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Abstract

We consider the model of a point-vortex under a periodic perturbation and give sufficient conditions 
for the existence of generalized quasi-periodic solutions with rotation number. The proof relies on Aubry-
Mather theory to obtain the existence of a family of minimal orbits of the Poincaré map associated to the 
system.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

We study the advection of a passive particle in a two-dimensional ideal fluid. This phe-
nomenon can be described by the Lagrangian version of fluid mechanics: the particle moves 
according to a Hamiltonian system with the streamfunction playing the role of the Hamiltonian.
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Given the vorticity ω of the incompressible fluid, the streamfunction is defined as a solution 
of the Poisson equation −�� = ω. From a physical point of view, a vortex is a zone of high 
vorticity. Mathematically, a vortex in the plane can be defined in different ways. It can be defined 
as a singularity of the vorticity or through a compact set of finite vorticity (vortex patch). See 
[1,7,8,10,18] for a summary on the various definitions.

We will be concerned with a point-vortex, defined as a Dirac delta of the vorticity. Under this 
definition, the streamfunction is the fundamental solution of the 2-dimensional Laplacian. These 
ideas were introduced in the seminal works of Helmholzt and Kirchhoff in the XIXth century 
and nowadays point-vortices are studied as a branch of Fluid Mechanics with deep connections 
with Celestial Mechanics and Hamiltonian systems.

A point-vortex induces a streamfunction �0 = �
4π

ln(x2 + y2) where � is the circulation (or 
strength) of the vortex and, up to a rescaling of unit, it can be set � = 2π . The solutions of the 
corresponding Hamiltonian system are circular paths around the origin and describe the trajecto-
ries of a passive particle under the influence of the vortex. The frequency of rotation is inversely 
proportional to the radius of the path and tends to infinity as the radius tends to zero.

We will study how this integrable dynamics is affected by the superposition of an external 
periodic time dependent streamfunction p(t, x, y). More precisely, we consider the Hamiltonian

�(t, x, y) = 1

2
ln(x2 + y2) + p(t, x, y), (1)

and the associated Hamiltonian system

⎧⎨
⎩

ẋ = ∂y�(t, x, y),

(x, y) ∈ U \ {0} ,

ẏ = −∂x�(t, x, y)

(2)

defined in a neighborhood U of the origin.
Physically, system (2) can be interpreted to model the advection of a particle under the action 

of a steady vortex placed at the origin and a periodic time dependent background flow.
The dynamics of advected particles in non-stationary flows including vortices have been inten-

sively studied from different perspectives [4,6,9,23,24,27]. In particular, numerical tests suggest 
the presence of complex dynamics.

From an analytical point of view, in [22] the authors studied the stability properties of the vor-
tex. More precisely, they proved that if the external streamfunction is analytic, then KAM theory 
applies and invariant curves of the Poincaré map exist close to the singularity. As a byproduct, 
there exist quasi-periodic solutions of the Hamiltonian systems with (sufficiently large) Dio-
phantine frequencies. These can be seen as what remains of the trajectories of the unperturbed 
Hamiltonian with Diophantine frequency.

In this paper, we will prove that, close to the singularity, quasi-periodic solutions exist for all 
frequency sufficiently large. Actually, our solutions will be a generalization of standard quasi-
periodic solutions and in case of commensurable frequencies, we will get periodic solutions. 
These solutions exist also when KAM theory cannot be applied. Indeed, we will require very 
low regularity that prevents standard KAM theory from being applied.

To prove our result, we will apply a suitable version of Aubry-Mather theory [3,14] to the 
Poincaré map of system (2). A similar scheme has been used to describe the dynamics of different 
systems [11,13,20,25,28].
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For each sufficiently large real number α, we will prove the existence of an invariant set Mα

(called Aubry-Mather set) with very interesting dynamical properties, among them each orbit in 
Mα has rotation number α. For irrational rotation numbers, the corresponding Aubry-Mather 
sets are either curves or a Cantor sets. Solutions of system (2) with initial conditions in these 
sets will be our generalized quasi-periodic solutions. In the rational case, the Aubry-Mather sets 
contain a periodic orbit.

In suitable variables, the Poincaré map will be an exact symplectic twist map of the cylinder. 
However, it will not be defined on the whole cylinder. Hence we cannot apply directly the result 
of Mather and we will prove an adapted version to this situation.

To apply our theorem, we will need to prove that the Poincaré map is exact symplectic and 
twist. The first property comes from the Hamiltonian character of the system. The twist condition 
is more delicate and relies on the behavior of the variational equation. We will give a proof 
following a perturbative approach. Here, we will ask that the perturbation has the origin as a zero 
of order 4.

From the point of view of dynamics of symplectic diffeomorphisms, we will describe some 
aspects of the dynamics around a singularity. In the integrable case, the flow can be continuously 
extended to the singularity, defining it as a fixed point. However, this extension is not C1. In the 
perturbed case, in general is not even possible to guarantee continuity of this extension. Since 
the flow is not regular, all the results coming from the theory of elliptic fixed points and trans-
formation to Birkhoff normal form cannot be applied directly. We will overcome the problem 
of the singularity performing a change of variable that sends the singularity at infinity and has a 
regularizing effect. At this stage, the assumption of having the zero of order 4 in the perturbation 
plays a fundamental role.

The paper is organized as follows. In Section 2 we state the problem and the main result. 
The definition of generalized quasi-periodic solution will be given in this section. In Section 3
we introduce the regularizing variables and the Poincaré map together with some preliminary 
estimates. In Section 4 we state and prove the suitable version of the Aubry-Mather theorem. In 
Section 5 it is proved the property of exact symplectic and Section 6 is dedicated to the proof of 
the twist property. The proof of the main result will be given in Section 7. Finally, we draw some 
conclusions in Section 8. Some technical lemmas are relegated to the Appendix.

2. Statement of the problem and main result

Let us consider the perturbed Hamiltonian system given by (1)-(2). We suppose that the per-
turbation p(t, x, y) belongs to the following class

Definition 2.1. Given ε > 0, consider the open disk around the origin Dε = {
(x, y) ∈ R2 : x2 +

y2 < ε2
}
. We say that a continuous function p : R ×Dε −→ R belongs to the class Rk

ε if

i) p(t + 1, x, y) = p(t, x, y),
ii) p ∈ C0,k(R ×Dε) i.e. p is Ck w.r.t. the spatial variables (x, y) and all the partial derivatives 

are continuous w.r.t. (t, x, y).

Now, given any N ∈ N we give the notion of zero of order N of a function p ∈ Rk
ε . The 

following definition will be of particular interest in the case N > k.
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Definition 2.2. Given a function p ∈ Rk
ε we say that the origin is a zero of order N if there exist 

TN, p̃ ∈ C0,k(R ×Dε) such that,

p(t, x, y) = TN(t, x, y) + p̃(t, x, y)

and satisfying the following properties:

• TN(t, x, y) = ∑
i+j=N αi,j (t)x

iyj is a homogeneous polynomial of degree N with C1 coef-
ficients,

• there exists a constant C such that, for all (t, x, y) ∈R ×Dε ,

|p̃(t, x, y)| ≤ C(|x|N+1 + |y|N+1),

|∂(m)p̃(t, x, y)| ≤ C(|x|N−m+1 + |y|N−m+1) for 1 ≤ m ≤ k.

Our result gives the existence of particular families of solutions: periodic and quasi-periodic 
solutions in a generalized sense. To define them, given a solution (x(t), y(t)) of (2), consider the 
functions

r(t) = 1

2(x(t)2 + y(t)2)
, θ(t) = −Arg[x(t) + iy(t)], (3)

having a relation with the standard polar coordinates. Actually θ(t) represents the angle in the 
clockwise sense, while r(t) is, up to a scaling constant, the inverse of the square of the radius.

Definition 2.3. We say that the solution (x(t), y(t)), defined for t ∈ R

• is non-singular if

sup
t∈R

r(t) < ∞,

• is bounded if there exists A > 0 such that

inf
t∈R

r(t) > A,

• has monotone argument if θ(t) is monotone,
• has rotation number α if

1

2π
lim

t→∞
θ(t)

t
= α.

Remark 2.1. A non-singular bounded solution with monotone argument rotates clockwise in a 
closed annulus around the origin. Moreover, the rotation number represents the average angular 
velocity.

We are ready to state the main result.
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Theorem 2.1. Suppose that p ∈ R3
ε is such that the origin is a zero of order 4.

Then there exists ᾱ sufficiently large such that for every α > ᾱ there exists a family of non-
singular, bounded solutions

{
(x(t), y(t))ξ

}
ξ∈R

with monotone argument and rotation number α. These solutions are such that the related func-
tions r(t), θ(t) defined in (3) satisfy, for every t, ξ ∈ R,

(r(t), θ(t))ξ+2π = (r(t), θ(t))ξ + (0,2π), (4)

(r(t + 1), θ(t + 1))ξ = (r(t), θ(t))ξ+2πα. (5)

Remark 2.2. If α = s/q ∈ Q, then the solutions satisfy

(r(t + q), θ(t + q))ξ = (r(t), θ(t))ξ + (0,2πs)

and are said (s, q)-periodic. These solutions make s revolutions around the singularity in time 
q . If α ∈ R \Q, solutions satisfying (4)-(5) can be seen as generalized quasi-periodic. Actually, 
consider the function

�ξ(a, b) = (r(a), θ(a))b−2παa+ξ .

This function is doubly-periodic in the sense that

�ξ(a + 1, b) = (r(a + 1), θ(a + 1))b−2παa+ξ−2πα = �ξ(a, b),

�ξ (a, b + 2π) = (r(a), θ(a))b−2παa+ξ+2π = �ξ(a, b) + (0,2π),

and �ξ(t, 2παt) = (r(t), θ(t))ξ . If the function ξ �→ �ξ is continuous, then these solutions are 
classical quasi-periodic solutions with frequencies (1, α) in the sense of [26] (see also [21]). 
We will not guarantee the continuity, however, the function ξ �→ �ξ will have at most jump 
discontinuities and if ξ is a point of continuity then so are ξ + 2πα, ξ + 2π . Finally, the set 
Cl{(x(0), y(0))ξ : ξ ∈ R} is either a curve or a Cantor set, recovering the classical definition of 
quasi-periodic solution in the case of having an invariant curve.

3. Some estimates on the solutions and the Poincaré map

Let us consider system (2) and, following section 4.1 of [22], consider the change of variables 
(x, y) = ϕ(θ, r) defined by

x = cos θ√
2r

, y = − sin θ√
2r

.

These variables come from applying first the Kelvin transform and subsequently the change to 
symplectic polar coordinates. System (2) transforms into
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{
ṙ = 4r2 ∂θH(t, r, θ),

θ̇ = −4r2 ∂rH(t, r, θ)
(6)

where H(t, r, θ) = − 1
2 ln(2r) +h(t, r, θ) and h(t, r, θ) = p

(
t, cos θ√

2r
,− sin θ√

2r

)
. System (6) is still a 

periodic planar Hamiltonian system with symplectic form λ̃ = 1
4r2 dr ∧dθ . Moreover, the change 

of variables ϕ transforms the domain R ×Dε into the domain R ×D with

D =
{
(r, θ) ∈]r∗,∞[×T : r∗ = 1

2ε2

}
.

Let us write the Cauchy problem associated to system (6), in the following form:

⎧⎨
⎩

ṙ = F(t, r, θ),

θ̇ = 2r + G(t, r, θ),

(r(0), θ(0)) = (r0, θ0),

(7)

where

F(t, r, θ) = 4r2∂θ

[
p

(
t,

cos θ√
2r

,
− sin θ√

2r

)]
,

G(t, r, θ) = −4r2∂r

[
p

(
t,

cos θ√
2r

,
− sin θ√

2r

)]
. (8)

Since p ∈R3
ε , the vector field in (7) is continuous and C2 in the spatial variables. This guarantees 

existence and uniqueness of the solution.

Remark 3.1. The change of variables ϕ has the effect to transform the phase space from the plane 
to the cylinder. The singularity is moved from the origin to r → ∞. In this sense, the change of 
variables has a regularizing effect since the functions F, G in (7) are bounded for r → ∞. The 
fact that the origin is a zero of order 4 plays a fundamental role in this discussion. See estimate 
(10) in the following Lemma 3.1 for more details.

Since the domain D is not invariant, we need to control the growth of the solutions. For this 
purpose, given a > r∗ we introduce the set

�(a) =]a,∞[×T ⊂ D

and prove the following lemma, whose meaning is illustrated in Fig. 1.

Lemma 3.1. Let us assume that the origin is a zero of order 4 of the function p ∈R3
ε . Then there 

exists a∗ > r∗ such that if (r0, θ0) ∈ �(a∗), the corresponding solution of (7) is well defined on 
t ∈ [0, 1] and (r(t), θ(t)) ∈ D for all t ∈ [0, 1]. Moreover, the following estimate holds

|r(t) − r0| + |θ(t) − θ0 − 2r0t | ≤ K if t ∈ [0,1] (9)

for some K > 0.
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r∗

r

θ

a∗

(r0, θ0)1

(r(1), θ(1))1

(r0, θ0)2
(r(1), θ(1))2

Fig. 1. Domains and evolution of two solutions over a period. (r(t), θ(t))1 represents the solution with (r0, θ0)1 ∈ �(a∗)

and (r(t), θ(t))2 represents the solution with (r0, θ0)2 /∈ �(a∗). Note that the solution (r(t), θ(t))1 remains in the domain 
D.

Proof. Since the origin is a zero of order 4 of p, there exists a constant C > 0 such that

∣∣∣∂(1)p (t, x, y)

∣∣∣ ≤ C(|x|3 + |y|3) in R×Dε.

Then, from the definition of F and G, we have

|F(t, r, θ)| + |2r| |G(t, r, θ)| ≤ C1 (10)

for any t ∈R and (r, θ) ∈ D.
We shall prove that a∗ = r∗ + C1 satisfies the lemma. Fix (θ0, r0) ∈ �(a∗) and consider the 

corresponding solution (θ(t), r(t)). By continuity there exists τ such that r(t) is well defined and 
r(t) > r∗ for t ∈ [0, τ ]. Suppose that τ < 1 otherwise we are done. Integrating the first equation 
of (7) and using (10) we have

|r(t) − r0| ≤ C1t if t ∈ [0, τ ].

In particular, r(τ ) ≥ r0 − C1τ > r∗. Hence we can continue the solution until time τ + τ1. Sup-
pose that τ + τ1 < 1 otherwise we are done. Hence, as before r(τ + τ1) ≥ r0 − C1(τ + τ1) > r∗. 
Repeating this procedure we can reach τ = 1.

Finally, integrating the second equation of (7), we deduce that

|θ(t) − θ0 − 2r0t | ≤ 2C1 + C1

2(r0 − C1)
.

Here we have employed (10) and the above estimates on r(t). �
Now, let us introduce the Poincaré map P as

P : �(a∗) = ]a∗,∞[ ×T −→ D ⊂ R×T
(r , θ ) �−→ (r , θ ) = (r(1; r , θ ), θ(1; r , θ ))
0 0 1 1 0 0 0 0
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where (r(t; r0, θ0), θ(t; r0, θ0)) is the solution with initial condition (r(0), θ(0)) = (r0, θ0). 
Lemma 3.1 together with existence and uniqueness of the solutions of problem (7) guarantee 
that the Poincaré map is well defined.

Due to the regularity of the vector field of (6), P ∈ C2(�(a∗)), concretely it is a diffeomor-
phism of a section of the cylinder.

The proof of the theorem will be a consequence of a suitable version of the so called Aubry-
Mather theory applied to the previous Poincaré map. The following section is dedicated to the 
statement and proof of this result.

4. A generalized Aubry-Mather theorem

We denote by C =R ×T , T = R/2πZ the cylinder and consider the strip � :=]a, b[×T and 
the corresponding lift �̃ :=]a, b[×R.

Consider a C2 diffeomorphism

� : � −→ C

(r, θ) �−→ (r1, θ1) = (F(r, θ),G(r, θ)) .

We denote the lift by

� : �̃ −→ R2

(r, x) �−→ (r1, x1) = (F(r, x),G(r, x))
(11)

where

F(r, x + 2π) = F(r, x),

G(r, x + 2π) = G(r, x) + 2π.

Consider a C2 function with Lipschitz inverse

f :]a, b[ −→ R
r �−→ f (r),

such that f ′ never vanishes. Without loss of generality we fix f ′ > 0.
We suppose that � is exact symplectic with respect to the form

λ̃ = df (r) ∧ dθ = f ′(r)dr ∧ dθ

that is, there exists a C2 function

S : � −→ R
(r, θ) �−→ S(r, θ)

such that

dS(r, θ) = f (r1)dθ1 − f (r)dθ, ∀(r, θ) ∈ �.
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Remark 4.1. Note that the function S(r, θ) is defined in the cylinder, hence the lift S(r, x) must 
be a 2π -periodic function in the variable x such that

Sr (r, x) = f (F(r, x))Gr (r, x), Sx(r, x) = f (F(r, x))Gx(r, x) − f (r). (12)

We also suppose that � is twist, that is

∂rG(r, θ) > 0 ∀(r, θ) ∈ �. (13)

Suppose additionally that the following uniform limits (w.r.t. x) exist

α+(x) := 1

2π

(
lim
r→b

G(r, x) − x

)
, α−(x) := 1

2π

(
lim
r→a

G(r, x) − x
)

.

Note that α±(x) are 2π -periodic C2 functions and define

W+ = min
x

α+(x), W− = max
x

α−(x).

The main result of this section deals with the existence of special orbits of the diffeomorphism 
�. To state the Theorem, we recall that a sequence (xn)n∈Z of real numbers is increasing if 
xn < xn+1 for all n ∈ Z and we say that any two translates are comparable if for any (s, q) ∈Z2

only one of the following alternatives holds

xn+q + 2πs > xn ∀n, xn+q + 2πs = xn ∀n, xn+q + 2πs < xn ∀n.

We are now ready to state the main result of this section:

Theorem 4.1. With the previous setting, suppose that W+ −W− > 8π and fix α such that 2πα ∈]
W− + 4π,W+ − 4π

[
. Then

• if α = s/q ∈Q there exists a (s, q)-periodic orbit (rn, xn)n∈Z such that

rn+q = rn, xn+q = xn + 2πs ∀n ∈ Z;

• if α ∈ R \ Q there exists a compact invariant subset Mα ⊂ � (and a corresponding subset 
M̃α ⊂ �̃) with the following properties:
– denoting π : � → T the projection, π |Mα

is injective and Mα = graphu for a Lipschitz 
function u : π(Mα) → R,

– each orbit (rn, xn)n∈Z ∈ M̃α is such that the sequence (xn) is increasing and any two 
translates are comparable,

– each orbit (rn, xn)n∈Z ∈ M̃α has rotation number α, i.e.

1

2π
lim

n→∞
xn

n
= α,

– the set Mα is either an invariant curve or a Cantor set.
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α+(x) + x

W
+ + x

W
− + x α−(x) + x

x

x1

B

Fig. 2. Domain B.

The following corollary gives an equivalent interpretation of the result and has been proven in 
[11].

Corollary 4.1. For each α there exists two functions φ, η : R → R such that, for every ξ ∈ R

φ(ξ + 2π) = φ(ξ) + 2π, η(ξ + 2π) = η(ξ),

�(φ(ξ), η(ξ)) = (φ(ξ + 2πα), η(ξ + 2πα))

where φ is monotone (strictly if α ∈ R \Q) and η is of bounded variation.

The proof of Theorem 4.1 will make use of the generating function. We introduce it in the 
following

Lemma 4.1. There exists an open connected set B ⊂ R2 and a function h : B → R, called gen-
erating function such that

o) B is invariant under the translation (x, x1) �→ (x + 2π, x1 + 2π);
i) h ∈ C3(B);

ii) h(x + 2π, x1 + 2π) = h(x, x1) for all (x, x1) ∈ B;
iii) ∂2

xx1
h(x, x1) < 0 for all (x, x1) ∈ B;

iv) a sequence (rn, xn)n∈Z is an orbit of �̃ iff for all n ∈Z

∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0 and f (rn) = −∂1h(xn, xn+1).

Proof. By the twist property, α+(x) > α−(x) ∀x ∈ R, so that we can consider the open con-
nected set (see Fig. 2)

B =
{
(x, x1) ∈R2 : α−(x) < x1 − x < α+(x)

}
.

From the periodicity of the functions α±(x) this set is invariant under the translation
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T2π,2π (x, x1) = (x + 2π,x1 + 2π).

By the twist condition we can solve the implicit function problem

x1 = G(r, x)

and obtain a unique C2 function R(x, x1) : B −→]a, b[ such that

x1 = G(r, x) ⇐⇒ r = R(x, x1)

and, by implicit differentiation,

Gr (R, x)Rx + Gx(R, x) = 0, Gr (R, x)Rx1 = 1. (14)

Moreover, uniqueness implies that R(x + 2π, x1 + 2π) = R(x, x1). Analogously we get

r1 = F(r, x) ⇐⇒ r1 = F(R(x, x1), x) := R1(x, x1)

with R1(x + 2π, x1 + 2π) = R1(x, x1). Hence, the map (11) is equivalent to

{
r1 = R1(x, x1),

r = R(x, x1)
with (x, x1) ∈ B.

Now, we use the exact symplectic condition and define the generating function

h(x, x1) := S(R(x, x1), x).

This map is clearly C2(B), and, a posteriori, we will get C3 regularity. From the periodicity 
conditions of S and R, one can prove the periodicity condition ii).

To prove point iii), we use (12), (14) to get that for all (x, x1) ∈ B,

∂xh(x, x1) = ∂xS(R(x, x1), x) = Sr (R(x, x1), x)Rx + Sx(R(x, x1), x)

= f (F(R, x))Gr (R, x)Rx + f (F(R, x))Gx(R, x) − f (R) (15)

= −f (R),

so that the twist condition and the monotonicity of f imply

∂x,x1h(x, x1) = −∂x1f (R(x, x1)) = −f ′(R)∂x1R(x, x1) = − f ′(R)

∂rG(x, x1)
< 0.

To prove the last point, a similar computation as (15) gives for all (x, x1) ∈ B,

∂x1h(x, x1) = ∂x1S(R(x, x1), x) = Sr (R(x, x1), x)Rx1

= f (F(R, x))Gr (R, x)Rx1 = f (F(R, x)) (16)

= f (R1).
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Equations (15)-(16), together with the regularity of f, R, R1 have the consequence that h ∈
C3(B), proving point i).

Less formally (15)-(16) also imply that the map � can be expressed implicitly:

{
∂x1h(x, x1) = f (r1)

∂xh(x, x1) = −f (r)
with (x, x1) ∈ B.

It means that an orbit (rn, xn)n∈Z is such that for every n ∈Z

{
f (rn+1) = ∂2h(xn, xn+1)

f (rn) = −∂1h(xn, xn+1).

This implies f (rn) = −∂1h(xn, xn+1) = ∂2h(xn−1, xn) so that

∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0, ∀n ∈Z. �
Remark 4.2. The equation

∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0, ∀n ∈Z

is known as discrete Euler-Lagrange equation.

The usual Mather’s theorem (see Theorem 4.2), gives sufficient conditions on the generating 
function in order to get orbits with rotation number. In particular it is required h ∈ C2(R2) and 
properties ii) and iii) of Lemma (4.1) should hold in the whole plane. For this reason we need 
the following extension lemma. A version of this lemma is stated in [15, chapter 8] and for the 
sake of completeness, we report here a detailed proof (see also [12,13]).

Lemma 4.2. Let B+, B− :R −→R be Cr diffeomorphisms satisfying

B±(x + 2π) = B±(x) + 2π

for some r ≥ 2. Suppose that

B+(x) > B−(x) ∀x ∈R.

Define the following set

W =
{
(x, x1) ∈R2 : B−(x) ≤ x1 ≤ B+(x)

}

and let h :W −→ R be a Cr+1 function such that:

• h(x + 2π, x1 + 2π) = h(x, x1), (x, x1) ∈ W;
• ∂x,x1h(x, x1) < 0, (x, x1) ∈ W .

Then there exists h̃ ∈ Cr (R2) such that:
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• h̃(x + 2π, x1 + 2π) = h̃(x, x1), (x, x1) ∈ R2;
• ∂x,x1 h̃(x, x1) < −δ < 0, with δ > 0, (x, x1) ∈ R2;
• h̃ = h on W .

Proof. The domain W is invariant under the translation T2π,2π , in consequence the quotient set 
W/(2πZ)2 is compact so that

∂x,x1h(x, x1) ≤ −δ′, (x, x1) ∈W

for some δ′ > 0. Consider the Cr−1-extension of ∂x,x1h(x, x1) to R2 satisfying the translation 
invariance under T2π,2π and keep denoting it ∂x,x1h. By continuity, there exists ε > 0, δ′ ≥ δ > 0
such that ∂x,x1h ≤ −δ in the domain

Wε =
{
(x, x1) ∈ R2 : B−(x) − ε ≤ x1 ≤ B+(x) + ε

}
.

Consider a C∞ real valued function χ : R2 → [0, 1] such that χ(x + 2π, x1 + 2π) = χ(x, x1)

and {
χ = 1 (x, x1) ∈ W,

χ = 0 (x, x1) ∈ R2 \Wε.

Let’s define the function

D(x, x1) := χ∂x x1h − (1 − χ)δ .

Then by the definition of χ we have that D ∈ Cr−1(R2) and D(x + 2π, x1 + 2π) = D(x, x1). 
Moreover,

{
D = ∂x x1h(x, x1) (x, x1) ∈ W
D = −δ (x, x1) ∈R2 \Wε.

In particular, with the hypotheses on h we have:

D ≤ −δ < 0 (x, x1) ∈R2.

Now, let us consider the Cauchy problems for the wave equation (with periodic boundary condi-
tions):

⎧⎨
⎩

∂x x1u(x, x1) = D(x, x1),

u(x,B±(x)) = h(x,B±(x)),

(∂x1u − 1
(B±)′(x)

∂xu)(x,B±(x)) = (∂x1h − 1
(B±)′(x)

∂xh)(x,B±(x)).

(17)

The change of variable

t = x1 −B±(x)
, y = x1 +B±(x)
2 2
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conjugates system (17) to the classical wave equation

⎧⎪⎨
⎪⎩

vtt − vyy = f (t, y),

v(0, y) = φ(y)

vt (0, y) = ψ(y)

(18)

where, denoting x(t, y) = (B±)−1(y − t), x1(t, y) = t + y,

v(t, y) = u(x(t, y), x1(t, y)) , f (t, y) = − 4

(B±)′(x(t, y))
D (x(t, y), x1(t, y)) ,

φ(y) = h(x(0, y), x1(0, y)), ψ(y) =
(

∂x1h − 1

(B±)′(x(0, y))
∂xh

)
(x(0, y), x1(0, y)).

Note that f, ψ ∈ Cr , φ ∈ Cr+1 and r ≥ 2 so that problem (18) has a unique solution v(t, y) ∈ Cr

(see [17]). Moreover, since f (t, y + 2π) = f (t, y), φ(y + 2π) = φ(y) and ψ(y + 2π) = φ(y), 
the solution satisfies v(t, y + 2π) = v(t, y). Undoing the change of variable, we get a unique 
solution u ∈ Cr (R2) of problem (17) such that u(x + 2π, x1 + 2π) = u(x, x1). Hence, setting 
h̃ = u proves the lemma. �

Using the terminology introduced in Theorem 4.1, we recall some of the conclusions of 
Mather theory

Theorem 4.2 (Mather [5,15]). Consider a C2 function h : R2 → R such that h(x + 2π, x1 +
2π) = h(x, x1) and ∂2

xx1
h ≤ δ̄ < 0 for all (x, x1) ∈ R2. Fix α ∈R. Then

(i) if α = s/q ∈ Q there exists an increasing sequence (xn)n∈Z and an homeomorphism of the 
circle gα such that
– gα(xn) = xn+1 and |xn − x0 − 2πnα| < 2π for every n ∈Z,
– ∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0 and xn+q = xn + 2πs for every n ∈Z;

(ii) If α ∈R \Q there exists a set Mα of increasing sequences x = (xn)n∈Z such that
– if x ∈ Mα then ∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0 for every n ∈Z, any two translates are 

comparable and |xn − x0 − n2πα| < 2π for all n ∈Z,
– there exists a Lipschitz homeomorphism of the circle gα with rotation number α and a 

closed set Aα ⊂ R such that x ∈ Mα iff x0 ∈ Aα and gn
α(x0) = xn for all n,

– the set Rec(gα) ⊂ Aα of recurrent points of gα is either the whole R or a Cantor set.

Remark 4.3. We recall that the homeomorphism gα satisfies gα(x + 2π) = gα(x) + 2π for 
all x ∈ R and the set Rec(gα) is defined as the set of accumulation points of {gn

α(x) + 2πk :
(n, k) ∈ Z2} and is independent on the choice of the point x ∈ R. Moreover, the condition 
|xn − x0 − n2πα| < 2π, ∀n ∈Z implies that

1

2π
lim

n→∞
xn

n
= α,

and α is called the rotation number of the orbit.
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We are now ready for the proof of our result.

Proof of Theorem 4.1. We apply Lemma 4.1 and get the generating function h defined on the 
set

B =
{
(x, x1) ∈ R2 : α−(x) < x1 − x < α+(x)

}
,

and satisfying the corresponding properties o)–iv).
Consider the case in which both W+, W− are finite. Since W+ − W− > 8π , for every α such 

that

W− + 4π < 2πα < W+ − 4π,

we can choose ε > 0 such that

W− + ε < 2πα − 4π < 2πα + 4π < W+ − ε.

Now, consider the set

W =
{
(x, x1) ∈ R2 : W− + ε ≤ x1 − x ≤ W+ − ε

}
⊂ B,

and apply Lemma 4.2 with B±(x) := x + W± ∓ ε that clearly are diffeomorphisms. We can ex-
tend the function h to the whole R2 getting a function h̃ satisfying the conditions in Theorem 4.2
and such that h̃ = h in W .

By applying Theorem 4.2 we obtain sequences (x̃n), such that

∂1h̃(x̃n, x̃n+1) + ∂2h̃(x̃n−1, x̃n) = 0, ∀n ∈Z

and

|x̃n − x̃0 − n2πα| < 2π, ∀n ∈Z.

From this inequality we obtain:

2πα − 4π < x̃n+1 − x̃n < 2πα + 4π, ∀n ∈Z,

that means that for every n ∈Z, (x̃n+1, x̃n) ∈ W . But since h̃ = h in W ,

∂1h(x̃n, x̃n+1) + ∂2h(x̃n−1, x̃n) = 0, ∀n ∈Z.

Hence, in case of rational α we define

r̃n = f −1(−∂1h(x̃n, x̃n+1)) = f −1(−∂1h(x̃n, gα(x̃n)))

such that (x̃n, ̃rn) ⊂ � is the (s, q)-periodic orbit of �. In the irrational case, the set M̃α is given 
by
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M̃α =
{
(ξ, η) ∈ R2 : ξ ∈ Rec(gα), η = f −1(−∂1h(ξ, gα(ξ)))

}
⊂ �.

Note that the Lipschitz regularity of f −1 plays a role at this stage.
In case −∞ < W− < W+ = ∞ it is enough to choose α such that 2πα > W− + 4π and fix 

M > 2πα + 8π . Fix ε such that

W− + ε ≤ 2πα − 4π

and apply the extension lemma with B−(x) = x + W− + ε and B+(x) = x + M , in order to get 
the same result.

The other cases are similar. �
5. Exact symplectic properties of the Poincaré map

Fix r ≥ 2 and a Cr+1 function f : ]a, b[−→R such that f ′(r) never vanishes and consider the 
associated differential form λ̃ = df (r) ∧ dθ = f ′(r)dr ∧ dθ on ]a, b[×R. In local coordinates, 
the corresponding time dependent Hamiltonian system takes the form

⎧⎪⎪⎨
⎪⎪⎩

ṙ = 1
f ′(r) ∂θH(t, r, θ)

θ̇ = − 1
f ′(r) ∂rH(t, r, θ),

r(0) = r0
θ(0) = θ0.

(19)

Suppose that H :R×]a, b[×R → R is continuous in t and Cr+1 in the phase variables (r, θ) and 
the following periodicity hold

H(t + 1, r, θ) = H(t, r, θ) and H(t, r, θ + 2π) = H(t, r, θ).

By the periodicity in θ we have the phase space is the cylinder ]a, b[×T .

Remark 5.1. In our problem ]a, b[=]r∗, ∞[, f (r) = − 1
4r

and

H(t, r, θ) = −1

2
ln(2r) + p

(
t,

cos θ√
2r

,− sin θ√
2r

)
.

Let us consider the Poincaré map P(r0, θ0) = (r1, θ1) associated to the Cauchy problem (19). 
By the hypothesis on H and f , the map P belongs to Cr (]a, b[×R) and satisfies:

P(r0, θ0 + 2π) = P(r0, θ0) + (0,2π).

Lemma 5.1. The Poincaré map P is exact symplectic with respect to the form λ̃.

Proof. To simplify the notation, let us denote (r(t), θ(t)) the solution (r(t; r0, θ0), θ(t; r0, θ0))

of (19). Consider the Cr function
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S(r0, θ0) = −
1∫

0

[
f (r(t))

f ′(r(t))
∂rH(t, r(t), θ(t)) − H(t, r(t), θ(t))

]
dt,

and note that by the periodicity assumptions in θ , and the uniqueness, we have

S(r0, θ0 + 2π) = S(r0, θ0).

Let us now prove that

dS(r0, θ0) = f (r1)dθ1 − f (r0)dθ0.

We start with

∂r0S(r0, θ0) = −
1∫

0

[
−f (r(t))f ′′(r(t))

[f ′(r(t))]2 [∂r0r(t)]∂rH(t, r(t), θ(t))

+ f (r(t))

f ′(r(t))
∂r0 [∂rH(t, r(t), θ(t))] − ∂θH(t, r(t), θ(t))

[
∂r0θ(t)

]]
dt. (20)

Note that the term ∂rH(t, r(t), θ(t))[∂r0r(t)] is canceled. Now, using the first equation in (19), 
and integrating by parts the last term, we obtain

1∫
0

∂θH(t, r(t), θ(t))
[
∂r0θ(t)

]
dt =

1∫
0

d

dt
(f (r(t)))

[
∂r0θ(t)

]
dt

= [
f (r(t))∂r0θ(t)

]t=1
t=0 −

1∫
0

f (r(t))
[
∂r0 θ̇ (t)

]
dt.

Replacing in (20) and using the second equation in (19), we get

∂r0S(r0, θ0) = [
f (r(t))∂r0θ(t)

]t=1
t=0 .

Analogously,

∂θ0S(r0, θ0) = [
f (r(t))∂θ0θ(t)

]t=1
t=0 .

Hence,

dS(r0, θ0) = ∂r0S dr0 + ∂θ0S dθ0 = [
f (r1)∂r0θ1 − f (r0)∂r0θ0

]
dr0+

+ [
f (r1)∂θ θ1 − f (r0)∂θ θ0

]
dθ0 = f (r1)dθ1 − f (r0)dθ0. �
0 0
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6. The twist property for the vortex problem

In this section we consider the Poincaré map P associated to system (7). We recall the nota-
tion

P : �(a∗) =]a∗,+∞[×T −→ R2

(r0, θ0) �−→ (r1, θ1) = (F(r0, θ0),G(r0, θ0)) .

The following theorem will clearly imply the twist condition (13),

Theorem 6.1. Suppose that p ∈ R2
ε and the origin is a zero of order 4. Then

∂G
∂r0

−→
r0→∞ 2 , uniformly in θ0. (21)

To prove the theorem, let us fix a solution (r(t; θ0, r0), θ(t; θ0, r0)) of problem (7). Note that, 
since p ∈ R2

ε , the vector field of system (7) is C1 in the variables (r, θ) so that the solution is 
unique and we can consider the associated variational equation

{
Ẏ = M(t, r(t; r0, θ0), θ(t; r0, θ0))Y,

Y(0) = I2.
(22)

Here

M(t; r, θ) = ∂ (F (t, r, θ),2r + G(t, r, θ))

∂ (r, θ)

is the Jacobian of the vector field in (7). We denote the matrix solution

Y(t; r0, θ0) =
(

∂r0r(t; r0, θ0) ∂θ0r(t; r0, θ0)

∂r0θ(t; r0, θ0) ∂θ0θ(t; r0, θ0)

)

and by the definition of the Poincaré map,

∂G
∂r0

(r0, θ0) = ∂r0θ(1; r0, θ0).

In the integrable case p = 0, the Jacobian matrix is A =
(

0 0
2 0

)
and the solution of the corre-

sponding variational equation is

Yint (t; r0, θ0) =
(

1 0
2t 1

)
, (23)

that shows that the Poincaré map of the unperturbed problem is twist.
To prove the result in the non integrable case, we will follow a perturbative approach. More 

precisely, we will prove that the solution remains close to that of the integrable case over a period 
t ∈ [0, 1]. For this purpose we begin considering the following splitting. To simplify the notation 
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we will denote a solution of (7) by (r(t), θ(t)) where we have dropped the dependence on the 
initial conditions.

Lemma 6.1. Under the hypothesis of Theorem (6.1), we have the following splitting:

M(t; r(t), θ(t)) = A + B(t, r0, θ0) + C(t, r0, θ0)

where B(t, r0, θ0) is bounded, the entries satisfy b11 = b21 = b22 = 0 and ∀ϕ ∈ C∞([0, 1])
∣∣∣∣∣∣

t∫
0

b12(s, r0, θ0)ϕ(s)ds

∣∣∣∣∣∣ −→
r0→∞ 0 uniformly in t ∈ [0,1], θ0 ∈ T . (24)

Moreover,

‖C(t, r0, θ0)‖ −→
r0→∞ 0 uniformly in t ∈ [0,1], θ0 ∈ T .

Proof. Since the origin is a zero of order 4 for p, we can split the perturbation as

p(t, x, y) = T4(t, x, y) + p̃(t, x, y),

where T4 is a homogeneous polynomial of degree 4. From system (7)

F(t, r, θ) = 4r2∂θp

[(
t,

cos θ√
2r

,
− sin θ√

2r

)]
,

so that p induce the following splitting on F

F(t, r, θ) = F∗(t, θ) + F̃ (t, r, θ),

where, using the homogeneity of T4 w.r.t. the variable r ,

F∗(t, θ) = ∂θ [T4 (t, cos θ,− sin θ)], F̃ (t, r, θ) = 4r2∂θ

[
p̃

(
t,

cos θ√
2r

,
− sin θ√

2r

)]
.

Therefore we write

M(t, r(t), θ(t)) =
(

∂rF (t, r, θ) ∂θF (t, r, θ)

2 + ∂rG(t, r, θ) ∂θG(t, r, θ)

)∣∣∣∣
(r(t),θ(t))

=
(

0 0
2 0

)
+

[(
0 b12
0 0

)
+

(
c11 c12
c21 c22

)]
(r(t),θ(t))

where b12 = b12(t, r, θ) and cij = cij (t, r, θ) are defined as

b12 := ∂θF∗(t, θ) = ∂θθ [T4 (t, cos θ,− sin θ)]
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and

c11 := ∂r F̃ (t, r, θ), c12 := ∂θ F̃ (t, r, θ),

c21 := ∂rG(t, r, θ), c22 := ∂θG(t, r, θ).

Concerning the matrix C, one can first explicitly write the expression of the entries cij recalling 
that F̃ has just been introduced and G is defined in (8). Note that they depend on the derivatives 

up to second order of the functions p
(
t, cos θ√

2r
, − sin θ√

2r

)
, p̃

(
t, cos θ√

2r
, − sin θ√

2r

)
w.r.t. the variables 

(r, θ). These derivatives are estimated in Lemma A.1 of Appendix A and can be used to get the 
following estimate

r3/2 |c11| + r1/2 |c12| + r2 |c21| + r |c22| ≤ K

with K independent on r, θ . We evaluate the entries cij on a solution (r(t), θ(t)) and we remem-
ber that from Lemma 3.1 we have that for r0 > a∗

|r(t) − r0| ≤ K1 ∀ θ0 ∈ T and t ∈ [0,1]. (25)

This proves that ‖C(t, r0, θ0)‖ −→ 0 as r0 → ∞ uniformly in θ0 ∈ T , t ∈ [0, 1].
Let us study the matrix B . Since T4 (t, cos θ,− sin θ) is a trigonometric polynomial, |b12| ≤

K and B is bounded. To obtain (24) we note that being T4 (t, cos θ,− sin θ) a trigonometric 
polynomial of degree 4, ∂θ [T4 (t, cos θ,− sin θ)] will be another trigonometric polynomial (of 
the same degree) that we denote by T̃4 (t, cos θ,− sin θ). Let us define

P4(t, η, ξ) := T̃4(t, η, ξ).

We show that we can apply Lemma A.2 (see Appendix A) choosing the polynomial of degree 
N = 4

q(t, η, ξ) = −ξ
∂P4

∂η
(t, η,−ξ) − η

∂P4

∂ξ
(t, η,−ξ).

Since P4(t, cos θ, − sin θ) is a periodic primitive in the variable θ of the function q(t, cos θ, sin θ)

the condition (A.1) holds. Moreover, the regularity assumptions in Definition 2.2 guarantee that 
q has C1 coefficients in the variable t .

Let us define the function β(t) := θ(t) − 2r0t . The estimate (9) on the angular evolution gives 
a bound of ‖β‖∞. To get a bound of ˙‖β‖∞ we observe that

β̇(t) = θ̇ (t) − 2r0 = 2 (r(t) − r0) + G(t, r(t), θ(t)).

And again from (9) and (10), we have

˙‖β‖∞ ≤ 2K + C1

(r0 − K)
.

Finally, Lemma A.2 in Appendix A can be applied to deduce that for all ϕ ∈ C∞([0, 1]) and 
t ∈ [0, 1],
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∣∣∣∣∣∣
t∫

0

b12(s, r0, θ0)ϕ(s)ds

∣∣∣∣∣∣ =
∣∣∣∣∣∣

t∫
0

b12(s, θ(s))ϕ(s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∫

0

∂θθT4 (s, cos θ(s),− sin θ(s)) ϕ(s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∫

0

∂θP4(s, cos θ(s),− sin θ(s))ϕ(s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∫

0

q(s, cos θ(s), sin θ(s))ϕ(s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∫

0

q(s, cos(2r0s + β(s)), sin(2r0s + β(s)))ϕ(s)ds

∣∣∣∣∣∣
≤ CRL

2r0
. �

Using this lemma, let us write the variational equation (22) as

{
Ẏ = (A + B(t, r0, θ0) + C(t, r0, θ0))Y,

Y(0) = I2.

We claim that the solution Y(t; r0, θ0) converge uniformly, as r0 → ∞, to the solution 
Yint (t; r0, θ0) of the integrable case (23).

We prove it applying Lemma A.3 of the Appendix to the family of matrices M(t, r0, θ0) =
B(t, r0, θ0) + C(t, r0, θ0) as r0 → +∞. From Lemma 6.1 we have that M(t, r0, θ0) is uniformly 
bounded and C(t, r0, θ0) converge uniformly to 0 so that it converge also in the weak* topology. 
To study the convergence of the matrix B(t, r0, θ0) it is enough to consider the term b12. From 
(24) and using the density of C∞ in L1 we have

∣∣∣∣∣∣
t∫

0

b12(s, r0, θ0)ϕ(s)ds

∣∣∣∣∣∣ −→
r0→∞ 0, ∀ϕ ∈ L1([0,1]), t ∈ [0,1].

Hence, we can apply Lemma A.3 and get

Y(t; r0, θ0) −→
r0→∞ Yint (t; r0, θ0) uniformly in t ∈ [0,1], θ0 ∈T ,

from which (21) follows evaluating in t = 1.
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7. Proof of the main theorem

In this section we apply Theorem 4.1 and Corollary 4.1 to the Poincaré map P of system 
(7) and get the so called Aubry-Mather orbits of rotation number α. These orbits determine the 
solutions we announced in our main Theorem 2.1.

By Lemma 3.1 the map P is well defined in �(a∗) and is a C2-diffeomorphism since p ∈ R3
ε . 

For every initial condition in �(a∗), the corresponding solution satisfies |r(t) − r0| ≤ K for all 
t ∈ [0, 1]. Moreover, from (10), we can find a1 > 0 such that, in �(a1),

|θ̇ | = |2r + G(t; r, θ)| ≥ 2r − C1

2r
> 0.

By Theorem 6.1, the map P is twist in �(a2) for some a2 large enough. Let us consider the 
strip �(r̄) where r̄ = max{a∗, a1, a2} + K . Theorem 6.1 also imply that the following limits 
hold:

W+ := min
x

{ lim
r→+∞G(r, x) − x} = +∞,

W− := max
x

{ lim
r→r̄

G(r, x) − x} = c < +∞,

so that W+ − W− > 8π .
Since, from Lemma 5.1, the map P is exact symplectic w.r.t. the form λ = 1

4r2 dr ∧ dθ =
d(− 1

4r
) ∧ dθ and 1/(4r) is Lipschitz for r > r̄ , we can apply Theorem 4.1 and Corollary 4.1 to 

the Poincaré map restricted to the strip �(r̄). For every α > (c + 2)/2π , we get two functions 
φ, η : R → R such that, for every ξ ∈R

φ(ξ + 2π) = φ(ξ) + 2π, η(ξ + 2π) = η(ξ), (26)

P(φ(ξ), η(ξ)) = (φ(ξ + 2πα), η(ξ + 2πα)). (27)

For every ξ ∈ R, let us consider the solution of the Cauchy problem (7) with initial con-
dition (r(0), θ(0)) = (η(ξ), φ(ξ)) and denote it (r(t), θ(t))ξ . By (26) and uniqueness we have 
that

(r(t), θ(t))ξ+2π = (r(t), θ(t))ξ + (0,2π),

and from (27) and the definition of P ,

(r(t + 1), θ(t + 1))ξ = (r(t), θ(t))ξ+2πα

so that conditions (4)-(5) are satisfied.
The function ξ �→ �ξ(a, b) introduced in Remark 2.2 has the same regularity of the functions 

φ, η that can have at most jump discontinuities. Moreover, from properties (26), (27), if ξ is a 
point of continuity, so are ξ + 2π and ξ + 2πα.
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Finally, these solutions have rotation number α, actually,

lim
t→∞

θξ (t)

t
= lim

k→∞
θξ (k)

k
= lim

k→∞
θξ+2πkα(0)

k
= lim

k→∞
φ(ξ + 2πkα)

k

= lim
k→∞

φ(ξ + 2π{kα}) + 2π[kα]
k

= 2πα,

where [x] denote the integer part of x and {x} = x − [x].
8. Conclusions

This paper can be seen as an example of the study of twist dynamics around a singularity in 
Hamiltonian systems. As a paradigmatic example we choose the point-vortex model. In suitable 
variables we applied a version of Aubry-Mather theory to get similar results as in the case of 
exact area-preserving maps of the annulus [14].

We suppose that the origin was a zero of order 4 for the perturbation. This condition played 
a role in the regularizing change of variable ϕ. For this reason, it seems unclear how to weaken 
this assumption.

Our result leaves open the distinction between classical and generalized quasi-periodic solu-
tions. This relies on the nature of the corresponding Mather set with irrational rotation number. 
Actually it can be either a invariant curve or a Cantor set. A possible future development of the 
present work could be finding conditions that break invariant curves.
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Appendix A

This appendix is intended to present some technical results that are required for the proof of 
the twist condition in Section 6.

Lemma A.1. Suppose the p ∈ R2
ε and that the origin is a zero of order N . Consider the decom-

position given in Definition 2.2

p(t, x, y) = TN(t, x, y) + p̃(t, x, y)

and set the functions

x = x(r, θ) = cos θ√
2r

, y = y(r, θ) = − sin θ√
2r

defined for r > 1
2ε2 and θ ∈T . Then, there exists a constant C > 0 such that

1) r(N+1)/2 (|∂θ p̃(t, x, y)| + |∂θθ p̃(t, x, y)|) ≤ C,
2) r(N+3)/2 |∂rθ p̃(t, x, y)| ≤ C,
3) r(N+2)/2 (|∂r p(t, x, y)| + |∂rθ p(t, x, y)|) ≤ C,
4) r(N+4)/2 |∂rr p(t, x, y)| ≤ C.
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Proof. To get the estimate 1), let us compute explicitly the derivatives with respect to θ :

∂θ p̃(t, x(r, θ), y(r, θ)) = − 1

(2r)1/2

[
sin θ ∂xp̃(t, x, y) + cos θ ∂yp̃(t, x, y)

]
and

∂θθ p̃(t, x(r, θ), y(r, θ)) = 1

(2r)1/2

[
sin θ ∂yp̃(t, x, y) − cos θ ∂xp̃(t, x, y)

]
+ 1

2r

[
sin2 θ ∂xxp̃(t, x, y) + 2 cos θ sin θ ∂xyp̃(t, x, y) + cos2 θ ∂yyp̃(t, x, y)

]
.

From the definition of zero of order N we have:

|∂θ p̃(t, x, y)| + |∂θθ p̃(t, x, y)| ≤ C1

r1/2

(|∂x p̃(t, x, y)| + ∣∣∂y p̃(t, x, y)
∣∣)

+ C2

r

(|∂xx p̃(t, x, y)| + ∣∣∂xy p̃(t, x, y)
∣∣+ ∣∣∂yy p̃(t, x, y)

∣∣)
≤ C1

r1/2 (|x|N + |y|N) + C1

r
(|x|N−1 + |y|N−1)

≤ C1

r(N+1)/2
+ C2

r1+(N−1)/2
≤ C

r(N+1)/2
.

To obtain 2), 3) and 4), the computations are similar. �
The following result is a lemma of Riemann-Lebesgue type.

Lemma A.2. Let q(t, η, ξ) be a polynomial of degree N ,

q(t, η, ξ) =
∑

j+h≤N

αj,h(t)η
j ξh

with αj,h(t) ∈ C1(R/Z). Assume in addition that for each t

2π∫
0

q(t, cos θ, sin θ)dθ = 0 . (A.1)

Let β ∈ C1([0, τ ]) with [0, τ ] ⊂ [0, 1] and ϕ ∈ C∞([0, 1]). Then there exists CRL > 0 such that

∣∣∣∣∣∣
t∫

0

q(s, cos (λs + β(s)), sin (λs + β(s)))ϕ(s)ds

∣∣∣∣∣∣ ≤ CRL

|λ|

if t ∈ [0, τ ] and λ ∈ R \ {0}. Moreover, the constant CRL depends upon N , maxj,h

[∥∥αj,h

∥∥∞ +∥∥α̇j,h

∥∥ ]
, ‖β‖∞, ‖β̇‖∞ ‖ϕ‖∞ and ‖ϕ̇‖∞.
∞
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Proof. The function q(t, cos θ, sin θ) has a finite Fourier expansion with respect to θ , say

q(t, cos θ, sin θ) =
∑

|k|≤N

qk(t)e
ikθ .

The coefficients qk can be expressed in terms of the functions αj,h and belong to C1(R/Z),

qk(t) = 1

2π

2π∫
0

q(t, cos θ, sin θ)e−ikθ dθ.

The condition (A.1) implies that q0(t) vanishes everywhere and so the integral I (t) we want to 
estimate can be expressed as the sum

I (t) =
∑

0<|k|≤N

Ik(t) with Ik(t) =
t∫

0

qk(s)e
ikβ(s)eikλs ϕ(s)ds.

Since we have excluded k = 0 these integrals can be estimated by a standard procedure in the 
theory of oscillatory integrals, see for instance [2]. After integrating by parts

Ik(t) = 1

ikλ

[
qk(t)e

ikβ(t)eikλt ϕ(t) − qk(0)eikβ(0) ϕ(0)

−
t∫

0

(
qk(s)e

ikβ(s) ϕ(s)
)′

eikλs ds

⎤
⎦ .

Therefore,

|Ik(t)| ≤ Ck

|k| |λ|
with

Ck = ‖qk‖∞
[
2‖ϕ‖∞ + |k|∥∥β̇

∥∥∞ ‖ϕ‖∞ + ‖ϕ̇‖∞
]+ ‖q̇k‖∞ ‖ϕ‖∞ . �

Finally, we state the following lemma concerning the uniform convergence of the solution 
of a linear ODE whose time-dependent coefficients are bounded and converging weak* in L∞. 
Similar results can be found in [16] and [19]. For the proof we will follow the lines of the proof 
of Lemma 2.1 in [19].

Consider the following linear system depending on the parameters (r, θ) ∈]a, b[×T , a > b

{
Ẏ = (A + M(t; r, θ))Y,

Y(0) = I2,
(A.2)

where A, M are 2 × 2 matrices, A is constant and M ∈ C1([0, 1]×]a, b[×T ). We denote the 
matrix solution of this system as Y(t; r, θ).
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Lemma A.3. Suppose that the family {M(t; r, θ)} is uniformly bounded in L∞([0, 1]) and that 
M(t; r, θ) converges to M̃(t; θ) ∈ L∞([0, 1]) in the weak* sense as r → b. Then

Y(t; r, θ) −→
r→b

Ỹ(t; θ) uniformly, t ∈ [0,1] ∀θ ∈T

where Ỹ(t; η) is the matrix solution of the problem{
Ẏ =

(
A + M̃(t; θ)

)
Y,

Y(0) = I2 .
(A.3)

Proof. The solution of (A.2) can be written as

Y(t; r, θ) = I2 +
t∫

0

(A + M(s; r, θ))Y(s; r, θ)ds, t ∈R, (A.4)

from which we get the following estimate on the matrix norm

‖Y(t; r, θ)‖ ≤ 1 +
t∫

0

‖A + M(s; r, θ)‖‖Y(s; r, θ)‖ds. (A.5)

Gronwall lemma applied on the interval [0,1] gives us

‖Y(t; r, θ)‖ ≤ 1 +
t∫

0

‖A + M(s; r, θ)‖ e
∫ t
s ‖A+M(ξ ;r,θ)‖dξ ds, t ∈ [0,1].

Since {M(t; r, θ)} is uniformly bounded, ‖Y(t; r, θ)‖ is uniformly bounded. Moreover, from 
(A.4) also ‖Ẏ(t; r, θ)‖ is uniformly bounded. Hence, we can apply Ascoli-Arzelà theorem to get 
a subsequence rk → b as k → ∞ and a matrix � ∈ C1([0, 1] ×T ) such that

Y(t; rk, θ) −→
k→∞ �(t; θ), uniformly in t ∈ [0,1] θ ∈ T .

The matrices Y(t; rk, θ) satisfies

Y(t; rk, θ) = I2 +
t∫

0

(A + M(s; rk, θ))Y(s; rk, θ)ds

= I2 +
t∫

0

AY(s; rk, θ)ds +
t∫

0

M(s; rk, η)�(s; θ)ds

+
t∫

0

M(s; rk, θ)(Y(s; rk, θ) − �(s; θ))ds.



3650 S. Marò, V. Ortega / J. Differential Equations 269 (2020) 3624–3651
Using the uniform convergence, and the weak* convergence of M(t; r, θ) (recall � ∈ L1([0, 1])), 
we have the limit

lim
k→∞Y(t; rk, θ) = I2 +

t∫
0

A�(s;η)ds +
t∫

0

M̃(s; θ)�(s; θ)ds, t ∈ [0,1] ∀θ ∈T .

Finally, by uniqueness we observe that this limit is the solution of system (A.3) and we obtain

lim
r→b

Y(t; r, θ) = �(t; θ) = Ỹ(t; θ) t ∈ [0,1] ∀θ ∈ T . �
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