
Available online at www.sciencedirect.com
ScienceDirect

J. Differential Equations 269 (2020) 10322–10349
www.elsevier.com/locate/jde

Long-time asymptotic behavior for the complex short 

pulse equation

Jian Xu a, Engui Fan b,∗

a College of Science, University of Shanghai for Science and Technology, Shanghai 200093, People’s Republic of China
b School of Mathematical Sciences, Institute of Mathematics and Key Laboratory of Mathematics for Nonlinear 

Science, Fudan University, Shanghai 200433, People’s Republic of China

Received 16 November 2017; accepted 2 July 2020

Abstract

In this paper, we consider the initial value problem for the complex short pulse equation with a Wadati-
Konno-Ichikawa type Lax pair. We show that the solution to the initial value problem has a parametric 
expression in terms of the solution of 2 × 2-matrix Riemann-Hilbert problem, from which an implicit one-
soliton solution is obtained on the discrete spectrum. While on the continuous spectrum we further establish 
the explicit long-time asymptotic behavior of the non-soliton solution by using Deift-Zhou nonlinear steep-
est descent method.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

We study the long-time asymptotic behavior of solution to the complex short pulse (CSP) 
equation

uxt + u + 1

2
(|u|2ux)x = 0, (1.1)
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formulated on the whole line x ∈ R with the initial value data

u(x, t = 0) = u0(x) ∈ S(R), (1.2)

where S(R) denotes the Schwartz space.
The motivation for investigating the CSP equation is as follows: In nonlinear optics, it is well 

known that the nonlinear Schrödinger (NLS) equation was always used to model the slowly vary-
ing wave trains [1–3], which was found that it can be solved by the inverse scattering transform 
method [4]. However, when the width of optical pulses in the order of femtosecond (10−15 s), 
the NLS equation becomes less accurate [5]. Schäfer and Wayne proposed a so-called short pulse 
(SP) equation

qxt = q + 1

6
(q3)xx (1.3)

in [6], which provided an increasingly better approximation to the corresponding solution of 
the Maxwell equations [7]. Noticing that q(x, t) in equation (1.3) is a real-valued function, the 
one-soliton solution (loop soliton) to the SP equation (1.3) has no physical interpretation [8,9]. 
Recently, an improvement (1.1) for the SP equation was proposed in [10]. In contrast with the 
real-valued function q(x, t) in SP equation (1.3), u(x, t) in equation (1.1) is a complex-valued 
function. Since the complex-valued function can contain the information of both amplitude and 
phase, it is more appropriate for the description of the optical waves [1]. Hence, the equation (1.1)
was so-called complex short pulse equation. The CSP equation can be viewed as an analogue of 
the NLS equation in the ultra-short regime when the width of optical pulse is of the order 10−15 s, 
see [10].

It is founded that the CSP equation also admitted a Wadati-Konno-Ichikawa (WKI)-type Lax 
pair like the SP equation [10,11]. The soliton solutions were obtained by using Hirota method 
[10], and the multi-breather and higher order rogue wave solutions to the CSP equation were 
constructed by the Darboux transformation method in [12].

Recently, in [13] we obtained the explicit leading order long-time asymptotic behavior of the 
solution q(x, t) to the SP equation (1.3) by using the nonlinear steepest descent method [14]. 
Here we extend above results to give the asymptotic behavior of solution u(x, t) of the CSP 
equation, but it will be much different from that on the SP equation (1.3) in the following three 
aspects.

(i). To obtain the Riemann-Hilbert problem corresponding to the initial value problem for the 
CSP equation, we need an extra transformation (2.22) when we try to control the behavior of the 
eigenfunctions when the spectral variable k → ∞ during our spectral analysis;

(ii). In the CSP equation case, there do not exist a symmetry condition

M(x, t,−k) = σ2M(x, t, k)σ2 (1.4)

satisfied by the SP equation;
(iii). As (1.4) isn’t valid, the order O(1) term of the asymptotic behavior of scale function 

δ(k) defined by (5.21) as k → 0 doesn’t equal one, see (5.24) and (5.25). This fact will affect our 
final asymptotic formulae. 4). We need calculate the model problem around k = k0 and k = −k0
(where k0’s definition is in subsection 5.3), respectively, see subsection 5.3.3. The reason is (1.4)
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not valid, again. This leads to there are two phase functions φ̃1 and φ̃2 defined by (5.3) which are 
contained in the asymptotic formulae (5.1), not like the SP equation case.

Organization of this paper is as follows. In section 2, since the associated Lax pair of short 
pulse (1.1) has singularities at k = 0 and k = ∞, we perform the spectral analysis to deal with 
the two singularities, respectively. In section 3, we formulate the associated Riemann-Hilbert 
in an alternative space variable y instead of the original space variable x. In this way, we can 
reconstruct the solution u(x, t) parameterized from the solution of the Riemann-Hilbert problem 
via the asymptotic behavior of the spectral variable at k = 0. In section 4, we obtain the one-
soliton solution of the CSP equation under the assumption of a(k) having one single zero point. 
In section 5, we obtain the asymptotic relation between y and x through analyzing the vector 
Riemann-Hilbert problem with the nonlinear steepest descent method. finally, we get the leading 
order asymptotic behavior of the solution u(x, t).

2. Spectral analysis

To analyze the long-time asymptotic behavior of the solution of the IVP for the CSP equation 
on the line by employing the nonlinear steepest descent method, the first step is to change the 
IVP problem into a Riemann-Hilbert problem based i=on the fact that the CSP equation admits 
a WKI-type Lax pair

�x = U(x, t, k)�, (2.1a)

�t = V (x, t, k)�, (2.1b)

where

U = ikU1 = ik(σ3 + U0x). (2.1c)

V = − ik

2
|u|2U1 − 1

4ik
σ3 + 1

2
V0 (2.1d)

with

U0 =
(

0 u

ū 0

)
, σ3 =

(
1 0
0 −1

)
,V0 =

(
0 u

−ū 0

)
. (2.1e)

Here, the ū means the conjugate of the complex function u.
We can obtain the scattering data by using the x-part of Lax pair for analyzing the IVP for 

the integrable equation via inverse scattering transform method. The t-part of Lax pair is only 
used to determine the time evolution of the scattering data. However, there are two singularities 
at k = ∞ and k = 0 in the Lax pair (2.1). In order to construct the solution u(x, t) of the CSP 
equation (1.1), we need use the expansion of the eigenfunction as spectral parameter k → 0. 
This is similar to the short pulse equation [13], the Camassa-Holm equation [15], and modified 
Hunter-Saxton equation [16]. Hence, in the following we use two different transformations to 
analyze these two singularities (k = 0 and k = ∞), respectively.
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2.1. For singularity at k = 0

Introducing the following transformation

�(x, t, k) = μ0(x, t, k)e(ikx− t
4ik

)σ3, (2.2)

then we get the Lax pair of μ0

{
μ0

x − ik[σ3,μ
0] = V 0

1 μ0,

μ0
t + 1

4ik
[σ3,μ

0] = V 0
2 μ0,

(2.3)

where

V 0
1 = ikU0, V 0

2 = − ik

2
|u|2U1 + 1

2
V0. (2.4)

Letting Â denotes the operators which acts on a 2 × 2 matrix X by ÂX = [A, X], then the 
Lax pair of μ0 (2.3) can be written as

d(e−(ikx− t
4ik

)σ̂3μ0) = W 0(x, t, k), (2.5)

where W 0(x, t, k) is the closed one-form defined by

W 0(x, t, k) = e−(ikx− t
4ik

)σ̂3(V 0
1 dx + V 0

2 dt)μ0. (2.6)

We define two eigenfunctions {μ0
j }2

j=1 of (2.3) by the Volterra integral equations,

μ0
1(x, t, k) = I +

x∫
−∞

eik(x−y)σ̂3V 0
1 (y, t, k)μ0

1(y, t, k)dy, (2.7a)

μ0
2(x, t, k) = I −

+∞∫
x

eik(x−y)σ̂3V 0
1 (y, t, k)μ0

2(y, t, k)dy. (2.7b)

Proposition 2.1. (Analytic property) From the above definition, we find that the functions {μ0
j }2

1
are bounded and analytic properties as follows:

• [μ0
1]1(x, t, k) is bounded and analytic in D2, [μ0

1]2(x, t, k) is in D1;
• [μ0

2]1(x, t, k) is bounded and analytic in D1, [μ0
2]2(x, t, k) is in D2,

where [A]i denotes the i-th column of a matrix A, D1 and D2 denote the upper-half and lower-
half plane of the complex k-sphere, respectively.

Proposition 2.2. (Asymptotic property) The functions μ0
j (x, t, k) have the expansions in powers 

of k, for k → 0,
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μ0
j (x, t, k) = I +

(
0 iu

iū 0

)
k +

(
D

(2)
11 |u|2ux + 2ut

−|u|2ūx − 2ūt D
(2)
22

)
k2 + O(k3), (2.8)

where D(2)
11 and D(2)

22 satisfy the following differential equation system,

⎧⎨
⎩

D
(2)
11x = −uxū, D

(2)
22x = −uūx,

D
(2)
11t = 1

2 |u|2(ūux − uūx) − uūt , D
(2)
22t = − 1

2 |u|2(ūux − uūx) − ut ū.
(2.9)

Proof. This asymptotic behavior (2.8) is followed by the expansion of the μ0(x, t, k) as k → 0,

μ0(x, t, k) = D(0)(x, t) + kD(1)(x, t) + k2D(2)(x, t) + O(k3), (2.10)

and set the matrix D(i)(x, t) =
(

D
(i)
11 D

(i)
12

D
(i)
21 D

(i)
22

)
, then inserting the above expansion into the Lax 

pair of μ0 (2.3) to compare the order of k. �
2.2. For the singularity at k = ∞

To control the eigenfunctions as k → ∞, we should make some transformations to the original 
Lax pair (2.1). Firstly, we need some denotations to do the next a series of transformations.

Define a 2 × 2 matrix-value function G(x, t) as

G(x, t) =
√√

m + 1

2
√

m

(
1 −

√
m−1
ūx√

m−1
ux

1

)
, (2.11)

where m is a function of (x, t) defined by

m = 1 + |ux |2. (2.12)

Remark 2.3. Notice that when ux → 0, the nominator 
√

m − 1 is a high order infinitesimal than 
denominator ux . So, the matrix function G(x, t) is well-defined.

Introducing a transformation

�(x, t, k) = G(x, t)�(x, t, k), (2.13)

then we have the Lax pair of �(x, t, k) (2.1) becomes

{
�x = ik

√
mσ3� + U�(x, t, k)�,

�t = − ik
2 |u|2√mσ3� + V �(x, t, k)�,

(2.14)

where
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U�(x, t, k) = −G−1Gx

= −
⎛
⎝ uxūxx−ūxuxx

4
√

m(
√

m+1)

(
√

m−1)ux ūxx−(
√

m+1)ūxuxx

4mūx

(
√

m+1)ux ūxx−(
√

m−1)ūxuxx

4mūx
−uxūxx−ūxuxx

4
√

m(
√

m+1)

⎞
⎠ ,

(2.15a)

and

V �(x, t, k) = − 1

4ik

1√
m

σ3 + 1

4ik

1√
m

(
0 ux

ūx 0

)

− 1
4
√

m

(
ūux − uūx − (

√
m+1)uūx+(

√
m−1)ūux

ūx
(
√

m−1)uūx+(
√

m+1)ūux

ux
uūx − ūux

)

−
⎛
⎝ ux ūxt−ūxuxt

4
√

m(
√

m+1)

(
√

m−1)ux ūxt−(
√

m+1)ūxuxt

4mūx

(
√

m+1)ux ūxt−(
√

m−1)ūxuxt

4mūx
− ux ūxt−ūxuxt

4
√

m(
√

m+1)

⎞
⎠ .

(2.15b)

Define

p(x, t, k) = x −
∞∫

x

(
√

m(x′, t) − 1)dx′ + t

4k2 . (2.16)

As we can write the CSP equation (1.1) into the conservation law form:

(
√

m)t = −1

2
(|u|2√m)x, m = 1 + u2

x, (2.17)

we get

px = √
m, pt = −1

2
|u|2√m + 1

4k2 . (2.18)

Then, define

�(x, t, k) = �̃(x, t, k)eikp(x,t,k)σ3 , (2.19)

the Lax pair equation of (2.13) becomes

{
�̃x − ikpx[σ3, �̃] = Ũ (x, t, k)�̃,

�̃t − ikpt [σ3, �̃] = Ṽ (x, t, k)�̃,
(2.20)

where

Ũ (x, t, k) = U�(x, t, k), Ṽ (x, t, k) = V � + 1

4ik
σ3. (2.21)

In order to formulate a Riemann-Hilbert problem for the solution of the inverse spectral prob-
lem, we seek solutions of the spectral problem which approach the 2 × 2 identity matrix as 
k → ∞. It turns out that solution of equation (2.20) do not exhibit this property, hence the next 
step is to transform the equation of �̃ into an equation with the desired asymptotic behavior.
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Remark 2.4. Since the function u(x, t) is a complex-valued, this implies that the diagonal ele-
ments of the matrix Ũ do not equal to zero. Then it leads to the solution of equation (2.20) do 
not exhibit the required asymptotic behavior as k → ∞.

Let us define μ(x, t, k) as

�(x, t, k) = ed−σ̂3μ(x, t, k)e−d+σ3eikp(x,t,k)σ3, (2.22)

where

d− =
x∫

−∞

ūxuxx − uxūxx

4
√

m(
√

m + 1)
(x′, t)dx′,

d+ =
+∞∫
x

ūxuxx − uxūxx

4
√

m(
√

m + 1)
(x′, t)dx′,

d = d− + d+ =
+∞∫

−∞

ūxuxx − uxūxx

4
√

m(
√

m + 1)
(x′, t)dx′.

(2.23)

Remark 2.5. Note that d is a pure image quantity conserved under the dynamics governed by 
(1.1)

Then the Lax pair of μ(x, t, k) can be written as

d(e−ikp(x,t,k)σ̂3μ) = W(x, t, k), (2.24)

where W(x, t, k) is the closed one-form defined by

W = e−ikp(x,t,k)σ̂3V (x, t, k)μ(x, t, k), (2.25)

where

V (x, t, k) = e−d−σ̂3(V1dx + V2dt), (2.26)

with

V1 = −
(

0 (
√

m−1)ux ūxx−(
√

m+1)ūxuxx

4mūx
(
√

m+1)ux ūxx−(
√

m−1)ūxuxx

4mūx
0

)
, (2.27a)

V2 = − 1
4ik

( 1√
m

− 1)σ3 + 1
4ik

1√
m

(
0 ux

ūx 0

)

− 1
4
√

m

(
0 − (

√
m+1)uūx+(

√
m−1)ūux

ūx
(
√

m−1)uūx+(
√

m+1)ūux

ux
0

)

−
(

0 (
√

m−1)ux ūxt−(
√

m+1)ūxuxt

4mūx
(
√

m+1)ux ūxt−(
√

m−1)ūxuxt 0

)
.

(2.27b)
4mūx
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We define two eigenfunctions {μj }2
1 of (2.24) by the Volterra integral equations

μ1(x, t, k) = I +
x∫

−∞
eik[p(x,t,k)−p(y,t,k)]σ̂3V1(y, t, k)μ1(y, t, k)dy, (2.28a)

μ2(x, t, k) = I −
+∞∫
x

eik[p(x,t,k)−p(y,t,k)]σ̂3V1(y, t, k)μ2(y, t, k)dy. (2.28b)

Proposition 2.6. (Analytic property) From the above definition, we find that the functions {μj }2
1

are bounded and analytic properties as follows:

• [μ1]1(x, t, k) is bounded and analytic in D2, [μ1]2(x, t, k) is in D1;
• [μ2]1(x, t, k) is bounded and analytic in D1, [μ2]1(x, t, k) is in D2.

Proposition 2.7. (Symmetry property) The eigenfunctions μj(x, t, k), j = 1, 2 satisfy the follow-
ing symmetry condition,

μj (x, t, k̄) = σ2μj (x, t, k)σ2. (2.29)

Proposition 2.8. (Large k property) The matrix functions μj(x, t, k) also satisfy the asymptotic 
condition

μj (x, t, k) = I + O(
1

k
), k → ∞, (2.30)

where I is an 2 × 2 identity matrix.

2.3. The scattering matrix S(k)

Because the eigenfunctions μ1(x, t, k) and μ2(x, t, k) are both the solutions of equation 
(2.24), they are related by a matrix S(k) which is independent of the variable (x, t).

μ1(x, t, k) = μ2(x, t, k)eikp(x,t,k)σ̂3S(k). (2.31)

By the definition of μj(x, t, k), j = 1, 2 (2.28) and the symmetry property (see, Proposition 2.7), 
the matrix S(k) has the form

S(k) =
(

a(k̄) b(k)

−b(k̄) a(k)

)
. (2.32)

The function a(k) can be computed by

a(k) = det ([μ2]1, [μ1]2), (2.33)

where det (A) means the determinate of a matrix A. We can deduce that a(k) is analytic in D1
from the analytic property (see, Proposition 2.6).
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Proposition 2.9. The proposition (2.10) together with (2.33) allows expressing the expansions in 
powers of k of a(k) at k = 0,

a(k) = ed(1 + ikc − c2

2
k2 + O(k3)), k → 0. (2.34)

2.4. The relation between μj(x, t, k) and μ0
j (x, t, k)

We use the eigenfunctions μj to define the matrix M(x, t, k) (see (3.1)) which is used to 
formulate a Riemann-Hilbert problem. However, in order to construct the solution u(x, t) from 
the associate Riemann-Hilbert problem, we need the asymptotic behavior of μj as k → 0. So, 
we need relate the eigenfunctions μj(x, t, k) to μ0

j (x, t, k).

Note that the eigenfunctions μ(x, t, k) and μ0(x, t, k) being related to the same Lax pair (2.1), 
must be related to each other as

μj (x, t, k) = e−d−σ3G−1(x, t)μ0
j (x, t, k)e(ikx− t

4ik
)σ3Cj (k)e−ikp(x,t,k)σ3edσ3, (2.35)

with Cj(k) independent of x and t . Evaluating (2.35) as x → ±∞ gives

C1(k) = e−dσ3e−ikcσ3, C2(k) = I, (2.36)

where c = ∫ +∞
−∞ (

√
m(x, t)−1)dx is a quantity conserved under the dynamics governed by (1.1).

Proposition 2.10. The functions μj(x, t, k) and μ0
j (x, t, k) are related as follows:

μ1(x, t, k) = e−d−σ3G−1(x, t)μ0
1(x, t, k)e−ik

∫ x
−∞(

√
m(x′,t)−1)dx′σ3, (2.37a)

μ2(x, t, k) = e−d−σ3G−1(x, t)μ0
2(x, t, k)eik

∫ +∞
x (

√
m(x′,t)−1)dx′σ3edσ3 . (2.37b)

3. The Riemann-Hilbert problem for CSP equation

Let us define

M(x, t, k) =

⎧⎪⎪⎨
⎪⎪⎩

(
[μ2]1

[μ1]2

a(k)

)
, k ∈ D1,( [μ2]1

a(k̄)
[μ1]2

)
, k ∈ D2.

(3.1)

From the definition (3.1) and (2.28), we can deduce that M(x, t, k) admits the symmetry

M(x, t, k̄) = σ2M(x, t, k)σ2, (3.2)

and satisfies the following Riemann-Hilbert problem:
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• Jump condition: The two limiting values

M±(x, t, k) = lim
ε→0

M±(x, t, k ± iε), k ∈ R, (3.3)

are related by

M+(x, t, k) = M−(x, t, k)J (x, t, k), k ∈R, (3.4)

where

J (x, t, k) = eikp(x,t,k)σ̂3J0(k), (3.5)

J0(k) =
(

1 r(k)

r(k) 1 + |r(k)|2
)

, r(k) = b(k)

a(k)
. (3.6)

• Normalize condition as k → ∞

M(x, t, k) = I + O(
1

k
). (3.7)

In order to get the information of the solution u(x, t), we should consider the asymptotic behavior 
of M(x, t, k) as k → 0, that is,

M(x, t, k) = e−d−σ3G−1(x, t)

[
I + k(ic+σ3 + i

(
0 u

ū 0

)
) + O(k2)

]
edσ3, (3.8)

where

c+ =
+∞∫
x

(
√

m(x′, t) − 1)dx′. (3.9)

Equations (3.8) show that the matrix-valued function M(x, t, k) contains all necessary infor-
mation for reconstructing the solution of the initial value problem of (1.1)-(1.2) in terms of the 
solution of a matrix-valued Riemann-Hilbert problem.

However, the jump relation (3.5) cannot be used immediately for recovering the solution of 
CSP equation (1.1)-(1.2). Since, in the representation of the jump matrix eikp(x,t,k)σ̂3J0(k) the 
factor J0(k) is indeed given in terms of the known initial data u0(x) but p(x, t, k) is not, it 
involves m(x, t) which is unknown.

To overcome this, we introduce the new (time-dependent) scale

y(x, t) = x −
+∞∫
x

(
√

m(x′, t) − 1)dx′ = x − c+(x, t), (3.10)

which make the jump matrix explicit, however, the solution of the initial problem can be given 
only in implicit form: it will be given in terms of functions in the new scale, whereas the original 
scale will also be given in terms of functions in the new scale.
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By the definition of the new scale y(x, t), we define

M̃(y, t, k) = M(x(y, t), t, k), (3.11)

then we can obtain the Riemann-Hilbert problem of M̃(y, t, k) as follows:

• Analyticity: M̃(y, t, k) is analytic in the two open half-planes D1 and D2, and continuous 
up to the boundary k ∈R.

• Jump condition: The two limiting values

M̃+(y, t, k) = M̃−(y, t, k)J̃ (y, t, k), k ∈R, (3.12a)

where the jump matrix is

J̃ (y, t, k) = ei(ky+ t
4k

)σ̂3J0(k) (3.12b)

with

J0(k) =
(

1 r(k)

r(k) 1 + |r(k)|2
)

(3.12c)

• Normalization:

M̃(y, t, k) → I, k → ∞. (3.13)

Theorem 3.1. Let M̃(y, t, k) satisfy the above conditions, then this Riemann-Hilbert problem 
has a unique solution. And the solution u(x, t) of the initial value problem (1.1)-(1.2) can be 
expressed, in parametric form, in terms of the solution of this Riemann-Hilbert problem:

u(x, t) = u(y(x, t), t), (3.14a)

where

x(y, t) = y + lim
k→0

(
(M̃(y, t,0))−1M̃(y, t, k)

)
11

− 1

ik
(3.14b)

e−2du(y, t) = lim
k→0

(
(M̃(y, t,0))−1M̃(y, t, k)

)
12

ik
(3.14c)

Proof. Since the jump matrix J̃ (y, t, k) is a Hermitian matrix, then the Riemann-Hilbert problem 
of M̃(y, t, k) indeed has a solution. Furthermore, the Riemann-Hilbert problem has only one 
solution because of the normalize condition.

The statements of the solution u(x, t) is following from the asymptotic formula (3.8). �
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4. Soliton solutions of the CSP equation

In this section, we construct the soliton solutions of the CSP equation. We should first address 
the residue conditions of the Riemann-Hilbert obtained.

4.1. Residue conditions

We recall a(k) is analytic in D1, hence we assume that a(k) has N simple zeros {kj }Nj=1 in 
D1.

From the definition of the function a(k) (2.33), we know that if a(kj ) = 0, then [μ2]1(x, t, kj )

and [μ1]2(x, t, kj ) are linearly dependent vectors. Then we conclude that there exists a constant 
bj such that

[μ1]2(x, t, kj ) = bj e
2ikj (y+ t

4k2
j

)

[μ2]1(x, t, kj ). (4.1)

It implies that

Resk=kj
[M]2(x, t, k) = Resk=kj

[μ1]2(x,t,k)
a(k)

= [μ1]2(x,t,kj )

ȧ(kj )

= Cje
2ikj (y+ t

4k2
j

)

[μ2]1(x, t, kj ) = Cje
2ikj (y+ t

4k2
j

)

[M]1(x, t, kj ),

(4.2)

where ȧ(k) = d(a(k))
dk

and Cj = bj

ȧ(kj )
. And recall the symmetry condition, the complex conjugate 

of (4.2) is

Resk=k̄j
[M]1(x, t, k) = C̄j e

−2ik̄j (y+ t

4k̄2
j

)

[M]2(x, t, k̄j ). (4.3)

4.2. Solitons

The solitons correspond to b(k) vanishing identically. In this case the jump matrix J in (3.12)
is the identity matrix and the Riemann–Hilbert problem of Theorem 3.1 consists of finding a 
meromorphic function M(y, t, k) satisfying (3.13) as well as the residue conditions (4.2) and 
(4.2). From (3.13) and (4.2), we get

[M(x, t, k)]2 =
(

0
1

)
+

N∑
j=1

Cje
2ikj (y+ t

4k2
j

)

k − kj

[M(x, t, kj )]1. (4.4)

If we impose the symmetry condition (2.7), equation (4.4) can be written as

(
−M21(x, t, k̄)

M11(x, t, k̄)

)
=
(

0
1

)
+

N∑
j=1

Cje
2ikj (y+ t

4k2
j

)

k − kj

(
M11(x, t, kj )

M21(x, t, kj )

)
. (4.5)

Evaluation at k̄j yields
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(−M21(x, t, kj )

M11(x, t, kj )

)
=
(

0
1

)
+

N∑
j=1

Cje
2ikj (y+ t

4k2
j

)

k̄j − kj

(
M11(x, t, kj )

M21(x, t, kj )

)
. (4.6)

Solving this algebraic system for M11(x, t, kj ) and M21(x, t, kj ), j = 1, 2, . . .N , and substitut-
ing the solution into (4.4) yields an explicit expression for [M(x, t, k)]2. Then by the symmetry 
(2.7), we deduce [M(x, t, k)]1. This solves the Riemann-Hilbert problem. Hence, the solution 
u(x, t) can be expressed perimetrically in terms of the solution of the Riemann-Hilbert problem 
by (3.14).

4.3. One-soliton solution

In this subsection we derive explicit formulae for the one-soliton solutions. Assume N = 1 so 
that there is one simple zero of a(k), k1 in upper-half plane. We find the algebraic system (4.6)
reduces to the following two equations

− M21(x, t, k1) = C1e
2ik1(y+ t

4k2
1
) 1

k̄1 − k1
M11(x, t, k1)

M11(x, t, k1) = 1 + C1e
2ik1(y+ t

4k2
1
) 1

k̄1 − k1
M21(x, t, k1) (4.7)

Solving for M11(x, t, k1) and M21(x, t, k1), we find

M11(x, t, k1) = 1

1 + |C1|2
4b2 e−4ψ2

, (4.8a)

M21(x, t, k1) = −C̄1e
−2iψ1

2ib

e−2ψ2

1 + |C1|2
4b2 e−4ψ2

, (4.8b)

where b denotes the image part of k1, i.e. we set k1 = a + ib, and ψj = ψj(y, t), j = 1, 2 denote 
the real and image part of the function ψ(y, t) defined as follows, respectively

ψ(y, t) = k1(y + t

4k2
1

) = ψ1 + iψ2. (4.8c)

A direct calculation shows that

ψ1 = ay + at

4(a2 + b2)
, ψ2 = by − bt

4(a2 + b2)
. (4.9)

Thus, from the symmetry we get the explicit expression for M(x, t, k)

M(x, t, k) =
(

1 + 1
k−k̄1

m̄22
1

k−k1
m12

− 1
k−k̄1

m̄12 1 + 1
k−k1

m22

)
, (4.10)

where
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m12 = C1e
2iψ1

e−2ψ2

1 + |C1|2
4b2 e−4ψ2

, m22 = −|C1|2
2ib

e−4ψ2

1 + |C1|2
4b2 e−4ψ2

. (4.11)

If assuming that C1 = 2be2ic+2y0 where c and y0 are real constants, we can find

m12 = be2iψ1+2ic 1

cosh (2ψ2 + 2y0)
, m22 = ib(tanh (2ψ2 + 2y0) − 1). (4.12)

Hence, we obtain the one-soliton solution as follows,

u(x, t) = u(y(x, t), t) = b

a2 + b2 e2ic+2d−2iθ+i π
2 e2iψ1

1

cosh (2ψ2 + 2y0)
, (4.13)

here tan (θ) = b
a

, d defined as (2.23), and the relation between variable x and y is

x = y − b

a2 + b2 (tanh (2ψ2 + 2y0) − 1). (4.14)

Remark 4.1. The expression (4.13) of the solution represents an envelope soliton of amplitude 
b

a2+b2 , the velocity 1
4(a2+b2)

and phase 2ψ1 in yt-coordinate. And from the equation (4.14), we 
have

∂x

∂y
= 1 − 2b2

a2 + b2

1

cosh2(2ψ2 + 2y0)
. (4.15)

Therefore, ∂x
∂y

→ 1 as y → ±∞.

Remark 4.2. We should point out that if we set b = p1R

2 and a = p1I

2 , then the solution (4.13)
obtained in this paper is equivalent to the expressions in [10]. Both of the expressions of the 
one-soliton solution have the same amplitude and phase. Hence, we conclude that

• When |a| > |b|, we get smooth soliton;
• When |a| < |b|, we get loop soliton;
• When |a| = |b|, we get cuspon soliton.

5. Long-time asymptotic analysis

The most important advantage of formulating a Riemann-Hilbert problem to the IVP for the 
CSP equation is we can rigorously analyze the asymptotic behavior of the solution as t → ∞ via 
the nonlinear steepest descent method [14].

In this section, we investigate the long-time asymptotic behavior of the non-soliton solution 
of the IVP for the CSP equation on the continuous spectrum. To make our analysis be simple, we 
assume that a(k) has no zeros.
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5.1. Main results

Theorem 5.1. Let u0(x) satisfy the initial value (1.2) and be such that no discrete spectrum is 
present. For ξ = x

t
< −ε, ε be any small positive number, the solution u(x, t) of the initial value 

problem (1.1)-(1.2) tends to 0 fast decay as t → ∞.

Theorem 5.2. Let u0(x) satisfy the hypotheses of Theorem 5.1. For ξ = x
t

> ε, ε be any small 
positive number, the solution u(x, t) of the initial value problem (1.1)-(1.2) equals

u(x, t) = 1√
t

[√
−ν(−κ0)

κ0
eiφ̃1 −

√
−ν(κ0)

κ0
e−iφ̃2

]
, (5.1)

where

κ0 = 1

2

√
t

|x| , (5.2)

φ̃1 = − iπ

4
+ arg(r(−κ0)) + arg(�(iν(−κ0))) + ν(−κ0) ln(

κ3
0

t
) − ν(κ0) ln(4κ2

0 )

− 1

π

κ0∫
−κ0

ln(s + κ0)d ln(1 + |r(s)|2) − t

κ0
− 1

π

κ0∫
−κ0

ln(1 + |r(s)|2)
s

ds − 2id − 2κ0δ1,

(5.3a)

φ̃2 = 3iπ

4
− arg(r(−κ0)) − arg(�(−iν(κ0))) + ν(κ0) ln(

κ3
0

t
) − ν(−κ0) ln(4κ2

0 )

+ 1

π

κ0∫
−κ0

ln(κ0 − s)d ln(1 + |r(s)|2) − t

κ0
− 1

π

κ0∫
−κ0

ln(1 + |r(s)|2)
s

ds + 2id + 2κ0δ1,

(5.3b)

with ν(k) defined by (5.40), d (which is a pure-image constant) defined by (2.23) and �(x)

defined as a Gamma function.

Remark 5.3. The sectors of different asymptotic behavior match, as ε → 0, through the fast 
decay. Indeed, as x

t
→ 0−, then κ0 → ∞ and ν(κ0) → 0 and thus the amplitude in (5.1) decays 

faster.

5.2. Proof of Theorem 5.1

The key feature of the method is the deformation of the original Riemann-Hilbert problem 
according to the signature table for the phase function θ in jump matrix J̃ written in the form

J̃ (y, t, k) = eitθ(ξ̃ ,k)σ̂3J0(k), (5.4)
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Fig. 1. The signs of Reiθ in the k-plane in the case ξ̃ < 0.

where

θ(ξ̃ , k) = ξ̃ k + 1

4k
, (5.5)

ξ̃ = y

t
. (5.6)

The signature table is the distribution of signs of Imθ(ξ̃ , k) in the k-plane,

Imθ(ξ̃ , k) = k2[ξ̃ − 1

4(k2
1 + k2

2)
], (5.7)

where k1 and k2 are the real and image part of k, respectively, i.e. k = k1 + ik2.
Under the condition ξ̃ < −ε for any ε > 0, then we have Imθ(ξ̃ , k) > 0 and Imθ(ξ̃ , k) < 0, as 

k2 = Imk < 0 and k2 = Imk > 0, respectively, see Fig. 1.
This suggests the use of the following factorization of the jump matrix for all k ∈ R:

J̃ (y, t, k) =
(

1 r(k)

1+|r(k)|2 e2itθ

0 1

)(
1

1+|r(k)|2 0

0 1 + |r(k)|2
)(

1 0
r(k)

1+|r(k)|2 e−2itθ 1

)
(5.8)

In order to deform the original Riemann-Hilbert problem (3.12), we need introduce a scalar 
function δ̃(k) which is defined by the following scalar Riemann-Hilbert problem

{
δ̃+(k) = δ̃−(k)(1 + |r(k)|2), k ∈R\0,

δ̃(k) → 1, k → ∞,
(5.9)

which has a explicit solution

δ̃(k) = exp

⎡
⎣ 1

2πi

∞∫
−∞

ln(1 + |r(s)|2)
s − k

ds

⎤
⎦ . (5.10)

Then, we make a transformation of M̃(y, t, k) as

M̃(1)(y, t, k) = M̃(y, t, k)δ̃σ3 . (5.11)

It yields that the Riemann-Hilbert problem for M̃(1)(y, t, k) is

{
M̃

(1)
+ (y, t, k) = M̃

(1)
− (y, t, k)J̃ (1)(y, t, k), k ∈ R,

M̃(1)(y, t, k) → I, k → ∞,
(5.12)
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Fig. 2. The sets {�j }6
j=1, in the k-plane as ξ̃ < 0.

where the jump matrix J̃ (1)(y, t, k) is defined by

J̃ (1)(y, t, k) =
(

1 r(k)

1+|r(k)|2
1

δ̃2−(k)
e2itθ

0 1

)(
1 0

r(k)

1+|r(k)|2 δ̃2+(k)e−2itθ 1

)
(5.13)

Without loss of generality, we may assume that the function r(k)

1+|r(k)|2 e−2itθ , i.e., the lower-
triangular factor of the second matrix of the right-hand side of (5.13) extends analytically to the 
region Imk > 0 and continuous in the closure of the region. And the first matrix of the right-hand 
side of (5.13) extends analytically to the region Imk < 0 and continuous in the closure of the 
region by taking conjugate. If the analytic conditions are dropped, we have a procedure to obtain 
the ‘weak’ analytic conditions, see the Remark 5.5.

Hence, we can introduce the following transformation if we have the proper analytic condi-
tions:

M̃(2)(y, t, k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

M̃(1)(y, t, k)

(
1 0

− r(k)

1+|r(k)|2 δ̃2+(k)e−2itθ 1

)
, k ∈ �1 ∪ �3,

M̃(1)(y, t, k), k ∈ �2 ∪ �5,

M̃(1)(y, t, k)

(
1 r(k)

1+|r(k)|2
1

δ̃2−(k)
e2itθ

0 1

)
, k ∈ �4 ∪ �6,

(5.14)

where �j, j = 1, 2, . . . , 6 are shown in Fig. 2.
We obtain the new Riemann-Hilbert problem for M̃(2)(y, t, k),

{
M̃

(2)
+ (y, t, k) = M̃

(2)
− (y, t, k)J̃ (2)(y, t, k), k ∈ �̃2,

M̃(1)(y, t, k) → I, k → ∞,
(5.15)

where



J. Xu, E. Fan / J. Differential Equations 269 (2020) 10322–10349 10339
J̃ (1)(y, t, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 0

r(k)

1+|r(k)|2 δ̃2+(k)e−2itθ 1

)
, k ∈ �̃2 ∩ D1,(

1 r(k)

1+|r(k)|2
1

δ̃2−(k)
e2itθ

0 1

)
, k ∈ �̃2 ∩ D2.

(5.16)

Theorem 5.4. As t → ∞, the solution u(x, t) of the initial value problem (1.1)-(1.2) decays fast 
in the range ξ > ε for any ε > 0.

Proof. The above transformation reduces the Riemann-Hilbert problem of M̃(2)(y, t, k) to that 
with exponentially decaying in t to the identity matrix jump matrix. Since this Riemann-Hilbert 
problem is holomorphic, its solution decays fast to I and consequently ũ(y, t) decays fast to 0
while y approaches fast x and thus the domain ξ̃ < −ε and ξ < −ε coincide asymptotically. �
Remark 5.5. If the analytic conditions are dropped, then there is a procedure to obtain the ‘weak’ 

analytic conditions. To show this, we write r(k)

1+|r(k)|2 as a Fourier transform with respect to θ ,

r(k)

1 + |r(k)|2 e−2itθ = e−2itθ

√
2π(k + i)2

∞∫
−∞

eisθ(k)ĝ(s)ds

= e−2itθ

√
2π(k + i)2

∞∫
t

eisθ(k)ĝ(s)ds + e−2itθ

√
2π(k + i)2

t∫
−∞

eisθ(k)ĝ(s)ds

= e−2itθ(k)hI (k) + e−2itθ(k)hII (k), (5.17)

where

ĝ(s) = 1√
2π

∞∫
−∞

e−isθ(k)g(θ)dθ,

g(θ) = r(k(θ))

1 + |r(k(θ))|2 (k(θ) + i)2.

Here e−2itθ(k)hII (k) has an analytic continuation to the upper half-plane and decays ex-
ponentially in L1 ∩ L∞(� ∩ {k|Imk < 0}), as t → ∞, while e−2itθ(k)hI (k) decays rapidly in 
L1 ∩ L∞(R), as t → ∞.

5.3. Proof of Theorem 5.2

Denote k0 = 1

2
√

ξ̃

, then the image part of the function θ becomes

Imθ = k2(k
2
1 + k2

2 − k2
0)

4k2(k2 + k2)
. (5.18)
0 1 2
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Fig. 3. The signs of Reiθ in the k-plane in the case ξ̃ > 0.

Under the assumption ξ̃ > ε > 0, we have the sign picture of Re(iθ) as in Fig. 3.
Hence, this suggests the use of the following factorizations of the jump matrix J̃ (y, t, k):

J̃ (y, t, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 0

r(k)e−2itθ 1

)(
1 r(k)e2itθ

0 1

)
, |k| > k0,(

1 r(k)

1+|r(k)|2 e2itθ

0 1

)(
1

1+|r(k)|2 0

0 1 + |r(k)|2
)(

1 0
r(k)

1+|r(k)|2 e−2itθ 1

)
, |k| < k0.

(5.19)

5.3.1. The conjugate transformation
The aim of the first transformation involves the removal of the diagonal factor in (5.19) for 

|k| < k0.
Introducing a scalar function δ(k) which satisfies the following scalar Riemann-Hilbert prob-

lem

⎧⎨
⎩

δ+(k) = δ−(k)(1 + |r(k)|2), |k| < k0,

= δ−(k) = δ(k), |k| > k0.

δ(k) → 1 k → ∞.

(5.20)

Then the function δ(k) is given by

δ(k) = exp

⎡
⎢⎣ 1

2πi

k0∫
−k0

ln (1 + |r(s)|2)
s − k

ds

⎤
⎥⎦ . (5.21)

The conjugate transformation

M̃(1)(y, t, k) = M̃(y, t, k)δ(k)σ3 , (5.22)

yields the Riemann-Hilbert problem for M̃(1)(y, t, k)
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{
M̃

(1)
+ (y, t, k) = M̃

(1)
− (y, t, k)J̃ (1)(y, t, k), k ∈ R,

M̃(1)(y, t, k) → I, k → ∞,
(5.23a)

where

J̃ (1)(y, t, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 0

r(k)δ2e−2itθ 1

)(
1 r(k)δ−2e2itθ

0 1

)
, |k| > k0,(

1 r(k)

1+|r(k)|2 δ−2− e2itθ

0 1

)(
1 0

r(k)

1+|r(k)|2 δ2+e−2itθ 1

)
, |k| < k0.

(5.23b)

Now, let us come back to the solution u(x, t). From (5.21) it follows that

δ(k) = δ0(1 + kδ1 + O(k2)), k → 0, (5.24)

where

δ0 = e
1

2πi

∫ k0−k0
ln(1+|r(s)|2)

s
ds

, δ1 = 1

2πi

k0∫
−k0

ln (1 + |r(s)|2)
s2 ds. (5.25)

If we write

M̃(y, t, k) = M̃0(y, t) + kM̃1(y, t) + O(k2), k → 0, (5.26)

and

M̃(1)(y, t, k) = M̃
(1)
0 (y, t) + kM̃

(1)
1 (y, t) + O(k2), k → 0, (5.27)

then from the transformation (5.22) we obtain

M̃0(y, t) = M̃
(1)
0 (y, t)δ

−σ3
0 , M̃1(y, t) = (M̃

(1)
1 (y, t) − δ1M̃

(1)
0 (y, t)σ3)δ

−σ3
0 . (5.28)

Hence, we have

iu(x, t)e−2d = δ2
0

[
(M̃

(1)
0 )−1M̃

(1)
1

]
12

, (5.29a)

c+ = −i
([

(M̃
(1)
0 )−1M̃

(1)
1

]
11

− δ1

)
. (5.29b)

5.3.2. The “open lense” transformation
For the convenience of the notation, we transverse the direction of the component |k| > k0

of the jump contour R for the Riemann-Hilbert problem of M̃(1)(y, t, k). Like the proof of 
Theorem 5.1, we assume that the functions appeared in the right-hand side of the jump matrix 
J̃ (1)(y, t, k) can be analytic extension to the proper regions. If the analytic extension dropped, 
then we can do a similar procedure to obtain the ‘weak’ analytic condition as the appendix A of 
[13].
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Fig. 4. The sets {�j }10
j=1, in the k-plane as ξ̃ > 0.

If we write

J̃ (1)(y, t, k) = (b
(1)
− (y, t, k))−1b

(1)
+ (y, t, k), (5.30)

then, we can make a transformation as

M̃(2)(y, t, k) = M̃(1)(y, t, k)T (12)(y, t, k), (5.31)

where T (12)(y, t, k) is defined as

T (12)(y, t, k) =
⎧⎨
⎩

(b
(1)
− (y, t, k))−1, k ∈ �1 ∪ �3 ∪ �9 ∪ �10,

I, k ∈ �2 ∪ �5,

(b
(1)
+ (y, t, k))−1, k ∈ �4 ∪ �6 ∪ �7 ∪ �8,

(5.32)

with the �j showed as the Fig. 4.
Thus, we obtain the Riemann-Hilbert problem for M̃(2)(y, t, k)

{
M̃

(2)
+ (y, t, k) = M̃

(2)
− (y, t, k)J̃ (2)(y, t, k), k ∈ �

M̃(2)(y, t, k) → I, k → ∞,
(5.33a)

where

J̃ (2)(y, t, k) = (b
(2)
− (y, t, k))−1b

(2)
+ (y, t, k)

=
⎧⎨
⎩
I, k ∈ R,

b
(1)
+ (y, t, k), k ∈ � ∩ Reiθ > 0,

(b
(1)
− (y, t, k))−1, k ∈ � ∩ Reiθ < 0.

(5.33b)

Now let us come back to the solution u(x, t) again. The solution u(y, t) is related to the 
solution of the Riemann-Hilbert problem evaluated at k = 0, it may be affected by this transfor-
mation. However, due to the following proposition, this transformation turns out not to affect the 
terms in the expansion of the solution of the Riemann-Hilbert problem at k = 0 at least up to the 
terms of order O(k2) and thus it does not really affect the leading order asymptotic behavior of 
u(y, t).

Proposition 5.6. The reflection coefficient r(k) = O(k3) as k → 0.

Proof. A direct calculation following from (2.34) and from the identity |r(k)|2 = 1
2 −1. �
|a(k)|
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So, if we write

M̃(2)(y, t, k) = M̃
(2)
0 (y, t) + kM̃

(2)
1 (y, t) + O(k2), k → 0, (5.34)

then we have

iu(x, t)e−2d = δ2
0

[
(M̃

(2)
0 )−1M̃

(2)
1

]
12

, (5.35a)

c+ = −i
([

(M̃
(2)
0 )−1M̃

(2)
1

]
11

− δ1

)
. (5.35b)

Set

ω
(2)
± (y, t, k) = ±(b

(2)
± (y, t, k) − I), ω = ω

(2)
+ + ω

(2)
− , (5.36)

and let μ(2)(y, t, k) be the solution of the singular integral equation μ(2) = I + Cωμ(2), here Cω

is defined as

Cωf = C+(f ω−) + C−(f ω+), ∀f is a 2 × 2 matrix-valued function,

where

(C±f )(k) =
∫
�

f (ξ)

ξ − k±
dξ

2πi
, k ∈ �,f ∈ L2(�),

then

M̃(2)(y, t, k) = I + 1

2πi

∫
�

μ(2)(y, t, η)ω(y, t, η)

η − k
dη, k ∈ C\� (5.37)

is the solution of Riemann-Hilbert problem (5.33).
Expanding the integral (5.37) around k = 0, we have

M̃
(2)
0 (y, t) = I + 1

2πi

∫
�

μ(2)(y, t, η)ω(y, t, η)

η
dη, (5.38a)

M̃
(2)
1 (y, t) = 1

2πi

∫
�

μ(2)(y, t, η)ω(y, t, η)

η2 dη. (5.38b)

Remark 5.7. Since, ω(y, t, k) decays rapidly at 0, the integral (5.38) are nonsingular.
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Fig. 5. The jump contour �′ in the k-plane as ξ̃ > 0.

5.3.3. Reduction to the model problem
Following a similar procedure as section 5.4 and 5.5 in [13], as t → ∞, we can reduce the 

Riemann-Hilbert problem for M̃(2)(y, t, k) to two small “crosses” which are centered around 
±k0, showed in Fig. 5. And the contributions of these two crosses to the leading order asymptotic 
behavior of the solution u(x, t) are separated out.

In order to calculate the explicit asymptotic behavior of the solution u(x, t) in terms of the 
Riemann-Hilbert problem for M̃(2)(y, t, k), as t → ∞, we need reduce the Riemann-Hilbert 
problem to a model problem whose solution can be given explicitly in terms of parabolic cylinder 
functions. To do this, we should evaluate the leading term of the function δ(k)e−itθ(k) as k →
±k0.

Recall that

δ(k) = e
1

2πi

∫ k0−k0
ln(1+|r(s)|2)

s−k
ds = (k − k0)

iν(k0)

(k + k0)iν(−k0)
eχ(k), (5.39)

where

ν(k) = − 1

2π
ln(1 + |r(k)|2), χ(k) = − 1

2πi

k0∫
−k0

ln(k − s)d(ln(1 + |r(s)|2)). (5.40)

And as k → k0,

θ(k) = 1

2k0
+ 1

4k3
0

(k − k0)
2 − 1

4η4 (k − k0)
3, η lies between k and k0. (5.41)

Let us consider a scaling transformation as

(N(k0)f )(k) = f (k0 +
√

k3
0

t
k), (5.42)

then the function δ(k)e−itθ(k) becomes

(N(k0)δe
−itθ )(k) = δ

(0)
(k0)

δ
(1)
(k0)

, (5.43)

where

δ
(0)
(k ) = (

k3
0 )

iν(k0)

2 (2k0)
−iν(−k0)eχ(k0)e

− it
2k0 , (5.44a)
0 t
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δ
(1)
(k0)

= kiν(k0)(
2k0 +

√
k3

0
t
k

2k0
)−iν(−k0)e

χ(k0+
√

k3
0
t

k)−χ(k0)e− ik2
4 , (5.44b)

here kiν(k0) is cut along (−∞, 0).
For k → −k0, the scaling transformation is

(N(−k0)f )(k) = f (−k0 +
√

k3
0

t
k), (5.45)

then the function δ(k)e−itθ(k) becomes

(N(−k0)δe
−itθ )(k) = δ

(0)
(−k0)

δ
(1)
(−k0)

, (5.46)

where

δ
(0)
(−k0)

= (
k3

0

t
)

−iν(−k0)

2 (2k0)
iν(k0)eχ̃(−k0)e

it
2k0 , (5.47a)

δ
(1)
(−k0)

= (−k)−iν(−k0)(
2k0 −

√
k3

0
t
k

2k0
)iν(k0)e

χ̃(−k0+
√

k3
0
t

k)−χ̃ (−k0)e
ik2
4 (5.47b)

with

χ̃ (k) = − 1

2πi

k0∫
−k0

ln(s − k)d ln(1 + |r(s)|2), (5.48)

here (−k)−iν(−k0) is cut along (0, ∞).
Hence, following [13], the solution of the Riemann-Hilbert problem for M̃(2)(y, t, k) formu-

lated on two separated crosses centered at k = ±k0 can be approximated, for large t, in terms of 
the solution M̃(model)(y, t, k) of the model problem formulated on a cross centered at k = 0 and 
evaluated for large k.

For the k centered at k0 case, the solution of the model Riemann-Hilbert problem for 
M̃(model)(y, t, k) has the following form, as Imk > 0,

M̃(model)(y, t, k) =
(

M̃
(model)+
11 M̃

(model)+
12

M̃
(model)+
21 M̃

(model)+
22

)
, (5.49)

where

M̃
(model)+
11 = e

π
4 ν(k0)D−a1(e

− iπ
4 k),

M̃
(model)+
21 = 1

β
k0
12

e
π
4 ν(k0)[ d

dk
D−a1(e

− iπ
4 k) − ik

2
D−a1(e

− iπ
4 k)],

M̃
(model)+ = e− 3π

4 ν(k0)Da (e− 3iπ
4 k),
22 1
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M̃
(model)+
12 = 1

β
k0
21

e− 3π
4 ν(k0)[ d

dk
Da1(e

− 3iπ
4 k) + ik

2
Da1(e

− 3iπ
4 k)] (5.50)

with a1 = iν(k0), and βk0
12 = iM̃

(k0)1
12 , βk0

21 = −iM̃
(k0)1
21 . Here M̃(k0)1

ij denotes the (i, j )-th element 

of the 2 × 2 matrix M̃(k0)1 defined by (5.51),

M̃k0(y, t, k) = I − M̃(k0)1

k
+ O(

1

k2 ), k → ∞, (5.51)

where M̃k0(y, t, k) solves the following the Riemann-Hilbert problem

{
M̃k0+(y, t, k) = M̃k0−(y, t, k)J̃ (k0)(x, t, k), k ∈R,

M̃k0(y, t, k) → I, k → ∞,
(5.52)

with

J̃ (k0)(x, t, k) = k−iν(k0)σ̂3e
ik2
4 σ̂3

(
1 r(k0)

r(k0) 1 + |r(k0)|2
)

. (5.53)

Similarly, as Imk < 0,

M̃
(model)−
11 = e− 3π

4 ν(k0)D−a1(e
3iπ

4 k)

M̃
(model)−
21 = 1

β
k0
12

e− 3π
4 ν(k0)[ d

dk
D−a1(e

3iπ
4 k) − ik

2
D−a1(e

3iπ
4 k)]

M̃
(model)−
22 = e

π
4 ν(k0)Da1(e

iπ
4 k)

M̃
(model)−
12 = 1

β
k0
21

e
π
4 ν(k0)[ d

dk
Da1(e

iπ
4 k) + ik

2
Da1(e

iπ
4 k)]. (5.54)

Hence, from

(M̃
(model)
− (y, t, k))−1(M̃

(model)
+ (y, t, k)) =

(
1 r(k0)

r(k0) 1 + |r(k0)|2
)

, (5.55)

we have

r(k0) = e− π
2 ν(k0)

β
k0
21

Wr[Da1(e
iπ
4 k),Da1(e

− 3iπ
4 k)]

= e− π
2 ν(k0)

β
k0
21

√
2πe

iπ
4

�(−a1)
.

(5.56)

Here Wr[Da1(e
iπ
4 k), Da1(e

− 3iπ
4 k)] denotes the Wronskian determinant. By βk0

12β
k0
21 = ν(k0), we 

can compute
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β
k0
12 = −e− π

2 ν(k0)

r(k0)

√
2πe− iπ

4

�(a1)
. (5.57)

Similarly, we can show that the solution of the model problem corresponding to −k0 as fol-
lows,
for k ∈ Imk > 0,

M̃
(model)+
11 = e− 3π

4 ν(−k0)Da2(e
− 3iπ

4 k)

M̃
(model)+
21 = 1

β
−k0
12

e− 3π
4 ν(−k0)[ d

dk
Da2(e

− 3iπ
4 k) + ik

2
Da2(e

− 3iπ
4 k)]

M̃
(model)+
22 = e

π
4 ν(−k0)D−a2(e

− iπ
4 k)

M̃
(model)+
12 = 1

β
−k0
21

e
π
4 ν(−k0)[ d

dk
D−a2(e

− iπ
4 k) − ik

2
D−a2(e

− iπ
4 k)]; (5.58a)

for k ∈ Imk < 0,

M̃
(model)−
11 = e

π
4 ν(−k0)Da2(e

iπ
4 k)

M̃
(model)−
21 = 1

β
−k0
12

e
π
4 ν(−k0)[ d

dk
Da2(e

iπ
4 k) + ik

2
Da2(e

iπ
4 k)]

M̃
(model)−
22 = e− 3π

4 ν(−k0)D−a2(e
3iπ

4 k)

M̃
(model)−
12 = 1

β
−k0
21

e− 3π
4 ν(−k0)[ d

dk
D−a2(e

3 iπ
4 k) − ik

2
D−a2(e

3iπ
4 k)]. (5.58b)

Then, we have

β
−k0
12 = e− π

2 ν(−k0)

r(−k0)

√
2πe

iπ
4

�(−a2)
, β

−k0
21 = −e− π

2 ν(−k0)

r(−k0)

√
2πe− iπ

4

�(a2)
, (5.59)

with a2 = iν(−k0), β
−k0
12 = −iM̃

(−k0)1
12 and β−k0

21 = iM̃
(−k0)1
21 . The definition of M̃(−k0)1

ij is simi-

lar as M̃(k0)1
ij (see equation (5.51)).

Then, similarly as the formulae (5.110) in [13], we can know the leading order asymptotic 
behavior of the solution u(y, t) as t → ∞ comes from the M̃(k0)1

12 and M̃(−k0)1
12 , that is,

iu(y, t)e−2d = 1√
k0t

[
M̃

(k0)1
12 + M̃

(−k0)1
12

]
. (5.60)

A direct calculation shows that the leading order asymptotic behavior of the solution u(y, t) is

iu(y, t)e−2d = δ2
0

1√
t

[√
−ν(−k0)

k0
eiφ1 −

√
−ν(k0)

k0
e−iφ2

]
, (5.61)

where
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φ1 = iπ

4
+ arg(r(−k0)) + arg(�(iν(−k0))) + ν(−k0) ln(

k3
0

t
)

− ν(k0) ln(4k2
0) − 1

π

k0∫
−k0

ln(s + k0)d ln(1 + |r(s)|2) − t

k0
, (5.62a)

φ2 = iπ

4
− arg(r(−k0)) − arg(�(−iν(k0))) + ν(k0) ln(

k3
0

t
)

− ν(−k0) ln(4k2
0) + 1

π

k0∫
−k0

ln(k0 − s)d ln(1 + |r(s)|2) − t

k0
. (5.62b)

The relation c+ lies between the new scale y and the original scale x,

ic+ = −δ1 + o(1), t → ∞. (5.63)

Hence, the solution u(x, t) has the asymptotic (5.1).
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