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Abstract

In this paper we study a free boundary problem modeling the growth of vascularized tumors. The model 
is a modification to the Byrne–Chaplain tumor model that has been intensively studied during the past two 
decades. The modification is made by replacing the Dirichlet boundary value condition with the Robin 
condition, which causes some new difficulties in making rigorous analysis of the model, particularly on 
existence and uniqueness of a radial stationary solution. In this paper we successfully solve this problem. 
We prove that this free boundary problem has a unique radial stationary solution which is asymptotically 
stable for large surface tension coefficient, whereas unstable for small surface tension coefficient. Tools 
used in this analysis are the geometric theory of abstract parabolic differential equations in Banach spaces 
and spectral analysis of the linearized operator.
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1. Introduction

It has been recognized for over eighty years that under a constant circumstance, an evolution-
ary tumor (or a multicell spheroid in a different phrase) will finally evolve into a stationary or 
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dormant state [1]. During 1970’s, Greenspan proposed the first mathematical model in the form 
of free boundary problem of reaction diffusion equations to explain this phenomenon [22,23]. 
His model was very well improved by Byrne and Chaplain during 1990’s [3,4]. Since then many 
different tumor models have been established by different groups of researchers, cf. the review-
ing articles [2,16] and references cited therein. Rigorous mathematical analysis of those tumor 
models has attracted much attention over the past two decades, and many interesting results have 
been obtained, cf. [5–13,17,18,20,21,25–30] and references cited therein.

In this paper we study the following free boundary problem modeling the growth of vascular-
ized tumors: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�σ = f (σ ), x ∈ �(t), t > 0,

−�p = g(σ ), x ∈ �(t), t > 0,

∂nσ = β(σ̄ − σ), x ∈ ∂�(t), t > 0,

p = γ κ, x ∈ ∂�(t), t > 0,

Vn = −∂np, x ∈ ∂�(t), t > 0,

�(0) = �0.

(1.1)

Here �(t) is the domain in Rn occupied by the tumor at time t , σ = σ(x, t) and p = p(x, t)
are the nutrient concentration in the tumor region and the pressure between tumor cells, respec-
tively, ∂n represents the derivative in the direction of the outward normal n of the tumor surface 
∂�(t), σ̄ is a positive constant reflecting the constant concentration of nutrient in the host tissue 
of the tumor, κ is the mean curvature of the tumor surface ∂�(t) whose sign is designated by 
the convention that for the sphere it is positive, Vn is the normal velocity of the tumor surface 
movement, β is a positive constant reflecting the ability that the tumor attracts blood vessel from 
its host tissue, γ is another positive constant reflecting the surface tension of the tumor surface 
and is usually referred to as surface tension coefficient, f and g are given functions with f (σ )

being the (normalized) consumption rate of nutrient by tumor cells when its concentration is at 
level σ and g(σ ) the (normalized) proliferation rate of tumor cells when the nutrient concentra-
tion is at level σ , and �0 is the domain that the tumor initially occupies. Naturally, from physical 
viewpoint we have n = 3; but for mathematical interest we consider the general case n � 2.

The above model, in the case that f and g are linear functions

f (σ ) = λσ and g(σ ) = μ(σ − σ̃ ), (1.2)

was proposed by Friedman and Lam in [19] as an essential modification to the corresponding 
model of Byrne and Chaplain mentioned above. The modification is made by considering nutrient 
supply mechanism of the tumor in a different viewpoint from that of Byrne and Chaplain. Indeed, 
in the model of Byrne and Chaplain [3,4], tumor surface is obstacle-free to nutrient diffusion, so 
that instead of the Robin boundary condition in the third line of (1.1) (referred to as (1.1)3 in 
what follows), in their model the Dirichlet boundary condition

σ = σ̄ , x ∈ ∂�(t), t > 0 (1.3)

is imposed, which means that nutrient in the host tissue diffuses into the tumor from its surface 
without any obstruction, and the effect of vascularization of the tumor is reflected in the structure 
of the function f : Roughly speaking, the denser the capillary vessel of the tumor is, the larger the 
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coefficient λ in the function f in (1.2) will be. In the above model (1.1), however, tumor surface 
is a barrier to nutrient diffusion, and nutrient enters the tumor only from blood vessels penetrated 
into the tumor from the host tissue. The positive constant β reflects strength of the blood vessel 
system of the tumor: the smaller β is, the weaker the blood vessel system of the tumor will be, 
and β = 0 corresponds to the case that the tumor does not have its own capillary vessel system 
so that nutrient is isolated on both sides of the surface of the tumor.

We can understand the boundary condition (1.1)3 in a different viewpoint: Even if the tumor 
does not have its own capillary vessel system, the nutrient is still able to diffuse through its sur-
face into its inner part with reduction caused by the barrier effect of the surface, and 1/β reflects 
reduction rate of nutrient by the tumor surface as a barrier: 1/β = 0 means that tumor surface 
is obstacle-free to nutrient diffusion, whereas 1/β = ∞ means that tumor surface is a complete 
barrier to nutrient, i.e., nutrients in the tumor and in host tissues are completely isolated. In this 
viewpoint, the Robin boundary condition (1.1)3 is more realistic than the Dirichlet boundary 
condition (1.3).

When the Robin boundary condition (1.1)3 is replaced by the Dirichlet boundary condition
(1.3), the corresponding free boundary problem has been intensively studied by many authors 
during the past two decades, cf. [5–10,13,17,18,20,21], for instance. It is natural to ask whether 
the results obtained in those literatures can be extended to the problem (1.1). Evidently, to tackle 
the Robin boundary condition problem some new difficulties different from those encountered 
in the Dirichlet boundary condition problem must be overcome. In the above-mentioned work of 
Friedman and Lam [19], the authors studied the radial version of the problem (1.1) in the special 
case that f and g are linear functions given by (1.2) (but with a more general boundary condition 
for σ : β is not a constant but a given positive function of t ). Recently, the first author of this 
paper considered the special case that f is a linear function and the space dimension n = 3 [31]. 
In the present paper we aim at studying the problem (1.1) for a general nonlinear f .

As in [6,7,9,10], in this paper we assume that f and g are general functions defined in [0, ∞)

satisfying the following group of conditions:

(A1) f ∈ C∞[0, ∞), g ∈ C∞[0, ∞);
(A2) f ′(σ ) > 0 for all σ ∈ [0, ∞), and f (0) = 0;
(A3) g′(σ ) > 0 for all σ ∈ [0, ∞), and there exists ̃σ > 0 such that g(̃σ ) = 0;
(A4) σ̄ > σ̃ .

Note that the condition (A4) is imposed only for the purpose to ensure that a nontrivial dynamics 
of the problem (1.1) exists: if this condition is not satisfied then the tumor will finally vanish. 
Indeed, by the maximum principle we have 0 � σ(x, t) < σ̄ for all x ∈ �(t) and t > 0. Hence, 
by the transport formula and the Green’s formula, we have the following deduction:

d

dt

( ∫
�(t)

dx
)

=
∫

∂�(t)

Vn(x, t)dSx = −
∫

∂�(t)

∂np(x, t)dSx

= −
∫

�(t)

�p(x, t)dx =
∫

�(t)

g(σ (x, t))dx < g(σ̄ )
( ∫
�(t)

dx
)
.

Since the condition σ̄ � σ̃ and the assumption (A3) imply that g(σ̄ ) � 0, we get
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lim
t→∞ Vol(�(t)) = 0.

From biological viewpoint, this can be explained as follows: ̃σ is the threshold value of nutrient 
concentration to sustain tumor cells alive and proliferating. Hence, if σ̄ � σ̃ then in the tumor 
region nutrient is not sufficient to sustain tumor cells alive, yielding the result that the tumor 
diminishes in time and finally disappears. For more discussions on the assumptions (A1)–(A4), 
we refer the reader to see [6,10].

In this paper we study the problem (1.1) from the following four aspects: (1) Existence and 
uniqueness of a radial stationary solution. (2) Asymptotic stability of the radial stationary solu-
tion under radial perturbations. (3) Local well-posedness of the problem (1.1). (4) Asymptotic 
stability of the radial stationary solution under non-radial perturbations. In what follows we give 
precise statements of the main results obtained in this paper.

By a radial stationary solution of the problem (1.1) we mean a triple (σs(r), ps(r), �s) with 
�s = B(0, Rs) = {0 � r < Rs} (r represents the radial coordinate in Rn) and σs(r), ps(r) being 
functions defined for 0 � r � Rs , such that the following equations are satisfied:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σ ′′
s (r) + n−1

r
σ ′

s(r) = f (σs(r)), 0 < r < Rs,

p′′
s (r) + n−1

r
p′

s(r) = −g(σs(r)), 0 < r < Rs,

σ ′
s(0) = 0, σ ′

s(Rs) = β(σ̄ − σs(Rs)),

p′
s(0) = 0, ps(Rs) = γ /Rs,

p′
s(Rs) = 0.

(1.4)

These equations are obtained from (1.1) by assuming that σ(x, t), p(x, t), �(t) are independent 
of t , �(t) = �s = B(0, Rs) and σ , p are radial functions in x. We introduce a function F(R)

defined for R � 0 as follows:

F(R) =
1∫

0

g(U(ρR,R))ρn−1dρ, (1.5)

where U = U(r, R) is a function defined for all R � 0 and 0 � r � R as follows: U(r, 0) ≡ σ̄ , 
and for any R > 0, U(r, R) (0 � r � R) is the unique solution of the following boundary value 
problem:

⎧⎨⎩ U ′′(r,R) + n − 1

r
U ′(r,R) = f (U(r,R)), 0 < r < R,

U ′(0,R) = 0, U ′(R,R) = β(σ̄ − U(R,R)),

(1.6)

where U ′(r, R) = ∂U
∂r

(r, R) and U ′′(r, R) = ∂2U
∂r2 (r, R). Note that since f is a smooth monotone 

increasing function and β > 0, by standard theory for elliptic boundary value problems we easily 
see that the above problem has a unique solution which is smooth for R > 0 and 0 � r � R (see 
§2 for details).

The first main result of this paper is the following
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Theorem 1.1. Let the assumptions (A1)–(A4) be satisfied. Then the function F has a unique pos-
itive root which we denote as Rs , and the problem (1.4) has a unique solution (σs(r), ps(r), Rs)

given as follows: σs(r) = U(r, Rs), and

ps(r) = γ

Rs

+
Rs∫
r

η∫
0

g(U(ξ,Rs))
(ξ

η

)n−1
dξdη for 0 � r � R. (1.7)

To study asymptotic stability of the radial stationary solution (σs(r), ps(r), �s) under ra-
dial perturbations, we need to consider radial transient solutions of the problem (1.1). A radial 
transient solution of the problem (1.1) is a triple (σ (r, t), p(r, t), �(t)) with �(t) = B(0, R(t))

(t � 0) and σ(r, t), p(r, t) being functions defined for t � 0 and 0 � r � R(t), satisfying the 
following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2σ

∂r2 (r, t) + n − 1

r

∂σ

∂r
(r, t) = f (σ (r, t)), 0 < r < R(t), t > 0,

∂2p

∂r2 (r, t) + n − 1

r

∂p

∂r
(r, t) = −g(σ (r, t)), 0 < r < R(t), t > 0,

∂σ

∂r
(0, t) = 0,

∂σ

∂r
(R(t), t) = β(σ̄ − σ(R(t), t)), t > 0,

∂p

∂r
(0, t) = 0, p(R(t), t) = γ

R(t)
, t > 0,

R′(t) = 1

(R(t))n−1

R(t)∫
0

g(σ (r, t))rn−1dr, t > 0,

R(0) = R0,

(1.8)

where R0 > 0 is a given initial data of R(t). These equations are obtained from (1.1) by assuming 
that �(t) = B(0, R(t)) and σ(x, t), p(x, t) are radial functions in x for any t � 0.

Theorem 1.2. Let the assumptions (A1)–(A4) be satisfied. Then for any R0 > 0, the problem
(1.8) has a unique solution (σ (r, t), p(r, t), R(t)) (0 � r � R(t)) for all t � 0 with the following 
properties:

(i) R ∈ C1[0, ∞), and R(t) > 0 for all t � 0;
(ii) σ(rR(t), t) ∈ C2,1([0, 1] × [0, ∞)), and

0 � σ(r, t) � σ̄ for 0 � r � R(t), t � 0; (1.9)

(iii) The following relations hold:

lim
t→∞R(t) = R0, (1.10)

lim
t→∞ max |σ(r, t) − σs(r)| = 0, (1.11)
0�r�R(t)



JID:YJDEQ AID:9249 /FLA [m1+; v1.282; Prn:12/03/2018; 15:52] P.6 (1-25)

6 Y. Zhuang, S. Cui / J. Differential Equations ••• (••••) •••–•••
lim
t→∞ max

0�r�R(t)
|p(r, t) − ps(r)| = 0. (1.12)

Next we consider non-radial solutions of the problem (1.1). To state the main results on this 
line we first introduce some notations. For a bounded domain � in Rn with a smooth boundary 
∂� and a given number s > 0, we denote by cs(�) the so-called little Hölder space of order s
on �, which is, by definition, the closure of C∞(�) in the usual Hölder space Cs(�). A im-
portant special case is the space cs(Bn) on the unit ball Bn = {x ∈ R

n : |x| < 1}. Similarly, for a 
closed smooth hypersurface 
 ⊆ R

n we write cs(
) for the closure of C∞(
) in Cs(
). A im-
portant special case is the space cs(Sn−1) on the unit sphere Sn−1.

Fix an integer m � 3 and a number 0 < α < 1. We shall deal with the problem (1.1) in the 
cm+α space. Let �0 ⊆ R

n be the bounded initial domain given in the problem (1.1). We assume 
that there exists a closed smooth hypersurface 
 in a very small neighborhood of ∂�0 such that 
∂�0 is exactly the image of the mapping ξ 	→ ξ + η0(ξ)n
(ξ), ∀ξ ∈ 
, where n
 is the outward 
normal field of 
, and η0 is a function on 
 (uniquely determined by ∂�0). For δ > 0 sufficiently 
small, we denote

Oδ := {η ∈ cm+α(
) : ‖η‖cm+α(
) < δ}. (1.13)

We assume that δ is so small that the mapping X : (ξ, s) 	→ ξ + sn
(ξ) from 
 × (−δ, δ) to R
n

is an one-to-one correspondence of 
 × (−δ, δ) onto its image (see §3 for details). Given η ∈
Oδ , we use the notation �η to denote the domain in Rn enclosed by the closed hypersurface 
x = ξ + η(ξ)n
(ξ) (ξ ∈ 
). Using this notation, we rephrase more precisely the condition on the 
initial domain �0 as follows: There exists η0 ∈ Oδ such that �0 = �η0 .

The third main result of this paper is concerned with local well-posedness of the problem
(1.1), which reads as follows:

Theorem 1.3. Let �0 be given with 
 and η0 ∈ Oδ as above. There exist a number T > 0, 
a function

η ∈ C([0, T ], cm+α(
)) ∩ C1((0, T ], cm−3+α(
)),

and a pair of functions (σ, p) = (σ (x, t), p(x, t)) defined for x ∈ �η(t) and 0 � t � T , such 
that the triple (σ, p, �), where �(t) = �η(t) (0 � t � T ), is the unique classical solution of the 
problem (1.1) on the time interval [0, T ].

Remark. Note that in the above result regularity of the pair of functions (σ, p) is not specified. 
This is because when �(t) is obtained, (σ, p) is the solution of the elliptic boundary value prob-
lem (1.1)1–(1.1)4 and, by standard knowledge, regularity of the solution of elliptic boundary 
value problem whose coefficients and given functions are smooth is completely determined by 
regularity of its domain.

To state the result on asymptotic behavior of non-radial solution (σ, p, �) of the prob-
lem (1.1), we need to introduce some further notations. We denote 
s = RsS

n−1 = {x ∈ R
n :

|x| = Rs} and, with m, α, δ as before, let

Os := {η ∈ cm+α(
s) : ‖η‖cm+α(
 ) < δ}. (1.14)
δ s
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Accordingly, given η ∈ Os
δ , the notation �η denotes the bounded domain enclosed by the hyper-

surface x = ξ + η(ξ)n
s (ξ) (ξ ∈ 
s ). We note that an important character of the problem (1.1)
is that it is invariant under coordinate translations, i.e., if (σ, p, �) is the solution of (1.1) with 
initial data �(0) = �0, then for any x0 ∈R

n, by letting

σ [x0](·, t) = σ(· − x0, t), p[x0](·, t) = p(· − x0, t), �[x0](t) = �(t) + x0,

we see that (σ [x0], p[x0], �[x0]) is the solution of (1.1) with initial data �[x0](0) = �0 + x0. 
It follows that stationary solutions of the problem (1.1) are not isolated in any function spaces. 
Hence, in order to study asymptotic stability of the radial stationary solution (σs, ps, �s) ensured 
by Theorem 1.1, we must module the solutions of (1.1) via coordinate translations of Rn. To this 
end, given x0 ∈ R

n, we denote by (σ [x0]
s , p[x0]

s , �[x0]
s ) the translated radial stationary solution 

defined similarly as above.
The last main result of this paper is the following:

Theorem 1.4. There exists a constant γ∗ > 0 such that the following two assertions hold:

(i) If γ > γ∗ then the radial stationary solution (σs, ps, �s) is asymptotically stable module 
translations, i.e., there exists a constant δ > 0 such that for any η0 ∈ Os

δ the problem (1.1)
has a unique global in-time classical solution (σ, p, �η) which converges, as time t → ∞, 
exponentially fast to a translated radial stationary solution (σ [x0]

s , p[x0]
s , �[x0]

s ) for some 
x0 ∈ Rn, or more precisely, there exist constants C > 0 and c > 0 (independent of the initial 
data) such that the following estimate holds for all t � 0:

‖η(t)−η[x0]
s ‖Cm+α(
s) +‖σ(·, t)−σ [x0]

s ‖Cm+α(�(t)) +‖p(·, t)−p[x0]
s ‖Cm+α−2(�(t)) � Ce−ct ,

where η[x0]
s is the unique smooth function on 
s such that �[x0]

s = �
η

[x0]
s

.

(ii) If 0 < γ < γ∗ then the radial stationary solution (σs, ps, �s) is unstable.

Let us make some comments on the above results. As we mentioned earlier, when the Robin 
boundary condition (1.1)3 is replaced by Dirichlet boundary condition, then the corresponding 
model has been very well studied during the past twenty years. For the present model with the 
Robin boundary condition (1.1)3, the proof of local well-posedness of the problem is quite sim-
ilar to that of the problem with Dirichlet boundary condition. However, proofs of existence and 
uniqueness of the radial stationary solution as well as its asymptotic stability turn out to be dif-
ferent, and some new difficulties have to be overcome; see the proof of Lemma 2.1 in §2 and the 
computation of the spectrum of the linearized operator presented in §4. Hence, in the following 
sections we shall make detailed discussion on these different aspects and only give skeletons of 
the arguments that are similar to those in existing literatures.

The structure of the rest part is as follows: In Section 2 we give the proofs of Theorems 1.1
and 1.2. In Section 3 we prove Theorem 1.3. The proof of Theorem 1.4 will be given in the last 
section.

2. Proofs of Theorems 1.1 and 1.2

In this section we give the proofs of Theorems 1.1 and 1.2.
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Let us first study properties of the solution U(r, R) of the boundary value problem (1.6). 
As before we use the notations ′, ′′ and ′′′ to respectively denote the first, the second and the 
third order derivatives in the variable r . Besides, we use the notation of subscripts R, RR to 
respectively denote the first and the second order derivatives in the variable R, i.e., UR(r, R) =
∂U
∂R

(r, R), URR(r, R) = ∂2U
∂R2 (r, R), U ′

R(r, R) = ∂2U
∂R∂r

(r, R), and so on.
The following lemma will play a crucial role in later analysis:

Lemma 2.1. Let the conditions (A1) and (A2) be satisfied. We have the following assertions:

(1) 0 < U(r, R) < σ̄ for all R > 0 and 0 � r � R, 0 < U ′(r, R) � f (σ̄ )
n

r for all R > 0 and 
0 < r � R, and 0 < U ′′(r, R) � f (σ̄ ) for all R > 0 and 0 � r � R.

(2) The following relations hold for all R > 0 and 0 < r � R:

−f (σ̄ )(
1

β
+ R

n
) � UR(r,R) � 0, U ′

R(r,R) � 0.

(3) For any ρ ∈ (0, 1) fixed, the function R 	→ U(ρR, R) is strictly monotone decreasing.
(4) The following relations hold:

lim
R→0+ U(ρR,R) = σ̄ for all ρ ∈ (0,1); (2.1)

lim
R→∞U(ρR,R) = 0 for all ρ ∈ (0,1). (2.2)

Proof. (1) Since U ≡ σ̄ and U ≡ 0 are a pair of upper and lower solutions of the problem
(1.6) and the function f is smooth and monotone increasing, using a standard result for elliptic 
boundary value problems we see that for any R > 0 the problem (1.6) has a unique solution 
satisfying the following condition:

0 � U(r,R) � σ̄ for 0 � r � R. (2.3)

From (1.6) we easily get

U ′(r,R) = 1

rn−1

r∫
0

f (U(ρ,R))ρn−1dρ for 0 < r � R, (2.4)

which combined with (2.3) yields

0 < U ′(r,R) � f (σ̄ )

n
r for 0 < r � R and R > 0. (2.5)

From the relation U ′(R, R) > 0 and the second boundary condition in (1.6) we obtain 
U(R, R) < σ̄ . The assertion U(0, R) > 0 follows from uniqueness of the solution of the ini-
tial value problem ⎧⎨⎩ U ′′(r,R) + n − 1

r
U ′(r,R) = f (U(r,R)), r > 0,

U(0,R) = a, U ′(0,R) = 0.
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Indeed, by a standard contraction mapping argument, we see that for any a � 0 there exists 
corresponding δ > 0 such that the above problem has a unique solution defined for 0 � r � δ. 
Hence, we must have U(0, R) > 0 for otherwise (i.e., if U(0, R) = 0 then) a contradiction would 
follow. We claim that U ′′(r, R) has the following expression:

U ′′(r,R) = 1

rn

r∫
0

f ′(U(ρ,R))U ′(ρ,R)ρndρ + 1

r
U ′(r,R), 0 < r � R. (2.6)

In fact, using integration by parts and the relation (2.4), we have

1

rn

r∫
0

f ′(U(ρ,R))U ′(ρ,R)ρndρ + 1

r
U ′(r,R)

= 1

rn

(
f (U(ρ,R))ρn

∣∣∣r
ρ=0

− n

r∫
0

f (U(ρ,R))ρn−1dρ
)

+ 1

r
U ′(r,R)

= f (U(r,R)) − n − 1

r
U ′(r,R),

which is exactly U ′′(r, R), by (1.6)1. Thus (2.6) follows. From (2.5) and (2.6) we see that

U ′′(r,R) > 0, 0 < r � R, (2.7)

and the L’Hospital’s rule implies that U ′′(0, R) = 1
n
f (U(0, R)) > 0. Moreover, from (1.6)1 we 

further have

U ′′(r,R) � U ′′(r,R) + n − 1

r
U ′(r,R) = f (U(r,R)) � f (σ̄ ). (2.8)

This proves the assertion (1).
(2) Differentiating the relation U ′(R, R) + β(U(R, R) − σ̄ ) = 0 in R we get

U ′′(R,R) + U ′
R(R,R) + β(U ′(R,R) + UR(R,R)) = 0. (2.9)

Differentiating the relation U ′′(r, R) + n−1
r

U ′(r, R) = f (U(r, R)) (for fixed r) in R we obtain

U ′′
R(r,R) + n − 1

r
U ′

R(r,R) − f ′(U(r,R))UR(r,R) = 0, 0 < r < R. (2.10)

Observe that

U ′
R(0,R) = 0, U ′

R(R,R) + βUR(R,R) < 0 (by (2.5), (2.6), (2.9)). (2.11)

From (2.10), (2.11) and the maximum principle it follows that

UR(r,R) � 0, 0 � r < R. (2.12)
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Moreover, from (2.10) and the first relation in (2.11) we easily see that

U ′
R(r,R) � 0, 0 � r < R, (2.13)

which implies

UR(r,R) � UR(R,R), 0 � r < R. (2.14)

Using these relations and (2.9) we compute

βUR(R,R) = −U ′
R(R,R) − U ′′(R,R) − βU ′(R,R) � −U ′′(R,R) − βU ′(R,R)

� −f (σ̄ ) − βf (σ̄ )

n
R.

Hence the assertion (2) follows.
(3) Differentiating the relation U ′′(r, R) + n−1

r
U ′(r, R) = f (U(r, R)) (for fixed R) in r , we 

get

U ′′′(r,R) + n − 1

r
U ′′(r,R) − f ′(U(r,R))U ′(r,R) = n − 1

r2 U ′(r,R), 0 < r < R.

Summing up this relation with (2.10), we get

�′′(r,R) + n − 1

r
�′(r,R) − f ′(U(r,R))�(r,R) = n − 1

r2 U ′(r,R) > 0, 0 < r < R, (2.15)

where �(r, R) = U ′(r, R) + UR(r, R). Moreover, observe that

�(0,R) = U ′(0,R) + UR(0,R) = UR(0,R) � 0 (by (2.12)) (2.16)

�′(R,R) + β�(R,R) = 0 (by (2.9)). (2.17)

From (2.15), (2.16), (2.17) and the maximum principle it follows that

�(r,R) < 0, 0 < r < R.

Hence, for any ρ ∈ (0, 1) fixed, we have

d

dR
U(ρR,R) = ρU ′(ρR,R) + UR(ρR,R) � �(ρR,R) < 0.

This proves the assertion (3).
(4) Due to (2.3) and the assertion (3), we define

�(ρ) = lim
R→0+ U(ρR,R) for all ρ ∈ (0,1);

�(ρ) = lim U(ρR,R) for all ρ ∈ (0,1).

R→∞
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We assert that �(ρ) = σ̄ , �(ρ) = 0 for all ρ ∈ (0, 1). Indeed, by using (2.4), we obtain

U ′(R,R) = 1

Rn−1

R∫
0

f (U(ρ,R))ρn−1dρ = R

1∫
0

f (U(ρR,R))ρn−1dρ. (2.18)

It follows that

lim
R→0+ U ′(R,R) = 0. (2.19)

This further implies, by (1.6)2, that

lim
R→0+ U(R,R) = σ̄ . (2.20)

Again from (2.4), we have

U ′(r,R) = r

1∫
0

f (U(rη,R))ηn−1dη � r

1∫
0

f (U(Rη,R))ηn−1dη, 0 < r � R.

Integrating the above inequality from ρR to R with respect to r (for fixed 0 < ρ < 1), we get

0 � U(R,R) − U(ρR,R) � R2(1 − ρ2)

2

1∫
0

f (U(Rη,R))ηn−1dη � R2f (σ̄ )(1 − ρ2)

2n
. (2.21)

From (2.20) and (2.21) we immediately obtain (2.1). Next, we observe that �(ρ) is increasing in 
ρ ∈ (0, 1). From (1.6)2 and (2.18), we have

R

1∫
0

f (U(ρR,R))ρn−1dρ + β(U(R,R) − σ̄ ) = 0.

Dividing both sides of the above equality by R and letting R → ∞ we get

1∫
0

f (�(ρ))ρn−1dρ = 0.

This implies �(ρ) = 0, a.e. ρ ∈ (0, 1). By monotonicity of �(ρ) we conclude �(ρ)≡0 for all 
ρ ∈ (0, 1). This proves the assertion (4) and completes the proof of Lemma 2.1. �
Proof of Theorem 1.1. Clearly, given Rs > 0, the function σs(r) = U(r, Rs) solves the equation 
in (1.4)1 subject to the boundary conditions in (1.4)3. Substituting this expression of σs(r) into 
(1.4)2 and integrating it subject to the first boundary condition in (1.4)4, we obtain
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p′
s(r) = − 1

rn−1

r∫
0

g(U(ρ,Rs)ρ
n−1dρ, 0 < r � Rs. (2.22)

Integrating this equation subject to the second boundary condition in (1.4)4, we see that (1.7) fol-
lows. Next, substituting the expression σs(r) = U(r, Rs) into (2.22) and recalling the definition
(1.5) of the function F , we see that (1.4)5 becomes the following equation:

F(Rs) = 0.

Since

lim
R→0+ F(R) = (by (2.1))

1∫
0

g(σ̄ )ρn−1dρ = 1

n
g(σ̄ ) > 0,

lim
R→∞F(R) = (by (2.2))

1∫
0

g(0)ρn−1dρ = 1

n
g(0) < 0,

and

F ′(R) =
1∫

0

g′(U(ρR,R)) · d

dR
U(ρR,R)dρ < 0 (by Assertion (3)of Lemma 2.1),

we conclude that the function F has a unique positive root Rs , which completes the proof. �
Remark 2.1. The following assertions can be easily verified:

(1) There is no radial stationary solution in case ̃σ � σ̄ .
(2) σ̃ < σs(Rs) < σ̄ . �
Proof of Theorem 1.2. Clearly, if R(t) is known, then the function

σ(r, t) = U(r,R(t)), 0 � r � R(t), t � 0 (2.23)

is a solution of the equation (1.8)1 subject to the boundary conditions in (1.8)3. Next, substituting 
the above expression into (1.8)2 and integrating it subject to the boundary conditions in (1.8)4, 
we obtain

p(r, t) = γ

R(t)
+

R(t)∫
r

η∫
0

g(U(ρ,R(t))
(ρ

η

)n−1
dρdη, 0 < r � R(t), t > 0. (2.24)

Finally, substituting the expression (2.23) into (1.8)5, we see that the problem (1.8) reduces into 
the following initial value problem of an ordinary differential equation for R(t):
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{
R′(t) = R(t)F (R(t)), t > 0,

R(0) = R0.

Since F(Rs) = 0 and F ′(R) < 0 for all R > 0, by a standard result in the ODE theory we 
immediately obtain the relation (1.10). From (1.10) and (2.23), (2.24) it is not hard to check that 
the relations (1.11) and (1.12) are true. This completes the proof of Theorem 1.2. �
3. Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3. Since the proof is similar to those of the 
corresponding results in existing literatures on this topic (cf. e.g., [13,14]), we only give an 
outline of the proof and omit most of its details.

Let us first introduce Hanzawa transformation. Let m ∈ Z, m ≥ 3, and 0 < α < 1 be fixed. 
Given a bounded domain �0 ⊆ R

n with cm+α-class boundary, we choose a closed C∞ hyper-
surface 
 in a small neighborhood of ∂�0 such that for some δ > 0 sufficiently small, ∂�0
is contained in the 4δ-neighborhood of 
 (see [13]). More precisely, denoting by n
 the unit 
outward normal of 
, we assume that the mapping

X : 
 × (−4δ,4δ) →R
n, X(ξ, s) = ξ + sn
(ξ), (3.1)

is a C∞ diffeomorphism from 
 × (−4δ, 4δ) onto its image Im(X), and there exists a func-
tion η0 ∈ Oδ (see (1.13) for the notation Oδ), such that ∂�0 is the image of the mapping 
ξ 	→ X(ξ, η0(ξ)) = ξ + η0(ξ)n
(ξ), ξ ∈ 
. We decompose the inverse of X as X−1 = (P, �), 
where

P ∈ C∞(Im(X),
), � ∈ C∞(Im(X), (−4δ,4δ)). (3.2)

Note that the identity y = P(y) + �(y)n
(P (y)) holds for all y ∈ Im(X). We use the notation 
D to denote the domain enclosed by the hypersurface 
.

Next we choose an even function χ ∈ C∞(R) such that

0 � χ � 1; χ(t) =
{

1, |t | � δ,

0, |t | � 3δ; − 1

δ
� χ ′(t) � 0 for t � 0. (3.3)

Then the Hanzawa transformation �η : Rn → R
n is defined as follows (cf. [9,10,13–15] for 

details):

�η(y) :=
{

y + χ(�(y))η(P (y))n
(P (y)), y ∈ Im(X),

y, y /∈ Im(X).
(3.4)

As usual, we denote by �η∗ and �∗
η the push-forward and pull-back operators induced by �η, 

respectively, i.e.,

�
η∗u = u ◦ �−1

η , for all u ∈ C(D), �∗
ηv = v ◦ �η, for all v ∈ C(�η). (3.5)

We also define
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A(η) = �∗
η ◦ � ◦ �

η∗, B(η) = (�η|∂�η)
∗ ◦ ∂n ◦ �

η∗, (3.6)

where ∂n is the normal derivative mapping from cm+α(�η) to cm−1+α(∂�η). It is known that the 
following relations hold (cf. [9,10,13–15]):

A ∈ C∞(Oδ,L(cm+α(D), cm−2+α(D))), B ∈ C∞(Oδ,L(cm−2+α(D), cm−3+α(
))). (3.7)

(Note that actually B ∈ C∞(Oδ, L(cm−k+α(D), cm−k−1+α(
))) for any 0 � k � m − 1, but we 
shall only use the case k = 2.) We finally define K : Oδ → cm−2+α(
) as follows:

K(η)(x) = the mean curvature of the hypersurface ∂�η at the point �−1
η (x).

It is well-known (cf., e.g., [14,15]) that this is a second-order quasilinear elliptic partial differen-
tial operator on the manifold 
, and it has the following decomposition:

K(η) =P(η)η +Q(η), (3.8)

where P(η) is a second-order linear elliptic partial differential operator on 
 (for fixed η ∈ Oδ), 
Q is a first-order nonlinear partial differential operator on 
, and the following relations hold:

P ∈ C∞(Oδ,L(cm+α(
), cm−2+α(
))), Q ∈ C∞(Oδ, c
m−1+α(
)). (3.9)

Having introduced the above notations, we can easily deduce that, after performing the 
Hanzawa transformation, the free boundary problem (1.1) transforms into the following initial 
boundary value problem on the fixed domain D:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(η)u = f (u) in D × (0,∞),

B(η)u + β(u − σ̄ ) = 0 on 
 × (0,∞),

A(η)v = −g(u) in D × (0,∞),

v = γK(η) on 
 × (0,∞),

∂tη = −B(η)v on 
 × (0,∞),

η(0) = η0.

(3.10)

Namely, we have the following preliminary result:

Lemma 3.1. If (u, v, η) is a solution of the problem (3.10), then by letting

σ = �
η∗u, p = �

η∗v, �(t) = �η(t), (3.11)

we obtain a solution (σ, p, �) of the problem (1.1), and vice versa. �
Given η ∈ Oδ , we denote by u = U(η) the unique solution of the boundary value problem 

(3.10)1 and (3.10)2, whose existence and uniqueness can be proved as follows: It is clear that 
when η ∈ Oδ is given, the boundary value problem (3.10)1 and (3.10)2 is equivalent to the fol-
lowing boundary value problem:
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{
�σ = f (σ ), x ∈ �η,

∂nσ = β(σ̄ − σ), x ∈ ∂�η.
(3.12)

That is, if u is a solution of the problem (3.10)1 and (3.10)2, then σ = �
η∗u is a solution of the 

above problem, and, conversely, if σ is a solution of the above problem then u = (�
η∗)−1σ is 

a solution of (3.10)1 and (3.10)2. By a similar argument as in the proof of the assertion (1) of 
Lemma 2.1, we see that the above problem has a unique solution satisfying the condition 0 �
σ � σ̄ . Hence the boundary value problem (3.10)1 and (3.10)2 has a unique solution. Moreover, 
using some similar argument as in existing literatures (cf., e.g. [10,13,14]), we can prove the 
following relation:

U ∈ C∞(Oδ, c
m+α(D)). (3.13)

We omit the details here. Next, as in [9], given η ∈ Oδ , we denote by S(η) and T (η) the solution 
operators of the following problems, respectively:

{
A(η)u = f in D,

u = 0 on 
;
{

A(η)u = 0 in D,

u = g on 
.

Namely, u = S(η)f and u = T (η)g are solutions of the above two problems, respectively. From 
[9,10,14,15] we know that the following relations hold:

S ∈ C∞(Oδ,L(cm−2+α(D), cm+α(D))),

T ∈ C∞(Oδ,L(cm−k+α(
), cm−k+α(D))), k = 1,2. (3.14)

(Note that actually T ∈ C∞(Oδ, L(cm−k+α(
), cm−k+α(D))) for any 0 � k � m − 2 and T ∈
C∞(Oδ, L(cj+α(
), c2+α(D) ∩cj+α(D))) for j = 0, 1, but we shall only use the cases k = 1, 2.) 
It follows that the unique solution of the equation (3.10)3 subject to the boundary value condition 
(3.10)4 is given by

v = −S(η)g(U(η)) + γT (η)K(η). (3.15)

Now we substitute (3.15) into the equation (3.10)5. It follows that, by letting

A(η) = −γB(η)T (η)P(η), F0(η) = B(η)S(η)g(U(η)) − γB(η)T (η)Q(η),

the problem (3.10) reduces into the following initial value problem of an abstract differential 
equation in the Banach space cm−3+α(
):

{
∂tη =A(η)η + F0(η), t > 0,

η(0) = η0.
(3.16)

We are now ready to give the proof of Theorem 1.3.
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Proof of Theorem 1.3. From (3.7), (3.9), (3.13), (3.14) and the expressions of A(η) and F0(η), 
we see that the following relations hold:

A ∈ C(Oδ,L(cm+α(
), cm−3+α(
))), F0 ∈ C∞(Oδ, c
m−2+α(
)).

Moreover, from the references [9,10,14,15] we know that for fixed η ∈ Oδ , we have

A(η) ∈ H(cm+α(
), cm−3+α(
)). (3.17)

Hence the equation (3.16)1 is a quasilinear parabolic differential equation in the Banach space 
cm−3+α(
). It follows by the abstract theory for such equations (cf., e.g., [24]), that for any 
η0 ∈ Oδ , there exists corresponding constant T > 0 such that the problem (3.16) has a unique 
solution η ∈ C([0, T ], Oδ) ∩ C1((0, T ], cm−3+α(
)). After getting the solution η of the problem
(3.16), we let u = U(η) and v be as in (3.15). Then we obtain a solution (u, v, η) of the problem
(3.10). By Lemma 3.1, we obtain a unique solution (σ (·, t), p(·, t), �(t)) defined for 0 � t � T , 
where σ , p and � are given by (3.11). This proves Theorem 1.3. �
4. Proof of Theorem 1.4

In this section we give the proof of Theorem 1.4. As in [10], we use the linearized stability 
theorem for abstract quasilinear parabolic differential equations in Banach spaces to prove this 
theorem. To this end, the key step is to compute spectrum of the linearized operator. In what 
follows we do this job.

It is not hard to check that the linearization of the problem (1.1) at the radial stationary solution 
(σs, ps, �s) is as follows (see [9,10,31] for similar computation):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2ϕ

∂r2 + n − 1

r

∂ϕ

∂r
+ 1

r2 �ωϕ = f ′(σs(r))ϕ, 0 < r < Rs, ω ∈ S
n−1, t > 0,

∂ϕ

∂r

∣∣∣
r=Rs

+ βϕ|r=Rs = −(βσ ′
s(Rs) + σ ′′

s (Rs))ρ, ω ∈ S
n−1, t > 0,

∂2ψ

∂r2 + n − 1

r

∂ψ

∂r
+ 1

r2 �ωψ = −g′(σs(r))ϕ, 0 < r < Rs, ω ∈ S
n−1, t > 0,

ψ |r=Rs + γ

R2
s

(
ρ + 1

n − 1
�ωρ

)
= 0, ω ∈ S

n−1, t > 0,

∂tρ = −∂ψ

∂r

∣∣∣
r=Rs

+ g(σs(Rs))ρ, ω ∈ S
n−1, t > 0,

(4.1)

where ϕ = ϕ(r, ω, t), ψ = ψ(r, ω, t), ρ = ρ(ω, t).
As in [9,10,31], we use the notation ω to denote a variable in the sphere Sn−1. For each 

k ∈ Z+ = {k ∈ Z : k � 0}, choose a normalized orthogonal basis (in L2(Sn−1) inner product) 
of the space of all spherical harmonics of degree k and denote the basis functions as Yk,l(ω), 
l = 1, 2, ..., dk , where dk is the dimension of this space, i.e.,

d0 = 1, d1 = n, dk =
(

k + n − 1

k

)
−

(
k + n − 3

k − 2

)
, k = 2,3, · · · . (4.2)

The following relations are well-known:
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�ωYk,l(ω) = −λkYk,l(ω), λk = k2 + (n − 2)k, k = 0,1,2, · · · , (4.3)

where �ω denotes the Baltrame–Laplacian on the sphere Sn−1, or the spherical part of the usual 
Laplacian � on Rn (neglecting the coefficient 1

r2 ). We then expand ϕ, ψ, ρ in the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(r,ω, t) =
∞∑

k=0

dk∑
l=1

uk,l(r, t)Yk,l(ω),

ψ(r,ω, t) =
∞∑

k=0

dk∑
l=1

vk,l(r, t)Yk,l(ω),

ρ(ω, t) =
∞∑

k=0

dk∑
l=1

ck,l(t)Yk,l(ω).

(4.4)

Substituting (4.4) into (4.1), using (4.3), and comparing coefficients of each Yk,l(ω), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2uk,l

∂r2 + n − 1

r

∂uk,l

∂r
− λk

r2 uk,l = f ′(σs(r))uk,l ,

∂uk,l

∂r
(Rs, t) + βuk,l(Rs, t) = −(βσ ′

s(Rs) + σ ′′
s (Rs))ck,l(t),

∂2vk,l

∂r2 + n − 1

r

∂vk,l

∂r
− λk

r2 vk,l = −g′(σs(r))uk,l ,

vk,l(Rs, t) = − γ

R2
s

(1 − λk

n − 1
)ck,l(t),

c′
k,l(t) = −∂vk,l

∂r
(Rs, t) + g(σs(Rs))ck,l(t).

(4.5)

For each k ∈ Z+, let ūk be the unique solution of the following boundary value problem:⎧⎨⎩ ū′′
k(r) + 2k + n − 1

r
ū′

k(r) = f ′(σs(r))ūk(r), 0 < r < Rs,

ūk(0) = 1, ū′
k(0) = 0.

(4.6)

One can easily verify that the solution of the equation (4.5)1 is as follows:

uk,l(r, t) = αk,l(t)r
kūk(r), (4.7)

where αk,l(t) is the coefficient to be determined. Substituting (4.7) into (4.5)2 we get

αk,l(t) = −(βσ ′
s(Rs) + σ ′′

s (Rs))ck,l(t)

βRk
s ūk(Rs) + kRk−1

s ūk(Rs) + Rk
s ū

′
k(Rs)

. (4.8)

For each k ∈ Z+, let v̄k be the unique solution of the following boundary value problem:⎧⎨⎩ v̄′′
k (r) + 2k + n − 1

r
v̄′
k(r) = −g′(σs(r))ūk(r), 0 < r < Rs,

v̄ (0) = 1, v̄′ (0) = 0.

(4.9)
k k
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It is easy to see that the solution of (4.5)3 is given by

vk,l(r, t) = αk,l(t)r
kv̄k(r) + βk,l(t)r

k, (4.10)

where αk,l(t) is as before, and βk,l(t) is the coefficient to be determined. Substituting (4.10) into 
(4.5)4, we get

βk,l(t) = ck,l(t)

Rk
s

[
(βσ ′

s(Rs) + σ ′′
s (Rs))v̄k(Rs)

βūk(Rs) + kR−1
s ūk(Rs) + ū′

k(Rs)
− γ

R2
s

(1 − λk

n − 1
)

]
.

Hence we have

vk,l(r, t) = rk

Rk
s

[
−(βσ ′

s(Rs) + σ ′′
s (Rs))(v̄k(r) − v̄k(Rs))

βūk(Rs) + kR−1
s ūk(Rs) + ū′

k(Rs)
− γ

R2
s

(1 − λk

n − 1
)

]
ck,l(t). (4.11)

Substituting this expression into (4.5)5, we see that the system of equations (4.5) reduces into the 
following equation:

c′
k,l(t) = ak(γ )ck,l(t) (4.12)

(l = 1, 2, · · · , dk , k = 1, 2, · · · ), where

ak(γ ) ≡ g(σs(Rs)) + γ k(n − 1 − λk)

(n − 1)R3
s

+ (βσ ′
s(Rs) + σ ′′

s (Rs))v̄
′
k(Rs)

βūk(Rs) + kR−1
s ūk(Rs) + ū′

k(Rs)
(4.13)

(k = 1, 2, · · · ). We denote

γk = (n − 1)R3
s

k(λk − (n − 1))

[
g(σs(Rs)) + (βσ ′

s(Rs) + σ ′′
s (Rs))v̄

′
k(Rs)

βūk(Rs) + kR−1
s ūk(Rs) + ū′

k(Rs)

]
, k = 2,3, · · · ,

(4.14)

ck = g(σs(Rs)) + (βσ ′
s(Rs) + σ ′′

s (Rs))v̄
′
k(Rs)

βūk(Rs) + kR−1
s ūk(Rs) + ū′

k(Rs)
, k = 0,1. (4.15)

A simple calculation shows that ak(γ ) has the following expression:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a0(γ ) = c0, ∀γ > 0,

a1(γ ) = c1, ∀γ > 0,

ak(γ ) = k(n − 1 − λk)

(n − 1)R3
s

(γ − γk), k = 2,3, · · · .

(4.16)

Lemma 4.1. c0 < 0, and c1 = 0.
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Proof. First we note that ūk(r) > 0, ū′
k(r) > 0 for all r > 0, k ∈ Z+, and σs(r) > 0, σ ′

s(r) > 0, 
σ ′′

s (r) > 0 for 0 < r � Rs , by a similar argument as in the proof in Lemma 2.1. Next we note that 
by integration by parts we have

g(σs(Rs)) = 1

Rn
s

Rs∫
0

g′(σs(r))σ
′
s(r)r

ndr, (4.17)

and from (4.9) we have

v̄′
k(r) = −1

r2k+(n−1)

r∫
0

g′(σs(ρ))ūk(ρ)ρ2k+(n−1)dρ. (4.18)

In order to prove c0 < 0, we first prove the following relation:

σ ′
s(Rs)

σ ′′
s (Rs)

<
ū0(Rs)

ū′
0(Rs)

. (4.19)

Let Ψ (r) = σ ′′
s (r)

σ ′
s (r)

(0 < r � Rs ) and Φ(r) = ū′
0(r)

ū0(r)
(0 � r � Rs ). Differentiating (1.4)1, we get

σ ′′′
s (r) + n − 1

r
σ ′′

s (r) − n − 1

r2 σ ′
s(r) = f ′(σs(r))σ

′
s(r), 0 < r < Rs. (4.20)

From this relation we easily get

Ψ ′(r) + n − 1

r
Ψ (r) + Ψ 2(r) = f ′(σs(r)) + n − 1

r2 , 0 < r < Rs.

From (4.6)1 (choosing k = 0) we get

Φ ′(r) + n − 1

r
Φ(r) + Φ2(r) = f ′(σs(r)), 0 < r < Rs.

Hence we have:

[Ψ (r) − Φ(r)]′ +
(n − 1

r
+ Ψ (r) − Φ(r)

)
[Ψ (r) − Φ(r)] > 0, 0 < r < Rs.

Since lim
r→0+ Ψ (r) = +∞ and Φ(0) = 0, from the above inequality we immediately obtain Ψ(r) >

Φ(r) for all 0 < r � Rs , by which (4.19) follows. Next we prove the following relation:

σ ′
s(r)

βσ ′
s(Rs) + σ ′′

s (Rs)
<

ū0(r)

βū0(Rs) + ū′
0(Rs)

, 0 < r < Rs. (4.21)

Let W(r) = σ ′
s (r)

βσ ′
s (Rs)+σ ′′

s (Rs)
, V (r) = ū0(r)

βū0(Rs)+ū′
0(Rs)

, 0 � r � Rs . It is clear that W(0) < V (0), 

and, by (4.19), we also have W(Rs) < V (Rs). From (4.20) and (4.6)1 for k = 0 we infer that 
LW(r) < LV (r) for 0 < r < Rs , where L is the following second-order differential operator:
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Lu(r) = −u′′(r) − n − 1

r
u′(r) + f ′(σs(r))u(r), 0 < r < Rs.

Hence, by the maximum principle it follows that W(r) < V (r), 0 � r � Rs . This proves (4.21). 
Now the assertion c0 < 0 follows from (4.17), (4.18), (4.21) and a simple computation as follows:

c0 = g(σs(Rs)) + (βσ ′
s(Rs) + σ ′′

s (Rs))v̄
′
0(Rs)

βū0(Rs) + ū′
0(Rs)

= 1

Rn
s

Rs∫
0

g′(σs(r))σ
′
s(r)r

ndr − βσ ′
s(Rs) + σ ′′

s (Rs)

βū0(Rs) + ū′
0(Rs)

1

Rn−1
s

Rs∫
0

g′(σs(r))ū0(r)r
n−1dr

= βσ ′
s(Rs) + σ ′′

s (Rs)

Rn−1
s

Rs∫
0

g′(σs(r))
[ r

Rs

σ ′
s(r)

βσ ′
s(Rs) + σ ′′

s (Rs)
− ū0(r)

βū0(Rs) + ū′
0(Rs)

]
rn−1dr

< 0.

In order to prove c1 = 0, we first note that a simple computation shows that the following relation 
holds:

σ ′
s(r) = 1

n
f (σs(0))rū1(r), 0 � r � Rs. (4.22)

Using this relation we have

βσ ′
s(Rs) + σ ′′

s (Rs) = 1

n
f (σs(0))Rs

[
βū1(Rs) + R−1

s ū1(Rs) + ū′
1(Rs)

]
. (4.23)

Moreover, from (4.17), (4.18) and (4.22) we have

v̄′
1(Rs) = − 1

Rn+1
s

Rs∫
0

g′(σs(r))ū1(r)r
n+1dr = − ng(σs(Rs))

f (σs(0))Rs

. (4.24)

Recalling the definition (4.15) (taking k = 1) of c1, we see that c1 = 0 by (4.23) and (4.24). This 
completes the proof of Lemma 4.1. �
Lemma 4.2. γk > 0 for sufficiently large k, and

γk ∼ Mk−3 as k → ∞, (4.25)

where M = (n − 1)R3
s g(σs(Rs)) > 0, so that lim

k→∞γk = 0.

Proof. Since σs(Rs) > σ̃ , we have g(σs(Rs)) > 0. By (4.18) and the fact that ūk(r) < ūk(Rs)

(for 0 � r < Rs ), we have
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∣∣∣v̄′
k(Rs)

∣∣∣ � ūk(Rs)

Rs∫
0

g′(σs(r))dr ≡ Cūk(Rs), k = 2,3, · · · .

Thus ∣∣∣ v̄′
k(Rs)

βūk(Rs) + kR−1
s ūk(Rs) + ū′

k(Rs)

∣∣∣ � Cūk(Rs)

βūk(Rs) + kR−1
s ūk(Rs)

= C

β + kR−1
s

→ 0 (as k → ∞).

Using this fact and recalling the definition of γk and the relation λk = k2 + (n − 1)k,
k = 0, 1, 2, · · · , we can easily obtain (4.25). This proves the lemma. �

We now define

γ∗ = max
k�2

γk.

It is clear that γ∗ > 0. Recalling the definition of ak(γ ) (see (4.16)), we immediately have the 
following corollary:

Corollary 4.3. For any γ > 0 we have the following relation:

ak(γ ) = − γ k3

(n − 1)R3
s

[
1 + O

(1

k

)]
as k → ∞.

Moreover, the following assertions hold:

(1) If γ > γ∗ then ak(γ ) < 0, k = 2, 3, · · · ;
(2) If 0 < γ < γ∗ then there exists an integer k0 � 2 such that ak0(γ ) > 0. �

We introduce an operator L : cm+α(Sn−1) → cm−3+α(Sn−1) as follows: Given
ρ ∈ cm+α(Sn−1), we substitute it into the equations in the first four lines of (4.1) (so that the 
variable t does not appear here). Solving the equation (4.1)1 subject to the boundary condi-
tion (4.1)2, we get a function ϕ ∈ cm+α(�s). Substituting this function into the equation (4.1)3
and solving it subject to the boundary condition (4.1)4, we obtain a function ψ ∈ Cm−2+α(�s). 
We now define L ρ to be the function in the right-hand side of (4.1)5, i.e.,

L ρ(ω) = −∂ψ

∂r
(Rs,ω) + g(σs(Rs))ρ(ω), ω ∈ S

n−1.

It is easy to see that L ∈ L(cm+α(Sn−1), cm−3+α(Sn−1)), and the problem (4.1) reduces into the 
following equation:

∂tρ = L ρ. (4.26)
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From the above definition of the operator L and the computation performed before (see (4.12)), 
we immediately have the following preliminary result:

Lemma 4.4. The operator L is a Fourier multiplier in the sense that it has the following expres-

sion: For ρ ∈ C∞(Sn−1), if ρ(ω) =
∞∑

k=0

dk∑
l=1

ck,lYk,l(ω) then

L ρ(ω) =
∞∑

k=0

dk∑
l=1

ak(γ )ck,lYk,l(ω).

Consequently, we have

σ(L ) = σp(L ) = {ak(γ ) : k = 2,3, ...} ∪ {0, c0}. �
Remark. By using Corollary 4.3 and Lemma 4.4, we can easily prove that the operator L gen-
erates a strongly continuous analytic semigroup etL (t � 0) in the Sobolev space Hs(Sn−1) for 
any s � 0 (regarding L as a densely defined closed linear operator in this space with domain 
Hs+3(Sn−1)). It follows that for any ρ0 ∈ Hs(Sn−1), the linear differential equation (4.26) has a 
unique mild solution ρ(t) = etL ρ0 (t � 0) satisfying the initial condition ρ(0) = ρ0. It is easy 
to see that for fixed t � 0, the operator etL is also a Fourier multiplier, having the following 

expression: For ρ0 ∈ Hs(Sn−1), if ρ0(ω) =
∞∑

k=0

dk∑
l=1

ck,lYk,l(ω) then

etL ρ0(ω) =
∞∑

k=0

dk∑
l=1

etak(γ )ck,lYk,l(ω).

From this expression, by using Lemma 4.1 and Corollary 4.3 we see that if γ > γ∗ then

lim
t→∞ etL ρ0(ω) =

n∑
l=1

c1,lY1,l(ω) in Hs(Sn−1),

which means that the trivial solution is asymptotically stable module the n-dimensional subspace 
span{Y1,l , Y1,2, · · · , Y1,n}, whereas if γ < γ∗ then there exists nonzero ρ0 ∈ C∞(Sn−1) such that 
etL ρ0 = eta(γ )ρ0 for some positive constant a(γ ), which goes to ∞ as t → ∞, so that the trivial 
solution is unstable. In the following, however, we shall not use this result.

We are now ready to give the proof of Theorem 1.4.

Proof of Theorem 1.4. The proof follows a similar procedure as that used in the proof of Theo-
rem 1.2 of [10], but with modification in the center manifold argument: Unlike [10] where some 
arguments of [15] are followed, here we directly use Theorem 2.1 of [7] (see also Theorem 3.4 
of [8]). We divide the proof into four steps.

Step 1: For �0 sufficiently closed to �s , we perform the Hanzawa transformation to transform 
the free boundary problem (1.1) into an initial boundary value problem in the fixed domain �s . 
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This follows from a similar argument as that in §3, but replacing the hypersurface 
 used in §3
with the sphere 
s and, accordingly, replacing the set Oδ appearing in §3 with the set Os

δ given 
by (1.14). The transformed problem has a similar form as (3.10), but with D and 
 replaced 
with �s and 
s , respectively.

Step 2: Next, as in the paragraph following Lemma 3.1, for given η ∈ Os
δ we solve the elliptic 

boundary value problem (3.10)1–(3.10)4 (with D and 
 replaced by �s and 
s , respectively), 
and get v in the form of (3.15) (operators appearing there should be accordingly modified). 
Substituting this v into (3.10)5 we finally reduce the problem (3.10)1–(3.10)4 (with D and 

replaced by �s and 
s , respectively) into an initial value problem in the Banach space cm+α(
s)

which has a similar form as (3.16). To save spaces we do not write this reduced problem here, 
and in what follows we use (3.16) to pretend it.

Step 3: We denote by π∗ and π∗ the pull-back and push-forward operators induced by natural 
projection π from 
s onto Sn−1, respectively, i.e., for u ∈ C(Sn−1) and v ∈ C(
s),

(π∗u)(ξ) = u(π(ξ)) = u(ξ/|ξ |), ξ ∈ 
s,

(π∗v)(ω) = v(π−1(ω)) = v(Rsω)), ω ∈ S
n−1,

and define an operator A : π∗(Os
δ ) → cm−3+α(Sn−1) as follows:

A(ρ) = π∗ [A(η)η + F0(η)] , ∀ρ ∈ π∗(Os
δ ),

where η = π−1∗ (ρ). For η and η0 appearing in (3.16), let ρ = π∗η, ρ0 = π∗η0. It follows that the 
problem (3.16) can be rewritten into the following equivalent initial value problem in the Banach 
space cm−3+α(Sn−1): {

∂tρ =A(ρ), on S
n−1 × (0,∞)

ρ(0) = ρ0.
(4.27)

Step 4: Since the linearization of the problem (1.1) at the stationary solution (σs, ps, �s) is the 
problem (4.1), it follows that the linearization of the equation (4.27)1 at the stationary solution 
ρ = 0 is the equation (4.26). This means that the following relation holds:

A′(0) = L . (4.28)

Now we first assume that γ > γ∗. From the above relation and Lemma 4.4 we see that

ω− := − sup{Reλ : λ ∈ σ(A′(0))\{0}} > 0.

Moreover, it is clear that dimKerA′(0) = n. Besides, by a similar argument as that in [7], we 
see that the equation (4.27) is quasi-invariant under the Lie group action (G, p) as introduced 
in [7], and the assumptions (B1)-(B4) of Theorem 2.1 in [7] are all satisfied. Hence, by using 
Theorem 2.1 of [7], we conclude that there exist constant C > 0 and c > 0 such that for any 
ρ0 ∈ π∗(Os

δ ) with ‖ρ0‖Cm+α(Sn−1) sufficiently small, the solution ρ = ρ(t) of the problem (4.27)
is global, and there exists corresponding x0 ∈R

n such that the following relation holds:

‖ρ(t) − ρ[x0]‖Cm+α(Sn−1) � Ce−ct for t � 0,
s
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where ρ[x0]
s = π∗η[x0]

s (see the statement of Theorem 1.4 for the notation η[x0]
s ). From this result, 

one sees easily that the assertion (1) of Theorem 1.4 holds. Next we assume that 0 < γ < γ∗. In 
this case, from the assertion (2) of Corollary 4.3, Lemma 4.4 and the relation (4.28) we see that

σ(A′(0)) ∩ {z ∈C : Re z > 0} �= ø.

Hence, by using a standard result in the theory of parabolic differential equations in Banach 
spaces (cf. Theorem 9.1.3 of [24]) we infer that the trivial solution of (4.27) is unstable. Returning 
to the problem (1.1) we conclude that the radial stationary solution of it is unstable. The proof is 
complete. �
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