YJDEQ:10214

Available online at www.sciencedirect.com

Journal of

ScienceDirect Differential
A s Equations
ELSEVIER J. Differential Equations eee (eeee) ecee—eee —_—

www.elsevier.com/locate/jde

On two-signed solutions to a second order semi-linear
parabolic partial differential equation with
non-Lipschitz nonlinearity

V. Clark *!, J.C. Meyer ™~

& College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
b School of Mathematics, Watson Building, University of Birmingham, Birmingham, UK

Received 21 June 2019; revised 20 December 2019; accepted 8 January 2020

Abstract

In this paper, we establish the existence of a 1-parameter family of spatially inhomogeneous radially
symmetric classical self-similar solutions to a Cauchy problem for a semi-linear parabolic PDE with non-
Lipschitz nonlinearity and trivial initial data. Specifically we establish well-posedness for an associated
initial value problem for a singular two-dimensional non-autonomous dynamical system with non-Lipschitz
nonlinearity. Additionally, we establish that solutions to the initial value problem converge algebraically to
the origin and oscillate as n — oo.
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1. Introduction

In this paper we consider u : Dy — R such that u = u(x, ) is continuous and bounded on
Dr :=R" x [0, T] and, for fixed n € N, u;, uy, and uy,x; exist and are continuous on Dy :=
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R" x (0, T] for each 1 <i, j <n. Moreover, we suppose that u is a solution to the following

Cauchy problem for the second order semi-linear parabolic partial differential equation with
non-Lipschitz (Holder continuous) nonlinearity, given by

ur — Au=ulul’"' on Dr, (1.1
u=0 on 9D, (1.2)
ueC>(Dr)ynC(Dr)N L®(Dr), (1.3)

with 7 > 0,0 < p < 1 and D7 :=R”" x {0}. Here C>!(X) denotes the set of functions that are
defined on X which are continuously differentiable twice with respect to the spatial variables x,
and once with respect to the time variable ¢; C(X) denotes the set of functions that are defined
and continuous on X; and L°°(X) denotes the set of functions with bounded essential supremum
and infimum. We refer to the Cauchy problem in (1.1)-(1.3) as [CP] and u : D7 — R satisfying
(1.1)-(1.3) as a solution to [CP]. In addition, throughout the paper we denote (x,?) € Dr as
(x1,x2,...,xp,t), forx e R" t €[0, T].

The existence of spatially inhomogeneous classical self-similar solutions to [CP], which on
Dy with n = 1 are of the form u = w(n)t"/1=P) with n = x/11/2, has been considered in detail
in [13]. In the paper, via consideration of a self-similar solution structure, a two-dimensional
non autonomous dynamical system with non-Lipschitz nonlinearity was analysed and the exis-
tence of a two parameter family of homoclinic connections on the equilibrium point (0, 0) of
the dynamical system, as well as decay bounds and estimates on these connections, were estab-
lished. Herein, we consider an analogously derived dynamical system in n-spatial dimensions,
for n € N, and establish the existence of spatially inhomogeneous solutions to (1.1)-(1.3). More-
over, we establish a full well-posedness result for the initial value problem for the dynamical
system. Furthermore, we prove that solutions oscillate as  — oco, which gives additional struc-
tural information about the aforementioned solutions in [13]. Curiously, oscillation theory of
Sturmian type (see, for example [6] or [16]), when combined with algebraic decay bounds on
solutions to the initial value problem for the dynamical system as n — oo, obtained here via
an adaptation of a technical argument in [4], appear to be insufficient to establish oscillation of
solutions as n — oo. Hence, we adopt a novel alternative approach which relies on properties of
non-negative solutions to [CP] established in [1], to establish that solutions to the initial value
problem for the dynamical system oscillate as n — oo.

Qualitative properties of non-negative classical bounded solutions to boundary value prob-
lems for (1.1), have been considered in [1], [5], [8], [10], [11], [13] and [15] with O < p < 1 and
non-negative initial data, and until [CP] in [13] with n = 1, two-signed solutions were not con-
sidered. We highlight here that the spatially inhomogeneous solutions constructed in this paper
are two signed on D7 because any non-negative classical bounded solution to [CP] must be spa-
tially homogeneous [1, Corollary 2.6]. Following the investigations in [9] and [12] it should be
noted that local results which guarantee spatial homogeneity of solutions to semi-linear parabolic
Cauchy problems, with homogeneous initial data, depend critically on uniqueness results (which
do not apply to [CP] with 0 < p < 1). We also note that boundary value problems for the par-
tial differential equation in (1.1) have been extensively investigated with p > 1 (see [17] and
references therein).

The remainder of the paper is structured as follows: in §2 we establish a priori bounds on
solutions to [CP], and subsequently, we formulate a radial self-similar solution structure of [CP],
which on D7 is of the form u = w(n)t'/1=P) with n = |x|/t'/?, which gives an associated
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initial value problem for a two-dimensional singular non-autonomous dynamical system with
non-Lipschitz nonlinearity, for (w, w’), studied in the remainder of the paper and referred to
throughout as (P) (see Lemma 2.2 for details). In §3, we proceed to show that there exists a
local solution to (P), by using a suitable contraction mapping, which can be extended to a global
solution via a priori bounds and multiple applications of the Cauchy-Peano Local Existence
Theorem. We subsequently establish that there exists a 1-parameter family of solutions to (P)
which converges to (0, 0) as n — co. We complete the section by establishing well-posedness of
(P), via uniqueness and continuous dependence results for 1 € [0, co) and initial data in [0, (1 —
p)! /=Py % {0} (see Theorem 3.14 for details). In §4, we establish algebraic decay bounds for
solutions to (P) as n — oo. Furthermore we demonstrate that nontrivial solutions to (P) oscillate
as n — oo. In summary, for (P) we establish,

Theorem 1.1. (P) is well-posed for initial data (w(0), w’(0)) = (a, 0) € [0, (1 — p)!/1=P)) x
{0}. For each a € (0, (1 — p)!/U=P)) the unique solution to (P), denoted by wq : [0, 00) — R,
satisfies: (wq, w,,) — (0,0) algebraically and oscillates as n — co; and wy € L9([0, 00)) for
qg>1-p)/2

In relation to [CP], Theorem 1.1 directly yields,
Theorem 1.2. There exists a I-parameter family of two-signed spatially inhomogeneous solu-
tions to [CP] denoted by uy : D — R for parameter « € (0, (1 — p)Y/1=P)). For t € (0, T1:
g, )]loo < (1 — p)t)l/(l_”); uyg(-,t) — 0 algebraically and oscillates as |x| — oo; and
ug(-,t) € L41R") for g > (1 — p)n/2.

In §5 we summarise the proofs of Theorem 1.1 and 1.2, and explain how related results in [13]
can be improved. We also highlight potential extensions to results in §3-§4 and related queries
that have arisen from the study.

2. Self-similar solution structure to [CP]

In this section, we establish a priori bounds for solutions to [CP]. Consequently, we consider
a radial self-similar solution structure of solutions to [CP] which yields (P). To begin, we have,

Lemma 2.1. Let u : Dy — R be a solution to [CP]. Then,

lu(x, 0] < (1 - p)n/I=P) w(x,1) € Dr.

Proof. Since [CP] has spatially homogeneous initial data, the maximal solution ut:Dr - R
and minimal solution u~ : Dy — R to [CP] are spatially hon_logeneous for t € [0, T'] (see, for
example, [12, Proposition 8.31] for n = 1). We note that u™* : Dy — R given by

utx,t)=x(1 - p)n)"/1=P v(x,1) e Dr

are the maximal and minifnal solutions to [CP], and hence any solution « : Dr — R to [CP]
satisfies u™ <u <u™ on Dr, as required. O
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‘We now determine an initial value Problem [IVP] associ_ated with a self-similar solution struc-
ture to [CP]. Consider a solution u : D7 — R to [CP] on Dt of the following form: there exists
w : [0, 00) — R such that

R
w(x, 1) = w(ﬂ%>’“ P, 0 eDr 2.1)
0, (x,7) € 3Dy

We introduce H : R — R given by

N S p—1
Hw) = T—p¥ wlw|P™, weR\ {0} 2.2)
0, w=0
and observe that H € C(R) N C1(R \ {0}). We also denote
My = sup |H| > 0. 2.3)
[0,(1—p)1/(=P)]
We note here that via Lemma 2.1, any solution to [CP] of the form (2.1) satisfies
llwlleo < (1= /=7, (24)

We also note that if there exists a solution to [CP] of the form (2.1), then —u is also a solution to
[CP].

It follows from (2.4) that u : D7 — R given by (2.1) is a solution to [CP] (up to symmetry)
if and only if there exists a constant « € [0, (1 — p)!/1=P)] such that w : [0, co) — R satisfies
the following [IVP] for the second order singular non-autonomous ordinary differential equation
with non-Lipschitz nonlinearity given as,

/7 (}’l B 1) n / _
w’ + +5 ) w' - Hw)=0 Vne(0,00), 2.5)
n
w0) =a, w0)=0, acl0,(l—p)/I=p, (2.6)
w € C2([0, 00)) N L*¥([0, 00)). 2.7

Observe that the condition on w’(0) ensures that u given by (2.1), has continuous first spatial
derivatives on D7 for ¢ € [0, T']. Moreover, from (2.5)-(2.7) it follows that

w” (0) = Hi“), (2.8)

and hence, u satisfies (1.1) on Dr. Note that the [IVP] given by (2.5)-(2.7) is equivalent to the
[IVP] for the singular two-dimensional non-autonomous dynamical system with non-Lipschitz
right hand side, given by;
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(w)/ = w/, 2.9)
INZ <(n -1 77) ’
(wy =H(w) — ~|—§ w' Vn € (0, 00), (2.10)
w(0), w'(0)) = (@, 0), ael0,(1—p)/t=r, (2.11)
(w, w/) IS Cl([O, 00)) N L*°([0, 00)). (2.12)

Due to the singular term in (2.5) at n = 0, we give a specific argument to establish that there
exists a solution to (2.5)-(2.7). It is also convenient to express the [[VP] given by (2.5)-(2.7) as
an integral equation, and hence, we have,

Lemma 2.2. The following statements are equivalent
(a) w:[0,00) — R is a solution to the [IVP] given by (2.5)-(2.7).

(b) (w,w’) : [0, 00) — R is a solution to the [IVP] given by (2.9)-(2.12).
(¢) w:[0,00) — R satisfies

w(n)=a+/ fH(w(s))s" 1e4 dsdt Vn € [0, 00), (2.13)
tn l

e[0, (1 — p)l/d=py, (2.14)
w € C([0, 00)) N L*([0, 00)). (2.15)

Proof. It follows immediately that (a) and (b) are equivalent. Now, suppose that w satisfies (a).
By multiplying (2.5) by en’/ 4p"~1 and integrating twice, it follows that w satisfies (2.13), and
since (a) implies (2.15), then w satisfies (c¢). Now suppose w satisfies (¢). From (2.13) and (2.15),
it follows that w € C' ([0, 00)) N L ([0, 00)) with

w'(n) = /H(w(s))s” Lo ds vy € (0, 00), (2.16)

n"- lenT
w0 =o, w(0)=

Additionally, from (2.16) it follows that w € C%((0, 00)) with

[S]

)72 n
" teTw () = Hwm)n"'e™ Vne(0,00), (2.17)

and that w” is continuous at = 0, with

W0 = Tim 2D H@

n—0t 1 n

In addition, w” (n) satisfies (2.17) for all € (0, 00), so that
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—1
w’(n) = — (g G - )> w' () + Hw(@®)) ¥n e (0, 00).

Hence w € C%([0, 00)) N L™ ([0, 00)) and satisfies (2.5). Thus it follows that w satisfies (a).
Hence (a), (b) and (c) are equivalent, as required. O

We refer to the equivalent [IVP] given by (a), (b) and (c) in Lemma 2.2 as (P).
3. Well-posedness of (P)

In this section, we establish that (P) is well posed in the sense of Hadamard, for initial data
w(0) € [0, (1 — p)t/1=P)),

3.1. Existence

We first establish a local existence result for solutions to (P) on [0, €] via a contraction
mapping, and then extend this to an existence result for (P), via multiple applications of the
Cauchy-Peano Theorem.

Theorem 3.1. For 0 < a < (1 — p)/1=P) (P) has a unique local solution on [0, €] with

1

2

. o 1 o\ P! -3
c=mn sup  [H(w)| ’((1—p>+”(5) ) ' G-D

%afws%a

Proof. Consider the Banach space X = ((C[0, €]), || - ||oo) and the closed subset of X, given by

3a
D= {weC([O €)= <wk) < —} (3.2)

MIQ
I
()

Moreover, we define the operator T : C([0, €]) — C([0, €]), given by,

n
T[w](n):a+/ /H(w(s))s" 1ersdt Yw e C([0, €]),n €0, €].

= 1e4

For wy € D, set I € C([0, €]), to be

n
1(n) —/ /H(wl(s))s” le'T 4 dsdt ¥n€][0,¢€]. (3.3)
= 164

Observe that
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n
II(n)|</ /IH(wl(s))ls” L' dsds
n—1 e4

T
< sup |H(w)|/f 2dsdt
;oz<w< o th—le
7]
< sup IH(w)IE (3.4)

a<w<sa

=

for all n € [0, €]. It follows that |1 ()| < % provided that

D=

e<|—— | . (3.5)

Since € given by (3.1) satisfies (3.5), it follows from (3.4) and (3.3) that 7[w;] € D for all
wi € D and hence T[D] C D. Now, consider

t

2
> ‘/‘snfleTHH(w](')) — H(w2("))|oodsdt (3.6)

n—1
t e4 0

ITTwi] = TTwalloo < /

for all wy, wy € D. Observe that H € C!(R \ {0}), given by (2.2) satisfies

|H(w)|§(11 )er(%)p_1 —.C, Vwe[(; 3:} 3.7)

Furthermore, via (3.6), (3.7) and (3.1) it follows that

€ t
1 2
||T[w1]—T[wz]||oosca||w1—wznoo/ : [se% asar
tl’l 1
0
e I
— w
=" 21loo
1
< Sllwy — walles Vior, wz € D. (38)

We conclude from (3.8) that T is a contraction mapping on D, and via the contraction map-
ping principle, there exists a unique fixed point w* € D of T. It follows from (3.2), (3.3) and
Lemma 2.2 that w* is the unique solution to (P) restricted to [0, €], as required. O

We now illustrate that the local solution to (P) on [0, €] can be extended to a solution to (P)
on [0, 00). First introduce Q : R? x (0, o0) — R2, given by
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(

D
)

Fig. 3.1. A qualitative sketch of the level curves of V is depicted above. The equilibria for the dynamical system are
located at (0, 0) and e+ = (£(1 — p) 1/(=p), 0). The level curves V = ¢*(p), that intersect e+ are depicted in red. Level
curves with V = ¢ > ¢*(p) and V = ¢ < ¢*(p) are depicted in blue and black respectively. The region enclosed by the
red curves that contains (0, 0) is denoted by . (For interpretation of the colours in the figure(s), the reader is referred to
the web version of this article.)

(n—1) + g) w/> V(w, w’, n) € R? x (0, 00), (3.9)

Q(w7 w/v 7]) = (w/v H(w) - <

and note that Q € C (R2 x (0, 00)), but also that Q is not locally Lipschitz continuous on R2 x
(0, 00) (Q is locally Lipschitz continuous on R2 x (0, 00) \ NV, with N any neighbourhood of
the plane w = 0). We also introduce the function V : R2 — R defined by,

1 1
Vw,w)==w)*— w? + lw|'TP V(w,w') e R2. (3.10)
2 2(1-p) (I+p)
We observe immediately that V € C L1(R?) with
VV(w,w) = ((1;“))+w|w|”_l,w’> V(w, w') € R2. (3.11)
=D

We now consider the structure of the level curves of V in R? defined by

V(w,w) =c, (3.12)

for —oo < ¢ < oco. It is straightforward to establish that the family of level curves of V are
qualitatively as depicted in Fig. 3.1, for 0 < p < 1, with H representing the parts of the level
curve connecting (+(1 — p)/4=P) 0) that enclose the origin. We denote c*(p) to be

(1 — p)*/1=p)

VEL =Y 0 ==

=c*(p) > 0. (3.13)

Inside H, the level curves are simple closed curves concentric with the origin (0, 0), and V is
increasing from V = 0 at the origin (0, 0), as each level curve is crossed, when moving out from
(0,0) to the boundary curve H, on which V = ¢*(p). Thus, inside H, V has a minimum at (0, 0)
and is increasing on moving radially away from (0, 0) to the boundary H. We will focus attention
on the level curves of V on and inside #H, which have 0 < ¢ < ¢*(p). We denote the interior of
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the level curve V(w, w’) = ¢ by ., with the level curve V(w,w’) = ¢ labelled as 92, for
0<c=<c*(p).
Now let w : [0, €] — R be a local solution to (P) (any € > 0) and define F : [0, €] — R to be,

F(n) = V@), w' () VYnelo,el. (3.14)

Then F e C1((0, €]), and via (3.14), (3.9)-(3.11), (2.9) and (2.10), F satisfies,

F'(n)=VV(@m),d' () - @ (), 0" (1))
=VV @), d'(m) - QW(n), w' (n),n)

n—1 -
=—(( . Hg) (@) Ve el (3.15)
We can now establish the following a priori bound on solutions to (P), namely

Lemma 3.2. Let w : [0, €3] = R be a local solution to (P) (any 0 < €] <€) with 0 < a <
(A= p)=P) and ¢ = V (W (er), W' (€1)) > 0. Then,

(W), W' () € Qe Vn € (e1, €]
Proof. Let ¢; =0 and note that
0<c=V(a,0) <c*(p). (3.16)

Via (2.8) and (2.10), we have " (0) < 0. Moreover, it follows from (3.15) that, F’(n) < 0 on an
interval (0, €3) C (0, €2), and hence

F@n) < F@O0) VYne (el (3.17)
Therefore, via (3.17), (3.16) and (3.14),
V(@) w'(m) <c Yne(0,el,
as required. The result follows similarly on the interval (1, €3] with0 < €] <er. O
We now have:

Lemma 3.3. For 0 < a < (1 — p)YU=P) (P) has a local solution & : [0, €] — R (any € > 0).
Moreover, these local solutions satisfy (W(n), W' (n)) € Q¢ for all n € (0, €] with c = V (a, 0).

Proof. By Theorem 3.1 there exists €; > 0 (dependent on «) such that (P) has a solution on
[0, €1]. Moreover, via Lemma 3.2, if 0 <a < (1 — p)]/(l’p), (P) is a priori bounded on [0, €]
(any € > 0). Without loss of generality, suppose that € > €] > 0. Since Q given by (3.9) is
bounded on the set

xR X ={w w1 = VI W <2 (), @ < =<e)

Please cite this article in press as: V. Clark, J.C. Meyer, On two-signed solutions to a second order semi-linear
parabolic partial differential equation with non-Lipschitz nonlinearity, J. Differential Equations (2020),
https://doi.org/10.1016/j.jde.2020.01.007




YJDEQ:10214

10 V. Clark, J.C. Meyer / J. Differential Equations eee (eeee) eee—eee

we can apply the Cauchy-Peano Local Existence Theorem [3, Chapter 1, Theorem 1.2] repeat-
edly with

-1
5:( maxXIQ(w,w/,ﬂ)|) )

(w,w’,n)e

to establish that there exists a solution to (P) restricted to [0, €]. Since € > 0 is arbitrary, the result
follows, as required. 0O

Theorem 3.4. For 0 < a < (1 — p)//3=P)_(P) has a solution W : [0, o0) — R. Moreover; these
solutions to (P) satisfy (W(n), W' (n)) € Q. for all n € (0, 00), with ¢ = V (a, 0).

Proof. The result follows directly from Lemmas 3.2 and 3.3, since € > 0 in Lemma 3.3 is arbi-
trary. O

3.2. Uniqueness
To begin this subsection we consider (P) with o = 0.

Remark 3.5. Let w : [0, c0) — R be any solution to (P) restricted to (0, €] with o« = 0. It follows
from (3.11), (3.14) and (3.15) that

V@@, w'(n)=F@n) < FO0)=V(0,0)=0 ¥ne(0,e]
Thus ((n), W' (n)) € S for all n € (0, €], with S defined as the connected subset of
{(w, w) eR?: V(w,w) <0}

which contains (0, 0). Hence S = {(0,0)} and so (w(n), w'(n)) = (0, 0) for all n € (0, €]. We
conclude that the unique solution to (P) with @ = 0 is given by the equilibrium solution w = 0.

Before we can establish a uniqueness result for (P), we require bounds on solutions to (P)
when the solution is in a neighbourhood of the plane w = 0.

Proposition 3.6. Let w : [0, 00) — R be a solution to (P) such that (w(i), w' (7)) = (0, B) €
Qex(py with B > 0. Then,

(1= p)VI=P > () > g(n—m, gfw’(n)iﬁ v[#, i + ngl,
with
8 1/(n—1) 6 ﬂ (1 _p)l/(lfp)
= 1 —_ _, _2_41 — 7_ ) M 318
ng mm{(7> NN 0g<7> n+4MH 5 (3.18)
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Proof. Let w : [0, 00) — R be any solution (P) which satisfies (w(7), w’ (7)) = (0, 8). It follows
from Lemma 2.2 and an integration of (2.17) that

ANt S R
w/(n)=ﬁ(ﬂ> e T 4 /H(w(s))s" Lo ds Vi € [ii, 00). (3.19)
" .
Since
i\ 22 76 N
<%> P >3 7 Vne|:r_),ﬁ+min{<?> 0B ﬁ2—4log<5)
and

n—1 é - - :3
. 187 /H(w(s))s e4ds < 2 Vne[n,n+4—MH:|, (3.20)

it follows from (3.19)-(3.20) that

w'(n) > g v €[, 14 ngl (3.21)

with ng given by (3.18). An integration of (3.21) then gives

B _ _
w(n) > = (=) ¥ne [7.7+ng]. (3.22)
Since (w(n), w'(n)) € Qex(p) for all n € [7, 00), it follows from (3.21), (3.22) and (2.10) that

w”’(n) <0 Vnelq, q+ngl,

and hence,

w'(n) € [g ﬁ} v, n+ngl. (3.23)

The result follows from (3.22) and (3.23), as required. O

Note that analogous bounds to those in Proposition 3.6 hold for (0, 8) € Qx(p) with 8 < 0.
Additionally, note that the a priori bounds in Proposition 3.6 and symmetry in (P) allow us to
establish the following uniqueness result for (P). The proof is based on the uniqueness argument
originating in [1] and a local uniqueness result in [13].

Proposition 3.7. For 0 <« < (1 — p)=P) (P) has a unique solution on [0, n*] for any n* > 0.
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Proof. If o = 0, then uniqueness of the solution to (P) on [0, n*] follows from Remark 3.5. Now
consider 0 < a < (1— p)!/1=P) Since Q, in (3.9), is Lipschitz continuous on (R%\ ) x (0, 00),
for any neighbourhood N of the plane w = 0, it follows from Theorem 3.1 and [3, Chapter 1,
Theorem 2.3], that the solution to (P) is unique on [0, 7] for any 7 > 0 such that

w(n) >0 Vnel0,7].
Hence if @ = (1 — p)//(=P) then the equilibrium solution to (P) given by w = (1 — p)l/a=p)
is unique on [0, n*]. We now consider 0 < a < (1 — p)!/(0=P)_ Recall that any non-constant

solution to (P) must be two signed. Suppose that there exist two distinct solutions to (P), denoted
by w; : [0, 00) — R (i =1, 2), for which

wi(n) =w2(n) VYnel0,n] (3.24)

with 0 < 7 < ™ and for all € > 0,

wi(n) # wa(n) (3.25)

for some n € (1, n + €]. From [3, Chapter 1, Theorem 2.3] and Remark 3.5 it follows that for
i=1,2

wi (@) =0, w;(@@) #0. (3.26)

Thus, there exists g € R \ {0} such that (w; (1), w.(17)) = (0, B) € Q¢+(p). Without loss of gen-
erality (due to symmetry), we suppose that § > 0. Let ng be given by (3.18); so that it follows
from Proposition 3.6 and Theorem 3.4 that

B B .
S0=m) =wit) =0 =p =P T <wi) < B Vneli i+ngl (3.27)

It follows immediately from (3.27) that
lwi () — wa(m)| < (1= PP 0wl () —whm) < B Vi € [, 7+ ngl. (3.28)

Note that for (W, W’) € [0, (1 — p)!/(1=P)] x [0, B], then

W+ WP+ W <@+ B1"P)(W+ W)P, (3.29)

since 0 < p < 1. Now via (2.9) and (2.10) respectively, we have,

Ui
lwi () —wa2()] = / lwi(s) — wy(s)lds, (3.30)
]
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n
[w} () —wy ()] < / a _lp) lwi(s) — w2 ()] + [wis) — wa(s)]”
n
nm—-1) = , ,
+ ( P + 5) |wi(s) — wy(s)|ds (3.31)

for all n € [, n + ngl. We next introduce v : [17, n + ngl — R, given by

v(m) = lwi(m) — wa ()| + [wi () —wi()| Vn € [7, i + ngl. (3.32)

Therefore, via (3.28)-(3.32), it follows that

n
1
v(n)f/ lwi(s) — wals)| + |wi(s) — wa(s)]”
J (1—=p)
n

—1
+ ((n . ) + % + ]) |w/1(s) — wé(s)lds

n
1 —1 n
sf <(" —D | (rt np) +1>(le(S)—W2(S)|+Iw1(S)—wz(S)Ip
J (1—p) n 2
n
+ |w](s) — wh(s)|ds

n _
5/ 1 <(nj1)+(77+’7/3)+1) @+ B1P)(u(s))Pds (3.33)
1-p i 2

]

for all n € [, 7 + ng] with the final inequality due to (3.28) and (3.29). Also, via Proposition 3.6
and (3.18), ng is dependent on p, n, 17 and B only, and hence, it follows from (3.33) that

n
v(n) < / K(p,n, i, B)(v(s)’ds (3.34)
1

for all n € [, 7 + ngl, with constant K (p, n, i, B) given by,

1 -1 —
K(p,n,i, ) = <(n ), (i+mp)

a7 ; 5+ 1) Q2+ 87 >o0. (3.35)

Now, we introduce the function J : [, 7 + ng] — [0, o0) given by

n
J(n)=fK(p,n,ﬁ,ﬁ)(v(S))pdS v eln,n+ngpl. (3.36)

n
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It follows from (3.35) and (3.36) that J is non-negative, non-decreasing and differentiable on

[7, 1+ ngl, and via (3.34), satisfies

(J(5)) < K(p,n, i, BYJ ()P Vs €7, 71+ ngl.
Upon integrating (3.37) from 7 to n, we obtain
J) < (A= p)K (p.n, 71, By =)' ¥ € [, 7+ ).
Therefore, via (3.38), (3.36) and (3.34) we have
v(n) =8 Vneln, n+nsl
with § > 0 chosen sufficiently small so that

st
= — <ng.
A—p) K., p) "7

s

Now, from Proposition 3.6, we have

min{wy (), w2(n)} > g(n —n) VYneln,n+ngl

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

Moreover, it follows from (3.9), (3.41) and the mean value theorem, that there exists a function

0 : (1,1 4+ ngl — R such that 8(s) > min{w(s), wa(s)} on (77, 7 + ngl, and for which

|Q2(wi(s),w](s),5) — Q2(wa(s), w(s), )]

<! |w1(s)—w2<s>|+|w1<s)”—wz<s)”|+((”_1)+5)|w/<s)—w’(s>|
~(1-p) s 2 )1 2
< lwi(s) — wa(s)| + pO))P~Hwi () — wa(s)]
(1—p)
n (% + @) ] (s) — wh(s)|
1 B \/!
< — — _
_((l_p)er(z(s n)) )le(S) wa(s)|
(’i L Z”‘S)) ] (5) = wh(s)]

1 B\ Gt
5((1_p)+p(§(s—n)> +§+ > )v(S)

(3.42)

for each s € (17, n + ngl. Now, via (2.9), (2.10), (3.9), (3.34), (3.40), (3.42) and (3.39), we have,
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n
v(n)§/|Q1(w1(S),w’1(S),S)— Q1 (wa(s), wy(s), )|

+1Q2(wi(s), wi(s), 8) — Q2 (wa(s), wy(s), s)lds

n+ns
= f K(p,n,q, B)(v(s))’ds
7
n ! p R
‘I'_/ <1+(1_p)+17(§(3—77)> +E+T>v(s)ds
n+ns
n
8 ! B N n Gitnp
S(l—p)+/ <1+(1_p)+l’(5(5_77)> +ﬁ+T v(s)ds

n+ns
(3.43)

for all n € [7 + ns, n + ngl. An application of Gronwall’s Lemma [2, Corollary 6.2] to (3.43),

gives
S / 1 B P (+np)
- )exp(/ (”(1_1,)“’(5“‘”)) it )ds>

n+ns
(n+ ﬂﬂ))

v(n) <

eXP((n - (7l+775))(1 + 5

p)
( ) ((n—ﬁ)p—(ns)p)>
<

Ln G+, (B,
0= )exp<"’3(l+<1—p)+ﬁ+ 2 >+(2> "ﬂ) G49

for all n € [ + ns, n + ngl. Since v is non-negative, it follows from (3.44) and (3.39), upon
letting § — 0, that

+24
- I-p) 7

v =0 Vnelnn+ngl (3.45)

Moreover, it follows from (3.45) and (3.32) that

wi(m) =w2(n) Vneln n+ngl

which contradicts the definition of 7 in (3.24)-(3.25). Thus, the solution wj : [0, c0) — R to (P)
with 0 < o < (1 — p)/(=P) is unique on [0, n*] for any n* > 0, as required. O
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3.3. Continuous dependence

In this subsection we establish continuous dependence of solutions w : [0, c0) — R to (P)
with respect to initial data « € [0, (1 — p)!/(1=P)). To proceed we establish that all such solutions
to (P) satisfy (w, w’) — (0, 0) as  — oo. The uniqueness result in Proposition 3.7 then yields a
local continuous dependence result (on arbitrarily large intervals), and finally, limiting behaviour
of solutions to (P) as n — oo allows continuous dependence to be established on [0, 00). To
begin, we have

Lemma 3.8. Let w : [0, 00) — R be the solution to (P) with 0 < o < (1 — p)Y/1=P)_ Then, for
some 1y > 0,

AMy
lw'(n)] < Y Vn € [y, 00).

Proof. Via (2.16) and (2.3),

1
/ 1 n—1 142
'w("NSMHﬁ s""e?’ ds Vnel0,00). (3.46)
n
0

Via an application of Watson’s Lemma [14, Proposition 2.1] we see that

n 1.2 1 1,2
am gt n it 4
/ekszs"*lds _¢etn /efinzq(l _q)jfldq SO B as n — oo. (3.47)
2 2 n?
0

Substituting (3.47) into (3.46) establishes that for sufficiently large o > 0, w’ satisfies

, AMpy
lw ()] < S Vn € [Na, 00),
as required. O

Additionally, we have,

Lemma 3.9. Let w : [0,00) — R be the solution to (P) with 0 < a < (1 — p)l/(l_p). Then,
F :[0,00) — R, as given by (3.14), converges to F, € [0, F(0)) as n — oo.

Proof. Theorem 3.4 ensures that (w(n), w'(n)) € Q. for all n € (0, 00) with ¢ = V(a,0) =
F(0), and so, via (3.14) and (3.15), F is continuously differentiable, non-increasing and bounded
below by 0. Therefore there exists Fo, € [0, F(0)), such that F(n) — Fx as n — 00, as re-
quired. 0O

Theorem 3.10. Let w : [0, 00) — R be the solution to (P) with 0 < a < (1 — p)!/1=P)_ Then,

(w(m), w'(m)) — (0,0) asn— oo.
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Proof. Recall from Theorem 3.4 that,

(w(m), w' () € Lex(py Y € (0, 00), (3.48)
and from Lemma 3.8 that
wm —0 as 15— oo. (3.49)
In addition, via Lemma 3.9,
Vwm),w'(n) > Fo as 1n— 00 (3.50)

for some Fy, € [0, c*(p)). It follows from (3.48)-(3.50) that
lwm)| —> wee as n—>00 (3.51)
with ws, the unique non-negative root of V(w, 0) = Fs for w € [0, (1 — p)l/(l_l’)). Without

loss of generality we suppose that (w(n), w'()) = (Weo,0) as n — co. However it follows
from (2.16) that

n
/ 1 n—1 1is2
wm=——-7 5| Hw(s))s" e+ ds V¥ne(0,00) (3.52)
nn—lezﬂz

0

and H (ws) < 0. Using (3.51), if H(weo) < 0 then an application of Watson’s Lemma to (3.52)
implies that

2H
w (g ~ 2@ s s (3.53)
In addition, from (2.9), we have
n
wn) =o+ / w'(s)ds Vi €0, 00), (3.54)
0
which implies, via (3.53), that
w(n) ~2H (weo) log(n) asn— oo, (3.55)

which contradicts (3.51). We conclude that H(ws) £ 0 and so we must have H(ws) = 0.
Since woo € [0, (1 — p)/1=P))| H(wy) = 0 requires that we, = 0. It then follows from (3.49)
and (3.51) that, (w(n), w’'(n)) — (0, 0) as n — 00, as required. O

To establish continuous dependence for (P), we split the argument into three parts; a local
result on [0, n1] for n; small, to address the singularity in (2.10) as n — 07; a local result on
[0, 2] for n, arbitrarily large, via a ‘uniqueness implies continuous dependence’ argument; and
on [n2, 00) via asymptotic behaviour of solutions to (P) as n — oco. Firstly, we have,
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Lemma 3.11. Let wy : [0, 00) — R be the solution to (P) with 0 < a; < (1 — p)/A=P)_ Then,
for any € > 0 there exists § > 0 such that if a1 — az| < 8, the solution to (P) with 0 < oy <
1- p)l/(l_p), denoted by w» : [0, 0c0) — R satisfies

max{|wi(n) — w2 ()], [wi(n) —wr(|} <€ VYne[0,n]
with n = /27(/1—1;1'

Proof. Via (2.13)

t

7
wi(n) = +/ 3 /H(wa, (s)s"~ le* 4 dsdt, (3.56)
o "Ted

for all n € [0,00) and i =1,2. Let 0 <§ < &, then since |w;(n)| < (1 — p)!/1=P for all
n € [0, 0o0), via (3.56), we have

t

n
3
wi(n) > o — / /" Lo Mydsdr = 22— My U] (3.57)
iy 4 2
0

2 -
0

for all n € [0, n1], i =1, 2. Additionally, via (3.56), we have,

n
lwi(m) —w2(n)| < lay —012|+f

/IH(wl(S))—H(wz(S))IS" 6% dsdr vn € [0,m].

m=le's ;
Since H given by (2.2) is bounded and Lipschitz continuous, on [%, a-pl (1_1’)], we have

[H(w1(n) — H(w2(m)| < Kglwi(n) —w2(p)| Yn €[0,n1], (3.58)

with K, a Lipschitz constant for H on [%‘ 1- p)1/<1_1’)]. It follows from (3.57)-(3.58) that

n ot
w1 () — w2 )] < s — ] + f f Kalwi(s) — wa(s)|dsdt

n
<oy — o] +/Kamlw1(S) — wa(s)|ds. (3.59)
0

An application of Gronwall’s Lemma to (3.59) yields
2
lwi(n) — wa(p)| <l — az|eXe™ < Jay — pleX« Vi € [0,m].

Therefore, provided that 0 < § < min { %, ce Ka n ], it follows that

Please cite this article in press as: V. Clark, J.C. Meyer, On two-signed solutions to a second order semi-linear
parabolic partial differential equation with non-Lipschitz nonlinearity, J. Differential Equations (2020),
https://doi.org/10.1016/j.jde.2020.01.007




YJDEQ:10214

V. Clark, J.C. Meyer / J. Differential Equations eee (eeee) eee—eee 19

lwi(n) —wa(m| <€ Vnel0,ml,
as required. O
Secondly, we have,
Lemma 3.12. Let w; : [0, 00) — R be the solution to (P) with 0 < a; < (1 — p)/1=P)_ Then,

for any € > 0 and any n > 0 there exists § > 0 such that if o] — an| < 8, the solution to (P) with
0<as < (1—p)"/3=P) denoted by wy : [0, 00) — R satisfies

max{|wi () — w2 ()], [w)(n) —wry(M|} <€ Vnel0,n].

Proof. Without loss of generality suppose that 1, > 1y, for 1 given in Lemma 3.11. It follows
from Proposition 3.7 that the [TVP] given by (3.60)-(3.63):

(w) =w', (3.60)
N (n - 1) n /

(w) =H(w) - ; +5 w Vi€ n,nl, (3.61)

(wn), w'(m)) = (wi (1), w;(n1)), (3.62)

(w, w') € C'([n1, ), (3.63)

have unique solutions, given by (wj;, w;)hm ml for i = 1, 2. Therefore, via [3, Theorem 4.3,
p-59], there exists §; > 0 such that provided

max{lwi (1) — w2, lwi (1) — wy ()|} < 81 (3.64)

then

max{|wi(n) — w2, [wi(n) —wr(I} <€ Vneln,nl (3.65)

Setting € = §; in Lemma 3.11, it follows that there exists 6 > 0 such that for all o, that satisfy
|y — ap| < 8, we have

max{|wi () — w2 (], [w} () —wy(I} <81 =€ Vne[0,ml. (3.60)
The result follows from (3.64)-(3.66), as required. O
Thirdly, we have,
Lemma 3.13. Ler wq : [0, 00) — R be the solution to (P) with 0 < oy < (1 — p)l/(l_p). Then

for any € > 0, there exists 6 > 0 such that if o1 — az| < 8, the solution to (P) with 0 < o <
(1 — p)V/A=P) denoted by w, : [0, 00) — R satisfies

max{|wi () — w2 ()], [w} () — wi(I} <€ ¥nel0,00).
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Proof. Set € > 0. To begin, consider the level curves of V denoted by 92, that are closed and
concentric with (0, 0). For 0 < ¢ < ¢*(p), define the positive real numbers w, and w,. via the

rules V(w,, 0) = ¢ and V (0, w.) = ¢ respectively. Then for r, = ,/wg + wéz, we have Q. C
B,.(0,0) with B, ((w, w’)) denoting the Euclidean ball in R? of radius r with centre at (w, w’).
Observe that 7. — 0 as ¢ — 0.

Now, for any €, > 0, via Theorem 3.10, there exists 1, > 0 such that

(wi(n), wi(n) € B¢, (0,0) Vn € [ng, 00). (3.67)

Additionally, via Lemma 3.12, for any €, > 0, there exists § > 0 such that for all |o; — 2| < 8,
we have

max{|wy (n) —wa()], lwi(n) —wy(M} < e Vi €0, n4l. (3.68)
Via (3.67) and (3.68), it follows that
(w2 (1), wy (1)) € Bae,+e,)(0,0) V1 € [14, 00). (3.69)

Since €2, are open and have centre (0, 0), we can select €, and €, sufficiently small so that for
some c(¢€) € (0, c*(p)), we have

B (e, 1¢,)(0,0) C Q) C Bey2(0,0). (3.70)

Thus, it follows from (3.68)-(3.70) that
max{|wi (1) — w2 ()], [w} () — wi(mI} <€ ¥y €0, 00),
as required. O
3.4. Summary
We now amalgamate the main results in §3 into the following well-posedness result for (P).

Theorem 3.14. Let 0 < a1 < (1 — p)l/(l_p). Then (P) has a unique solution w; : [0, 0c0) —
R and for any € > 0 there exists 8 > 0 such that for all 0 < ay < (1 — p)/=P) such that

la] — aa| < 8, there exists a unique solution to (P) with 0 < ay < (1 — p)!/1=P) denoted by
wy : [0,00) = R and

max{|wi () — wa()l, [w} () —wr(n)|} <€ Vne[0,00).
Moreover, (w;, w;) = (0,0) as n — oc.

Proof. Existence and uniqueness are given by Theorem 3.4, Remark 3.5 and Proposition 3.7.
Continuous dependence on the initial data is established in Lemma 3.13 for 0 < o < (1 —
p)1/1=P) and for oy = 0 see Theorem 3.4 and Remark 3.5. Theorem 3.10 establishes that solu-
tions to (P) tend to (0, 0) as n — oo, as required. O
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4. Qualitative properties of solutions to (P)

In this section, we establish that solutions w : [0, 00) — R to (P) with 0 < & < (1 — p)/1=P),
tend to O algebraically as n — oo. Furthermore, we establish that these solutions oscillate as
n — 00.

The algebraic decay bounds here are established for solutions to (P), that are analogous to
those in [13] (for (P) with O < p < 1 and n = 1) and obtained via a bootstrap argument that ap-
peared in [4] (for (P) with p > 1 and n € N). We note here that if one uses these algebraic decay
bounds directly with oscillation theory for second order ordinary differential equations (see, for
example [6] or [16]), it does not appear possible to establish that solutions to (P) oscillate. Con-
sequently the approach used to establish oscillation of solutions to (P) in what follows, is largely
independent of standard methods from oscillation theory for second order ordinary differential
equations. More specifically, instead of employing a comparison principle of Sturmian-type for
zeros of solutions to second order ordinary differential equations, we use a specific comparison
theorem for solutions to second order semi-linear parabolic partial differential inequalities on an
unbounded domain, which appeared in [1, Theorem 2.8].

4.1. Algebraic decay bounds for solutions to (P) as n — 00
To begin, we have

Proposition 4.1. Let w : [0, 00) = R be a solution to (P) with0 < a < (1 — p)l/(l_m. Suppose
that for o € [0, = p)] and for c1 > 0, that

cl
lw(m)| < e Vi € (0, 00). 4.1
Then,
1 M 2
lw'(n)] < ap+1 (TH sup (sl H2,- > _|_cl’20p+2> Vn € (0, 00). 4.2)
5€(0,00)

Proof. Observe via (2.2), (4.1) and Theorem 3.4 that

CP
<lwm? < -~ Vne(0,00). (4.3
nor

1
|H (w(m)| = _p)w(n)—lw(n)l”_lw(n)

(1

Thus, via (2.16) and (4.3), we have

ed \y

lw' ()| < —— — /IH(w(S))Is” 1€4ds
77 T
1 ; 2 -
s 4
=7 /IH(w(s))lererc{’/e—ds

n soP
n
1
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—3? Prop+2
Mpne™ T6 ;2
=< “4.4)
2 nop+l
for all n € (0, 0o0). Observe that
—3n?
Mpne 16 < My <n0p+2e—%n2>
2 - 2n0p+]
My sup <s0p+2e—%s )
2n7P* (c(0.00)
2p 3 2
+2 — =5
sup (S 242, % ) 4.5)
2n7P* (0,00

forall n € (0,00) and o € [O, ﬁ] Substituting (4.5) into (4.4) yields (4.2), as required. O
A simple consequence of Proposition 4.1 and Theorem 3.14 is

Proposition 4.2. Let w : [0, 00) — R be a solution to (P) with 0 < a < (1 — p)//1=P) Then
1 (M 2p
w'ml <= =L sup (s lpﬁze—%*) +4(1—p)P/1=P) ¥y e (0,00).
N1\ 2 se0.00

Proof. It follows from Theorem 3.14, that (w, w’) € Qcx(p) for all € [0, 00). The conclusion
then follows from Proposition 4.1 (with 0 =0, ¢; = (1 — p)!/(1=P)) asrequired. O

We now establish the aforementioned algebraic decay bounds for solutions to (P) as n — oo.

Theorem 4.3. Let w : [0, 00) — R be a solution to (P) with 0 < a < (1 — p)Y/1=P)_ Then, for
any € > 0, there exists c1¢, coe > 0 such that

Cle

lwm| < ——F— VYne€(0,00), (4.6)
n aT=p)
W' ()] < —e— ¥ € (0, 00). @7
na=» "¢
Proof. Observe on multiplying (2.5) by %, we have,

l |:|w(n)|l+p _ (w(’?))z] _ _w(ﬁ)w’/(n) n (1 —n)wgn)u/(n) B w(n)w/(n)
n 1-p) n 7 2
2 / / , ) ,
__ [(w(n)) L wiw (n)} L@ nw(n)zw )
4 n n n

(4.8)
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for all n € (0, 00). Via Theorem 3.10, w(n) — 0 as n — oo and hence there exists n* > 0 such
that

2p(1 lﬁ
Iw(n)ls<H>( Vi € [n*, 00). 4.9)

Additionally, given F : [0, c0) — R, defined as in (3.14), i.e.

_ s @ m)? wm)? | w|tP
F)y=Vwm,wm)=—7 —2(1_p)+ ) v €10, 00), (4.10)

we can refine our choice of n* in (4.9) so that we also have,

(+p)
aT»p

4((c(p) T

0<FMm =< o v € [n*, 00), 4.11)
with
1 2(1+ p)
— __ =— "7 1. 4.12
c(p) i1 2 and C(p) =) + ( )

Thus, it follows from (4.10), (4.9) and (4.8) respectively that

Fop _ w'@)? 1 [_ wm)? Iw(n)l””}
] 2n nl 20-p) (A+p)

’ 2 2
_wm? 1 [_(w(n)) N |w(n)|1+p}

21 nlL (—-p)
/ 2 2 / ! !
_ 3w m)? [(w(n)) N w(nw (n)} _ nw(mw (n), 4.13)

for all € [n*, 00). Since F(n) > 0 for all 5 € [0, 00), together with the decay bound in Proposi-
tion 4.2 and Theorem 3.10, it follows that we may integrate inequality (4.13) from n (> n* > 1)
to [/, and then allow [ — oo, to obtain,

7 2 2 / ° /
/@ < 2/ (w’ )" , (w(n)) n w(mw'(n) _n/ wnOw)

n 12
1 1
2 2
(w(”)) —(1 s wOw ()] + 3 / W), (4.14)
for all n € [n*, 00). Also, since |w(n)| < (1 — p)/1=P) for all 5 € [0, 00), we have
F(m) = wm|'"Pe(p) =0 Vneln*, 00). (4.15)
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Substituting (4.15) into (4.14) then yields

0]

2 @]

T+p) / 2

0< / mdt < l <M>( ) + l(1 +n)sup|lw®w' ()] + é/ w®)) dt (4.16)
t 4\ c(p) n 1> 2 t

n

for n € [n*, 00). Observe that the right hand side of (4.16) is uniformly bounded for n € [n*, c0)
via Proposition 4.2.
Now suppose that there exists k > 0 and o > 0 such that

k
F(n) = e Vi € [n*, 00). (4.17)

Via (4.15), it follows that there exists a constant ¢; > 0 such that

Cl
lwn)| < —s— V¥neln, 00). (4.18)
)7(1+l7)

Thus, via Proposition 4.1 and (4.18), there exists a constant ¢ > 0 such that

e
lw' (| < —— Vneln*, o). (4.19)
PIEORE

Hence, it follows from (4.16)-(4.19) and (4.11) that there exist constants c3, c4, ¢s > 0 such that

o0 2
F(t) L (F(n) T  c3 c4 F(n) cs
/ : ‘”51<<> mt m oSyt m, ¢
’ clp n p+nt p pim *
for all € [n*, 00). Setting G : [n*, 0c0) — R to be
o0
F(t
Gon= [ “2ar wnen.o0
n
it follows from (4.20) that G satisfies,
20p
PGy < C6tc(p)_3_(1Tlp> vt € [n*, 00) (4.21)
for some constant cg > 0. Provided that
20p
C(p)—2— ) > (4.22)
integrating inequality (4.21) from n™* to 7, yields
6 C(p)
nC(P)G(n) < > 57 +G(n*n* P Vi € [n*, 00),
(cpy—2— ;) > im =@
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for some constant cg > 0, and thus,

G < —T  + 2 vpelyt, o0, (4.23)
- n(lzif»“’ nC(p)

for some constants c7, cg > 0. Recalling from (3.15), that F'(n) is non-increasing on [n*, 00), we
have

2

G = / @dta %F(zm Vi € [, 00). 4.24)
n

Thus, it follows from (4.24) and (4.23) that

c9 C10
o > T C)
p+nt n

F) =< Vi € [2n*, 00) (4.25)

for some constants cg, c1g > 0. We now define ¢ : [O, 2((11;5’))] x (0,1) —> [0, 2((11_+:))] given by

20p
I +p)

+2,C(p)} Vpe(@,1), o€ |:O, M]

I=p

Now since (4.17) is satisfied for 0 =0 and k = F(0), it follows from (4.25) that there exists a
sequence {0y, },,eN such that

o (o, p) = min {

01=0, out1=0(0m,p) (4.26)
and

k
F(n) < nT’” Vi € [y, 00), (4.27)

for some constants k,, > 0 (m € N, provided that C(p) —3 — (21‘115) > —1, recalling (4.22)) and
ny > 0. We obtain from (4.26) that,

m—2
oy = 24P 4P ( 2p ) VmeN, (4.28)
(I-p) A-=p)\(d+p)

and hence o, is increasing with

2(1+4+ p)

a=p as m — oo. (4.29)

m

Since

200 p

C —3—
) A+p - 0-p)

Ql+p) —21—p)—4p)=0> —1
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it follows that oy, given by (4.28) satisfies (4.22) with o = o,,, and hence, via (4.27), given € > 0,
there exists a sufficiently large M € N such that

k
Pl < 2 vieln',o0) (4.30)

with oy > %*pp) — (14 p) and n* = n%,. Thus, via (4.30) and (4.15), there exists a constant
c11 > 0 such that

C11
lw(n)| < =
na=n_¢

Vi € [n*, 00). (4.31)

Since |w(n)| is bounded, it follows that (4.31) holds on (0, co) (with a new constant c¢i¢). The
proof is then completed by applying Proposition 4.1 to (4.31) to obtain the conclusion for |w’ ()|,
as required. O

4.2. Oscillation of solutions to (P)
We now establish that solutions to (P) oscillate as n — oo. The approach we consider here

relies on the uniform lower bound of solutions to the following Cauchy problem for a second
order semi-linear parabolic partial differential equation related to [CP], given by:

u; — Au =max{u,0}’ on Dr, (4.32)
u=ug ondDr, (4.33)
ueC>'(Dr)ynC(Dr)N L®(Dy), (4.34)

with 0 < p < 1 fixed, and ug : d D7 — R is continuous, bounded, non-negative and non-zero on
a set of positive Lebesgue measure. We denote the Cauchy problem given by (4.32)-(4.34) as
[CP].. Moreover, we remark that [CP].. has been investigated in detail in [1] and notably, global
existence and uniqueness of solutions has been established. To establish oscillation of solutions
to (P), we construct a sequence of functions {u™},,cy converging to a solution of [CP] as
m — oo and compare the terms in the sequence to a solution of [CP] in a suitable subset of Dy

To begin, fix ug : dDr — R as specified in [CP]4, and consider the sequence of Cauchy
problems, given by:

u™ — Au™ = £,™) on Dr, (4.35)
u™ =uy ondDr, (4.36)
u™ e c>Y(Dr)N C(Dr) N L>®(Dy), (4.37)

form € N and f, : R — R given by

0, u<o0
fm@)={m'"=Pu, 0<u<l (4.38)
u?, u> L
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with 0 < p < 1. For fixed m € N we refer to the Cauchy problem given by (4.35)-(4.38) as
[CP]%.

Lemm_a 4.4. For fixed ug : 0 Dt — R, there exists a unique solution to [CP]; which we denote

as u : Doo — R. Moreover, for each m € N, [CP["! has a unique solution u™ : Do — R which
satisfies

0<u™(x,1) <u™D(x,1) <ulx,1) < (1= p)t + |luol|ag™)/1=P V(x,1) € Doy, m € N.

Additionally,

lim " (x,1) =u(x,1) V(x,t) € Duo. (4.39)

m— o0

Proof. Existence of a solution to [CP]; follows from [1, Theorem 1.11], and uniqueness follows
from [1, Corollary 2.18]. Existence and uniqueness of solutions to [CP]’jf for each m € N follows
from standard theory since [CP]"} are a priori bounded on D7 for each T > 0 and f;,, are locally
Lipschitz continuous (see for example [7]). Since f;, are locally uniformly Holder continuous
for all m € N, by following the argument used to establish [1, Theorem 1.7] with the sequence
defined by (4.35)-(4.38) above (instead of [1, (1.8),]) demonstrates that (4.39) holds. O

Immediately from Lemma 4.4 we have,

Corollary 4.5. Let u"™ : Do, — R be as in Lemma 4.4. Then,

sup u™ (x,1) > (1 — p)n)"/1=P) V(x,1) € Dos.
meN

Proof. From [1, Lemma 2.2] it follows that u(x, ) > ((1 — p)t)!/1=P) for all (x, 1) € Dso. The
result then follows from (4.39). O

From Lemma 4.4 and Corollary 4.5 we can establish that solutions to (P) with 0 <« < (1 —
p)!/1=P) have zeros in any neighbourhood of coc.

Lemma 4.6. Let w : [0, 00) — R be a solution to (P) with 0 < a < (1 — p)/=P)_ Then, for any
n* > 0, there exists n € [n*, o0) such that w(n) = 0.

Proof. Suppose that for some n* > 0 that w(n) # 0 for all 5 € [*, 00). Now, define u : Q* x

[0, %] — R as
1o
"

with Q* :=R"\ B,»(0) and with B, (x) representing the Euclidean ball in R" of radius r centred
at x € R". It follows immediately from (4.40) and the supposition, that

T, 1) = t+ )7 v ne@«]o,1], (4.40)
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Uy — A — fr(@) =u’ — fu(@ >0 onQ*x[0,1], (4.41)
u>g ondB,y(0)x[0,1], (4.42)
>0 on$Q* x {0}, (4.43)
ueCH (@*x (0,3])nc (@ x [0, 3])nL> (2% x[0,1]), (4.44)

with constant g > 0 given by

1 1/(1-p)
g:= inf_  |w(n)| (—) ,
neln*,v/2n*] 2

and f,, given by (4.38). Now, set u : Doo — R to be u := ™, with u™ as in Lemma 4.4 for
some m € N and fixed ug : 9 D7 — R given by

%e—l/(n*—lﬂ), x| <n*

uo(x,0) = { . (4.45)
0, x| = n*.

Since 0 < ugp < % on d D7, it follows immediately from Lemma 4.4 and (4.45), that

u, —Au— fru(w)=0<0 onQ* x(0,T], (4.46)
u<g ondBy(0)x[0,T], (4.47)
u=0 onQ*x {0}, (4.48)
ueCPN(Q* x (0, T NC(Q* x [0, T]) NL>®Q* x [0, T)), (4.49)

with

T =min? —, 1—( = .
2 (I-p) <2>

Therefore, from (4.41)-(4.44) and (4.46)-(4.49) respectively, it follows that u and u can be
taken to be a bounded regular supersolution and a bounded regular subsolution on Q' x [0, T]
in [9, Theorem 4.4] (since f;;, is locally Lipschitz continuous), and hence

u<w onQ x0TI (4.50)

Since m € N used to define u is arbitrary, via (4.40), (4.50) and Corollary 4.5, it follows that
. ( x| )
12
(t+)"

Inequality (4.51) implies that w(n) 4 0 as n — oo, which contradicts Theorem 3.10. Hence, for
every n* > 0, there exists some 1 € [*, o) such that w(n) =0, as required. O

VD) o Sup (6, 1) > (1= p))/ 0P V(x, 1) € @ x (0, T,

meN

(r+3)

4.51)
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To establish that the zeros of non-trivial solutions to (P) are isolated, we have

Lemma 4.7. Let w : [0, 00) — R be a solution to (P) with 0 < a < (1 — p)//3=P)_Suppose that
there exists n* > 0 such that (w(n*), w’ (n*)) = (0, 0). Then, w =0 on [0, 00).

Proof. Without loss of generality, suppose that n* € (0, 00) is the smallest value of 1 at which
(w(n), w'(n)) = (0, 0). Consider F : [0, 00) — R asin (3.14), i.e.

F(n) =V, w'(n) VYnel0,o0).

It follows from the argument in Remark 3.5 that w = 0 on [n*, 0c0). Now, consider 7 € [0, n*).
Via (3.15), F € C'((0, 00)) and satisfies,

- — 2 1+
F’<n>=—<(” 1)+ﬁ)(u/(n>>2=—2((" ”+ﬁ)<F(n>+ wi”__ [wn p).
U 2 n 2

2 (I-p) (1+p)

Thus,

_ _ 2 1+
F/(U)+2<(n p D, 3) F(n)=—2((n ; D +ﬁ> < wim” _ [w)l p). (4.52)

2 2/\2(1—-p) (1+p)

Since (w(n*), w'(n*)) = (0,0) and w, w’ € C1((0, 00)) it follows from (4.52) that there exists
N4 € (0, n™) such that

F’(n)+2<(n;l)

+ g) Fp=0 Vne @ n'l,

and so

1.2 !
(=D Fap) =0 Vo€ () (4.53)
Since F(n*) =0, an integration of (4.53) yields

F(n) <0 ¥ne®sn*] (4.54)

Since V > 0 in a sufficiently small deleted neighbourhood of (0, 0), it follows from (4.54) and our
supposition that w = 0 on [, n*], which contradicts the definition of n*. Therefore, it follows
that « = 0 and via Remark 3.5, w =0 on [0, 00), as required. O

We conclude from Lemmas 4.6 and 4.7 that solutions to (P) with 0 <o < (1 — p)l/(l_”) do
not have non-isolated zeros in [0, 00), but have infinitely many isolated zeros in [n*, co) for any
n* € [0, 00) i.e. solutions to (P) with 0 < & < (1 — p)1/(=P) oscillate as n — o0o.
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5. Conclusion

The proof of Theorem 1.1 follows directly from Theorem 3.14, Theorem 4.3, Lemma 4.6 and
Lemma 4.7. Moreover, the proof of Theorem 1.2 follows directly from Theorem 1.1 and (2.1).

As a consequence of the theory developed in this paper, we state the following improvements
to the theory concerning homoclinic connections in [13] that can be established using analogous
arguments to those given in this paper (for (c, B) € Q¢+(py \ {(0,0)}): the solution to problem
[13, (P)] is unique; the problem [13, (P)] is continuously dependent on its data; and solutions to
[13, (P)] oscillate as n — Fo00. This addresses one outstanding query in the conclusion of [13].
However the conjectured decay estimate for solutions to (P) as n — oo remains open.

We highlight here that the novel approach to establish that solutions to (P) oscillate as n — oo
was motivated by an apparent lack of sufficient conditions on solutions to (P) to apply Sturmian
oscillation theory. Specifically, the decay bounds established in Theorem 4.3, when used in con-
junction with Sturmian oscillation theory for second order linear ordinary differential equations
(see, for example [16, p.42-46] or [6]) appear to be insufficient to establish the oscillatory prop-
erties of solutions to (P). In this direction, we note that if one could establish that solutions to (P)
decay sufficiently rapidly, for instance,

(16 — ¢)1/(=p)
|w(ﬁ)|fw as n— oo, 6.1

for some € > 0, then one could use the aforementioned oscillation theory to establish that so-
lutions to (P) oscillate as n — oo. We also note here that an attempt to refine Theorem 4.3 to
establish the decay bound in (5.1) was undertaken by explicitly retaining the constants ¢; in the
proof of Theorem 4.3 and passing to the limit as m — oo, but this was unsuccessful.

Now that the oscillatory properties of solutions to (P) as  — oo have been established, a
decay estimate for solutions to (P), as motivated by the formal estimate in [13], can potentially
be established, thus classifying the remaining important property of solutions to (P) for 0 <« <
(11— p)l/(l—p)‘

Finally, we highlight a fundamental issue that arises from the previous consideration of [CP].
Consider the Cauchy problem given by (1.1), (1.3) and

up = wy(lx]) VY(x,0)€0Dr, (5.2)

with wg : [0, 00) — R the solution to (P) with 0 < a < (1 — p)"/(1=7), Immediately we infer
that the Cauchy problem given by (1.1), (5.2) and (1.3) has a global solution u : Dy, — R, given
by

|x|

M(.X, l) = Wy (m

) (1 =p) ¢ +1))YIP V(x,1) € Deo.

However, uniqueness (and consequently continuous dependence on initial data) of solutions to
the Cauchy problem given by (1.1), (5.2) and (1.3) is not trivially settled. A method which de-
termines whether or not uniqueness holds for the Cauchy problem given by (1.1), (5.2) and (1.3)
would be a useful addition to the methods available for well-posedness results for boundary value
problems for nonlinear parabolic partial differential equations.
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