermore,

‖rε
1‖β

∞,β → 0, as ε → 0+, (3.4)

where rε
1 (t, ω) := δxε(t,ω)

ε
− y1(t, ω).

Proof. See Appendix A.1. �
Next, define the Hamiltonian

H(t, x,u,p, q,ω) := 〈p,b(t, x,u,ω)〉 + 〈q,σ (t, x,u,ω)〉 − f (t, x,u,ω), (3.5)

where (t, x, u, p, q, ω) ∈ [0, T ] ×R
n ×R

m ×R
n ×R

n × �. We introduce the first order adjoint 
equation for (3.3):{

dP1(t) = −(
bx(t)

�P1(t) + σx(t)
�Q1(t) − fx(t)

)
dt + Q1(t)dW(t), t ∈ [0, T ],

P1(T ) = −gx(x̄(T )).
(3.6)

By [8] and (C2), for any β ≥ 1, if ū ∈ L
β

F
(�; L2(0, T ; Rm)), the equation (3.6) admits a unique 

strong solution (P1, Q1) ∈ L
β

F
(�; C([0, T ]; Rn)) × L

β

F
(�; L2(0, T ; Rn)).

We have the following result.

Theorem 3.1. Let (C1)–(C2) hold. If (x̄, ū, x̄0) is a local minimizer for the problem (1.3), then

E

T∫
0

〈Hu(t), v(t)〉dt ≤ 0, ∀ v ∈ T b
Uad

(ū), (3.7)

and

P1(0) ∈ Nb (x̄0), (3.8)
K
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where (P1, Q1) is the solution to the first order adjoint equation (3.6) corresponding to (x̄, ū, x̄0)

and Hu(t) = Hu(t, x̄(t), ū(t), P1(t), Q1(t)).

Proof. Let v ∈ T b
Uad

(ū) and ν0 ∈ T b
K(x̄0). Then, for any ε > 0, there exist vε ∈ L2

F
(�; L2(0, T ;

R
m)) and νε

0 ∈ R
n such that ū + εvε ∈ Uad , x̄0 + ενε

0 ∈ K and

E

T∫
0

|v(t) − vε(t)|2dt → 0, |νε
0 − ν0| → 0, as ε → 0+.

Expanding the cost functional J (·) at ū, we have for all small ε > 0,

0 ≤ J (uε, xε
0) − J (ū, x̄0)

ε

= E

T∫
0

( 1∫
0

〈
fx(t, x̄(t) + θδxε(t), ū(t) + εvε(t)),

δxε(t)

ε

〉
dθ

+
1∫

0

〈fu(t, x̄(t), ū(t) + θεvε(t)), vε(t)〉dθ
)
dt

+E

1∫
0

〈
gx(x̄(T ) + θδxε(T )),

δxε(T )

ε

〉
dθ

= E

T∫
0

( 〈fx(t), y1(t)〉 + 〈fu(t), v(t)〉 )dt +E 〈gx(x̄(T )), y1(T )〉 + ρε
1, (3.9)

where

ρε
1 = E

T∫
0

( 1∫
0

〈
fx(t, x̄(t) + θδxε(t), ū(t) + εvε(t)) − fx(t),

δxε(t)

ε

〉
dθ

+
1∫

0

〈fu(t, x̄(t), ū(t) + θεvε(t)) − fu(t), vε(t)〉dθ

+
〈
fx(t),

δxε(t)

ε
− y1(t)

〉
+ 〈fu(t), vε(t) − v(t)〉

)
dt

+E

1∫
0

〈
gx(x̄(T ) + θδxε(T )) − gx(x̄(T )),

δxε(T )

ε

〉
dθ

+E

〈
gx(x̄(T )),

δxε(T ) − y1(T )

〉
. (3.10)
ε
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By Lemma 3.2 (with β = 2) and (C2), it follows that

∣∣∣E T∫
0

1∫
0

〈
fx(t, x̄(t) + θδxε(t), ū(t) + εvε(t)) − fx(t),

δxε(t)

ε

〉
dθdt

∣∣∣
≤

(
E

T∫
0

1∫
0

∣∣fx(t, x̄(t) + θδxε(t), ū(t) + εvε(t)) − fx(t)
∣∣2dθdt

) 1
2
(
E

T∫
0

∣∣δxε(t)

ε

∣∣2dt
) 1

2

≤ C
[
E

T∫
0

(∣∣δxε(t)
∣∣ + ∣∣εvε(t)

∣∣)2
dt

] 1
2 ·

(
E

T∫
0

∣∣δxε(t)

ε

∣∣2dt
) 1

2

→ 0, as ε → 0+.

Similarly, we have

∣∣∣E T∫
0

1∫
0

〈fu(t, x̄(t), ū(t) + θεvε(t)) − fu(t), vε(t)〉dθdt

∣∣∣
≤ C

(
E

T∫
0

∣∣εvε(t)
∣∣2dt

) 1
2 ·

(
E

T∫
0

∣∣vε(t)
∣∣2dt

) 1
2 → 0, ε → 0+

and

∣∣∣E 1∫
0

〈
gx(x̄(T ) + θδxε(T )) − gx(x̄(T )),

δxε(T )

ε

〉
dθ

∣∣∣
≤ C

(
E
∣∣δxε(T )

∣∣2) 1
2 ·

(
E
∣∣δxε(T )

ε

∣∣2) 1
2 → 0, ε → 0+.

Then, by (C2) and Lemma 3.2, we obtain that

lim
ε→0+

∣∣ρε
1

∣∣ ≤ lim sup
ε→0+

∣∣∣E T∫
0

〈
fx(t),

δxε(t)

ε
− y1(t)

〉
dt

∣∣∣
+ lim sup

ε→0+

∣∣∣E T∫
0

〈fu(t), vε(t) − v(t)〉dt

∣∣∣
+ lim sup

ε→0+

∣∣∣E 〈
gx(x̄(T )),

δxε(T )

ε
− y1(T )

〉 ∣∣∣ = 0. (3.11)

Therefore, from (3.9) and (3.11), we conclude that
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0 ≤ E

T∫
0

( 〈fx(t), y1(t)〉 + 〈fu(t), v(t)〉 )dt +E 〈gx(x̄(T )), y1(T )〉 . (3.12)

By the duality between (3.3) and (3.6), we have

E 〈gx(x̄(T )), y1(T )〉 = −E 〈P1(T ), y1(T )〉

= −〈P1(0), ν0〉 −E

T∫
0

( 〈P1(t), bx(t)y1(t)〉 + 〈P1(t), bu(t)v(t)〉

+ 〈Q1(t), σx(t)y1(t)〉 + 〈Q1(t), σu(t)v(t)〉
−

〈
bx(t)

�P1(t), y1(t)
〉
−

〈
σx(t)

�Q1(t), y1(t)
〉
+ 〈fx(t), y1(t)〉

)
dt

= −〈P1(0), ν0〉 −E

T∫
0

( 〈P1(t), bu(t)v(t)〉 + 〈Q1(t), σu(t)v(t)〉 + 〈fx(t), y1(t)〉
)
dt. (3.13)

Substituting (3.13) in (3.12), we obtain that

0 ≤ −〈P1(0), ν0〉 −E

T∫
0

( 〈P1(t), bu(t)v(t)〉 + 〈Q1(t), σu(t)v(t)〉 − 〈fu(t), v(t)〉 )dt

= −〈P1(0), ν0〉 −E

T∫
0

〈Hu(t), v(t)〉dt. (3.14)

For v(·) = 0, (3.14) implies (3.8). On the other hand, for ν0 = 0 in (3.14), we have (3.7). This 
completes the proof of Theorem 3.1. �

From Theorem 3.1 and Lemma 2.4, it is easy to deduce the following pointwise first order 
necessary condition.

Theorem 3.2. Let (C1)–(C2) hold. If (x̄, ū, x̄0) is a local minimizer for the problem (1.3), then,

Hu(t,ω) ∈ Nb
U(ū(t,ω)), a.e. t ∈ [0, T ], a.s. and P1(0) ∈ Nb

K(x̄0). (3.15)

Remark 3.1. When the control set U and the initial state constraint set K are also convex, Nb
U(ū)

and Nb
K(x̄0) coincide with the normal cones of convex analysis. In this case, the condition (3.15)

becomes

Hu(t,ω) ∈ NU(ū(t,ω)) a.e. t ∈ [0, T ], a.s. and P1(0) ∈ NK(x̄0).

Remark 3.2. If T b
U(ū(t, ω)) = {0} for a.e. (t, ω) ∈ [0, T ] × �, then Nb

U(ū(t, ω)) = R
m, for a.e. 

(t, ω) ∈ [0, T ] × �, and the first condition in (3.15) turns out to be trivial. It is the case, for 
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instance, when the control set U is a finite union of singletons. Therefore, to have the first con-
dition in (3.15) meaningful, U should have nontrivial tangent cones. It is not difficult to verify 
that for every v ∈ T b

Uad
(ū), and for a.e. (t, ω) ∈ [0, T ] × �, the vector v(t, ω) belongs to the 

contingent cone T B
U (ū(t, ω)) to U at ū(t, ω). Under some suitable assumptions on U , we have 

T B
U (ū(t, ω)) = T b

U (ū(t, ω)) a.e. in [0, T ] × �, see [2, Chapter 4] for more details. Consequently, 
under some convenient structural assumptions on U , if T b

Uad
(ū) �= {0}, then T b

U(ū(t, ω)) �= {0} on 
a set of positive measure.

Remark 3.3. Define

H(t, x,u,ω) := H(t, x,u,P1(t),Q1(t),ω) − 1

2
〈P2(t)σ (t, x̄(t), ū(t),ω), σ (t, x̄(t), ū(t),ω)〉

+ 1

2

〈
P2(t)

(
σ(t, x,u,ω) − σ(t, x̄(t), ū(t),ω)

)
, σ (t, x,u,ω) − σ(t, x̄(t), ū(t),ω)

〉
,

where (P2, Q2) is the second order adjoint process with respect to (x̄, ū) (defined by (4.3) in Sec-
tion 4). The stochastic maximum principle (e.g. [27]) says that, if (x̄, ū) is an optimal pair, then

H(t, x̄(t), ū(t),ω) = max
v∈U

H(t, x̄(t), v,ω), a.e. t ∈ [0, T ], a.s. (3.16)

When b, σ and f are differentiable with respect to the variable u, (3.16) implies that

〈Hu(t,ω), v〉 ≤ 0, ∀ v ∈ T b
U (ū(t,ω)), a.e. t ∈ [0, T ], a.s.,

i.e., the first condition in (3.15) holds (when U is convex, this also coincides with the corre-
sponding result in [4]). However, to derive the maximum principle (3.16) one has to assume 
that b, σ , f and g are differentiable up to the second order with respect to the variable x, and 
the second order adjoint process (P2, Q2) should be introduced (even it does not appear in the 
condition (3.15)). Therefore, in practice, under the usual structural assumptions on U , it is more 
convenient to use the condition (3.15) directly.

In what follows we give a simple example to demonstrate how to use the condition (3.15) to 
check if a given admissible control is not optimal.

Example 3.1. Let n = m = 2, T = 1, U = {(u1, u2) ∈ R
2 | u1u2 = 0, u1 ∈ [−1, 1], u2 ∈ [−1, 1]}. 

Clearly, this U is neither a finite set nor convex in R2. Consider the control system⎧⎨⎩ dx1(t) = (x2(t) − 1
2 )dt + dW(t), t ∈ [0,1],

dx2(t) = u1(t)dt + u2(t)dW(t), t ∈ [0,1],
x1(0) = 0, x2(0) = 0

(3.17)

with the cost functional

J (u) = 1

2
E|x1(1) − W(1)|2. (3.18)

Define the Hamiltonian of this optimal control problem
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H(t, (x1, x2), (u1, u2), (p
1
1,p

2
1), (q

1
1 , q2

1 ),ω) = p1
1(x2 − 1

2
) + p2

1u1 + q1
1 + q2

1u2, (3.19)

for all (t, (x1, x2), (u1, u2), (p1
1, p

2
1), (q

1
1 , q2

1 ), ω) ∈ [0, 1] × R
2 × R

2 × R
2 × R

2 × �. In what 
follows, we show that the control (u1(t), u2(t)) ≡ (0, 0) is not a local minimizer.

Obviously, the corresponding solution to the control system (3.17) is

(x1(t), x2(t)) = (W(t) − t

2
,0), (3.20)

and the first order adjoint equation is⎧⎪⎨⎪⎩
dP 1

1 (t) = Q1
1(t)dW(t), t ∈ [0,1],

dP 2
1 (t) = −P 1

1 (t)dt + Q2
1(t)dW(t), t ∈ [0,1],

P 1
1 (1) = 1

2 , P 2
1 (1) = 0.

(3.21)

It is easy to verify that the solution to (3.21) is

(P 1
1 (t),Q1

1(t)) = (
1

2
,0), (P 2

1 (t),Q2
1(t)) = (

1 − t

2
,0), a.e. (t,ω) ∈ [0,1] × �. (3.22)

Note that even though the Mangasarian–Fromowitz constraint qualification does not hold at 
(0, 0), we can easily obtain that

T b
U ((0,0)) = {(v1, v2) ∈R

2 | v1v2 = 0}.

By the first order condition in (3.15),

〈Hu(t), v〉 = P 2
1 (t)v1 ≤ 0, ∀ v = (v1, v2) ∈ T b

U ((0,0)).

Since P 2
1 (t) = 1

2 (1 − t) > 0 for any t ∈ [0, 1), a.s., chose (v1, v2) = (1, 0) we have

P 2
1 (t)v1 = 1

2
(1 − t) > 0, a.e. (t,ω) ∈ [0,1] × �,

which is a contradiction. Therefore, (u1(t), u2(t)) ≡ (0, 0) is not an local minimizer.
Actually, choosing (ū1(t), ū2(t)) ≡ (1, 0), we find that the corresponding state is

(x̄1(t), x̄2(t)) =
( t2

2
− t

2
+ W(t), t

)
, ∀ (t,ω) ∈ [0,1] × �, (3.23)

and hence x̄1(1) = W(1), i.e., the cost functional attains its minimum 0 and (ū1(t), ū2(t)) ≡
(1, 0) is the global minimizer. In addition, a simple calculation shows that the corresponding first 
order adjoint process is

(P 1
1 (t),Q1

1(t)) = (0,0), (P 2
1 (t),Q2

1(t)) = (0,0), ∀ (t,ω) ∈ [0,1] × �, (3.24)

which implies that the condition (3.15) is trivially satisfied.
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Remark 3.4. The approach proposed in Theorems 3.1–3.2 can be applied to more general con-
trol problems. We refer the reader to [31] for the optimal control problems involving stochastic 
Volterra integral equations.

4. Second order necessary conditions

In this section, we investigate the second order necessary conditions for the local minimizers 
(x̄, ū, x̄0) of (1.3). In addition to the assumptions (C1) and (C2), we suppose that

(C3) The functions b, σ , f and g satisfy the following:
(i) For a.e. (t, ω) ∈ [0, T ] × �, the functions b(t, ·, ·, ω) : R

n × R
m → R

n and 
σ(t, ·, ·, ω) : Rn ×Rm → Rn are twice differentiable and

(x,u) �→ (b(x,u)2(t, x,u,ω), σ(x,u)2(t, x,u,ω))

is uniformly continuous in x ∈R
n and u ∈R

m, and,

|b(x,u)2(t, x,u,ω)| + |σ(x,u)2(t, x,u,ω)| ≤ L, ∀ (x,u) ∈ R
n ×R

m;

(ii) For a.e. (t, ω) ∈ [0, T ] × �, the functions f (t, ·, ·, ω) : R
n × R

m → R and g(·, ω) :
Rn →R are twice continuously differentiable, and for any x, x̃ ∈Rn and u, ũ ∈Rm,

⎧⎨⎩
|f(x,u)2(t, x,u,ω)| ≤ L,

|f(x,u)2(t, x,u,ω) − f(x,u)2(t, x̃, ũ,ω)| ≤ L(|x − x̃| + |u − ũ|),
|gxx(x,ω)| ≤ L, |gxx(x,ω) − gxx(x̃,ω)| ≤ L|x − x̃|.

For ϕ = b, σ, f , denote

ϕxx(t) = ϕxx(t, x̄(t), ū(t)), ϕxu(t) = ϕxu(t, x̄(t), ū(t)), ϕuu(t) = ϕuu(t, x̄(t), ū(t)).

4.1. Integral-type second order necessary conditions

In this subsection, we consider first the integral-type second order necessary conditions for 
the local minimizers of (1.3).

Let ū, v, h, hε ∈ L
2β

F
(�; L4(0, T ; Rm)) (β ≥ 1) and ν0, �0, �ε

0 ∈ R
m be such that hε con-

verges to h in L2β

F
(�; L4(0, T ; Rm)) and �ε

0 → �0 in Rm as ε → 0+. Set

uε := ū + εv + ε2hε, xε
0 := x̄0 + εν0 + ε2�ε

0 .

Denote by xε the solution of (1.1) corresponding to the control uε and the initial datum xε
0 . 

Put

δxε = xε − x̄, δuε = εv + ε2hε.
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Similarly to [17], we introduce the following second-order variational equation:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dy2(t) =

(
bx(t)y2(t) + 2bu(t)h(t) + y1(t)

�bxx(t)y1(t) + 2v(t)�bxu(t)y1(t)

+ v(t)�buu(t)v(t)
)
dt +

(
σx(t)y2(t) + 2σu(t)h(t) + y1(t)

�σxx(t)y1(t)

+ 2v(t)�σxu(t)y1(t) + v(t)�σuu(t)v(t)
)
dW(t), t ∈ [0, T ],

y2(0) = 2�0,

(4.1)

where y1 is the solution to the first variational equation (3.3) (for v(·) and ν0 as above). We have 
the following estimates.

Lemma 4.1. Let (C2)–(C3) hold and β ≥ 1. Then, for ū, v, h, hε ∈ L
2β

F
(�; L4(0, T ; Rm)) and 

ν0, �0, �ε
0 ∈R

m as above, we have

‖y2‖β
∞,β ≤ C(|�0|β + |ν0|2β + ‖v‖2β

4,2β + ‖h‖β

2,β).

Furthermore,

‖rε
2‖β

∞,β → 0, ε → 0+, (4.2)

where,

rε
2 (t,ω) := δxε(t,ω) − εy1(t,ω)

ε2
− 1

2
y2(t,ω).

Proof. See Appendix A.2. �
We now introduce the following adjoint equation for (4.1):⎧⎪⎪⎨⎪⎪⎩

dP2(t) = −
(
bx(t)

�P2(t) + P2(t)bx(t) + σx(t)
�P2(t)σx(t) + σx(t)

�Q2(t)

+ Q2(t)σx(t) + Hxx(t)
)
dt + Q2(t)dW(t), t ∈ [0, T ],

P2(T ) = −gxx(x̄(T )),

(4.3)

where Hxx(t) = Hxx(t, x̄(t), ū(t), P1(t), Q1(t)) with (P1(·), Q1(·)) given by (3.6).
By [8] and (C2)–(C3), it is easy to check that, if ū ∈ L

β

F
(�; L2(0, T ; Rm)), (4.3) admits 

a unique strong solution (P2(·), Q2(·)) ∈ L
β

F
(�; C([0, T ]; Sn)) × L

β

F
(�; L2(0, T ; Sn)) for any 

β ≥ 1.
To simplify the notation, we define

S(t, x,u, y1, z1, y2, z2,ω) := Hxu(t, x,u, y1, z1,ω) + bu(t, x,u,ω)�y2 (4.4)

+ σu(t, x,u,ω)�z2 + σu(t, x,u,ω)�y2σx(t, x,u,ω),

where (t, x, u, y1, z1, y2, z2, ω) ∈ [0, T ] ×R
n ×R

m ×R
n ×R

n × Sn × Sn × �, and denote

S(t) = S(t, x̄(t), ū(t),P1(t),Q1(t),P2(t),Q2(t)), t ∈ [0, T ]. (4.5)
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Let ū ∈ Uad ∩ L4
F
(�; L4(0, T ; Rm)). Define

ϒū :=
{
v ∈ L2

F
(�;L2(0, T ;Rm))

∣∣∣ 〈Hu(t,ω), v(t,ω)〉 = 0 a.e. t ∈ [0, T ], a.s.
}
,

and the set of admissible second order variations by

Aū :=
{
(v,h) ∈ L4

F
(�;L4(0, T ;Rm)) × L4

F
(�;L4(0, T ;Rm))

∣∣∣
h(t,ω) ∈ T

b(2)
U (ū(t,ω), v(t,ω)), a.e. t ∈ [0, T ], a.s.

}
.

Denote

A1
ū :=

{
v ∈ L4

F
(�;L4(0, T ;Rm))

∣∣∣ ∃ h ∈ L4
F
(�;L4(0, T ;Rm)), s.t. (v,h) ∈Aū

}
.

We have the following result.

Theorem 4.1. Let (C1)–(C3) hold and (x̄, ū, x̄0) be a local minimizer for the problem (1.3) with 
ū ∈ L4

F
(�; L4(0, T ; Rm)). Then for the adjoint process P1 defined by (3.6) (relative to (x̄, ū, x̄0)) 

and for all (v, h) ∈Aū satisfying v ∈ ϒū,

E

T∫
0

(
2 〈Hu(t), h(t)〉 + 〈Huu(t)v(t), v(t)〉

+ 〈P2(t)σu(t)v(t), σu(t)v(t)〉 + 2 〈S(t)y1(t), v(t)〉
)
dt ≤ 0, (4.6)

and

P2(0) ∈ N
b(2)
K (x,P1(0)). (4.7)

Proof. We borrow some ideas from [11, proof of Theorem 2].
From the definition of the second order adjacent set, we deduce that, if (v, h) ∈ Aū, then 

v(t, ω) ∈ T b
U (ū(t, ω)), a.e. (t, ω) ∈ [0, T ] × �, and for any ε > 0, there exists an r(ε, t, ω) ∈ R

m

such that

ū(t,ω) + εv(t,ω) + ε2h(t,ω) + r(ε, t,ω) ∈ U, r(ε, t,ω) = o(ε2), a.e. (t,ω) ∈ [0, T ] × �.

Furthermore, let �(t, ω) = |h(t, ω)| +1, then for a.e. (t, ω) ∈ [0, T ] ×� there exists a ρ(t, ω) > 0
such that

dist (ū(t,ω) + εv(t,ω),U)

≤ |ū(t,ω) + εv(t,ω) − (ū(t,ω) + εv(t,ω) + ε2h(t,ω) + r(ε, t,ω))|
= |ε2h(t,ω) + r(ε, t,ω)| ≤ ε2�(t,ω), ∀ ε ∈ [0, ρ(t,ω)].

(4.8)
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Motivated by the inequality (4.8), we introduce the following subset of Aū:

A∗̄
u = {

(v,h) ∈Aū

∣∣ ∃ a ρ0 > 0 (independent of (t,ω)) such that

dist (ū(t,ω) + εv(t,ω),U) ≤ ε2�(t,ω), ∀ ε ∈ [0, ρ0]
}
.

We fist prove that (4.6) and (4.7) hold for any (v, h) ∈ A∗̄
u satisfying v ∈ ϒū. Fix such a (v, h) ∈

A∗̄
u and a corresponding ρ0 > 0.
Using similar arguments as those in the proof of [17, Proposition 4.2], we now prove that 

v ∈ T b
Uad

(ū) and h ∈ T
b(2)

Uad
(ū, v).

Define

αε(t,ω) = dist (ū(t,ω) + εv(t,ω),U).

The distance function being Lipschitz continuous, αε is a B([0, T ]) ⊗ F -measurable and F-
adapted process. Furthermore, since, v(t, ω) ∈ T b

U (ū(t, ω)) a.s., we have αε(t, ω)/ε → 0 a.e. 
(t, ω) ∈ [0, T ] × � as ε → 0+.

On the other hand, U being a closed set in Rm, for a.e. (t, ω) ∈ [0, T ] × � there exists a 
uε(t, ω) ∈ U such that

αε(t,ω) = |uε(t,ω) − ū(t,ω) − εv(t,ω)| ≤ ε2�(t,ω) ∀ ε ∈ [0, ρ0].
Using Lemma 2.2, we show that uε admits a B([0, T ]) ⊗ F -measurable and F-adapted ver-
sion. (Note that the metric projection mapping (t, ω) � �U(ū(t, ω) + εv(t, ω)) may not be 
B([0; T ]) ⊗F -measurable, since ([0, T ] × �, B([0; T ]) ⊗F, dt × dP ) is not complete. There-
fore, we can only obtain a measurable selection of (t, ω) � �U(ū(t, ω) + εv(t, ω)) on the 
completion of this product measure space and then modify this selection to be a B([0, T ]) ⊗
F -measurable process.) To simplify the notation, we still denote this version by uε.

For vε = (uε − ū)/ε, we have

|vε(t,ω) − v(t,ω)| =
∣∣∣uε(t,ω) − ū(t,ω)

ε
− v(t,ω)

∣∣∣ =
∣∣∣αε(t,ω)

ε

∣∣∣ ≤ ε�(t,ω).

Since (v, h) ∈ A∗̄
u, it follows that vε ∈ L4

F
(�; L4(0, T ; Rm)) and, by the dominated convergence 

theorem, vε → v in L4
F
(�; L4(0, T ; Rm)) as ε → 0+. By the definition of vε , we get ū(t, ω) +

εvε(t, ω) = uε(t, ω) ∈ U , a.e. (t, ω) ∈ [0, T ] × �. This proves that v ∈ T b
Uad

(ū).
Similarly, define

γε(t,ω) = dist (ū(t,ω) + εv(t,ω) + ε2h(t,ω),U).

Then, γε is B([0, T ]) ⊗ F -measurable and F-adapted, and, because h(t, ω) ∈ T
b(2)
U (ū(t, ω),

v(t, ω)), a.e. (t, ω) ∈ [0, T ] × �, γε(t, ω)/ε2 → 0 a.e. (t, ω) ∈ [0, T ] × � as ε → 0+.
Choose a B([0, T ]) ⊗F -measurable and F-adapted processes wε(t, ω) ∈ U , such that

γε(t,ω) = |wε(t,ω) − ū(t,ω) − εv(t,ω) − ε2h(t,ω)|, a.e. (t,ω) ∈ [0, T ] × �

and define
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hε = wε − ū − εv

ε2
.

Then,

|hε(t,ω) − h(t,ω)| =
∣∣∣wε − ū(t,ω) − εv(t,ω)

ε2
− h(t,ω)

∣∣∣
≤

∣∣∣uε − ū(t,ω) − εv(t,ω) − ε2h(t,ω)

ε2

∣∣∣ ≤ αε(t,ω)

ε2
+ |h(t,ω)|

≤ �(t,ω) + |h(t,ω)|, a.e. (t,ω) ∈ [0, T ] × �,

and hence hε ∈ L4
F
(�; L4(0, T ; Rm)). Moreover, by the definition of hε,

ū(t,ω) + εv(t,ω) + ε2hε(t,ω) = wε(t,ω) ∈ U, a.e. (t,ω) ∈ [0, T ] × �,

and

|hε(t,ω) − h(t,ω)| =
∣∣∣γε(t,ω)

ε2

∣∣∣ → 0, a.e. (t,ω) ∈ [0, T ] × �.

By the dominated convergence theorem, hε → h in L4
F
(�; L4(0, T ; Rm)) as ε → 0+. This proves 

that h ∈ T
b(2)

Uad
(ū, v).

Let ν0 ∈ T b
K(x̄0) ∩ {P1(0)}⊥ and �0 ∈ T

b(2)
K (x̄0, ν0).

Define uε = ū + εv + ε2hε and let xε
0 , δxε and δuε be defined as above. Denote f̃ ε

xx(t) :=∫ 1
0 (1 − θ)fxx(t, x̄(t) + θδxε(t), ū(t) + θδuε(t))dθ . Mappings f̃ ε

xu(t), f̃
ε
uu(t) and g̃ε

xx(T ) are 
defined in a similar way.

Expanding the cost functional J at ū, we get

J (uε) − J (ū)

ε2

= 1

ε2
E

T∫
0

( 〈
fx(t), δx

ε(t)
〉 + 〈

fu(t), δu
ε(t)

〉 + 〈
f̃ ε

xx(t)δx
ε(t), δxε(t)

〉
+ 2

〈
f̃ ε

xu(t)δx
ε(t), δuε(t)

〉
+

〈
f̃ ε

uu(t)δu
ε(t), δuε(t)

〉 )
dt

+ 1

ε2
E

( 〈
gx(x̄(T )), δxε(T )

〉 + 〈
g̃ε

xx(x̄(T ))δxε(T ), δxε(T )
〉 )

= E

T∫
0

[1

ε
〈fx(t), y1(t)〉 + 1

2
〈fx(t), y2(t)〉 + 1

ε
〈fu(t), v(t)〉 + 〈fu(t), h(t)〉

+ 1

2

(
〈fxx(t)y1(t), y1(t)〉 + 2 〈fxu(t)y1(t), v(t)〉 + 〈fuu(t)v(t), v(t)〉

)]
dt

+E

(1 〈gx(x̄(T )), y1(T )〉 + 1 〈gx(x̄(T )), y2(T )〉

ε 2
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+ 1

2
〈gxx(x̄(T ))y1(T ), y1(T )〉

)
+ ρε

2,

where

ρε
2 = E

T∫
0

( 〈
fx(t), r

ε
2 (t)

〉 + 〈fu(t), hε(t) − h(t)〉
)
dt +E

〈
gx(x̄(T )), rε

2 (T )
〉

+E

T∫
0

[(〈
f̃ ε

xx(t)
δxε(t)

ε
,
δxε(t)

ε

〉
− 1

2
〈fxx(t)y1(t), y1(t)〉

)

+
(

2

〈
f̃ ε

xu(t)
δxε(t)

ε
,
δuε(t)

ε

〉
− 〈fxu(t)y1(t), v(t)〉

)
+

(〈
f̃ ε

uu(t)
δuε(t)

ε
,
δuε(t)

ε

〉
− 1

2
〈fuu(t)v(t), v(t)〉

)]
dt

+E

(〈
g̃ε

xx(x̄(T ))
δxε(T )

ε
,
δxε(T )

ε

〉
− 1

2
〈gxx(x̄(T ))y1(T ), y1(T )〉

)
.

In the same way as in the proof of Lemma 4.1, we find that limε→0+ ρε
2 = 0. On the other 

hand, by (3.13) and, recalling that v ∈ ϒū, ν0 ∈ {P1(0)}⊥, we have

1

ε
E

T∫
0

(
〈fx(t), y1(t)〉 + 〈fu(t), v(t)〉

)
dt + 1

ε
E 〈gx(x̄(T )), y1(T )〉

= −1

ε
〈P1(0), ν0〉 − 1

ε
E

T∫
0

〈Hu(t), v(t)〉dt = 0.

Therefore,

0 ≤ lim
ε→0+

J (uε(·)) − J (ū(·))
ε2

= E

T∫
0

[1

2
〈fx(t), y2(t)〉 + 〈fu(t), h(t)〉

+ 1

2

(
〈fxx(t)y1(t), y1(t)〉 + 2 〈fxu(t)y1(t), v(t)〉 + 〈fuu(t)v(t), v(t)〉

)]
dt

+ 1

2
E

(
〈gx(x̄(T )), y2(T )〉 + 〈gxx(x̄(T ))y1(T ), y1(T )〉

)
. (4.9)

By Itô’s formula,

E 〈gx(x̄(T )), y2(T )〉 = −E 〈P1(T ), y2(T )〉 (4.10)
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= −2 〈P1(0),�0〉 −E

T∫
0

(
2 〈P1(t), bu(t)h(t)〉 +

〈
P1(t), y1(t)

�bxx(t)y1(t)
〉

+ 2
〈
P1(t), v(t)�bxu(t)y1(t)

〉
+

〈
P1(t), v(t)�buu(t)v(t)

〉
+ 2 〈Q1(t), σu(t)h(t)〉

+
〈
Q1(t), y1(t)

�σxx(t)y1(t)
〉
+ 2

〈
Q1(t), v(t)�σxu(t)y1(t)

〉
+

〈
Q1(t), v(t)�σuu(t)v(t)

〉
+ 〈fx(t), y2(t)〉

)
dt,

and

E 〈gxx(x̄(T ))y1(T ), y1(T )〉 = −E 〈P2(T )y1(T ), y1(T )〉 (4.11)

= −〈P2(0)ν0, ν0〉 −E

T∫
0

(
2 〈P2(t)y1(t), bu(t)v(t)〉 + 2 〈P2(t)σx(t)y1(t), σu(t)v(t)〉

+ 〈P2(t)σu(t)v(t), σu(t)v(t)〉 + 2 〈Q2(t)σu(t)v(s), y1(t)〉 − 〈Hxx(t)y1(t), y1(t)〉
)
dt.

Substituting (4.10) and (4.11) into (4.9) yields

0 ≥ 〈P1(0),�0〉 + 1

2
〈P2(0)ν0, ν0〉

+E

T∫
0

[(
〈P1(t), bu(t)h(t)〉 + 〈Q1(t), σu(t)h(t)〉 − 〈fu(t), h(t)〉

)

+ 1

2

( 〈
P1(t), v(t)�buu(t)v(t)

〉
+

〈
Q1(t), v(t)�σuu(t)v(t)

〉
− 〈fuu(t)v(t), v(t)〉

)
+ 1

2
〈P2(t)σu(t)v(t), σu(t)v(t)〉 +

( 〈
P1(t), v(t)�bxu(t)y1(t)

〉
+

〈
Q1(t), v(t)�σxu(t)y1(t)

〉
− 〈fxu(t)y1(t), v(t)〉 +

〈
bu(t)

�P2(t)y1(t), v(t)
〉

+
〈
σu(t)

�P2(t)σx(t)y1(t), v(t)
〉
+

〈
σu(t)

�Q2(t)y1(t), v(t)
〉 )]

dt

= 〈P1(0),�0〉 + 1

2
〈P2(0)ν0, ν0〉 + 1

2
E

T∫
0

(
2 〈Hu(t), h(t)〉

+ 〈Huu(t)v(t), v(t)〉 + 〈P2(t)σu(t)v(t), σu(t)v(t)〉 + 2 〈S(t)y1(t), v(t)〉
)
dt.

Then, letting v(·) = h(·) = 0 we obtain (4.7) and letting ν0 = �0 = 0, we obtain (4.6), for any 
(v, h) ∈ A∗̄

u satisfying v ∈ ϒū.
To prove (4.6) for any (v, h) ∈Aū satisfying v ∈ ϒū, define

Ei := {(t,ω) ∈ [0, T ] × � | dist (ū(t,ω) + εv(t,ω),U) ≤ ε2�(t,ω), ∀ ε ∈ (0,
1 ]}.

i
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It can be proved that Ei is B([0, T ]) ⊗ F -measurable, the family {Ei}∞i=1 is nondecreasing and ⋃∞
i=1 Ei is of full measure in [0, T ] ×�. For any i ∈ N and (v, h) ∈ Aū satisfying v ∈ ϒū, define

vi(t,ω) :=
{

v(t,ω), (t,ω) ∈ Ei,

0, otherwise,
hi(t,ω) :=

{
h(t,ω), (t,ω) ∈ Ei,

0, otherwise.

Then, (vi, hi) ∈ A∗̄
u and vi ∈ ϒū. Hence,

E

T∫
0

(
2
〈
Hu(t), h

i(t)
〉
+

〈
Huu(t)v

i(t), vi(t)
〉

+
〈
P2(t)σu(t)v

i(t), σu(t)v
i(t)

〉
+ 2

〈
S(t)yi

1(t), v
i(t)

〉 )
dt ≤ 0, (4.12)

where yi
1 is the solution to the first order variational equation (3.3) with v replaced by vi . Since 

vi → v, hi → h in L4
F
(�; L4(0, T ; Rm)) as i → ∞, we have yi

1 → y1 in L4
F
(�; C([0, T ]; Rn)). 

Passing to the limit in inequality (4.12), we finally obtain (4.6). This completes the proof of 
Theorem 4.1. �

In what follows, we shall give a consequence of Theorem 4.1 for the case when U is repre-
sented by finitely many mixed constraints, i.e.,

U = {
u ∈R

m
∣∣ϕi(u) = 0, ∀ i = 1, ..., p, ψj (u) ≤ 0, ∀ j = 1, ..., r

}
,

where ϕ1, ..., ϕp : Rm → R and ψ1, . . . , ψr : Rm → R (for some p, r ∈ N) are twice continu-
ously differentiable functions and for any u ∈ U ,

{∇ϕ1(u), · · · ,∇ϕp(u)}
⋃

{∇ψj(u) | j ∈ I (u)} are linearly independent. (4.13)

Moreover, there exist two constants L ≥ 0 and ρ > 0 such that for every u ∈ U ,

|ϕ′′
i (u)| ≤ L, i = 1, ..., p,

|ψ ′′
j (u)| ≤ L, j ∈ I (u),

ρBIm(�u) ⊂ �uBRp+k , (4.14)

where I (u) is the set of all active indices at u, �u := (∇ϕ1(u), ..., ∇ϕp(u), ∇ψi1(u), ..., ψik (u))

with i1, ..., ik ∈ I (u) being all active indices for some k ≤ r , and BIm(�u) and BRp+k are respec-
tively the unit balls in the image space of �u and Rp+k .

We observe that (4.13) implies (4.14) with a ρ depending on u. In the above we required ρ to 
be independent of u to obtain the following result.

Corollary 4.1. Let U be as above, (C2)–(C3) hold and (x̄, ū, x̄0) be a local minimizer for the 
problem (1.3) with ū ∈ L4

F
(�; L4 (0, T ; Rm)). Then there exist μi(·) ∈ L2

F
(�; L2(0, T ; R)), 

i = 1, ..., p and λj (·) ∈ L2 (�; L2(0, T ; R+)), j = 1, ..., r such that for any v(·) ∈ ϒū ∩

F
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L4
F
(�; L4(0, T ; Rm)) satisfying v(t, ω) ∈ T b

U (ū(t, ω)), a.e. (t, ω) ∈ [0, T ] × � and the corre-
sponding solution y1 of equation (3.3) we have

E

T∫
0

(
〈Huu(t)v(t), v(t)〉 + 〈P2(t)σu(t)v(t), σu(t)v(t)〉 + 2 〈S(t)y1(t), v(t)〉

−
p∑

i=1

μi(t)
〈
ϕ′′

i (ū(t))v(t), v(t)
〉 − ∑

j∈Iv(ū(t))

λj (t)
〈
ψ ′′

j (ū(t))v(t), v(t)
〉 )

dt ≤ 0, (4.15)

where

Iv(ū(t,ω)) = {j ∈ I (ū(t,ω)) | 〈∇ψj(ū(t,ω)), v(t,ω)
〉 = 0}.

Proof. The proof of this result is similar to that of [11, Theorem 3]. Obviously, condition (4.13)
implies the Mangasarian–Fromowitz constraint qualification. By Example 2.1, for any (t, ω),

Nb
U(ū(t,ω)) =

p∑
i=1

R∇ϕi(ū(t,ω)) +
∑

j∈I (ū(t,ω))

R+∇ψj(ū(t,ω)).

Then, by the first order condition (3.15), we have

Hu(t,ω) ∈
p∑

i=1

R∇ϕi(ū(t,ω)) +
∑

j∈I (ū(t,ω))

R+∇ψj(ū(t,ω)), a.e. (t,ω) ∈ [0, T ] × �.

Define

�(t,ω) = {(μ1, ...,μp,λ1, ..., λr ) ∈ R
p+r |λj ≥ 0, j = 1, ..., r, λjψj (ū(t,ω)) = 0},

and

G(t,ω, (μ1, ...,μp,λ1, ..., λr )) =
p∑

i=1

μi∇ϕi(ū(t,ω)) +
r∑

j=1

λj∇ψj(ū(t,ω)).

By Filippov’s theorem (see [2, Theorem 8.2.10]), there exists a G ∗-measurable selection

γ ∗(t,ω) = (μ∗
1(t,ω), ...,μ∗

p(t,ω),λ∗
1(t,ω), ..., λ∗

r (t,ω)) ∈ �(t,ω), a.e. (t,ω) ∈ [0, T ] × �

such that

Hu(t,ω) =
p∑

i=1

μ∗
i (t,ω)∇ϕi(ū(t,ω)) +

∑
j∈I (ū(t,ω))

λ∗
j (t,ω)∇ψj (ū(t,ω)),

a.e. (t,ω) ∈ [0, T ] × �
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where G ∗ is the completion of G and G is defined by (2.1). By assumption (4.13) the process 
γ ∗(·) is uniquely determined (up to a set of measure zero). Since Rm is separable, there exists a 
G -measurable modification of γ ∗(·):

γ (·) = (μ1(·), ...,μp(·), λ1(·), ..., λr (·)).

By Lemma 2.3, γ (·) is B([0, T ]) ⊗F -measurable and F-adapted and

Hu(t,ω) =
p∑

i=1

μi(t,ω)∇ϕi(ū(t,ω)) +
∑

j∈I (ū(t,ω))

λj (t,ω)∇ψj (ū(t,ω)),

a.e. (t,ω) ∈ [0, T ] × �. (4.16)

By [9, Theorem 2.1] and assumption (4.14), for a.e. (t, ω) ∈ [0, T ] × �

|μi(t,ω)| ≤ 1

ρ
|Hu(t,ω)|, ∀ i = 1, ..., p, λj (t,ω) ≤ 1

ρ
|Hu(t,ω)|, ∀ j ∈ I (ū(t,ω)). (4.17)

On the other hand, when j /∈ I (ū(t, ω)), λj (t, ω) = 0 and therefore also λj (t, ω) ≤ 1
ρ
|Hu(t, ω)|. 

Since Hu(·) ∈ L2
F
(�; L2(0, T ; Rm)), we deduce that μi(·) ∈ L2

F
(�; L2(0, T ; R)), i = 1, ..., p, 

and, λj (·) ∈ L2
F
(�; L2(0, T ; R+)), j = 1, ..., r .

Let v(·) ∈ ϒū ∩ L4
F
(�; L4(0, T ; Rm)) satisfy v(t, ω) ∈ T b

U (ū(t, ω)), a.e. (t, ω) ∈ [0, T ] × �. 
Then

〈Hu(t,ω), v(t,ω)〉 = 0, a.e. (t,ω) ∈ [0, T ] × �. (4.18)

Combining (4.18) with (4.16), one has, for a.e. (t, ω) ∈ [0, T ] × �,∑
j∈I (ū(t,ω))

λj (t,ω)
〈∇ψj(ū(t,ω)), v(t,ω)

〉 = 0.

Therefore, for a.e. (t, ω) ∈ [0, T ] × � and for any j /∈ Iv(ū(t, ω)), λj (t, ω) = 0. Consequently,

Hu(t,ω) =
p∑

i=1

μi(t,ω)∇ϕi(ū(t,ω)) +
∑

j∈Iv(ū(t,ω))

λj (t,ω)∇ψj (ū(t,ω)),

a.e. (t,ω) ∈ [0, T ] × �. (4.19)

On the other hand, for any (t, ω) ∈ [0, T ] × �, by Example 2.1,

∅ �= T
b(2)
U (ū(t,ω), v(t,ω))

=
{
h ∈R

m

∣∣∣∣ 〈∇ϕi(ū(t,ω)),h〉 + 1

2
〈ϕ′′

i (ū(t,ω))v(t,ω), v(t,ω)〉 = 0, ∀ i = 1, · · · ,p,

and 〈∇ψj(ū(t,ω)), h〉 + 1 〈ψ ′′
j (ū(t,ω))v(t,ω), v(t,ω)〉 ≤ 0, ∀ j ∈ Iv(ū(t,ω))

}
. (4.20)
2
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It follows that, for any h ∈ T
b(2)
U (ū(t, ω), v(t, ω)) and a.e. (t, ω) ∈ [0, T ] × �,

〈Hu(t,ω),h〉 ≤ −1

2

p∑
i=1

μi(t,ω)
〈
ϕ′′

i (ū(t,ω))v(t,ω), v(t,ω)
〉

− 1

2

∑
j∈Iv(ū(t,ω))

λj (t,ω)
〈
ψ ′′

j (ū(t,ω))v(t,ω), v(t,ω)
〉
,

(4.21)

which implies that

sup
h∈T

b(2)
U (ū(t,ω),v(t,ω))

〈Hu(t,ω),h〉 < ∞, a.e. (t,ω) ∈ [0, T ] × �.

By (4.20), T b(2)
U (ū(t, ω), v(t, ω)) is a polyhedral set, cf. [29, p. 43]. By [29, Corollary 3.53]

the supremum in the above is attained.
By [2, Theorems 8.2.11 and 8.2.9] (making a completion argumentation if necessary), 

there exists a B([0, T ]) ⊗ F -measurable and F-adapted process h̃(·) such that h̃(t, ω) ∈
T

b(2)
U (ū(t, ω), v(t, ω)) a.e. in [0, T ] × � and〈

Hu(t,ω), h̃(t,ω)
〉
= sup

h∈T
b(2)
U (ū(t,ω),v(t,ω))

〈Hu(t,ω),h〉 , a.e. (t,ω) ∈ [0, T ] × �.

Then, for a.e. (t, ω) ∈ [0, T ] × �

μi(t,ω)
〈
∇ϕi(ū(t,ω)), h̃(t,ω)

〉
= −μi(t,ω)

2

〈
ϕ′′

i (ū(t,ω))v(t,ω), v(t,ω)
〉
,

∀ i = 1, ..., p, (4.22)

and,

λj (t,ω)
〈
∇ψj(ū(t,ω)), h̃(t,ω)

〉
≤ −λj (t,ω)

2

〈
ψ ′′

j (ū(t,ω))v(t,ω), v(t,ω)
〉
, ∀ j ∈ Iv(ū(t,ω)).

Applying the same argument as at the end of Example 2.1 we show, using (4.19), that

λj (t,ω)
〈
∇ψj(ū(t,ω)), h̃(t,ω)

〉
= −λj (t,ω)

2

〈
ψ ′′

j (ū(t,ω))v(t,ω), v(t,ω)
〉
,

∀ j ∈ Iv(ū(t,ω)). (4.23)

Combining (4.19), (4.22) with (4.23), one obtains that, for a.e. (t, ω) ∈ [0, T ] × �,

〈
Hu(t,ω), h̃(t,ω)

〉
= −1

2

p∑
i=1

μi(t,ω)
〈
ϕ′′

i (ū(t,ω))v(t,ω), v(t,ω)
〉

− 1

2

∑
λj (t,ω)

〈
ψ ′′

j (ū(t,ω))v(t,ω), v(t,ω)
〉
.

(4.24)
j∈Iv(ū(t,ω))
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Now, for any i ∈N, define

vi(t,ω) :=
{

v(t,ω), if |h̃(t,ω)| ≤ i,

0, otherwise,
hi(t,ω) :=

{
h̃(t,ω), if |h̃(t,ω)| ≤ i,

0, otherwise,

we have (vi(·), hi(·)) ∈ Aū and vi(·) ∈ ϒū. Let yi
1 be the solution to the first order variational 

equation (3.3) corresponding to vi(·), then by (4.24) and condition (4.6), we obtain that

E

T∫
0

( 〈
Huu(t)v

i(t), vi(t)
〉
+

〈
P2(t)σu(t)v

i(t), σu(t)v
i(t)

〉
+ 2

〈
S(t)yi

1(t), v
i(t)

〉

−
p∑

i=1

μi(t)
〈
ϕ′′

i (ū(t))vi(t), vi(t)
〉
−

∑
j∈Iv(ū(t))

λj (t)
〈
ψ ′′

j (ū(t))vi(t), vi(t)
〉 )

dt

≤ 0. (4.25)

Passing to the limit in inequality (4.25), we finally obtain condition (4.15). This completes the 
proof of Corollary 4.1. �

In [6], in the special case of K = {x0}, the authors obtained the following integral-type first 
and second order necessary conditions for stochastic optimal controls:

Theorem 4.2. Let (C2)–(C3) hold. If U is closed and convex and ū is an optimal control, then

E

T∫
0

〈Hu(t), v(t)〉dt ≤ 0, ∀ v ∈ cl2,2
(
RUad

(ū) ∩ L4
F
(�;L4(0, T ;Rm))

)
. (4.26)

Furthermore, for any v(·) ∈ cl4,4
(
RUad

(ū) ∩ L∞([0, T ] × �; Rm) ∩ ϒū

)
the following second 

order necessary condition holds:

E

T∫
0

(
〈Hxx(t)y1(t), y1(t)〉 + 2 〈Hxu(t)y1(t), v(t)〉

+ 〈Huu(t)v(t), v(t)〉
)
dt +E 〈gxx(x̄(T ))y1(T ), y1(T )〉 ≤ 0, (4.27)

where,

RUad
(ū) := {

αu − αū
∣∣ u ∈ Uad ,α ≥ 0

}
,

and cl2,2(A) and cl4,4(A) are respectively the closures of a set A under the norms ‖ · ‖2,2 and 
‖ · ‖4,4.
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Remark 4.1. There are three main differences between (4.6) and (4.27): First, the control region 
is allowed to be nonconvex in (4.6). Second, the solutions to two adjoint equations (3.6) and 
(4.3) are used in (4.6), and consequently, the second order term involving y1 (the solution to 
the first order variational equation (3.3)) is absent in this condition. Third, the condition (4.6)
contains the second order adjacent vector h, while in (4.27) it is equal to zero, cf. Remark 2.1. 
Our condition (4.6) is more effective in distinguishing optimal controls from other admissible 
controls than (4.27), even if the diffusion term σ = 0, see [17]. See also the examples (especially 
Example 4.2) that we shall give below.

Example 4.1. Let U be equal to the intersection of two closed balls in R2 of radii 1 and centers 
at respectively (1, 0) and (−1√

2
, 1√

2
), T = 1, A ∈R

2×2, F = (F 1, F 2) : R2 → R+ ×R be a given 
function satisfying F(0) = 0, Fx(0) = 0, Fxx(0) = 0, and for some L > 0,

|Fx(x)| + |Fxx(x)| ≤ L, ∀x ∈R
2.

Consider the stochastic control system{
dx(t) = [

F(x(t)) + u(t)
]
dt + Au(t)dW(t), t ∈ [0,1],

x(0) = 0,

with the cost functional

J (u(·)) = E
[
x1(1) − cos(x2(1))2].

For this optimal control problem, the Hamiltonian is defined as

H(t, x,u,p, q,ω) := 〈p,F (x) + u〉 + 〈q,Au〉 ,

where (t, x, u, p, q, ω) ∈ [0, 1] ×R
2 ×R

2 ×R
2 ×R

2 × �.
Define ū(t) ≡ (0, 0). Then, the corresponding state x̄(t) ≡ (0, 0). Since F 1(x) ≥ 0 for any 

x ∈ R
2 and U ⊂R+ ×R, we deduce that E(x1(1)) ≥ 0 for any solution x = (x1, x2) of the above 

stochastic system. Therefore ū is the global minimizer. Furthermore, the first and the second 
order adjoint equations are {

dP1(t) = Q1(t)dW(t), t ∈ [0,1],
P1(1) = (−1,0)

(4.28)

and {
dP2(t) = Q2(t)dW(t), t ∈ [0,1],
P2(1) = 0.

(4.29)

It is easy to see that the solutions to equations (4.28) and (4.29) are P1(t) ≡ (−1, 0), Q1(t) ≡ 0
and (P2(t), Q2(t)) ≡ (0, 0), respectively. Then,

Hu(t) = P1(t) + A�Q1(t) ≡ (−1,0), Huu(t) + σ�(t)P2(t)σu(t) ≡ 0, and S(t) ≡ 0.
u
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By the definition of U , T b
U((0, 0)) is the closed convex cone generated by {(0, 1), (1, 1)}. 

Moreover ( 1
2 , 0) ∈ T

b(2)
U ((0, 0), (0, 1)).

Then the first order necessary condition

〈Hu(t,ω), v〉 ≤ 0, ∀ v ∈ T b
U ((0,0))

(which corresponds to the first condition in (3.15)) is satisfied and

Hxx(t) ≡ 0, Hxu(t) ≡ 0, Huu(t) ≡ 0, and gxx(x̄(1)) ≡ 0.

Therefore, the second order necessary condition (4.27) is satisfied trivially in this case and does 
not contain any additional information with respect to the first order necessary condition (4.26).

Comparatively, our second order necessary condition (4.6) provides more information about 
the control ū. For example, let ṽ(t) ≡ (0, 1) and h̃(t) ≡ ( 1

2 , 0). Obviously ṽ ∈ ϒū, (ṽ, h̃) ∈ Aū, 
and condition (4.6) becomes

2E

1∫
0

〈
Hu(t), h̃(t)

〉
dt = −1 ≤ 0.

Noting that ( 1
2 , 0) /∈ T b

U ((0, 0)), the last inequality is different from the first order necessary 
condition (3.7) and from the second order necessary condition (4.27).

Example 4.2. Let n = m = 2, T = 1, and

U = {(u1, u2) ∈ R
2 | |u1 + 1|2 + |u2|2 = 1} ∪ {(u1, u2) ∈R

2 | |u1 − 1|2 + |u2|2 = 1}.
Clearly, this U is neither a finite set nor convex in R2. One can easily check that

T b
U ((0,0)) = {0} ×R, T

b(2)
U ((0,0), (0,1)) � (

1

2
,0).

Consider the control system⎧⎨⎩ dx1(t) = (x2(t) − 1
2 )dt + dW(t), t ∈ [0,1],

dx2(t) = u1(t)dt + |u2(t)|4dW(t), t ∈ [0,1],
x1(0) = 0, x2(0) = 0

(4.30)

with the cost functional

J (u) = E

[1

2
|x1(1) − W(1)|2 +

1∫
0

|u2(t)|4dt
]
. (4.31)

Obviously, the only difference between (3.17) and (4.30) is that the coefficient “u2(t)” in the first 
system is replaced by “ |u2(t)|4” in the second one and, since U is a bounded set, the assumptions 
(C2)–(C3) are fulfilled.
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The Hamiltonian of this optimal control problem is given by

H(t, (x1, x2), (u1, u2), (p
1
1,p

2
1), (q

1
1 , q2

1 ),ω) = p1
1(x2 − 1

2
) + p2

1u1 + q1
1 + q2

1 |u2|4 − |u2|4,

for all (t, (x1, x2), (u1, u2), (p1
1, p

2
1), (q

1
1 , q2

1 ), ω) ∈ [0, 1] × R
2 × R

2 × R
2 × R

2 × �. In what 
follows, we show that the admissible control (u1(t), u2(t)) ≡ (0, 0) is not locally optimal.

The corresponding solution to the control system (4.30) is still given by (3.20), and the first 
order adjoint equation is the same as in (3.21). Therefore (P 1

1 (t), Q1
1(t)) and (P 2

1 (t), Q2
1(t)) are 

as in (3.22).
For the present problem,

Hu(t) = (P 2
1 (t),4Q2

1(u2(t))
3 − 4(u2(t))

3) = (
1 − t

2
,0). (4.32)

Hence, the first order condition in (3.15),

〈Hu(t), v〉 = P 2
1 (t)v1 + 4(Q2

1 − 1)(u2(t))
3v2 = 0, ∀ v = (v1, v2) ∈ T b

U ((0,0))

is trivially satisfied, and therefore we need to check the second order condition (4.6). For this, 
we observe that

Huu(t) =
[

0 0
0 0

]
, bx(t) =

[
0 1
0 0

]
,

bu(t) =
[

0 0
1 0

]
, σx(t) = σu(t) =

[
0 0
0 0

]
. (4.33)

We now choose a direction v = (v1, v2) = (0, 1) and ν0 = (0, 0). Then, the first order variational 
equation (3.3) becomes {

dy1(t)
dt

= bx(t)y1(t), t ∈ [0,1],
y1(0) = (0,0),

(4.34)

and hence y1(t) ≡ (0, 0). This, combined with (4.33), shows that the second condition in (4.6) is 
specified as

E

1∫
0

〈Hu(t), h〉dt ≤ 0, ∀ h ∈ T
b(2)
U ((0,0), (0,1)). (4.35)

We now choose h = ( 1
2 , 0) in (4.35). By (4.32), we obtain that

E

1∫
0

〈Hu(t), h〉dt = 1

8
> 0,

which is a contradiction. Therefore, (u1(t), u2(t)) ≡ (0, 0) is not locally optimal.
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4.2. Pointwise second order necessary conditions

In this subsection, under some further assumptions, we shall deduce from the integral-type 
second order necessary condition (4.6) a pointwise one. First, we introduce the following notion.

Definition 4.1. We call ũ ∈ Uad partially singular in the classical sense if ũ satisfies

{
H̃u(t) = 0, a.e. t ∈ [0, T ], a.s.,〈(
H̃uu(t) + σ̃u(t)

�P̃2(t)σ̃u(t)
)
v, v

〉 = 0, ∀ v ∈ T b
U (ũ(t)), a.e. t ∈ [0, T ], a.s.

(4.36)

where x̃ is the state corresponding to ũ, H̃u(t) = Hu(t, x̃(t), ũ(t), P̃1(t), Q̃1(t)), and similarly for 
H̃uu(t) and σ̃u(t). (P̃1, Q̃1) and (P̃2, Q̃2) are the adjoint processes given respectively by (3.6) and 
(4.3) with (x̄, ū, x̄0) replaced by (x̃, ũ, x̃0). When (x̄, ū, x̄0) is a local minimizer for the problem 
(1.3) and ū is singular, we call (x̄, ū, x̄0) a singular local minimizer (for the problem (1.3)).

Remark 4.2. The definition of the singular control in (4.36) is much more general than that 
in [33, Definition 3.3]. More precisely, by the maximality condition (3.16), if the control ũ is 
optimal, the first and second necessary conditions in optimization theory immediately imply 
that, for a.e. (t, ω) ∈ [0, T ] × �,

〈
H̃u(t,ω), v

〉 ≤ 0, ∀ v ∈ T b
U (ũ(t,ω)).

Further, if 
〈
H̃u(t,ω), v0

〉 = 0 for some v0 ∈ T b
U (ũ(t, ω)), then for any h ∈ T

b(2)
U (ũ(t, ω), v0),

〈
H̃u(t,ω),h

〉 + 1

2

〈(
H̃uu(t,ω) + σ̃u(t,ω)�P̃2(t,ω)σ̃u(t,ω)

)
v0, v0

〉
≤ 0. (4.37)

Both Definition 4.1 and [33, Definition 3.3] imply that the corresponding singular controls 
satisfy the above first and second order necessary condition trivially, but in Definition 4.1, 
H̃uu(t) + σ̃u(t)

�P̃2(t)σ̃u(t) is only assumed to be degenerated, for a.e. [0, T ] × �, in the di-
rections from T b

U (ũ(t)). We shall see in Example 4.3 below that for partially singular controls, 
H̃uu(t) + σ̃u(t)

�P̃2(t)σ̃u(t) may be different from 0 on a subset of [0, T ] × � having positive 
measure.

By Theorem 4.1, it is easy to verify the following second order integral-type necessary condi-
tion for the problem (1.3).

Theorem 4.3. Let (C1)–(C3) hold. If (x̄, ū, x̄0) is a singular local minimizer for the problem (1.3)
and ū ∈ L4

F
(�; L4(0, T ; Rm)), then

E

T∫
0

〈S(t)y1(t), v(t)〉dt ≤ 0, ∀ v ∈A1
ū. (4.38)
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As underlined in [33], there are some essential difficulties to deduce from the above integral 
type second order necessary condition a pointwise one. The main reason for it is that the spike 
variations have to be used to get the pointwise second order necessary condition from (4.38). 
Substituting the explicit expression for y1 into (4.38), the Itô integral will appear in this condition. 
Thus there will be a “bad” term making impossible using the Lebesgue differentiation theorem to 
derive the pointwise condition (see Subsection 3.2 in [33] for more details). However, when S and 
v are regular enough, a method similar to the one proposed in [33] can be used to establish the 
following pointwise second-order necessary condition for stochastic singular optimal controls 
for the problem (1.3).

Theorem 4.4. Let (C1)–(C3) hold. If (x̄, ū, x̄0) is a singular local minimizer for the prob-
lem (1.3), ū ∈ L4

F
(�; L4(0, T ; Rm)) and S ∈ L

1,2
2,F

(Rm×n) ∩ L∞([0, T ] × �; Rm×n), then in 

addition to the second order transversality condition (4.7), for any v ∈ L
1,2
2,F(Rm) ∩ L∞([0, T ] ×

�; Rm) ∩A1
ū, the following pointwise second order necessary condition holds:

〈S(τ )bu(τ )v(τ ), v(τ )〉 + 〈∇S(τ )σu(τ )v(τ ), v(τ )〉 (4.39)

+ 〈S(τ )σu(τ )v(τ ),∇v(τ)〉 ≤ 0, a.e. τ ∈ [0, T ], a.s.

Proof. The proof is similar to the one of [33, Theorem 3.13]. Let τ ∈ [0, T ), θ ∈ (0, T − τ), 
Eθ = [τ, τ + θ) and choose A ∈ Fτ . For any v(·) ∈ L

1,2
2,F(Rm) ∩ L∞([0, T ] × �; Rm) ∩ A1

ū, 
define

vθ,A(t,ω) =
{

v(t,ω), (t,ω) ∈ Eθ × A,

0, (t,ω) ∈ ([0, T ] × �
) \ (

Eθ × A
)
.

Clearly, vθ,A(·) ∈ A1
ū. Denote by yθ,A

1 (·) the solution to the first order variational equation (3.3)

with v(·) replaced by vθ,A(·). By [32, Theorem 1.6.14, p. 47], yθ,A
1 (·) enjoys an explicit repre-

sentation:

y
θ,A
1 (t) = �(t)

t∫
0

�(s)−1(bu(s) − σx(s)σu(s)
)
vθ,A(s)ds

+ �(t)

t∫
0

�(s)−1σu(s)v
θ,A(s)dW(s), (4.40)

where �(·) solves the following matrix-valued stochastic differential equation

{
d�(t) = bx(t)�(t)dt + σx(t)�(t)dW(t), t ∈ [0, T ],
�(0) = I,

(4.41)

and I stands for the identity matrix of dimension n.
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From Theorem 4.3, it follows that

0 ≥ 1

θ2
E

τ+θ∫
τ

〈
S(t)y

θ,A
1 (t), v(t)

〉
χAdt

= 1

θ2
E

τ+θ∫
τ

〈
S(t)�(t)

t∫
τ

�(s)−1(bu(s) − σx(s)σu(s)
)
v(s)χAds, v(t)

〉
χAdt

+ 1

θ2
E

τ+θ∫
τ

〈
S(t)�(t)

t∫
τ

�(s)−1σu(s)v(s)χAdW(s), v(t)

〉
χAdt. (4.42)

By the Lebesgue differentiation theorem, it is immediate that for a.e. τ ∈ [0, T ),

lim
θ→0+

1

θ2
E

τ+θ∫
τ

〈
S(t)�(t)

t∫
τ

�(s)−1(bu(s) − σx(s)σu(s)
)
v(s)χAds, v(t)

〉
χAdt

= 1

2
E

( 〈
S(τ )

(
bu(τ ) − σx(τ )σu(τ )

)
v(τ), v(τ )

〉
χA

)
. (4.43)

On the other hand, by (4.41)

1

θ2
E

τ+θ∫
τ

〈
S(t)�(t)

t∫
τ

�(s)−1σu(s)v(s)χAdW(s), v(t)

〉
χAdt (4.44)

= 1

θ2
E

τ+θ∫
τ

〈
S(t)�(τ)

t∫
τ

�(s)−1σu(s)v(s)χAdW(s), v(t)

〉
χAdt

+ 1

θ2
E

τ+θ∫
τ

〈
S(t)

t∫
τ

bx(s)�(s)ds

t∫
τ

�(s)−1σu(s)v(s)χAdW(s), v(t)

〉
χAdt

+ 1

θ2
E

τ+θ∫
τ

〈
S(t)

t∫
τ

σx(s)�(s)dW(s)

t∫
τ

�(s)−1σu(s)v(s)χAdW(s), v(t)

〉
χAdt.

By the properties of the Itô integral and the Lebesgue differentiation theorem, it can be proved 
that

lim
θ→0+

1

θ2
E

τ+θ∫
τ

〈
S(t)

t∫
τ

bx(s)�(s)ds

t∫
τ

�(s)−1σu(s)v(s)χAdW(s), v(t)

〉
χAdt

= 0, a.e. τ ∈ [0, T ), (4.45)
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and

lim
θ→0+

1

θ2
E

τ+θ∫
τ

〈
S(t)

t∫
τ

σx(s)�(s)dW(s)

t∫
τ

�(s)−1σu(s)v(s)χAdW(s), v(t)

〉
χAdt

= 1

2
E

(
〈S(τ )σx(τ )σu(τ )v(τ ), v(τ )〉χA

)
, a.e. τ ∈ [0, T ). (4.46)

Next, the assumptions on S and v yield

S(·)�v(·) ∈ L
1,2
F

(Rn) ∩ L∞([0, T ] × �;Rn).

Hence, by the Clark–Ocone formula, for a.e. t ∈ [0, T ),

S(t)�v(t) = E
(
S(t)�v(t)

) +
t∫

0

E

(
Ds

(
S(t)�v(t)

) ∣∣∣ Fs

)
dW(s). (4.47)

Substituting (4.47) into the first term of the right hand of (4.44), it follows that

1

θ2
E

τ+θ∫
τ

〈
S(t)�(τ)

t∫
τ

�(s)−1σu(s)v(s)χAdW(s), v(t)

〉
χAdt (4.48)

= 1

θ2

τ+θ∫
τ

E

〈 t∫
τ

�(τ)�(s)−1σu(s)v(s)χAdW(s),E
(
S(t)�v(t)

)〉
χAdt

+ 1

θ2

τ+θ∫
τ

E

〈 t∫
τ

�(τ)�(s)−1σu(s)v(s)χAdW(s),

t∫
0

E

(
Ds

(
S(t)�v(t)

)∣∣∣Fs

)
dW(s)

〉
χAdt

= 1

θ2

τ+θ∫
τ

t∫
τ

E

〈
�(τ)�(s)−1σu(s)v(s),Ds

(
S(t)�v(t)

)〉
χAdsdt.

Note that

Ds

(
S(t)�v(t)

) = (
DsS(t)�

)
v(t) + S(t)�Dsv(t).

Using the same argument as that in [33, Theorem 3.13], we conclude that there exists a sequence 
{θ�}∞�=1 of positive numbers such that lim�→∞ θ� = 0, and

lim
�→∞

1

θ2
�

E

τ+θ�∫
τ

〈
S(t)�(τ)

t∫
τ

�(s)−1σu(s)v(s)χAdW(s), v(t)

〉
χAdt (4.49)

= 1
E

( 〈
∇S(τ )�v(τ), σu(τ )v(τ )

〉
χA

)
+ 1

E

( 〈
S(τ )�∇v(τ), σu(τ )v(τ )

〉
χA

)
, a.e. τ ∈ [0, T ).
2 2
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Then, by (4.44), (4.49), one concludes that

lim
�→∞

1

θ2
�

E

τ+θ�∫
τ

〈
S(t)�(t)

t∫
τ

�(s)−1σu(s)v(s)χAdW(s), v(t)

〉
χAdt (4.50)

= 1

2
E

(
〈S(τ )σx(τ )σu(τ )v(τ ), v(τ )〉χA

)
+ 1

2
E

( 〈
∇S(τ )�v(τ), σu(τ )v(τ )

〉
χA

)
+ 1

2
E

( 〈
S(τ )�∇v(τ), σu(τ )v(τ )

〉
χA

)
, a.e. τ ∈ [0, T ).

Combining (4.42), (4.43) and (4.50), one has

0 ≥ E

(
〈S(τ )bu(τ )v(τ )), v(τ )〉χA

)
+E

( 〈
∇S(τ )�v(τ), σu(τ )v(τ )

〉
χA

)
+E

( 〈
S(τ )�∇v(τ), σu(τ )v(τ )

〉
χA

)
, a.e. τ ∈ [0, T ).

Finally, by the arbitrariness of A ∈ Fτ , we deduce that the desired second order necessary con-
dition (4.39) holds. This completes the proof of Theorem 4.4. �

If ū ∈ L
1,2
2,F(Rm), U is a bounded closed convex set in Rm, v− ū(·) ∈ L

1,2
2,F(Rm) ∩L∞([0, T ] ×

�; Rm) ∩A1
ū holds true for any v ∈ U . Then, by Theorem 4.4 and the separability of U , one has

〈S(τ )bu(τ )(v − ū(τ )), v − ū(τ )〉 + 〈∇S(τ )σu(τ )(v − ū(τ )), v − ū(τ )〉
− 〈S(τ )σu(τ )(v − ū(τ )),∇ū(τ )〉 ≤ 0, ∀ v ∈ U, a.e. τ ∈ [0, T ], a.s., (4.51)

which coincides with [33, Theorem 3.13]. However, when the control set U is nonconvex, some 
more assumptions as follows are required to establish a pointwise condition similar to (4.51).

(C4) For any u ∈ ∂U and v ∈ T b
U (u), T b(2)

U (u, v) �= ∅.

When the control set U has a C2 boundary, the assumption (C4) holds, see [10].
From the proof of Theorem 4.4, we deduce the following result.

Corollary 4.2. Let (C1)–(C4) hold, (x̄, ū, x̄0) be a singular local minimizer for the problem (1.3). 
If S ∈ L

1,2
2,F(Rm×n), and the optimal control ū is a step function as below

ū(t,ω) =
k∑

i=1

li∑
j=1

uijχAij
χ[ti ,ti+1)(t,ω), a.e. (t,ω) ∈ [0, T ] × �, (4.52)

where k ∈ N, 0 = t1 < · · · < tk+1 = T , li ∈ N, uij ∈ U and Aij ∈ Fti for i = 1, · · · , k and 
j = 1, · · · , li , then, in addition to the second order transversality condition (4.7), the follow-
ing pointwise second order necessary condition holds:
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〈S(τ,ω)bu(τ,ω)v, v〉 + 〈∇S(τ,ω)σu(τ,ω)v, v〉 ≤ 0,

∀ v ∈ T b
U (ū(τ,ω)), a.e. τ ∈ [0, T ], a.s. (4.53)

Proof. When ū(t, ω) is given as in (4.52), for any fixed i and j , ū(t, ω) has constant value uij

on [ti , ti+1) ×Aij . Then, on [ti , ti+1) ×Aij , let vij ∈ T b
U (uij ), hij ∈ T

b(2)
U (uij , vij ), τ ∈ [ti , ti+1), 

θ ∈ (0, ti+1 − τ), Eθ = [τ, τ + θ) and choose A ∈Fti . Define

vθ,A(t,ω) =
{

vij , (t,ω) ∈ Eθ × (A ∩ Aij ),

0, otherwise,
hθ,A(t,ω) =

{
hij , (t,ω) ∈ Eθ × (A ∩ Aij ),

0, otherwise.

It is clear that (vθ,A, hθ,A) ∈ Aū. Then, by similar arguments as in the proof of Theorem 4.4 and 
noting that the Malliavin derivative of the constant-valued process vij is equal to 0, we obtain 
that〈

S(τ,ω)bu(τ,ω)vij , vij

〉 + 〈∇S(τ,ω)σu(τ,ω)vij , vij

〉 ≤ 0, a.e. (τ,ω) ∈ [ti , ti+1) × Aij .

By the closedness of the adjacent cone, the separability of Rm, the arbitrariness of i, j and vij it 
follows that

〈S(τ,ω)bu(τ,ω)v, v〉 + 〈∇S(τ,ω)σu(τ,ω)v, v〉 ≤ 0, ∀ v ∈ T b
U (ū(τ,ω)), a.e. τ ∈ [0, T ], a.s.

This completes the proof of Corollary 4.2. �
Example 4.3. Let the optimal control problem be the one stated in Example 3.1. We have shown 
that ū(t) = (ū1(t), ū2(t)) ≡ (1, 0) is the optimal control. In the following we will prove that this 
optimal control is partially singular and satisfies the second order necessary condition (4.53).

In Example 3.1 we obtained that the corresponding state (x̄1(t), x̄2(t)) is as in (3.23) and the 
first order adjoint process (P1(t), Q1(t)) is as in (3.24). In addition, it is easy to see that the 
second order adjoint equation is

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d

[
P 1

2 (t) P 2
2 (t)

P 3
2 (t) P 4

2 (t)

]
=

[
0 −P 1

2 (t)

−P 1
2 (t) −P 2

2 (t) − P 3
2 (t)

]
dt +

[
Q1

2(t) Q2
2(t)

Q3
2(t) Q4

2(t)

]
dW(t), t ∈ [0,1],[

P 1
2 (1) P 2

2 (1)

P 3
2 (1) P 4

2 (1)

]
=

[ −1 0
0 0

]
and its solution is([

P 1
2 (t) P 2

2 (t)

P 3
2 (t) P 4

2 (t)

]
,

[
Q1

2(t) Q2
2(t)

Q3
2(t) Q4

2(t)

])
=

([ −1 t − 1
t − 1 −t2 + 2t − 1

]
,

[
0 0
0 0

])
.

A direct calculation shows that

T b((1,0)) = {(v1,0) ∈ R
2 | v1 ≤ 0}.
U
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Then, we have

Hu(t) = 0, Huu(t) = 0, ∀ (t,ω) ∈ [0,1] × �,

σu(t)
�P2(t)σu(t) =

[
0 0
0 1

][ −1 t − 1
t − 1 −t2 + 2t − 1

][
0 0
0 1

]
=

[
0 0
0 −t2 + 2t − 1

]
and therefore〈(

Huu(t) + σu(t)
�P2(t)σu(t)

)
v, v

〉
= 0, ∀ v ∈ T b

U (ū(t)), a.e. t ∈ [0, T ], a.s.

This means that ū(t) = (ū1(t), ū2(t)) ≡ (1, 0) is partially singular. Next, we prove that ū(t) =
(ū1(t), ū2(t)) ≡ (1, 0) satisfies the second order necessary condition in Corollary 4.2. It is clear 
that

S(t) =
[

0 1
0 0

][ −1 t − 1
t − 1 −t2 + 2t − 1

]
=

[
t − 1 −t2 + 2t − 1

0 0

]
.

Then, ∇S(t) ≡ 0, and

〈S(t)bu(t)v, v〉 + 〈∇S(t)σu(t)v, v〉 = [
v1 0

][ −t2 + 2t − 1 0
0 0

][
v1
0

]
= −(t − 1)2v2

1 ≤ 0, ∀ v ∈ T b
U (ū(t)), a.e. t ∈ [0, T ], a.s.
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Appendix A

In this section, we prove the two technical Lemmas 3.2 and 4.1. The fundamental idea comes 
from the classical calculus, see also the related results in [4,6] for the optimal control problems 
with convex control constraints, and [27,32] for the general control constraints.

A.1. Proof of Lemma 3.2

Proof. From (3.3) and Lemma 3.1 we deduce that

E

(
sup

t∈[0,T ]
|y1(t)|β

)
≤ CE

[
|ν0|β +

( T∫
0

|bu(t)v(t)|dt
)β +

( T∫
0

|σu(t)v(t)|2dt
) β

2
]

≤ CE

[
|ν0|β +

( T∫
|v(t)|2dt

) β
2
]
.

0
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Since vε(·) converges to v(·) in Lβ

F
(�; L2(0, T ; Rm)), and νε

0 → ν0 in Rn as ε → 0+, we deduce 
from (3.2) that

E

(
sup

t∈[0,T ]
|δxε(t)|β

)
≤ CE

[
εβ |νε

0 |β +
( T∫

0

|εvε(t)|2ds
) β

2
]

= O(εβ).

Consequently, by the Hölder inequality,

E

(
sup

t∈[0,T ]
|δxε(t)|

)
≤

[
E

(
sup

t∈[0,T ]
|δxε(t)|β

)]1/β = O(ε) (A.1)

and

E

T∫
0

|vε(t) − v(t)|dt ≤ C
[
E

( T∫
0

|vε(t) − v(t)|2dt
) β

2
] 1

β → 0, ε → 0+. (A.2)

Denote b̃ε
x(t) :=

∫ 1
0 bx(t, x̄(t) + θδxε(t), ū(t) + θεvε(t))dθ . Mappings b̃ε

u(t), σ̃
ε
x (t) and σ̃ ε

u (t)

are defined in a similar way. Then, δxε(·) is the solution to the following stochastic differential 
equation ⎧⎪⎪⎨⎪⎪⎩

dδxε(t) = (
b̃ε
x(t)δx

ε(t) + εb̃ε
u(t)vε(t)

)
dt

+ (
σ̃ ε

x (t)δxε(t) + εσ̃ ε
u (t)vε(t)

)
dW(t), t ∈ [0, T ],

δxε(0) = ενε
0,

and rε
1 (·) satisfies the following stochastic differential equation⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

drε
1 (t) =

[
b̃ε
x(t)r

ε
1 (t) + (

b̃ε
x(t) − bx(t)

)
y1(t) + b̃ε

u(t)
(
vε(t) − v(t)

)
+ (

b̃ε
u(t) − bu(t)

)
v(t)

]
dt +

[
σ̃ ε

x (t)rε
1 (t) + (

σ̃ ε
x (t) − σx(t)

)
y1(t)

+ σ̃ ε
u (t)

(
vε(t) − v(t)

) + (
σ̃ ε

u (t) − σu(t)
)
v(t)

]
dW(t), t ∈ [0, T ],

rε
1 (0) = νε

0 − ν0.

(A.3)

For any sequence {εj }∞j=1 of positive numbers converging to 0 as j → ∞, we can find a 
subsequence {jk}∞k=1 ⊂ N such that supt∈[0,T ] |δxεjk (t)| → 0 a.s. and εjk

vεjk
(t) → 0 a.s. for a.e. 

t ∈ [0, T ], as k → ∞. The assumption (C2) yields, 
∣∣(b̃εjk

x (t) − bx(t))y1(t)
∣∣ → 0 a.s. for a.e. 

t ∈ [0, T ], as k → ∞. Hence,∣∣(b̃εj
x (·) − bx(·))y1(·)

∣∣ → 0 in measure, as j → ∞.

Then, using Lebesgue’s dominated convergence theorem, we conclude that

E

( T∫
|(b̃εj

x (t) − bx(t)
)
y1(t)|2dt

) β
2 → 0, j → ∞. (A.4)
0
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A slight modification of the above discussion shows that

E

( T∫
0

|(b̃εj
u (t) − bu(t)

)
v(t)|2dt

) β
2 +E

( T∫
0

|(σ̃ εj
x (t) − σx(t)

)
y1(t)|2dt

) β
2

+E

( T∫
0

|(σ̃ εj
u (t) − σu(t)

)
v(t)|2dt

) β
2 → 0, j → ∞. (A.5)

On the other hand

E

( T∫
0

|b̃εj
u (t)

(
vεj

(t) − v(t)
)|2dt

) β
2 +E

( T∫
0

|σ̃ εj
u (t)

(
vεj

(t) − v(t)
)|2dt

) β
2

≤ CE

( T∫
0

|vεj
(t) − v(t)|2dt

) β
2 → 0, j → ∞.

Therefore, by Lemma 3.1, we finally obtain that

E

(
sup

t∈[0,T ]
|rεj

1 (t)|β
)

≤ CE

[
|νεj

0 − ν0|β +
( T∫

0

∣∣(b̃εj
x (t) − bx(t)

)
y1(t) + b̃

εj
u (t)

(
vεj

(t) − v(t)
)

+ (
b̃

εj
u (t) − bu(t)

)
v(t)

∣∣dt
)β +

( T∫
0

∣∣(σ̃ εj
x (t) − σx(t)

)
y1(t)

+ σ̃
εj
u (t)

(
vεj

(t) − v(t)
) + (

σ̃
εj
u (t) − σu(t)

)
v(t)

∣∣2dt
) β

2
]

→ 0, j → ∞.

The sequence εj → 0+ being arbitrary, the proof is complete. �
A.2. Proof of Lemma 4.1

Proof. By Lemma 3.2 (with β replaced by 2β), we obtain that

E

(
sup

t∈[0,T ]
|y1(t)|2β

)
≤ CE

[
|ν0|2β +

( T∫
0

|v(t)|2dt
)β]

. (A.6)

Then, by (4.1), Lemma 3.1 and the Hölder inequality, it follows that

E

(
sup

t∈[0,T ]
|y2(t)|β

)

≤ CE

[
|�0|β +

( T∫
|2bu(t)h(t) + y1(t)

�bxx(t)y1(t) + 2v(t)�bxu(t)y1(t)
0
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+ v(t)�buu(t)v(t)|dt
)β +

( T∫
0

|2σu(t)h(t) + y1(t)
�σxx(t)y1(t)

+ 2v(t)�σxu(t)y1(t) + v(t)�σuu(t)v(t)|2dt
) β

2
]

≤ CE

[
|�0|β +

( T∫
0

|h(t)|2dt
) β

2 + sup
t∈[0,T ]

|y1(t)|2β

+ sup
t∈[0,T ]

|y1(t)|β ·
( T∫

0

|v(t)|2dt
) β

2 +
( T∫

0

|v(t)|4dt
) β

2
]

≤ CE

[
|�0|β + |ν0|2β +

( T∫
0

|h(t)|2dt
) β

2 +
( T∫

0

|v(t)|4dt
) β

2
]
.

Denote b̃ε
xx(t) :=

∫ 1
0 (1 − θ)bxx(t, x̄(t) + θδxε(t), ū(t) + θδuε(t))dθ . Mappings b̃ε

xu(t), 
b̃ε
uu(t), σ̃

ε
xx(t), σ̃

ε
xu(t) and σ̃ ε

uu(t) are defined in a similar way. Then, δxε satisfies the follow-
ing stochastic differential equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dδxε(t) =
(
bx(t)δx

ε(t) + bu(t)δu
ε(t) + δxε(t)�b̃ε

xx(t)δx
ε(t)

+ 2δxε(t)�b̃ε
xu(t)δu

ε(t) + δuε(t)�b̃ε
uu(t)δu

ε(t)
)
dt

+
(
σx(t)δx

ε(t) + σu(t)δu
ε(t) + δxε(t)�σ̃ ε

xx(t)δx
ε(t)

+ 2δxε(t)�σ̃ ε
xu(t)δu

ε(t) + δuε(t)�σ̃ ε
uu(t)δu

ε(t)
)
dW(t), t ∈ [0, T ],

δxε(0) = εν0 + ε2�ε
0 .

Therefore rε
2 solves the following stochastic differential equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

drε
2 (t) =

{
bx(t)r

ε
2 (t) + bu(t)

(
hε(t) − h(t)

)
+ [(

δxε(t)
ε

)�
b̃ε
xx(t)

(
δxε(t)

ε

) − 1
2y1(t)

�bxx(t)y1(t)
]

+ [
2
(

δxε(t)
ε

)�
b̃ε
xu(t)

(
δuε(t)

ε

) − y1(t)
�bxu(t)v(t)

]
+ [(

δuε(t)
ε

)�
b̃ε
uu(t)

(
δuε(t)

ε

) − 1
2v(t)�buu(t)v(t)

]}
dt

+
{
σx(t)r

ε
2 (t) + σu(t)

(
hε(t) − h(t)

)
+ [(

δxε(t)
ε

)�
σ̃ ε

xx(t)
(

δxε(t)
ε

) − 1
2y1(t)

�σxx(t)y1(t)
]

+ [
2
(

δxε(t)
ε

)�
σ̃ ε

xu(t)
(

δuε(t)
ε

) − y1(t)
�σxu(t)v(t)

]
+ [(

δuε(t)
ε

)�
σ̃ ε

uu(t)
(

δuε(t)
ε

) − 1
2v(t)�σuu(t)v(t)

]}
dW(t), t ∈ [0, T ],

rε(0) = �ε − � .

(A.7)
2 0 0



JID:YJDEQ AID:8637 /FLA [m1+; v1.239; Prn:6/12/2016; 13:46] P.44 (1-48)

44 H. Frankowska et al. / J. Differential Equations ••• (••••) •••–•••
Since hε(·) converges to h(·) in L2β

F
(�; L4(0, T ; Rm)),

E

( T∫
0

∣∣∣bu(t)
(
hε(t) − h(t)

)∣∣∣dt
)β +E

( T∫
0

∣∣∣σu(t)
(
hε(t) − h(t)

)∣∣∣2dt
) β

2 → 0, ε → 0+. (A.8)

On the other hand, by the Hölder inequality,

E

( T∫
0

∣∣∣(δxε(t)

ε

)�
b̃ε
xx(t)

(δxε(t)

ε

) − 1

2
y1(t)

�bxx(t)y1(t)

∣∣∣dt
)β

≤ CE

( T∫
0

∣∣∣(δxε(t)

ε

)�
b̃ε
xx(t)

(δxε(t)

ε

) − 1

2
y1(t)

�bxx(t)y1(t)

∣∣∣2dt
) β

2

≤ CE

[ T∫
0

∣∣∣(δxε(t)

ε

)�(
b̃ε
xx(t) − 1

2
bxx(t)

)(δxε(t)

ε

)∣∣∣2dt
] β

2

+ CE

[
sup

t∈[0,T ]

∣∣∣δxε(t)

ε
− y1(t)

∣∣∣β( sup
t∈[0,T ]

∣∣∣δxε(t)

ε

∣∣∣β + sup
t∈[0,T ]

|y1(t)|β
)]

≤ C
[
E

(
sup

t∈[0,T ]

∣∣∣δxε(t)

ε

∣∣∣2β)]1/2[
E

( T∫
0

∣∣∣b̃ε
xx(t) − 1

2
bxx(t)

∣∣∣4 ·
∣∣∣δxε(t)

ε

∣∣∣4dt
) β

2
]1/2

+ C
[
E

(
sup

t∈[0,T ]

∣∣∣δxε(t)

ε
− y1(t)

∣∣∣2β)] 1
2
[
E

(
sup

t∈[0,T ]

∣∣∣δxε(t)

ε

∣∣∣2β + sup
t∈[0,T ]

|y1(t)|2β
)] 1

2
. (A.9)

Since hε converges to h in L2β

F
(�; L4(0, T ; Rm)) and �ε

0 converges to �0 in Rm as ε → 0+, by 
Lemma 3.1,

E

(
sup

t∈[0,T ]
|δxε(t)|2β

)
≤ CE

[
|εν0 + ε2�ε

0 |2β +
( T∫

0

|εv(t) + ε2hε(t)|2dt
)β] = O(ε2β).

As in the proof of (3.4) in Lemma 3.2, we obtain that

E

(
sup

t∈[0,T ]

∣∣∣δxε(t)

ε
− y1(t)

∣∣∣2β) → 0, ε → 0+.

For any sequence {εj }∞j=1 of positive numbers converging to 0 as j → ∞, one can show that

bxx(·, x̄(·) + θδxεj (·), ū(·) + θδuεj (·)) − bxx(·) → 0, in measure, as j → ∞.

Since
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b̃
εj
xx(t) − 1

2
bxx(t) =

1∫
0

(1 − θ)
(
bxx(t, x̄(t) + θδxεj (t), ū(t) + θδuεj (t)) − bxx(t)

)
dθ,

from (C3), (A.9) and the Lebesgue dominated convergence theorem, we obtain that

E

( T∫
0

∣∣∣(δxεj (t)

εj

)�
b̃

εj
xx(t)

(δxεj (t)

εj

) − 1

2
y1(t)

�bxx(t)y1(t)

∣∣∣dt
)β → 0, as j → ∞. (A.10)

Similarly,

E

( T∫
0

∣∣∣2(δxεj (t)

εj

)�
b̃

εj
xu(t)

(δuεj (t)

εj

) − y1(t)
�bxu(t)v(t)

∣∣∣dt
)β

≤ CE

( T∫
0

∣∣∣2(δxεj (t)

εj

)�
b̃

εj
xu(t)

(δuεj (t)

εj

) − y1(t)
�bxu(t)v(t)

∣∣∣2dt
)β/2

≤ C
[
E

(
sup

t∈[0,T ]

∣∣∣δxεj (t)

εj

∣∣∣2β)] 1
2
[
E

( T∫
0

∣∣b̃εj
xu(t) − 1

2
bxu(t)

∣∣4∣∣∣δuεj (t)

εj

∣∣∣4dt
) β

2
] 1

2

+ C
[
E

(
sup

t∈[0,T ]

∣∣∣δxεj (t)

εj

− y1(t)

∣∣∣)2β] 1
2
[
E

( T∫
0

∣∣δuεj (t)

εj

∣∣4dt
) β

2
] 1

2

+ C
[
E

(
sup

t∈[0,T ]
|y1(t)|2β

)] 1
2
[
E

( T∫
0

∣∣δuεj (t)

εj

− v(t)
∣∣4dt

) β
2
] 1

2
,

which implies that

E

( T∫
0

∣∣∣2(δxεj (t)

εj

)�
b̃

εj
xu(t)

(δuεj (t)

εj

) − y1(t)
�bxu(t)v(t)

∣∣∣dt
)β → 0, j → ∞. (A.11)

In a similar way, we have

E

( T∫
0

∣∣∣(δuεj (t)

εj

)�
b̃

εj
uu(t)

(δuεj (t)

εj

) − 1

2
v�buu(t)v(t)

∣∣∣dt
)β

≤ CE

( T∫ ∣∣∣(δuεj (t)

εj

)�(
b̃

εj
uu(t) − 1

2
buu(t)

)(δuεj (t)

εj

)∣∣∣2dt
) β

2

0
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+ CE

[ T∫
0

∣∣∣δuεj (t)

εj

− v(t)

∣∣∣2 ·
(∣∣∣δuεj (t)

εj

∣∣∣2 + |v(t)|2
)
dt

] β
2

≤ CE

( T∫
0

∣∣∣δuεj (t)

εj

∣∣4∣∣b̃εj
uu(t) − 1

2
buu(t)

∣∣2dt
) β

2

+ CE

[ T∫
0

∣∣∣εjhεj
(t)

∣∣∣2 ·
(∣∣∣v(t) + εjhεj

(t)

∣∣∣2 + |v(t)|2
)
dt

] β
2 → 0, j → ∞. (A.12)

Applying the above method to the diffusion coefficient σ , we conclude that

E

( T∫
0

∣∣∣(δxεj (t)

εj

)�
σ̃

εj
xx(t)

(δxεj (t)

εj

) − 1

2
y1(t)

�σxx(t)y1(t)

∣∣∣2dt
) β

2 → 0, j → ∞, (A.13)

E

( T∫
0

∣∣∣2(δxεj (t)

εj

)�
σ̃

εj
xu(t)

(δuεj (t)

εj

) − y1(t)
�σxu(t)v(t)

∣∣∣2dt
) β

2 → 0, j → ∞ (A.14)

and

E

( T∫
0

∣∣∣(δuεj (t)

εj

)�
σ̃

εj
uu(t)

(δuεj (t)

εj

) − 1

2
v(t)�σuu(t)v(t)

∣∣∣2dt
) β

2 → 0, j → ∞. (A.15)

By Lemma 3.1, and using (A.7), (A.8) and (A.10)–(A.15), we obtain that

E

[
sup

t∈[0,T ]
|rεj

2 (t)|β
]

≤ C|�εj

0 − �0|β + CE

( T∫
0

∣∣∣bu(t)
(
hεj

(t) − h(t)
)∣∣∣dt

)β

+ CE

( T∫
0

∣∣∣σu(t)
(
hεj

(t) − h(t)
)∣∣∣2dt

) β
2

+ CE

( T∫
0

∣∣∣(δxεj (t)

εj

)�
b̃

εj
xx(t)

(δxεj (t)

εj

) − 1

2
y1(t)

�bxx(t)y1(t)

∣∣∣dt
)β

+ CE

( T∫ ∣∣∣2(δxεj (t)

εj

)�
b̃

εj
xu(t)

(δuεj (t)

εj

) − y1(t)
�bxu(t)v(t)

∣∣∣dt
)β
0
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+ CE

( T∫
0

∣∣∣(δuεj (t)

εj

)�
b̃

εj
uu(t)

(δuεj (t)

εj

) − 1

2
v(t)�buu(t)v(t)

∣∣∣dt
)β

+ CE

( T∫
0

∣∣∣(δxεj (t)

εj

)�
σ̃

εj
xx(t)

(δxεj (t)

εj

) − 1

2
y1(t)

�σxx(t)y1(t)

∣∣∣2dt
) β

2

+ CE

( T∫
0

∣∣∣2(δxεj (t)

εj

)�
σ̃

εj
xu(t)

(δuεj (t)

εj

) − y1(t)
�σxu(t)v(t)

∣∣∣2dt
) β

2

+ CE

( T∫
0

∣∣∣(δuεj (t)

εj

)�
σ̃

εj
uu(t)

(δuεj (t)

εj

) − 1

2
v(t)�σuu(t)v(t)

∣∣∣2dt
) β

2

→ 0, j → ∞.

This proves (4.2). The sequence εj → 0+ being arbitrary, the proof is complete. �
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