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Abstract

We consider the fully parabolic Keller—Segel system with singular sensitivity and logistic-type
source: uy = Au — xV - (%Vv) +ru — Muk, vy = Av — v 4+ u under the non-flux boundary con-
ditions in a smooth bounded convex domain Q@ C R”, x,r,u > 0, k > 1. A global very weak so-

2

lution for the system with n > 2 is obtained under one of the following conditions: (i) r > XT for

X2 2 - _ _4k=D L 5.
0<x =<2 orr>max{Z(1 — py), x — 1} for x > 2 with po_m it ke (2— 5,20
2(r+r?)

(ii) X2 < min{ . k(kflé)l(kfz)} if k > 2. Furthermore, this global very weak solution should be

globally bounded in fact provided ﬁ and the initial data [lug|l ;2 Q) V]| LAQ) suitably small for n =2, 3.

.. . 3(n+2)
In addition, if k > ==

solutions. All these describe the influence of the exponent k > 1 in the logistic-type source ru — pu* to the
behavior of solutions for the considered fully parabolic Keller—Segel system with singular sensitivity.
© 2019 Elsevier Inc. All rights reserved.

replaces k£ > 2 in the condition (ii), the system admits globally bounded classical
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1. Introduction

Chemotaxis, a spontaneous aggregative phenomenon, is a widespread cross-diffusion mech-
anism in a wide rage of biological processes. In 1970, Keller and Segel proposed a model to
represent the chemotaxis phenomena, i.e., the oriented or partially oriented movement of cells in
response to a chemical signal produced by the cells themselves [9]:

(1.1)

ur=Au—xV-(3Vv), xeQ,t>0,

vy=Av—v+u, xe, t>0,
where the singular chemotactic sensitive function % with x > 0 is derived by the Weber—Fechner
laws on the response of the cells u to the chemical signal v. In the parabolic—elliptic case of (1.1),
where the second parabolic equation in (1.1) is replaced by the elliptic equation 0 = Av — v + u.
It is known that all radial classical solutions are global-in-time if either n =2 with x > 0, or
n >3 with y < n%z [14]. When x < % with n > 1, there exists a unique globally bounded
classical solution [7]. If n > 2 and x < "5, there exists a generalized solution [3]. For the
parabolic—parabolic case, all solutions are global in time when either n =1 [16], or n =2 and
X < % under the radial assumption, while y < 1 without the radial assumption [15]. For n > 2,

there exist globally bounded classical solutions if 0 < x < \/g [5], and a global weak solution

if0<yx <,/ % [24]. Moreover, the system (1.6) possesses a global generalized solution for

n > 2 [12], provided

n=
X< V8, n=3, (1.2)
n

See [11,6] for more results with singular sensitivities.

Generally, in a real chemotaxis system the proliferation-death mechanism of the cells « should
be included as well. This can be mathematically formulated by adding a logistic-type source
ru — puk to the u-equation [2,10]

(1.3)

ur=Au—xV-@Vv)+ru —uu*, xeQ, t>0,
Ty, =Av—v+u, xe, t>0,

where x,r,pu >0, k > 1 and t € {0, 1}. Such self-limiting growth source generally benefits
the global existence-boundedness of solutions. For parabolic—elliptic case (t = 0 in (1.3)), it is
known with k = 2 that the solution is globally bounded if u > ”n;z X, global weak solution is
admitted for all u > 0, and the constant equilibrium (1, 1) with r = p is globally asymptotically
stable in L°°(Q2) if u > 2 [18]. When k > 2 — % with n > 1, there exists a global very weak
solution, which is globally bounded if u sufficiently large and |[ug|| L () sufficiently small [21].
For the case with 0 = Av — m(¢) + u, m(t) := Ilﬁlfﬂu(x’ t)dx instead of 0 = Av — v +u
in (1.3), there exists radial initial data such that the smooth solution blows up in finite time if
1<k< % + th with n > 5 [25]. For the parabolic—parabolic case (t = 1 in (1.3)), if k = 2,
n =2 [17], or n >3 with u > 0 sufficiently large [22], the solutions are globally bounded.
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When k > 2 — % with n > 1, the problem possesses global very weak solutions [19], which are
globally bounded if £ sufficiently small and the initial data sufficiently small in suitable norms
for n = 3 [20]. Refer to [4,27,28] for results with nonlinear diffusion and sensitivities.

Consider the chemotaxis system with singular sensitivity and logistic source

(1.4)
Ty =Av—v+u, xeQ, t>0,

{u,:Au—XV-(%Vv)—l—ru—uuz, xeQ, t>0,
where x,r, u > 0and t € {0, 1}. For the parabolic—elliptic case (t = 0 in (1.4)) with n = 2, there
exists a unique globally bounded classical solution [8], whenever

2 O<yx<2
r> 47 -7 (1.5)
x—1, x>2.

For the parabolic—parabolic case (t = 1 in (1.4)), there exists a global solution when n =2 [1].
Currently, the authors have proved that the condition (1.5) ensures the global boundedness of
classical solutions in fact as well [29].

In this paper, we continuously consider case with general exponent k > 1 in the logistic-type
source

u,:Au—XV~(%Vv)+ru—uuk, xeQ, t>0,

v=Av—v+u, xe, t>0,

9 9 (1.6)
a_ x€dQ, 1>0,

Jdv  dv

(u(x,0),v(x,0)) = (uo(x), vo(x)),  x€Q,

where x, r, u > 0, smooth bounded convex domain Q2 C R"?, n > 2, 8"—1) denotes the derivation
with respect to the outer normal of 92, and the initial data

!uo(x) € CYQ), up(x) >0and ug(x) #0, x €, 0

vo(x) € W22(Q), vo(x) >0, x € Q.

To treat the more general exponent k > 1, we have to deal with very weak solutions. Inspired
by [21,19], we introduce the very weak solutions to (1.6) via the following definitions.

Definition 1.1. Let 7 > 0. A pair (u, v) of nonnegative functions
ueL'(Qx(0,7)), ve L'((0, T); wh())
will be called a very weak subsolution to (1.6) in Q x (0, T) if
u* and %Vv belong to Ll(Q x (0, 7)),

and moreover
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hold for all

_ 0
(peC(C)’O(SZx 0,7)) With(pZOanda—q):Oonan(O, T),
v

v e L2 x (0,T)) NL*((0, T); W-2(R)), and ¢, € L*(Q2 x (0, T)).

Definition 1.2. Let 7 > 0 and y € (0, 1). A pair of nonnegative functions

ue LYTHQ x (0,T)), ve L', T); WL (Q) nLYTH(Q x (0, T))
form a weak y -entropy supersolution to (1.6) in 2 x (0, T') if

2
| belong to L' (Q x (0, T)),

Vv
u’ "2 Vu|* and u” | 5
v

and moreover

T

T T
—//uyqu—/ugw(uO)zy(l —y)//uy‘2|w|2<p+//um<p
Q 0 Q 0 Q

0 Q

T T
Vv v
+xy(y—1)//MV‘IW'T¢+XV//MVT~V¢
0 Q 0 Q

T T
+rJ///uV¢>—W//uV_”"¢
0 Q 0 Q

and the equality (1.9) hold for all ¢ and i satisfying (1.10) and (1.11).
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(1.8)

(1.9)

(1.10)

(1.11)

v

(1.12)

Definition 1.3. Let 7 > 0. We call a couple (u, v) a very weak solution to (1.6) in Q x (0, T) if
it is both a very weak subsolution and a weak y -entropy supersolution of (1.6) in & x (0, T') for
some y € (0, 1). A global very weak solution to (1.6) is a pair of functions defined in 2 x (0, c0)

which is a very weak solution to (1.6) in Q x (0, T) forall T > 0.
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In order to study the dynamic behavior of solutions to the system (1.6), we will at first establish
a positive uniform-in-time lower bound of the chemical signal v. Similarly to those proceeded
in [29], this can be transformed to build the global boundedness for fQ u %dx witha > 0 via a
crucial weighted integral [ u~?v~9dx with p, g > 0 to be determined.

To deal with the global very weak solution of (1.3) in [19] (i.e., without singular sensitiv-
ity Lin (1.6)), the main step is to conclude that the solution {ve}ee(o,1) of the regularization

problem is relatlvely compact in L10C ((0, 00); W1 k=T (2)) with respect to the strong topology

forke (2 — - 2) Differently, for the system (1.6), we will firstly show that {ve}eeo,1) has a
uniform-in- tlme lower bound (independent of € € (0, 1)), namely,

1
{—} is relatively compact in Lﬁfc(Q x (0, 00))
€e(0,1)

with respect to the weak-star topology.

Secondly, it will be derived that for some p > —~ w1th k>2—-= that

{VUE

} is relatively compact in L
Ve Jee(0,1)

(2 x (0, 00))

loc

with respect to the weak topology.

Thirdly, it will be essential that

{Vv6

} is relatively compact in leoc(Q x (0, 00))
Ve Jee(0,1)

with respect to the strong topology.

Upon selecting a suitable subsequence, we will obtain a global very weak solution for k >
2— % with n > 2 by a standard compactness argument. Furthermore, it will be shown that for the
carrying capacity l% and the initial data [|uoll12(q) + I Vvoll 14(g) suitably small, this global very
weak solution for n =2, 3 is in fact globally bounded.

Finally, for the case n > 2 and k > 2, by estimating on fQ uPdx + fQ |Vv|2‘1dx with the a
priori estimate fQ |Vulldx < C for I € (k, ﬁ) we will conclude the global boundedness

to classical solutions if k > 3(,1”_:“42) and x > O suitably small.

Now, we state the main results of this paper.

Theorem 1. Let n > 2. There exists a global very weak solution to the system (1.6), if one of the
following holds:

(1) ke 2— %,2] andr, x > 0 satisfy

2
{)&-7 O0<x <2,
r >

1.13
max(4 (1 — pR), x — 1} with poi= 24D 5 oo (1.13)

A Q—kkx2
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(ii) k> 2 andr, x > 0 satisfy

2(r +1r?) 4
ko Ckk—Dk-2) )

x2<mm{ (1.14)
Theorem 2. Let (u, v) be the global very weak solution established in Theorem 1 for n = 2, 3.
There exist n, .. > 0 small such that this very weak solution is globally bounded provided ﬁ <n

2 4

Cll’ld ”uO”L2(Q) + ||VUO||L4(Q) <A
Remark 1. It can be found that the global very weak solution to the system (1.6) with singular
sensitivity obtained in Theorem 1 (i) corresponds to that for the classical chemotaxis system (1.3)
in [21,19]. Theorem 2 says that the smallness of Z and the initial data (ug, vo) ensure the global
boundedness of the very weak solution to the system (1.6), and the same were observed for the
classical chemotaxis system (1.3) in [21,20]. In particular, Theorems | and 2 show that k < 2 is
permitted for the global boundedness of solutions to (1.6). This extends the global boundedness
results for (1.6) (with k = 2) obtained in [29].

3(n+2)

Theorem 3. Let n > 2, k > v and r, x > 0 satisfy (1.14). Then the problem (1.6) possesses

a globally bounded classical solution.

Remark 2. Recall from [4,28] that the classical chemotaxis system (1.4) with logistic-type
source ru — uu* possesses globally bounded classical solutions if k > 2 or k =2 with 1 > 0
sufficiently large. While Theorem 3 says that the global boundedness of classical solutions re-
quires k > % for n > 2 with the chemotactic coefficient x > 0 suitably small to the present
problem (1.6). Here the difficulty due to the singular sensitivity involved in (1.6) is substan-
tial.

Remark 3. By [29, Theorem 1] it was known for n = 2 that k = 2 ensures the global boundedness
of classical solutions to (1.6). On the other hand, it is easy to see that the value 3(:—:;12) =2in
Theorem 3 if n = 2. Thus, combining with [29, Theorem 1], we conclude for the case n = 2 that

the classical solutions must be globally bounded if k > 2.

The rest part of the paper is arranged as follows. In Section 2, we introduce the local existence
of classical solutions and establish a uniform-in-time lower bound estimate on v. Section 3 deals
with the global existence of classical solutions to the regularization problem of (1.6). Then we
prove the global existence and boundedness to the very weak solutions in Sections 4—6. Finally,
we study the global boundedness of classical solutions in Section 7.

2. Lower estimate of v for k > 1
We introduce a lemma on the local existence of classical solutions to the system (1.6)
without proof, which can be obtained by the standard contraction argument as that in [29,

Lemma 2.1].

Lemma 2.1. With k > 1 and q > n, there exist Tmax € (0, +00] and a unique pair (u,v) of
functions
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: 1€ CO(Q x [0, Tnax)) N C*1(Q x (0, Tinax)).
v e COQ x [0, Tmax)) N C*1(Q X (0, Timax)) N LZ ([0, Tmax): W (),

satisfying (1.6) in the classical sense with u, v > 0 in Q % (0, Tmax). Moreover, either Tpax = 00,

or Tmax < 00 With hmt—)Tmax(”M(', t)”LOO(Q) + v, t)”W'.q(Q)) =o00. O

Let (u, v) be the local classical solution established in this section. We give some simple a
priori estimates for (u, v).

Lemma 2.2. For k > 1, it holds that

L
/udxfm* ::max{/uodx,|§2|(r)k } t € (0, Tran), 2.1)
"
Q Q
/ vdx §max{ f uodx,m*}, t € (0, Tona). 2.2)
Q Q

Proof. Integrate (1.6); to get
d k
I udx=vr [ udx —p | u"dx <r | ud |k 1 udx , 1 € (0, Tax) (2.3)
Q Q Q Q Q
by the Holder inequality. This entails (2.1) by the Bernoulli inequality. Moreover, it is known by
integrating (1.6), that
d
7 vdx =— [ vdx + [ udx, te (0, Tiax)- 2.4)
Q Q

This concludes (2.2), again by the Bernoulli inequality with (2.1). O

To study the dynamic behavior of solutions to (1.6) for k > 1, the key step is to estab-
lish a positive uniform-in-time lower bound for v. This will be realized by a uniform-in-time
upper estimate for the weighted integral fQ u—Pv~4dx with some p, g > 0. Repeating the pro-
cedure in the proof of [29, Lemma 3.2], we can get the following differential inequality on
Jou Pv9dx.

Lemma 2.3. With k > 1, we have for p >0 and q > q+ = q+(p) := pTH(\/ 1+ px2—1) that
d
E/ufpqudx <(q —rp)/ufpqudx +/Lp/u7p71+kv7‘1dx —q/‘uprv*"*ldx
Q Q

(2.5)

fort € (0, Thax). O
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In [29, Lemma 3.3] the authors proved that the chemical signal v for (1.4) (i.e. kK =2 in (1.6))
has the uniform-in-time lower bound if the growth rate r > 0 is suitably large with respect to
the chemotaxis coefficient y > 0, or, in other words, x > 0 is suitably small with respect to
r > 0. This mechanism is also valid for the general k > 1, even with more complicated represen-
tations.

At first consider the case k € (1, 2].

Lemma 2.4. Under the condition of Theorem I (i), there exists §1 > 0 such that
v(x,t) =61 forallte (0, Thx) and x € Q. (2.6)
Proof. The case of kK = 2 was treated in [29, Lemma 3.3] already.
Assume k € (1, 2). Let By := %infxeg vo(x). By Lemma 2.1, there exists 7o € (0, Tnax), such
that v(x, 1) > Bo for all x € Q2 and ¢ € (0, 7], and u(x, #t9) > yp for all x € Q2 with some yy > 0.

So we only need to prove (2.6) for ¢ € (tg, Tmax)-
By Young’s inequality, we have

/Lp/u_p_H'kv_qu <q/u_p+1v_"_ldx+(£)q+l/ul_p+(k_2)(q+l)dx 2.7)
- qg+1
Q Q Q

for ¢ € (t, Tmax). Notice that p,g > 0 with k € (1,2) implies 1 — p+ (k —2)(g + 1) < 1. Let
f(p)=1—p+(k-2)(q++1)

1
=—p+k—l+§(k—2)(p+1)( l+px2—1), pe©,k—1).

With the fact of /T < 143 fors > 0, we know for p € (0, 375 ) C (0.k — 1) that

1 1
f(p)>—p+k—1+z(k—2)(p+1)px2>—p+k—1+1p(k—2)kx2>0,

and hence there exists some g > g4 such that 1 — p+(k—2)(g+1) > 0. By the Holder inequality
with (2.1), (2.5) and (2.7), we have

d
E/u"’v‘qu <(q —rp)/u"’v‘qu+C1u"+l, t € (10, Tmax) (2.8)
Q Q

for some C; > 0.
Next, denote

p+1
A(p) :=q+—rp=T(\/1+px2—1)—rp, p>0.

It is easy to see that A(p) < 0 is equivalent to

B(p) = X2p2+2()(2 —2r —2r2)p+)(2—4r <0, p>0.
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A direct calculation shows
Ap=16r[(14+1)* — %1 >0,
whenever r > max{0, x — 1}. Denote
224 2r — x2 2rJ(1+1r)2— %2
pl12i= 5 F 5 : (2.9)
X X
2
Then A(p) < 0 for p € (p1, p2).2 By the Viete formula, WS know p1 <0< prif r > XT with
x > 0, and moreover py - pp = XX_24r >0ify —1<r< XT with y > 2, and thus
X2 —4r

O<pi<p1-p2= 7 =P

X2

if max{y — 1, XTz(l — p(z))} <r < 4. Take p, € (0, po) and g« > g4 such that 1 — p, +
(k—2)(g«+ 1) €(0,1) and g« — rpx <0 for r, x > 0 and k € (1,2) satisfying (1.13). Let

o= If;* € (0, px). Then p‘i*fa =1, and hence
o paa
[u_adXS (/u"’*v“f*dx)”* (/vdX> ", 1€ (1o, Tiax)
Q Q Q

by the Hoder inequality. Integrating (2.8) from ¢t to ¢ yields

C
fu_P*v_Q*dx < e(th—rp*)(t—lo) / u(x, to)_p*v(x, to)_‘hdx + 41“‘]*4‘1
P A FPx — qx

< Co(1+ W)™, 1 € (19, Tmax)
with some C > 0. Combining (2.10), (2.11) with (2.2), we have

(gx+Da

/ufadx <C3(1+pwn) r , te(ty, Tmax)
Q
with some C3 > 0, and hence

atl N -1 el _qxtl
udx > |Q|“% ( " dx) >C, Q% (I4p)" 7 =ing>0
Q Q

(2.10)

@2.11)

(2.12)

by the Holder inequality for ¢ € (fy, Tmax). By the pointwise lower bound estimate for the Neu-

mann heat semigroup {e’A},Zo, we obtain from (2.12) that

system with singular sensitivity and logistic-type source, J. Differential Equations (2019),
https://doi.org/10.1016/j.jde.2019.01.026
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t
vix, 1) =e @ Dy + / e=9A=Dy (x, 5)ds

0
t 1 )
o (diam§2)
zfie (=947 )</u(x,s)dx)ds
A (t —s)
0 Q
0]
1 (diam®)2
>no | —e U4 Ddr=:8,>0

dmr
0

for all ¢ € (ty, Trmax), x € 2. This completes the proof with §; := max{fy, 81}. O
Next consider the case of k > 2.
Lemma 2.5. Under the condition of Theorem I (ii), there exists 53 > 0 such that
v(x,t) =6y forallte(0,T)and x € Q. (2.13)

Proof. Notice that k > 2 with p € (0,k — 1) and ¢ > 0 implies 1 — p 4+ (k —2)(g + 1) > 0.
Let

gp)=—p+k—-2)(g++1)

1
=—P+k—2+§(k—2)(17+1)( l+px*=1, pe0k—1).

Since x2 < k(k+)(k—2)’ we have

1 1
g(p) <—p+k—2+ZpX2(p+l)(k—2) <—p+k—2+1px2k(k—2) <0
for p € (%, k — 1), and hence there exists ¢ > g4+ suchthat 1 — p+ (k—2)(g+ 1) €
(0, 1). Thus, we obtain from (2.7) and (2.1) that

up/u_p_l+kv_qu fq/u_p+1v_q_ldx+C4MQ+l (2.14)
Q Q

by Young’s inequality with C4 > 0. It is easy to know that p; < 1 by (29) for 0 < x <r + 1.
Therefore, pr > % is sufficient to ensure (%, k—1)N(p1, p2) # 0. A simple
calculation shows

2r2 +2r — 2 4(k —2
PZZ—r +; X >k—1>—( ) 5
X 4—(k—2)kx
due to X2<2(’T+’2)withk>2andr>0. Take p*e(ég:]((k_—_zi)(xz,pz) with some g, > g+.

Similarly to (2.10)—(2.12) with (2.14), we conclude (2.13) with some 6 > 0. O
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In summary, we have

Corollary 2.1. Under the conditions of Theorem I, there exists C > 0 such that

gx+1

v, 1) > C(1L+p)~ r (2.15)
with py, g« > 0 selected in Lemmas 2.4 and 2.5. 0O
3. Regularization problem

We introduce an appropriate regularization to deal with the very weak solution of (1.6). That
is

Uep = Aue — xV - ((HgﬁVve) +rue — Mu’é xe, t>0,

Ver = AVe — Ve + U, xe, t>0,

ol 0Vc 3.1
= =0, xedQ, t>0,

av dv

(e (x,0), ve(x, 0)) = (uo(x), vo(x)), xe

for € € (0, 1). In [29, Lemma 2.1] the authors established the local existence of classical solu-
tions to the regularization problem with k = 2. The local classical solutions of the regularization
problem (3.1) with general k > 1 can be obtained in the same arguments.

Lemma 3.1. Let Q@ C R*(n > 2) be a bounded domain, k > 1 and q > n. If (ug, vo) satis-
fies (1.7), then for each € € (0, 1) there exist Tax,e < 00 and a unique pair function

Ue € CO(Q x [0, Tmax,e)) N CZ’I(Q x (0, Tmax,e))a
ve € COQ X [0, Trax.c)) N C31(Q2 x (0, Timax.e)) N LE.(0, Trmax.e); WH(R)),

loc

(3.2)

solving (3.1) in the classical sense with uc,ve > 0 in Q x (0, Tmax.c). Moreover, either
Tmax,e =00 0F Thax,e <00 with limt—>Tmax,€( ||u€||L°°(Q) + ||Ue||W1-q(Q)) =o00. O

By the comparison principle with the positivity of u., we know from (3.1), that

Ve > insf2 vo(y)e " =:8(t) forall (x,1) € 2 x (0, Trax.c) and € € (0, 1). 3.3)
ye

Lemma 3.2. For k > 1, it holds that

/uedx <m*, te€(0, Tiax,e), (3.4)
Q
t
M//u’gdxds <Mi(1+1), 1€, Tnaxe) (3.5)
0 Q

with My = m* max{1, r} for all € € (0, 1).
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Proof. Integrate (3.1); over 2 with the Holder inequality to know that

d
E/uedx:r/uédx—u/uﬁdx 3.6)
Q

Q Q

§rfuedx — IQI%(/uédx)", 1 € (0, Tax.c). (3.7)
Q Q

By the Bernoulli inequality with (3.7), we get (3.4). The estimate (3.5) comes from by integrating
(3.6) fromOtorand (3.4). O
Lemma 3.3. Letrn>2and k> 1. If p € (1, H”TZ), there exists M> > 0 such that

/Ué’dx <M, t€(0, Tyax,e) (3.8)
Q

forall € € (0, 1). Moreover, if g € (1, .25, there exists M3 > 0 such that

/ [Vvel9dx < M3, t€(0, Tiax,e) (3.9
Q

forall e € (0, 1).

Proof. Denote u, = u.(t) := ﬁ fQ ue(x, t)dx. By the semigroup estimates in [23, Lemma 1.3],
we have from (3.1); with p € (1, -*5) that

t t
lvellLr@) < llvolloe(e) + / e A (e — )| Lo (@yds + / e DA |l Ly (qyds
0 0

t
—(1=1. _ _ -
< lvollzo( +K1/(1 (1 —9) 1Ty, —lellp1gds
0

t
+m*/e_(’_5)ds
0
<M, t e, Tmaxe)

for some A1, K1, M2 > 0 and all € € (0, 1). Similarly, we know for ¢ € (1, ;%) that

t
IVvellLacoy < 1Ve" @ Dol o) + / Ve = A"Dy |l g @ds
0
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_l_nq_1
SK3I|Vvo||Lq(Q)+K2/(1+(l—S) 370D el 1 ds

<Mj, t€(0, Tax,e)
by [23, Lemma 1.3] and (3.4) with K, K3, M3 >0 foralle € (0,1). O

In addition, based on the Maximal LP-L9 estimates for parabolic equations in [13, Theo-
rem 3.1], we have directly the following lemma.

Lemma 3.4. Let (uc, ve) be the classical solution of (3.1). Then we have for p, q > 1 that

T
/ |v€”W2 q(Q)
0

with K > 0 independent of €. O

||v€t||lzm)ds < 12(1 ||u€||Lq(Q)ds>, T>0 (3.10)

O\Hl
o\’\ll

Now, we deal with the L”-norm of u. for each € € (0, 1).

Lemma 3.5. Let n > 2 and k > 1. Then for p > 2, there exists Hy = Hy(¢,t) > 0 such that

/ugdx <Hi, t €, Tmax.c)- @3.11)
Q

Proof. It follows from (3.1); and (3.3) for p > 2 that

I d updx_—(p—l)/up 2\ Vue|?dx + x(p — 1)/—_1Vu - Vvedx
pdl ¢ (1+ €uc)ve ‘ ‘

+r/ufdx—/1,/uf+k_ldx

Q2 Q
2
x“(p—1 B i
< W u?f 2|Vv€|2dx+r/ué’dx_u/u£+k Ly
Q o 2
1 \» B
§2r/u£dx+C5(T(t)> /IVU€|de_M/u£+k Ly
Q o J
§2r/u£dx+%f|vve|p+k—ldx
2 Q
_M/u£+k71dx+c6(m 5 te (O, Tmax’e) (312)

Q
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by Young’s inequality twice with Cs, Cg > 0. By Lemma 3.4 with p =g = p + k — 1, we have

t t
%//quE|”+k_ldxds§M(l+//uf+k_ldxds), 1€, Tnaxe)-  (3.13)
0 Q 0 Q

By Gronwall’s inequality with (3.12) and (3.13), we arrive at

t

2pr[ ] p 1| pletkeD
/ufdx < pe”? [;/uodx+,u+C6/(68(s)) k=1 ds] =: Hy, t € (0, Trax.e)-
Q Q

(3.14)

The proof is complete. O

Lemma 3.6. Let n > 2, k > 1. Then there exists Hy = Hy (¢, t) > 0 such that

IVvell Loy < Ha, t € (0, Tmax,e)- (3.15)

Proof. By the semigroup estimates in [23, Lemma 1.3] and (3.11), we have for (3.1), that

t
IVellree (@) < 11V A~ Dugl o) + / Ve "= ADy )l oo qyds (3.16)
0

1

t
< K3 Vool + Ka / (U4 (=) 3705 el 1 s
0

t
_1l__n
< K3|[Vull L) + K2 H) /(1 +(t—s) 2 20i0)ds
0
=:Hp, te(0, Tmax,e) (3.17)

with K7, K3 >0. O

Lemma 3.7. Under the conditions in Lemma 3.1, for each € € (0, 1) the system (3.1) has a
globally classical solution.

Proof. With k > 1, a simple calculation shows

k<(r)ﬁk—l
ra — ua r(—)~~
Ham=rk k

=:c¢k, a>0. (3.18)

It is known from (3.1); by using the estimates in [23, Lemma 1.3] with (3.3), (3.15) and (3.18)
that
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Ue

uellzoo@) < lle"®uoll o) + / ™AV (——— V),
luellzoo ) < lle'®uollLoy + x [ | ((H—eue)ve I, @

+/ e (ru — pu®) || oo (yds

ds

= ”u()”LOO(Q) + okt + XK4f(1 + (- S) 2 2(n+l))” €l Ln+1()

0

(1 +eu )v

t
x K4 _%_2 = I 1
< lluollzseie) +ext + == [ 1+ =) 7272 ) Vol gy | — | oy s
€

IA

_l_ n
luollLoe (@) + cxt + Hy 224 0 /(1 +(t —5)" 277w )ds

: H3 = H3(e,t), t €(0, Tax,e)
with K4 > 0. This concludes for each € € (0, 1) that Tpaxc =00 by Lemma 3.1. O
4. Estimates for (u., v¢)
To arrive at the global existence of very weak solutions to (1.6), we should also establish a
positive uniform-in-time lower bound of v, for all € € (0, 1).
At first consider the case of k € (1, 2].
Lemma 4.1. Under the condition of Theorem I (i), we have
ve(x,t) > 68 foralle € (0,1), xeQandt >0 4.1)

with 81 defined in Lemma 2.4.

Proof. With p, g > 0 to be determined, a direct computation with (3.1) shows

d
E/u;pv;qu
Q
— 71 _
:—p/uél’ v, 1[Aue — xV - (ﬁvve)]dx
Q
_rl’/“e_pve_qu+Mp/u§”_1+kv;qu
Q2 Q
_q/u;pvgq_]Avedx+q/ue_pl)6_4dx_q/u;p+lvgq—ldx
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p(p+1Dx

—p—1. g1
T en —2pq]uep v 97 Vue - Vuedx

:—p(p+1)/u;p_2v;q|Vue|2dx+f[
Q

Q

+/[ Pagx _q(q+1)]u€—pv€—q—2|w€|2dx+(q—rp)/ue_”ve_qu

14 €uc
@ Q
+Mp/Mgpfl+kv;de_q‘/ug])+1UG*Q*ldx
Q Q
1 p(p+1Dx 2 Pqx P
= -2 + - +1 } Py-97%|Vue|°d
_/{4p(p+1)[ 1+ eue r4] T e, 9@+ Djuclv Vol Tdx

+ (g —rp)/u;pv;qu+/Lpfu€_”_1+kv€_qu
Q Q

—q/ugpﬂv;q*ldx, >0 4.2)
Q

by Young’s inequality. Denote

p [(p+1)x 5 ]2+ Pax

g+,
4p+1DL 1+eu. 1+ €ue 4@ +1

fq:p.x ue) =
and rewrite it as the quadric expression in ¢ to get

(p+ 1)2x?
(14 €ue)?

<—4g> —4(p+ g+ p(p + D*x~

4p+D)f(q:p xue)=p +4pg* —4(p+Dglg+1)

Since Ay, = 16(p + D2(1 4+ px?) > 0, we know f(q; p, x,ue) <0 if ¢ > g. This together
with (4.2) yields

d
E/u;PU;qu <(@- rp)/ugpvqux +/Lp/ug1”l+kv;qu _q‘/u;erlU;qfldx
Q Q Q Q
4.3)

for all € € (0, 1) and 7 > 0. Repeating the procedure in the proof of Lemma 2.4, we conclude the
desired estimate (4.1). O

Next consider the case of £ > 2. Correspondingly, there is the following lemma.
Lemma 4.2. Under the condition of Theorem I (ii), we have
Ve(x,t)>68p foralle € (0,1), xe Qandt >0 “4.4)

with 8, defined in Lemma 2.5.
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Proof. By means of the same procedure as that in the proof of Lemma 4.1, we can get (4.3).
Together with the arguments used for the proof of Lemma 2.5, we arrive at the lower
bound (4.4). O

We deal with a spatio-temporal integral estimate on Vv, for all € € (0, 1).

Lemma 4.3. Let n > 2 and k > 2 — —=. Then there exists My > 0 such that
T
// [Vve|*dxds < Ms(1+T), T >0 (4.5)
0 Q

forall e € (0, 1).

Proof. Multiply (3.1), by v and integrate by part to get

1d
¥, vfdx:—/|VvE|2dx—/vzdx—l-/veuedx

Q Q Q Q
2 2 1 k et
<— | |Vue|dx — vedx—}—% uedx—i— dx, t >0 (4.6)
Q Q Q Q

by Young’s inequality. Applying the Gaglirado—Nirenberg inequality and the Poincaré inequality,
we have

||ve|IkaTl(Q) < Crllvellfy2 (g llve IIL,(Q) < Cs(IVvellf2 IIUEIILI(Q) +lvellie) 47

with C7, Cg > 0, where

n _ (k=Dn
1 k
a:=
5t

For k > 2 — + , there exists [ € ((é(k]i)f)", P 1) such that la < 2 with a € (0, 1). Combining
(4.6), (4.7) and (3 8), we obtain

li 2dx<——/|Vv |2dx—/v2dx+l/ukdx+C9 t>0 4.8)

2dt 2 ¢ € k) € ’ ‘

Q Q Q

by Young’s equality with Cg > 0. Integrating (4.8) from O to 7', we conclude (4.5) by (3.5) with
some My >0 foralle € (0,1). O

We proceed to derive another spatio-temporal integral estimate on u, for all € € (0, 1).
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Lemma 4.4. Under the condition of Theorem I (i), there exists y € (0, k — 1) that

T
//MZ_2|VuE|2dxdt <Ms(1+T), T>0 (4.9)
0 Q

with some Ms > 0 for all € € (0, 1).

Proof. A direct calculation with (3.1); and y € (0, k — 1) shows

1d Ue

S wdx= | " Aue — V- (——V Md
ydtQ u;dx Q/ME [Aue — x ((1+€u6)vé Ve) +rue — pigdx

1
_(l—y)/u” 2\ Vue’dx + x(y — 1)/7Vue-Vvedx
(14 eue)ve
—i—r/ui’dx—,u/u’e’*“rkdx, t>0. (4.10)
Q Q

By Young’s inequality, we have

1—)/ ) 2 (1_V)X2 u)€/ 2
y)/ (1+u€)v€ .VvedxfT/uZ |[Viue| dx*l_f/v—nge' dx.

Q Q
4.11)
It is known by (4.10) and (4.11) that
1d L—y)x? [ ul
V)f Y21y, |2dx < — ugdx+ﬂ/”—f|wé|2dx
y dt 2 v2
Q
—r/ude —i-y,/uz_l"'kdx, t>0. (4.12)
Q Q
Using Young’s inequality with Lemma 4.1, then
ul 2 1 2 k 2
/EWUA dx < 8—2/u7€’|Vv€| dxSCIO/uedx+C10/|Vv5|k*de 4.13)
Q © I'o Q
with C1o > 0. By the Gaglirado—Nirenberg inequality and the Poincaré inequality,
Vel 2 = CullVoelye g IVl
< Cn(llAvell} k(Q)IIVUeIILz(Q) + Vel i), (4.14)
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with Cq1, C12 > 0, where

n _ (k=y)n
[ 2k

a .= .
n n
—rt7

Forn>2and ke (2— 2,2], taking / € (3522, -y and y € (0,k — 22) C (0, k — 1), we get

I+n

Together with (4.13), (4.14) and (3.9), we have

uV

/U—62|Vve|2dx§C13(1+/u§dx+/|Ave|kdx> (4.15)
€

Q

Q Q

by Young’s inequality with C13 > 0. Combining (4.12), (4.15) with (3.4) and (3.5), we obtain

T
- 1 1
—y//uz_zwuglzdxdsf ;/u’e’(~,t)dx—;/ugdx+ —x // 2|Vv€ Pdxds
0 Q

Q Q
T T
r/fu{dxds—uf/uz_l+kdxds
0 Q 0 Q
5C14(1+T)+C14//|Ave|kdxds, T>0 (4.16)
0 Q

with C14 > 0. In addition, we know by Lemma 3.4 with p = g = k and (3.5) that

T T

//|Au€|"dxds§1€(1+//u’;dxds)§c15(1+T), T>0

0 Q 0 Q

with C15 > 0. Together with (4.16), this yields the conclusion (4.9). O
Next, we deal with the estimate on the time derivative of u. for all € € (0, 1).

Lemma 4.5. Under the condition of Theorem I (i), there exists M¢ > 0 such that

2 a ” ds <Mg(1+T), T>0 417
\/H ( +M€) (W61+1,2(Q))* s = 6( + ) > ( )

forall e € (0, 1).
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Proof. Let y € (0,k — 1) and ¢ € W) *"*(Q). Then we have from (3.1); that

;/—(Hue)wdx—/(wue) T LA = XV - (e Vo) 4 —
Q

Y — y=4 2 y=2
= _T (1+ue) 2 |Vue|“¢dpdx — | (1+ue) 2 Vue - Vopdx
Q Q

r=2 y—4
¥ x ue(1+ue) Vo, - Vdx + (y )X ue(1+ue)
(1 4+ €ue)ve 2 (1 + €ue)ve
Q Q

r=2 v=2
+r | (A +ue) 2 uepdx —p | (14+ue) 2 updx
Q

Vue - Voegpdx

2—y _ _ i
sT(/uz 2|VMe|2dx)||¢||L°°(sz)+(/MZ 2\ Ve Pdx) [V 210

Q

Q
X k x k
+6—(f(1+u6> dx) % ( /er ) Vel o
1
Q

F=277(Q)

-y - 2 2
+ S [ 219ucan ([ 190Pan) iglim)
Q

2 —2+42k
r(/(1+ue)kdx)2 S . (f(1+ue>kdx) gl o (4.18)
Q Q

by the Holder inequality for r > 0. Since W(;l'H’Z(Q) — Who°(Q), it is known by Young’s
inequality with (4.18) and the fact (1 4+ a)? <2°(1 + ) for a, b > 0 that

d v _
‘/E(Hue)éwx‘ 5016(1+/u3 2|Vu€|2dx+/u§dx
Q

Q Q

+/|Vve|kdx+/|Vv6|2dx)||¢)||W61+1,2(Q), t>0 4.19)
Q Q

with Ci6 > 0. Integrating (4.19) from 0 to 7', we obtain from (3.5), (3.8)—(3.10), (4.5) and (4.9)
that

T T
d y
— (1 +u 7” ds < su /‘/—l—i—u 5 dx|d
[[5a+uo ey B (+u0te
0 0 n+l Z(Q) 0 Q
T T
y—2 2 k
§C16(T+/fue [Viue| dxds+//uedxds
0 Q 0 Q
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T T
+//|Vv€|kdxds+//|Vv€|2dxds)
0 Q

0 Q
<M¢(1+T), T>0

with some Mg > 0. O
Based on Lemma 3.4, we further prove the following estimates on v, for all € € (0, 1).

Lemma 4.6. Let k > 1 and p € (1, k). Then there exists M7 > 0 such that

P Pl
||va||L1,Z(Q)ds +/ el oy ds < Mo (1+T). T >0 (4.20)

forall € € (0, 1). Moreover, there exists Mg > 0 such that

T

Ve 1)
H Uds <Mg(1+T), T >0 4.21)
Ve LI’(Q)

forall e € (0, 1).
Proof. By the Holder inequality with p € (1, k), we have

k=p 1
fufdxf (/uedx) = (fu’édx)kil, t>0.

Q Q Q

This together with (3.4) indicates

k=1 k=p
</updx> - §</uedx>p7 /ulédxfcnfulgdx, t>0,
Q

Q Q

Q0

and hence shows by (3.5) that

T
plk—1)
/||u6||L,,(Q)ds <c17//u’gdxdsgclg(1+T), T>0
0

with C17, C13 > 0. Consequently, it follows from (3.10) that

plk—=1)
||Uet||Lﬁ(g]2)ds+ ||ve||W2,,(Q) <Cis / lucl figyds <M1 +T), T>0  (4.22)
0

with M7 > 0. By (4.22) and (4.1) (or (4.4)), we conclude (4.21) with some Mg > 0. O
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We now perform a subsequence extraction procedure to obtain a limit object (u, v), i.e., a very
weak solution to the problem (1.6).

Lemma 4.7. Under the condition of Theorem 1 (i), for 0 <y < % and p € (1,k), there exist

ue Ll (Qx(0,00) and v e L? ((0,00), W2(Q)) with some m > %5 such that
ul —u?, in L} ([0, 00); Wh2(Q)), (4.23)
Ue = u, in L (R x [0, 00)), (4.24)
Ue —> U, a.e.in Q2 x (0,00) and LﬁC(Q x [0, 00)), (4.25)
Ve = VU, a.e.in Q x (0,00) and Li ([0, 00); whm(Q)), (4.26)
VUG Vv . m
. in LI" (2 x (0, 00)), (4.27)
Ve v
1«1 s
— =, in LY2.(R2 x (0, 00)) (4.28)
Ve v
fore=¢; 0.

Proof. The conclusions (4.23), (4.24) and (4.28) are the direct results from (4.9), (3.5) and (4.1).
Since W'2(Q) << L*(2), we have by the Aubin-Lions lemma with (4.9) and (4.17) that
(1 —i—ue)% — (1 —i—u)% in L2(Q2 x (0, T)), and moreover uc — u a.e.in 2x (0, T),as € = €; 0.
This together with (4.24) indicates (4.25) by a similar argument as that for [21, Lemma 1.4].

Since W2P(Q) <> W4 (Q) for ¢ < nrfp , it is known by applying again Aubin—Lions lemma

k=1)p
with (4.20) that ve — v in L 1 ((0,T), Wh4(Q)) for p € (1,k) and ¢ < n"_pp, and moreover
ve = vae. in Q2 x (0,00), as € =€; 0. A simple calculation shows that there exists p € (1, k)
such that $=D2 o _k_4pg 12 o % due to k € (2 — L, 2]. This concludes (4.26) and (4.27)

p—1 k—1 n—p n
with m € (A, min{E42 2y o

5. Strong convergence of {VInvc}cco,1

Ve }
Ve Jee(o,1

Obviously, we should establish the strong precompactness of { . Inspired by [26],

2
it is sufficient to show that ;| [, WUZ' dxdr satisfies a required estimate from below for T > 0.
We begin with the entropy identity

d Vul?
E/lnvdx:/ll;' dx—lQH—/%dx.
Q Q

Q

By a suitable choice of test functions in (1.11), we will derive a qualified inequality.

Lemma 5.1. There exists a null set N C (0, 00) such that the functions u and v obtained in
Lemma 4.7 satisfy the inequality
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T T
V|2 u
> dxdt > |Q|T — ;dxdt + | Inv(x, T)dx — | Invgdx (5.1
v
0 Q 0 Q Q Q

forall T € (0,00) \ N.

Proof. Duetov € LIIOC(Q x (0, 00)), we know that the function z(¢) := fQ Inv(x, t)dx belongs

to LlloC (0, 00). Therefore, there exists a null set N C (0, 00) such that each 7' € (0,00) \ N is a

Lebesgue point of z(¢), i.e.,

T+8

1

3 / /ln v(x, t)dxdt — /ln(x, T)dx forall T € (0,00)\ N as§ \(O. 5.2)
T Q Q

For T € (0,00) \ N and § € (0, 1), let

1, rel0,T],
()= 1= 1e(T.T+9),
0, t>T+3,
and denote
v():,t)’ (x,1) € 2 x (0, 00),

v(x,t):=
ven ) 1 (x,1) € Q x (—1,0].

vo(x)’

Now, for 6 € (0, 1), h € (0, §), introduce

V(x, 1) =) - (Apv)(x, 1), (x,1) € 2 x (0, 00),
with
t
(Apv)(x, 1) := % / v(x,s)ds, (x,t) € Q x (0, 00).
t—h

By Lemma 4.7 with (4.1), we know that 1 belongs L (€2 x (0, 00)) N L _((0, 00); W12(Q)),

loc loc

and so does . In addition, we also know that v is supported in € x [0, T + §] and

1
Y (x, 1) = (1) - (ApD)(x, 1) + £5(2) - E(ﬁ(x’ 1) —v(x,t—h)), (x,1) € Qx(0,00).

This indicates ¥, € L?

1oc (8 % (0, 00)). Therefore, we can insert ¥ into (1.9) to obtain
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I((S,h)::—//Q(Z)Vv(x,t)-V(Ahf))(x,t)dxdt

oo oo

//Q(t)v(x D (ApV)(x, )dxdt — //Ca(t)u(x,t)(Ahﬁ)(x,t)dxdt
0 0 Q
—//Cé(t)v(x,t)(Ahﬁ)(x,t)dxdt—|sz|

0 Q

o0
1
—f/gﬂ;(t)v(x,t)E(ﬁ(x,t)—ﬁ(x,t—h))dxdt
0 Q
=:11(8,h) + (8, h) + I3(8, h) + 14(8, h) + I5(8, h), (5.3)
where we have used that

0

Y(x,0)=1¢5(0) - l/f)(x,s)ds =——— xeQ
h vo(x

—h

by the definitions of 5(¢) and v. Since vg € W2°(Q), it is known by [26, Lemma A.2(a)] with
Vi e L2(Q x (=1, T + 8)) that

v
V(ApD) = Ap (Vi) — Vi = ——; in L2 (2 x (0, T 4 8)) ash \ 0,
v

and hence

T+8

I1(6,h)— / /Q(t) dxdt as h \( 0. 54

Similarly, by [26, Lemma A.2(b)] with v € L (2 x (—1,T +§)),

Ahﬁ—*\ﬁzlin L®(Q x (0, T +8)) ash\ 0, (5.5)
v
and then
T+65
I8, h) — / /Q(t)dxdt as h \ 0, (5.6)
T+6
LS, h) —> — / fg“(;(t)zdxdt as h \ 0, 5.7
v
Q
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T+6

L, h)— — / /Cé(r)dxdt as h \( 0. (5.8)

T
We know

T+6 h

_ _l l v(x,t)
I5(5,h) = h / /Q(l‘)dxdl-f- W //{5 000 dxdt
0 Q

0 Q

1T+5 ( )
vix,t
- YD dr
1 //Qv(x,t—h) o
h Q

=:15,(8, h) + Is,(8, h) + Is,(8, h). (5.9)

Now, we deal with the last term in (5.9). With the fact x > Inx + 1 for x > 0, we obtain

T+6
153(8,h)z% / mn(m%ﬂ)mm
h
T+8 T+8
/ /ga(t)dxdt—i— / /gg(t)lnv(x t)ydxdt
h h
T+8—h
—% / /{5(t+h)lnv(x,t)dxdt
0
748 T+8—h
=% / /Q(t)dxdt+ / /wlnv(x,t)dxdt
o 0 Q
h T+3
— %/ Zs(®) Inv(x, t)dxdt—l— - / /fg(t)lnv(x t)dxdt. (5.10)
0 T+8 hQ
Combine (5.9) with (5.10) to get
h h
Is(8, 1) > —% / / Q(t)dxdt—i—% / / & vv(ox(’x’)) dxdi
0 0
T+6
— —//gg(t)lnv(x t)dxdt+— / /g‘a(t)lnv(x t)dxdt
0 T+8 o)
T+5—h
/ /wlnv(x,t)dxdt. (5.11)
0
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With ¢5(0) = 1, we know

h

_1f/C5(t)dth—>—|Q| as h \, 0,
0 Q
h

1//(5()v(x )d dt — || as h \( 0,
0

Q

. h

— E/‘/Q(t)lnv(x,t)dxdt% —/lnvo(x)dx as h \( 0.
0 Q

Q

By the dominated convergence theorem with a simple calculation, we conclude

T+6

0
T+8

/ /Cg(t) Inv(x, t)dxdt — 0 as h (0.

T+6—h Q

Insert (5.12)—(5.16) into (5.11) to get

T+6
liminf I5(3. h) > —/lnvo(x)dx— f /;g(t)lnv(x,t)dxdt.
Q T Q

Combining (5.3) with (5.4), (5.6)—(5.8) and (5.17) by h N\ 0, we obtain

T+6 T+s s
//Q(t) dxdt> / /Q(r)dxdt //;50) Zdxdt
T+8
+ / /Ca/(l)dxdt—l—lﬂl—/lnvo(x)dx
0 Q o
T+$
- / /Cé(t)lnv(x,t)dxdt.
T Q

By the definition of ¢s(#) with the Lebesgue point property of T, we know

T+4 T+$

1
//{é(t)dxdt:—g / /dxdt—>—|sz| as 8\, 0,
0 Q T Q

T+38—h
/ /wlnv(x,t)dxdl‘—) / f;‘é(t)lnv(x,t)dxdt ash 0,
T Q

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)
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T+6 | T+46
— / /{é(t)ln v(x, t)dxdt = 3 / /lnv(x, t)dxdt
T Q T Q
— /ln v(x, T)dx asé 0. (5.20)
Q

Applying the monotone convergence theorem to (5.18) with (5.19) and (5.20) by 6 \ 0, we
conclude (5.1). O

Now, we deal with the desired strong convergence result.

Lemma 5.2. Let {€;} jcN be taken in Lemma 4.7. Then there exists a subsequence, again denoted
by {€;}jeN, such that for each T >0

Ve Vv .,
— — inL7°(Qx(0,T)) ase =¢; \ 0. (5.21)
» .

Ve

Proof. We know from (4.26) that Inv, — Inv in LIIOC(Q x (0, 00)). Upon selecting a subse-

quence, still denoted by {€;} jen, we have a null set Ny C (0, 00) such that

flnvAx,T)dx—»/lnv(x,T)dx forall T € (0,00) \ N1 ase =¢; \(0. (5.22)
Q Q

Taking N C (0, c0) as in Lemma 5.1, we only need to verify (5.21) for T € (0, 00) \ (N U Np).
Now, given such T, we know from (4.25) and (4.28) that

T T

/ ”idxdrefffdxdz in L(Q2 x (0, T)) as € 0. (5.23)
Ve v

0 Q 0 Q

By Lemma 5.1 with (5.22) and (5.23), we have

T

T
|Vu|? u
s—dxdt > |QIT — ;dxdz+ Inv(x, T)dx — | Invodx
v
Q 0 Q Q

0 Q

T

= lim [|§2|T—//dedt+flnvg(x,T)dx—/lnvodx}.
e=¢€;\0 Ve
Q

0 Q Q
(5.24)

In addition, test (3.1), by i to obtain

T

T
Ve |? Ue
dxdt = |Q|T — —dxdt + | Inve(x, T)dx — | Invodx,
v2 Ve
Q 0 Q

0 Q Q
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which together with (5.24) entails

T T
|Vo? . |Vve|?
5 dxdt > liminf 5 dxdt. (5.25)
v e=¢€;\0 Vg
0 Q 0 Q

On the other hand, we get by the lower semicontinuity of the norm in L(2 x (0, T')) with respect
to weak convergence that

T
|Vul? . |V |
5 dxdt < liminf 5 dxdt. (5.26)
v e=€;\0 Vg
0 Q Q

Consequently, the conclusion (5.21) results from (5.25) and (5.26). O

6. Global existence and boundedness to very weak solutions

In this section we begin with proving that the function (u, v) determined in the last two sec-
tions just is the global very weak solution of (1.6).

Proof of Theorem 1. (i) For the case of k € (2 — % 2] with (1.13), we will demonstrate that the
function (u, v) obtained in Lemma 4.7 is a very weak subsolution of (1.6) in 2 x (0, T') for all

T > 0. Let ¢ satisfy (1.10). Multiplying (3.1); by ¢ and integrating by parts, we have for all
€ € (0, 1) that

T T
[ [uew- /M0¢(~,0)=//M6Afﬂ
0 Q 0 Q
T
+r//u€<p—y, /ulégp 6.1)
0 Q Q

+
>~

Ve - Vo

By (4.24), we know

T T
—//ue(p,—> —//mpt, (6.2)
0 Q 0 Q
T T
f/ueA(p—>//uA(p, (6.3)
0 Q 0 Q
T
r//ueq)—nfffugp (6.4)
0
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as € = €; \( 0. In addition, by (4.25) with (4.27),

T

f/ o // \0 (65)
u CQO as € — € . .
X (l‘l‘eue)ve X !

0

Consequently, we obtain by (6.2)—(6.5) with the Fatou lemma that

T
u/fu (p<u11m1nf// U@
EE]
0

Q
T

T
=//u<pt+/uo<p(~,0)+/qu
Q 0 Q

0 Q
T T

v
+X//MTU~V¢)+r//u<p. (6.6)
0 Q 0 Q

Take i satisfying (1.11). Multiply (3.1); by v and integrate by parts,

T

T T T
—//velﬁz—fvolﬂ(-,o)+ffvve-v¢+//veiﬁ=[/ue¢f~ (6.7)
Q 0 Q 0 Q 0 Q

0 Q

According to (4.26) and (4.24), we get (1.9) by taking € = ¢; \( 0. This together with (6.6)
indicates that (u, v) is a very weak subsolution of (1.6).
Taking ¢ in (1.10) and multiplying (1.6); by yug_l(p, we have

T T T
—//ueysoz—/ugw(-,0)=7/(l—y)//uZ*ZIVuelzsoJrf/uZAw
0 Q Q 0 Q 0 Q

T
142/71VL16 Ve
+xy(y—=1 —_— %

(1 +eue) v
0 @
T
o[
Xy (1 +€”e) Ve
0
T T
+ryf/uy<p Wf/uy . (6.8)
0 Q 0 Q
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By (4.24), we know

Q 0 Q
T
w//uy Hhp — M///My g
0 Q

as € =¢€; (0. Combine (4.23) and (5.21) in Lemma 5.2 to get

T
Vu. Vo // i
— —1 u’~'Vu -
xv(y — )//(l+eu€) o o—>xyy—1
0 Q

as € = €; \( 0. In addition, we know from (4.25) and (4.27) that

T
[ e [ [
—
XY l—i—eugve = XY ®,
0

Q

Vv

YJDEQ:9720

(6.9)

(6.10)

6.11)

(6.12)

(6.13)

(6.14)

as € = €; \( 0. Consequently, we obtain from (6.8) with (6.9)—(6.14) and the Fatou lemma that

T
y(l—y)//uy 2| Va2 ¢<hmmfy<1—y)//uy 2|Vu g
0 Q
T T
—f/uw,—/ugw<~,0>—/fum<p
0 Q 0 Q

Q
T

T
uv MZ
—XV(V—I) —Vu Vvp — xy v—
€

0

T T
—ryffuy<p+w//uy e
0 0

Q Q

Ve - Vo

(6.15)
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as € = €; \( 0. This together with (6.7) yields that («, v) is in fact a y-entropy supersolution
of (1.6) as well.

(i1) For the case of k > 2 with r, x > 0 satisfying (1.14), we can find that the conclusions
(4.9) and (4.17) for some y € (0, %) are also valid by repeating the arguments for proving Lem-
mas 4.4 and 4.5, where Lemmas 4.2 and 4.3 are useful. This implies the corresponding results
(4.23)—(4.28). Therefore, we can conclude that (u, v) is also a very weak solution of (1.6) by
using the same procedures as those for the case (i).

The proof is complete. 0O

Next, we will prove that the global very weak solution to (1.6) is globally bounded for
n = 2,3. At first, we establish the following uniform-in-time estimate on ]Q u?dx for all

€ € (0, 1), with the initial data and ﬁ suitably small.

Lemma 6.1. Let (uc, ve) be the global very weak solution of the problem (1.6) established in
Theorem [ with n =2, 3. There exist n, .. > 0 such that

/uzdx <My, t>0, (6.16)
Q

provided 7. <1 and Jquddx + [o |Vvol*dx < A, for all € € (0, 1) with My > 0.

Proof. Assume n = 3. It follows from (3.1); and (4.1) (or (4.4)) that

1d
Ed_f 2dX—/M€[AM6 XV (vae)+rue [/Lulé]d.x
Q Q
1
5—E/IVuE|2dx+X?fu—zwveﬂdx—i—r/ugdx—,u/ulgﬂdx
v,
Q a ¢ Q Q
5—1/|Vu5|2dx—2/uzdx+7/u (Vo] 2dx+C19/u€ (6.17)
2 2m1n{82,82}
Q Q Q

by Young’s inequality with positive constant C1g := (r + 2)% M_% for ¢ > 0. In addition, due
to A|Vue|? = 2V, - VA + 2|D%vc|? and |Ave |2 < 3|D%vc |2, we have from (3.1), with the
convexity of €2 and Young’s inequality that

2dt/|we [*dx =2 /|Vv€| Ve - V(Ave — ve + ue)dx
Q

:fA|Vv€|2|Vv€|2dx—2/|D2v5|2|VvE|2dx—2[|Vv€|4dx
Q

+ 2/ Vue - Ve | Vue|Pdx
Q
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—f [V|Vve|*|?dx — 2/ [D%ve|?| Ve |Pdx — 2/ |Voe|*dx
Q Q Q

—2/uewe-V|vU€|2dx—2fu€Av€|vUe|2dx
Q Q

1 7
5—5/|V|Vv€|2|2dx—2/IVve|4dx+5fuz|VUe|2dX, t>0.
Q Q

This together with (6.17) indicates

d

E</ 2dx+/|Vve| dx < 4 /ugdx—i—/er 4dx /|Vu€| dx—/|V|VU€| [2dx
Q Q
Q

+Corx [ u dx-I-Czo/ |Vv€|6dx—|—2C19m*, t>0 (6.18)

with Cyg :=7 + By the Gaglirado—Nirenberg inequality with the corresponding con-

2
{82 83}
stant Co1 > 0 and Young’s inequality, we have

3

3
/ ugdx = ”ue ”L"S(Q) < C21 ”ue ”WIZ(Q) ”ue ||22(Q)
Q

=302 (I Vuell} (Q)nuean(m +lluell32 )

1 3 3
< —/|Vue|2dx+3C21</ uzdx)z +C22</ ufdx> (6.19)
Cxo J 2

Q

with Cpy 1= SICSOCE‘I. Replacing u, by |V, |2 in (6.19), we know by a similar argument that

/ Vuclbdx = 11901
Q

1 22 4,0\ 4,0\
SC—ZOQ/WWM | dx+3C21</|VvE| dx) +sz(/|we| dx) .

(6.20)
Let Fe(t) := [qu2dx + [o|Vve|*dx. We have from (6.18)~(6.20) that
:Fé (1) < —4F.(1) +3C20Ca1 Fe(1)? + CooCrFe(1)} +2C1om*, 1 >0, 621
Fo(0) = [ uddx + [, |Vvol*dx. '

Denote
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h(s, m*) = —4s + 3C2()C21S% + C2()C22S3 + 2C19m*, s> 0. (6.22)

Then there exists mg > 0 such that /(s, m) has the unique positive root so. Obviously, Fe (1) = 5o
satisfies the ODE problem

F/(t) = h(Fc(t),m§), t >0, 623)
Fe(0) = 9.
Now let
mE\k—1 . m*2
n:= (ﬁ) and A :=min {so, ﬁ}

with £ <7 and Jquddx + [o|Vvol*dx < A. Then

1
/uodx < |§2|%</‘u%dx)2 <mg,

Q Q
and thus
ro_1
/uedx <m* =max { /uodx, (—)F1 |Q|} <mj
m
Q Q
for all € € (0, 1). Observe that m* < m implies h(s,m*) < h(s,m{) for s > 0, and the func-

tion h = h(s, m*) has exactly two positive roots 0 < s1 < 59 < s2. We know from (6.22) that
h(s,m*) < 0 whenever s € (s1, s9). By (6.21) with F¢(0) < sp, this concludes that

F.(t) =/u§dx + / |Vv6|4dx <sp, t>0
Q Q
for all € € (0, 1) by comparison.

The case n = 2 can be treated similarly, and even more simply. We omit the details.
The proof is complete. 0O

Proof of Theorem 2. Based on Lemma 6.1, we obtain the global boundedness of solutions to
the regularization problem by a similar argument as that in [29] that

luellLo@) + lvellLe) <C, t>0 (6.24)

with some C > 0 for all € € (0, 1). Consequently, we conclude that the very weak solution (u, v)
is globally bounded in time as well by taking e =¢; \ 0. O
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7. Global boundedness to classical solutions

In this section we deal with classical solutions to (1.6) with k > 2 ensured by Lemma 2.1, and
begin with the known estimate below.

Lemma 7.1. ([27, Lemma 2.3]) Let n > 1, k > 2, and (u,v) be the local classical solution

of (1.6). Then there exists Mo > 0 such that for k <m < ﬁ

VUl Lm@)y < Miog, t € (0, Tmax). (7.1

Due to the singularity of the sensitivity function in (1.6), we use the energy functional of
the form E(z) := %fg uPdx + éfg |Vv|?4dx with p,q > 1, instead of that for the classical

Keller—Segel system with logistic source [4]. Firstly, we estimate %E (1).

Lemma 7.2. Let (u, v) be the local classical solution of (1.6). Then for p,q > 1, there exists
M1 > O such that

1d

1
updx+——f|Vv|zqu<——/updx——/|Vv|zqu
dt p
Q

Vol 2542
2dx+M11/(u) =t dx
v

+k—1
+ My / (Vo@D g+ My, (7.2)
Q

.fort € (Oa Tmax)~
Proof. Multiply (1.6); by «”~! and integrate by parts to know

1d

o updx:/upfl[Au—XV~(EVU)+ru—,uuk]dx
p v
Q

Q

p—1
=—(p—1)/up_2|Vu|2dx+x(p—1)/MTVM-Vvdx

+r/u1’dx—,u/u1’+k_]dx
/updx —/L/um'k_ldx

<x (p—l)/
Q

1 |VU| 2(1)+k 1) m
< ——/u”dx + c23/ dx — 5 / uPt*=ldx + Cy  (1.3)
p

Q Q
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by Young’s inequality and (2.13) with some C»3 > 0 for ¢ € (0, Tmax). In addition, noticing
A|Vv|? =2Vv - VAv 4 2|D?v|?, we have from (1.6), that

d|Vv|?
dt

=2Vv-VAv —2|Vv|> +2Vu - Vv

= A|Vv|> = 2|D%*v|? = 2|Vv|® + 2Vu - V.

Testing this by |Vv|>~2 and integrating by part with € convex, we get

1d 2 2q—2 2 212 2

—— [ vl Idx = | |V 2[A|VY|> = 2|D%v|* = 2|Vv|> 4+ 2Vu - Vu]dx

q

Q Q
<—(q— 1)/ Vo2~V |Vv|?|?dx —2/ |Vv|%~2|D%v|?dx
Q Q
—2]|Vv|2"dx+2/|Vv|2‘7_2Vu-Vvdx, 1€, Tmax). (7.4
Q Q

Apply Young’s inequality to the last term of (7.4) to obtain

2/ V|22V - Vodx = —2(q — 1)/u|Vv|2q—4Vv~V|Vv|2dx —2/u|w|24—2Avdx
Q Q Q

—1
< ‘IT/|Vv|2‘1*4|V|vU|2|2dx+2(q — 1)/u2|w|2‘1*2dx
Q Q
2
+—/|Vv|2‘1_2|Av|2dx+%fu2|Vv|zq_2dx
n
Q Q
-1
< qT/|Vv|2q—4|V|Vv|2|2dx+2/|Vv|2q—2|D2v|2dx
Q Q

F Q-1+ %)/M2IVU|2q_zdx.
Q

Together with (7.4), this yields

1d [ Gopaar <— 222 [ \v|vol92dx
— 2
q dt J q

—2/|Vv|2qu+(2(q — 1+ %)/u2|Vv|2q_2dx
Q Q
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2g —2
<4 - /|V|Vv|q|2dx—2f|Vv|zqu
q
Q

Q

+k—1
+% / uP = ldx 4 Co / VP4 Ay, te (0, Tow)  (1.5)
Q Q

by Young’s inequality with some C»4 > 0. Combining (7.3) with (7.5), we conclude (7.2) with
M1 =max{Cs3, C4}. O

Based on Lemmas 7.2 and 2.5, we can obtain the L”-boundedness of solutions for p > 1.
That is the following lemma.

Lemma 7.3. Under the condition of Theorem 3, there exists p > n with M1> > 0 such that
/ uPdx < My, 1 € (0, Toay). (7.6)
Q

Proof. For k > 2 with r, x > 0 satisfying (1.14), we have from Lemma 2.5 with (7.2) that

1d

uPdx+—— | |Vv|*d
dt + /I v|*1dx

1 1 2q —2
5——/u”dx——/|Vv|2qu— 12 /|V|Vv|q|2dx
) q q
Q Q Q

_ 2ptk=1) prk—1
+ M114, = / /|VU|2(q_1)P+k*3dl+M11
Q Q

(7.7)

for t € (0, Tmax). By the Gaglirado—Nirenberg inequality and the Poincaré inequality with (7.1),
we get

v ||2(p+; T I I T
VIl o +1<1 1)(9) =25 v wl2(Q) v %(Q)
2(ptk—1) 2ptk=) () 2ptk—1)
< CosCIVIVUIl g “NVOIl 0 Vol )
L4 (Q)
2(p+k—1)(1—a) 2(p+k=1) 2(p+k—1)
<Cu(Myy =7 IVIVOIll g M) (7.8)

with Cp5, Cr¢ > 0, and

qn (k—1)gn

m ~ 2(pt+k—1)

a =
_ngqn
1 2+m
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Letq>%and’”T_z(k—l)<p<W—(k—l).Then

2(p+k—1)
——‘a

ae(0,1) and *—Dyq

Therefore, we know from (7.8) by Young’s inequality that

/|Vv

(p+k—1)a

with C¢, 1= Co7(1 + €1 ®Da=r+=Da) and Cp7 > 0. Again by the Gaglirado—Nirenberg inequal-
ity and the Poincaré inequality with (7.1),

/}Vqudex4-cﬂ (7.9)

2(q—1)(pj-k—l> 2<q—l)(/i+k—1) 2(q—=D(p+k— 1)(1717)
IVl 2(:j]];(;+k—l) = C28”|Vv|q||wl(,p2}r§2)3)q Vv |q|| S
L~ pH3 (@) ()
2(q71)l(€p45k71) 2(q— l)l(cpgk l>(1—b)
< Con(IVIVUll gy NIVITH w7

Z(q D(p+k=1)

+ |||Vv|q|| e
7 (R2)

2(q—1)]£p;rk—l>( —b) 2g-D(ptk=1) 2g=D(p+k—1)
< C29(M10<p+ —3)m ||V|V |q”L2(1S12+) )q + MIO(P+ —3)m )
(7.10)
with Cag, Cr9 > 0, and
gn _ _(ptk=3)gn
po— M 26— D(ptk-1)
= i
-5 +2=
Letg > '"+2 and p > 2a—nt— Jlr)n m*=3) Then
2(qg — 1 k—1
be(.1) and 24— DPTE=D, o
(p+k—3)q
Therefore, we know from (7.10) by Young’s inequality that
2(g—1)(p+k—1) )
Vo™ 0H=3 dx < e |V|Vv|q| dx + Ce, (7.11)
(q=D(g+k=Db 3(142)
with C62 = C30(1 + € PF=3¢-4-DG+-D¢) and C3y > 0. For k > 114 - there exists me
(k, n+2 k) such that 3 —k)n —m(k —1) <0.1If g > m+2 , then the interval for

A

pe(max{m

-2
(k—=1),

an—n(k—1)—ﬁ1(k—3)}’qn+:1—n(k_1))

m+n
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- _ 2(p+k—1)
is well-defined. Let €1, €3 > O satisfy ‘f]; — M8, “' € — Mije; = 0. We obtain by (7.7),

(7.9) and (7.11) that

1d 1d
= uﬂdx+——/|vp|2qu
pdt q dt
Q Q
1 1 N
<— [ uPdx—— [ |Vv|*%dx
p q
Q Q
2 —2 _2ptk-1)
—( p —Mus, o€ —M1162)/|V|Vv|q|2dX+C31
Q
1 1 )
<—— [ uPdx—— | |Vv|™dx + Cs; (7.12)
p CIQ

with some C31 > O for ¢ € (0, Tinax). If ¢ > n + 1, there exists some p > n due to q"Jrnﬂ(k —

1) > n. We complete the proof from (7.12) by the Bernoulli inequality with some M, >0. O

Proof of Theorem 3. Applying [23, lemma 1.3] to (1.6), with (7.6), we have

t
IVl Loy < 1V A Dyl oo (o) + / Ve "= A=Dy |l (g ds

0
t

_1_n
< 2KV wolimi@y + Ko [ (140 =775 )e O ulpayds
0
<C3, t€(0, Tinax) (7.13)

with C3p > 0. Again by [23, Lemma 1.3] with (1.6)1, we know from the Holder inequality with
(7.6) and (7.13) that

t
_ _ _ u
lull oo @) < lle" A Vugll ooy + x / el —)a UV-(;W)an(g)ds
0
t
+ @+ 1)[ e ADy | oo (yds

0

t

Ky _l_n o
< luollLoo () + %/(1 +(—s) 2 Ple M S)”MVU”LP(Q)dS
0

t t
+ Ki(r+ 1)/(1 (1 —5) e M Ju — 7 Lo yds +m*(r + 1)/6_(’_S)ds
0 0
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t
_1l_n
/ L+t —5)"272)e ™M) 1oy I Vol Loy ds + C33
0
< C34’ te (O, Tmax)

xKa
8

=<

with C33, C34 > 0. This concludes Tax = 00 by Lemma 2.1, and thus the classical solution
(u, v) is globally bounded. O
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