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Abstract

In some applied models (of flocking or of the crowd control) it is more natural to deal with elements of 
a metric space (as for instance a family of subsets of a vector space endowed with the Hausdorff metric) 
rather than with vectors in a normed vector space. We consider an optimal control problem involving the 
so called morphological control system whose trajectories are time dependent tubes of subsets of RN and 
show that the theory of Hamilton-Jacobi-Bellman inequalities can be extended to this framework.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the Hamilton-Jacobi partial differential equation⎧⎨⎩ −∂W

∂t
+ H(x,−∂W

∂x
) = 0 on [0,1] ×RN

W(1, ·) = g(·) on RN,

(HJB)
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where the Hamiltonian H : RN ×RN → R and the final time condition g : RN → R are given. 
The classical results of the viscosity solutions theory provide sufficient conditions for the exis-
tence and uniqueness of solutions to this first order PDE. In this theory, started in [9] and [10], 
solutions are understood in a weak sense. Namely, notions of generalized gradients (super and 
subdifferentials) are introduced to define super/subsolutions of (HJB). Then a continuous func-
tion W : [0, 1] × RN → R is called a viscosity supersolution of (HJB) equation if for every 
(t, x) ∈]0, 1[×RN ,

−pt + H(x,−px) ≥ 0, ∀ (pt ,px) ∈ ∂−W(t, x), (1)

where ∂−W(t, x) denotes the subdifferential of W at (t, x). Further, W is called a viscosity 
subsolution of (HJB) equation if for every (t, x) ∈]0, 1[×RN ,

−pt + H(x,−px) ≤ 0, ∀ (pt ,px) ∈ ∂+W(t, x), (2)

where ∂+W(t, x) denotes the superdifferential of W at (t, x). If W is simultaneously a viscosity 
super and subsolution, then it is called a viscosity solution of (HJB).

The above Hamilton-Jacobi equation arises in optimal control theory in connection with the 
Mayer problem:

V (t0, x0) := infg(x(1))

over all trajectories of the control system

ẋ(t) = f (x(t), u(t)), x(t0) = x0, u(t) ∈ U,

where U is a metric space and x0 ∈ RN , t0 ∈ [0, 1], g : RN → R, f : RN × U → RN are given. 
Then the associated Hamiltonian is defined by

H(x,p) = sup
u∈U

〈p,f (x,u)〉

for all x, p ∈ RN and it is convex in the second variable. Under some technical assumptions, 
the value function V : [0, 1] × RN → R defined above is continuous and is the unique viscos-
ity solution of (HJB) satisfying the final time condition V (1, ·) = g(·). The Hamiltonian being 
convex in the last variable, viscosity solutions of (HJB) can be equivalently defined using (con-
tingent) directional derivatives of solutions instead of sub/superdifferentials, see [12–14]. The 
two inequalities (1) and (2) then become: for all (t, x) ∈ [0, 1[×RN ,⎧⎨⎩

inf
u∈U

D↑W(t, x)(1, f (x,u)) ≤ 0,

sup
u∈U

D↑(−W)(t, x)(1, f (x,u)) ≤ 0,
(C-HJB)

where D↑W(t, x)(1, f (x, u)) denotes the contingent directional derivative of W at (t, x) in the 
direction (1, f (x, u)) and similarly for D↑(−W)(t, x)(1, f (x, u)). Let us underline that the first 
inequality involving directional derivatives does allow to build an optimal synthesis, while this 
is not the case of the inequalities (1), (2) involving subdifferentials/superdifferentials, cf. [12]. 
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Functions W satisfying inequalities like (C-HJB) are called contingent solutions to (HJB) equa-
tion.

In the recent years, motivated by some potential applications in the study of complex systems, 
or multi-agent systems, whose models are described in the space of probability measures, there 
is a growing interest in Hamilton-Jacobi equations stated on metric spaces instead of RN . For 
instance, in [16] the Hopf-Oleinik formula is extended to complete separable metric spaces in 
which closed balls are compact to show the existence of solutions to a Hamilton-Jacobi equa-
tion. The Hamiltonian considered in [16] is less general than in (HJB) and the notion of gradient 
is replaced by local slops of functions. More general results, including the uniqueness of solu-
tions to a class of Hamilton-Jacobi equations in geodesic metric spaces have been obtained in 
[1] by means of extension of the viscosity solutions theory and were applied to investigate a 
Hamilton-Jacobi equation in the Wasserstein space of probability measures. See also [19] for the 
characterization of the value function of the Mayer problem as the unique bounded Lipschitz 
viscosity solution of an associated Hamilton-Jacobi equation in the Wasserstein space and [7]
for necessary conditions in the form of an (HJB) equation solved by the value function in a suit-
able viscosity sense and for a further discussion of the relevant literature on control problems in 
Wasserstein spaces.

Let K (RN) denote the space of compact subsets of RN . Given a probability measure μ on 
RN , it is always possible to “scalarize” K (RN) by attributing to each compact K ⊂ RN its 
probability measure μ(K). However this makes two sets having the same probabilities indistin-
guishable. When the evolution of probability measures is governed by the so-called continuity 
equation with Lipschitz continuous velocity field, then solutions of the continuity equation are 
given via the pushforward map that involves evolution of flows under an ODE. The natural ques-
tion arises then whether the Hamilton-Jacobi theory can be extended also to the space K (RN)

without involving “scalarization” of sets. In this way one can deal with subsets evolving in the 
space K (RN) under the action of a mutational control system. The right-hand sides of such sys-
tems are described using the so-called transitions on metric spaces, see for instance [2], [3], [17], 
where many classical results of ODEs on vector spaces were extended to metric spaces. Histor-
ically, morphological analysis in [2] was motivated by mathematical economics to describe the 
evolution of sets of commodities vectors and next, by the piloting of the evolution of a camera 
to focus on a fuzzy image to make it sharp, cf. [11]. It was also used to design a descent algo-
rithm in shape optimization to find global minima in [15] and applied to sweeping processes [5]. 
Some applications dealt with the cell morphogenesis and the modelization of zebra fishes, see 
the bibliography of [21], for instance.

This general framework allows to consider problems involving evolution of tubes (typical 
for problems with uncertainties and disturbances), instead of (single-valued) trajectories, see 
for instance [8] for examples of models of moving populations based on morphological control 
systems and its bibliographical comments and also [6] for further references. Recently, in [6], 
a characterization of the value function of a Mayer problem stated on K (RN) as the unique 
bounded Lipschitz solution of contingent Hamilton-Jacobi-Bellmann inequalities was given. The 
specific future of the multi-agent system investigated in [6] consists in the fact that the dynamic 
of each agent is described by a differential inclusion depending on the crowd of agents.

The present work is devoted to an extension of the Hamilton-Jacobi theory of optimal control 
problems to the framework of the metric space (K (RN), dH ) of nonempty compact subsets of 
RN supplied with the Hausdorff distance dH . Since this space does not have a vector struc-
ture, control systems on (K (RN), dH ) are described by the so-called mutational equations 
whose solutions are time dependent tubes. For the set-dependent cost function we introduce 
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the corresponding value function and show that it satisfies two generalized contingent Hamilton-
Jacobi inequalities, similar to (C-HJB), with directional derivatives defined using transitions on 
(K (RN), dH ). Then we prove that continuous solutions to these contingent inequalities are 
unique once the final time condition is imposed. The space (K (RN), dH ) not having a dual, the 
expression of solutions to the Hamilton-Jacobi equation involving sub/superdifferentials is not 
extended yet to this framework and is an interesting open question.

More precisely, we consider a complete separable metric space U and the Lebesgue mea-
surable controls u(·) : [0, 1] → U . Denote by Lip(RN, RN) the set of bounded Lipschitz maps 
from RN into itself. Let f : K (RN) × U → Lip(RN, RN), K0 ⊂ RN and consider the system

x′(τ ) = f
(
K(τ),u(τ)

)(
x(τ)

)
for a.e. τ ∈ [0,1], x(0) ∈ K0, (3)

associated to a control u(·). Under the classical assumptions, given a tube t � K(t) ⊂ RN , to 
every (fixed) control u(·) and initial condition x0 ∈ K0 corresponds the unique solution x(·) of 
the differential equation in (3) with x(0) = x0. We are interested here by a particular instance of 
tubes that are reachable sets. In fact, by [17, Section 5.3.1], there exists a tube K(·) so that K(t)

coincides with the reachable set of (3) at time t . In other words K(·) solves the “morphological 
equation”

◦
K(·) � f

(
K(·), u(·)), K(0) = K0 (4)

introduced in [2]. The above inclusion seems to be well adapted to describe the movement of the 
crowd of agents t � K(t) ⊂ RN and to control it by using either open-loop controls, or closed 
loop controls.

In this context, if the set K0 = {x1
0 , ..., xm

0 } is finite, then for every t ∈ [0, 1], the set K(t) =
{x1(t), ..., xm(t)} is also finite and each xi(·) can be seen as an agent whose velocity at time τ , 
according to (3), is equal to f

(
K(τ), u(τ)

)
(xi(τ )). That is (xi)′(τ ) depends on u(τ), the position 

K(τ) of all the agents as well as on agent’s own position xi(τ ). More generally, even when K0
is not finite, system (3) can be interpreted in the following way: given a control u(·), every agent 
(indexed by its initial condition x(0) = x0 ∈ K0) has its dynamic depending on the evolution of 
the whole crowd of agents K(·) and its own evolution x(·).

Let g : K (RN) → R ∪{+∞} and consider the Mayer type problem, where the controller has 
to find an optimal control ū(·) in the sense that the corresponding solution K̄(·) of (4) with u(·)
replaced by ū(·) satisfies

g(K̄(1)) = infg
(
K(1)

)
over all the solution-control pairs (K(·), u(·)) of (3). In this paper we show that the value function 
associated to this Mayer problem satisfies two generalized contingent Hamilton-Jacobi inequali-
ties in the same spirit as (C-HJB). We also prove the uniqueness of continuous solutions to these 
contingent inequalities. At this point we would like to underline that the model we investigate 
here is substantially different from the one in [6], where there is no controller and agents use 
the dynamics described by the differential inclusion x′(t) ∈ F(x(t), E(t)), involving the set-
valued map F : RN × K (RN) → K (RN) and the crowd of agents E(t). Even when for some 
f : RN × K (RN) × U → RN we have F(x, E) = f (x, E, U), the contingent inequalities we 
derive to characterize the value function are different from those of [6, Theorem 6.1].
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This is due to the fact that the notion of solutions to crowd dependent systems considered 
in [6] is to a large extent different from the one to classical control systems on vector spaces. 
Indeed, when F and f do not depend on the second variable and F(x) = f (x, U), it is well 
known that solutions of the differential inclusion x′ ∈ F(x) and the open-loop control system 
x′ = f (x, u(t)), u(t) ∈ U do coincide under very mild assumptions. This is not the case however 
when F depends on both variables and E(t) represents an admissible subflow at time t . Indeed, 
in [6] the authors consider a much larger family of “solutions” (subflows) E(·) associated to F
than the one given by solution-control pairs of (4). For instance, if f : RN × K (RN) × U →
RN is Lipschitz and F(x, E) = f (x, E, U) for every (x, E) ∈ RN × K (RN), then Lipschitz 
closed-loop controls x �→ u(x) ∈ U are admissible as well, see [6, Model 3.2]. Then, in the 
Mayer problem, the minimization is performed over all solutions E(·). This implies, on one 
hand, that the resulting value function is smaller than ours and, on the other hand, that there is 
no common control that governs every agent. In fact, in the setting of [6], at time s each agent 
x(·) may pick its own velocities in the set F(x(s), E(s)) (and the corresponding controls in the 
set U ) with an implicit restriction that this selection of controls induces trajectories in a closed 
subset A ⊂ C([0, 1], RN) and for each time t the resulting subflow E(t) is equal to the reachable 
set at time t of the “constrained” differential inclusion x′ ∈ F(x, E(·)), x(0) ∈ K0, x(·) ∈ A. 
Hence “subflows” of agents are indexed by closed subsets A ⊂ C([0, 1], RN). In [6] several 
examples of admissible indices A are provided, the set of all such indices associated to F being 
not known. In other words, some controls available to agents are eliminated by the macroscopic 
requirement about E(t), while at the microscopic level various controls may be admissible. In 
the difference with this approach, our model extends the classical open-loop control systems to 
systems whose right-hand side depends on both open-loop controls and the evolution of the whole 
crowd of agents K(·). Let us underline again that the crowds (subflows of differential inclusions) 
introduced in [6] via compatibility indices A do increase the number of admissible solutions of 
the control system after replacing it by a differential inclusion and de facto do abolish the role 
of the “controller” in steering the control system (3). Another important difference is due to the 
fact that [6] addressed the question of uniqueness in the class of bounded Lipschitz continuous 
functions only, while in the present paper we investigate uniqueness in the class of all continuous 
functions, that is more in the spirit of the classical viscosity solutions theory.

The outline of this paper is as follows. In Section 2 we present some basic definitions and 
preliminaries about mutational and morphological control systems. In Section 3 we show that the 
value function of a general mutational optimal control problem satisfies the mutational contingent 
Hamilton-Jacobi inequalities. The main results are stated in Section 4, while Section 5 is devoted 
to optimal feedback set-valued map. Finally, in the last section, we provide proofs of all the 
results from Section 4.

2. Notations and preliminaries

2.1. Basic definitions

Let (E, d) be a metric space (with the metric d). For a nonempty K ⊂ E and x ∈ E the 
distance from x to K is defined by dist (K, x) := infy∈K d(y, x). Denote by B(x, r) the closed 
ball in E centered at x with radius r > 0. We first recall some notions from [2], see also [17].

Definition 2.1. (Transition) A map V : [0, 1] × E → E is called a transition on (E, d) if it 
satisfies the following conditions:
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(i) ∀ x ∈ E, V (0, x) = x;

(ii) ∀ x ∈ E, ∀ t ∈ [0, 1[, lim
h→0+

1

h
· d

(
V

(
t + h,x

)
,V

(
h,V (t, x)

)) = 0;

(iii) α(V ) := sup
x,y∈E

x �=y

lim sup
h→0+

max

{
0 ,

d
(
V (h, x),V (h, y)

) − d(x, y)

h · d(x, y)

}
< +∞;

(iv) β(V ) := sup
x∈E

lim sup
h→0+

d(x,V (h, x))

h
< +∞.

Given x ∈ E and a transition V , define z(s) = V (s, x) for s ∈ [0, 1]. Then for every t ∈ [0, 1[
the curve V (·, z(t)) : [t, 1] → E can be regarded as an approximation of the “differential from 
the right” of z(·) at time t because

lim
h→0+

1

h
· d (V (h, z(t)), z(t + h)) = 0.

Note that the map V : [0, 1] ×E → E defined by V (h, x) = x is a (neutral) transition. Below we 
denote it by 0. If E is a normed vector space, then for any y ∈ E, the map V : [0, 1] × E → E

defined by V (h, x) = x + hy is an example of transition. The operation “+” being absent in 
general metric spaces, the introduced transitions allow to bypass it and still to study solutions of 
“differential equations.”

By [17, p. 33] every transition is Lipschitz on [0, 1] ×E with the Lipschitz constant depending 
only on α, β . There are many ways to describe the transitions. Below, we use the notation �(E)

for some fixed subsets of transitions on (E, d).

Definition 2.2. (Pseudo-distance on transitions) Let �(E) be a given nonempty subset of tran-
sitions on (E, d). For any transitions V , T ∈ �(E), define

d�(V ,T ) := sup
x∈E

lim sup
h→0+

1

h
· d

(
V (h, x),T (h, x)

)
.

The basic idea of the pseudo-distance d�(V , T ) is to compare for each x ∈ E the two curves 
V (·, x) and T (·, x) : [0, 1] → E with the same initial point x when h → 0+. Observe that 
d�(V , T ) is always finite. Indeed,

d�(V ,T ) ≤ sup
x∈E

lim sup
h→0+

1

h
·
(
d(V (h, x), x) + d(x,T (h, x))

)
≤ β(V ) + β(T ) < +∞.

In general, d� is only a pseudo-distance. For some choices of the sets �(E) it may become a 
distance.

Example. For f ∈ Lip(RN, RN) define Vf (h, x) = z(h), where z(·) is the solution of the ODE 
z′ = f (z), z(0) = x. Then Vf is a transition on (RN, | · |) and it is not difficult to realize that d�

is a distance on �(RN) := {Vf | f ∈ Lip(RN, RN)}.

Definition 2.3. (Mutation) Let �(E) be a given nonempty subset of transitions on (E, d) and 
x(·) : [0, 1] → E. For t ∈ [0, 1[, the set
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o
x(t) :=

{
V ∈ �(E)

∣∣∣∣ lim
h→0+

1

h
· d (V (h, x(t)), x(t + h)) = 0

}
is called the mutation of x(·) at time t (relative to �(E)).

In general, mutations may be empty for some times t and may also be multivalued. When it 
is clear from the context, we shall avoid writing “relative to �(E)”.

Definition 2.4. (Primitive) Let �(E) be a given nonempty subset of transitions on (E, d) and 
V (·) : [0, 1] → �(E). A Lipschitz continuous function x(·) : [0, 1] → E is called a primitive of 
V (·) if:

o
x(t) � V (t) for a.e. t ∈ [0,1]

i.e. lim
h→0+

1

h
· d(

V (t)(h, x(t)), x(t + h)
) = 0 for a.e. t ∈ [0,1].

We next recall the extension of the notion of (contingent) directional derivative with respect 
to both time and state to metric spaces, cf. [2]. Below, 1 : [0, 1] ×R → R denotes the transition 
defined by 1(h, t) = t + h.

Definition 2.5. (Contingent directional derivative) Let W : [0, 1] × E → R ∪ {±∞} and (t, x)

be in the domain of W with t < 1. For any transition V : [0, 1] × E → E, the contingent direc-
tional derivative of W at (t, x) in the direction (1, V ) is defined by

◦
D↑W(t, x)(1,V ) = lim

ε→0+ inf
h∈]0,ε]

|t+h−t ′|≤εh
y∈B(V (h,x),εh)

W(t ′, y) − W(t, x)

h
.

Recall that (t, x) is said to be in the domain of W if and only if W(t, x) �= ±∞. The above 
limit does exist, because the infimum appearing on the right defines a nonincreasing with respect 
to ε > 0 function. In particular, there exist sequences εn > 0, hn > 0 converging to 0, a sequence 
xn ∈ E converging to x and a sequence tn converging to t such that

◦
D↑W(t, x)(1,V ) = lim

n→+∞
W(tn, xn) − W(t, x)

hn

,

|tn − (t + hn)| ≤ εnhn, d (xn,V (hn, x)) ≤ εnhn.

That is 
◦
D↑W(t, x)(1, V ) is the infimum of lower limits W(tn,xn)−W(t,x)

hn
over all sequences 

(hn, tn, xn) converging to (0+, t, x) and satisfying |tn − (t + hn)| = o(hn), d (xn,V (hn, x)) =
o(hn).

Observe that if W is locally Lipschitz, then the contingent directional derivative is finite and 
is a Dini like directional derivative:

◦
D↑W(t, x)(1,V ) = lim inf

W
(
t + h,V (h, x)

) − W(t, x)
. (5)
h→0+ h
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Definition 2.6. (Contingent transition set) Let K be a subset of a metric space E, x ∈ K and 

�(E) be a given nonempty subset of transitions on (E, d). The contingent transition set 
◦
T K(x)

(relative to �(E)) is defined by

◦
T K(x) :=

{
V ∈ �(E)

∣∣∣∣ lim inf
h→0+

1

h
· dist

(
K,V (h, x)

) = 0

}
.

Notice that if 0 ∈ �(E), then 0 ∈ ◦
T K(x).

We would like to underline that 
◦
T K(x) ⊂ �(E) and it inherits some properties of �(E). For 

instance, if �(E) is closed, then so is 
◦
T K(x). In the difference with the notion of contingent 

cone in normed vector spaces, in general, 
◦
T K(x) is not a cone.

Given a function W : [0, 1] × E → R ∪ {+∞} denote by E p(W) its epigraph, i.e. the set 
{(t, x, r) | (t, x) ∈ [0, 1] × E, r ≥ W(t, x)}. From the properties of mutations, we deduce the 
following result similar to [2, Proposition 1.8.5]:

Proposition 2.7. Let �(E) be a given nonempty subset of transitions on (E, d) and 0, 1 : [0, 1] ×
R →R be transitions defined by 1(h, s) = s + h and 0(h, z) = z. Define the set of transitions

�̃(R× E ×R) := {(1,V ,0
) |V ∈ �(E)}.

Consider W : [0, 1] × E → R ∪ {+∞} and (t, x) in the domain of W with t < 1. Then for any 
transition V ∈ �(E), we have

(
1,V ,0

) ∈ ◦
T E p(W)(t, x,W(t, x)) ⇐⇒ ◦

D↑W(t, x)(1,V ) ≤ 0,

where 
◦
T E p(W)(t, x, W(t, x)) is defined relatively to �̃(R × E ×R).

Proof. Fix (t, x) in the domain of W with t < 1. Let 
(
1, V , 0

) ∈ ◦
T E p(W)(t, x, W(t, x)) and 

εn → 0+. Then it is not difficult to show that there exist sequences hn > 0, xn ∈ E, tn ∈ [0, 1]
converging respectively to 0, x and t such that(

tn, xn, W(t, x) + hnεn

) ∈ E p(W), |tn − (t + hn)| ≤ εnhn, d
(
xn,V (hn, x)

) ≤ εnhn.

This implies that W(tn, xn) ≤ W(t, x) + hnεn and therefore

lim inf
n→+∞

W(tn, xn) − W(t, x)

hn

≤ 0

implying that 
◦
D↑W(t, x)(1, V ) ≤ 0.

Conversely, assume that 
◦
D↑W(t, x)(1,V ) ≤ 0. We infer that, for some εn → 0+, there exist 

sequences xn ∈ E, tn ∈ [0, 1] and hn > 0 converging respectively to x, t and 0 such that

lim
W(tn, xn) − W(t, x) ≤ 0, |tn − (t + hn)| ≤ εnhn, d

(
xn,V (hn, x)

) ≤ εnhn.

n→+∞ hn
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Then W(tn, xn) is finite for all large n. Set

rn = −W(tn, xn) + W(t, x)

hn

, λn := W(tn, xn) − W(t, x)

hn

+ |rn| = −rn + |rn|

and observe that lim
n→+∞ rn ≥ 0, limn→∞ λn = 0 and 

(
tn, xn,W(tn, xn) + hn|rn|

) ∈ E p(W), im-

plying that 
(
tn, xn, W(t, x) +hnλn

) ∈ E p(W). Therefore 
(
1, V , 0

) ∈ ◦
T E p(W)(t, x, W(t, x)). �

2.2. Reachable sets and morphological transitions

Consider the metric space K (RN) of nonempty compact subsets of RN supplied with the 
Pompeiu-Hausdorff distance:

dH (K1,K2) := max

{
max
x∈K1

dist (x,K2), max
x∈K2

dist (x,K1)

}
, ∀K1,K2 ∈ K (RN).

Recall that for every r > 0 and K ∈ K (RN), the closed ball B(K, r) is compact, see for instance 
[17, Proposition 47, p. 57].

We endow the space Lip(RN, RN) of all bounded Lipschitz continuous functions F :RN →
RN with the topology of local uniform convergence. For any F ∈ Lip(RN, RN), we denote by 
Lip F the smallest Lipschitz constant of F . For λ ≥ 0, we write F is λ-Lipschitz if F is Lipschitz 
with constant λ on RN . Furthermore, for any F ∈ Lip(RN, RN), define ||F ||∞ := sup

x∈RN

|F(x)|.
Denote by W 1,1

([0, t], RN
)

the space of absolutely continuous functions x : [0, t] → RN .

Definition 2.8. (Reachable set) For any map F : [0, 1] → Lip(RN, RN) and 0 ≤ t0 ≤ t <

1, K0 ∈ K (RN), the set

VF(·)(t,K0)

:=
{
x(t)

∣∣∣ x(·) ∈ W 1,1([t0, t],RN
); x′(s) = F(s)(x(s)) for a.e. s ∈ [t0, t], x(t0) ∈ K0

}
is called the reachable set at time t of the system governed by F(·) from the initial condition 
(t0, K0).

By [17, p. 34], when F does not depend on time, then VF is a transition on K (RN) called 
the morphological transition associated with F .

Proposition 2.9. Let F, G ∈ Lip(RN, RN). Then VF : [0, 1] × K (RN) → K (RN) introduced 
in Definition 2.8 for t0 = 0 is a transition on (K (RN), dH ) with

α
(
VF

) ≤ Lip F, d�

(
VF ,VG

) ≤ ||F − G||∞ .

Definition 2.10. (Solution of the morphological equation) Let F : K (RN) × [0, 1] →
Lip(RN, RN). A compact-valued tube K(·) : [0, 1] � RN is called a solution of the morpholog-
ical equation
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◦
K(·) � F

(
K(·), ·)

if K(·) is Lipschitz continuous and limh→0+ 1
h

dH

(
VF(K(t),t)(h, K(t)), K(t +h)

) = 0 for almost 
every t ∈ [0, 1], i.e. K(·) is a primitive of VF(K(·),·).

This formulation of morphological equation and its solution is discussed in [2], [18] and [17]
and may be misleading at the first glance. Indeed, by Definition 2.4, if K(·) is as above, then it 

solves the mutational equation 
◦
K(t) � VF(K(t),t) for a.e. t ∈ [0, 1]. Since the Lipschitz mapping 

F(K(t), t)(·) generates a transition defined by the reachable sets, for the sake of simplification, 
the morphological equation is written with F on the right-hand side rather than using the associ-
ated transition VF(K(·),·).

For F ∈ Lip(RN, RN) define the mapping Id + F : K (RN) → K (RN) by

(Id + F)(K) := {x + F(x) |x ∈ K}.

In some results and proofs below it is convenient to use the following expression for the contin-
gent directional derivative.

Definition 2.11. Consider F ∈ Lip(RN, RN), W : [0, 1] ×K (RN) → R ∪ {+∞} and let (t, K)

be in the domain of W , with t < 1. Define

D↑W(t,K)(1,F ) = lim inf
h→0+,K ′∈K (RN)

dH (K ′,(Id+hF)(K))=o(h)

W(t + h,K ′) − W(t,K)

h
:=

inf

{
lim inf
n→∞

W(t + hn,Kn) − W(t,K)

hn
|hn → 0+, Kn ∈ K (RN), dH (Kn, (Id + hnF)(K)) = o(hn)

}
.

Proposition 2.12. Consider F ∈ Lip(RN, RN), W : [0, 1] × K (RN) → R ∪ {+∞} and let 
(t, K) be in the domain of W with t < 1. Then

◦
D↑W(t,K)(1,VF ) = D↑W(t,K)(1,F ) = lim

ε→0+ inf
h∈]0,ε],K ′∈K (RN)

dH (K ′,(Id+hF)(K))≤εh

W(t + h,K ′) − W(t,K)

h
.

(6)
In particular, if W is locally Lipschitz, then

◦
D↑W(t,K)(1,VF ) = lim inf

h→0+
W(t + h, (Id + hF)(K)) − W(t,K)

h
.

Proof. Fix (t, K) in the domain of W with t < 1. We first observe that for every x0 ∈ K , the 
solution x(·) of the differential equation x′ = F(x), x(0) = x0 satisfies

x(h) = x0 + hF(x0) + ε(h), ∀h > 0,

where
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|ε(h)| =
∣∣∣∣∣∣

h∫
0

(F (x(s)) − F(x0))ds

∣∣∣∣∣∣ ≤ Lip F · ‖F‖∞ h2.

Consequently, dH (VF (h, K), (Id + hF)(K)) = o(h). This implies that for any ε > 0, and any 
sequences hn → 0+, Kn ∈ K (RN) such that dH (Kn, (Id + hnF)(K)) = o(hn) we have

inf
h∈]0,ε]

K ′∈B(VF (h,K),εh)

W(t + h,K ′) − W(t,K)

h
≤ lim inf

n→∞
W(t + hn,Kn) − W(t,K)

hn

.

Thus 
◦
D↑W(t, K)(1, VF ) ≤ D↑W(t, K)(1, F). Consider sequences εn > 0, hn > 0 converging to 

0, a sequence tn converging to t and a sequence Kn ∈ K (RN) such that |tn − (t + hn)| ≤ εnhn, 
d (Kn,VF (hn,K)) ≤ εnhn and

◦
D↑W(t,K)(1,VF ) = lim

n→+∞
W(tn,Kn) − W(t,K)

hn

.

Then tn = t + γnhn and dH (Kn, (Id + hF)(K)) ≤ hnε
′
n for some γn converging to 1 and ε′

n > 0
converging to zero. Set h′

n = γnhn and observe that

dH (Kn, (Id + h′
nF )(K)) ≤ dH (Kn, (Id + hnF)(K)) + dH ((Id + h′

nF )(K), (Id + hnF)(K)).

Therefore,

dH (Kn, (Id + h′
nF )(K)) ≤ hnε

′
n + |hn − h′

n| ‖F‖∞ =
(

ε′
n

γn

+
∣∣∣∣1 − 1

γn

∣∣∣∣‖F‖∞
)

h′
n = o(h′

n).

Hence

lim
n→+∞

W(tn,Kn) − W(t,K)

hn

= lim
n→+∞

W(t + h′
n,Kn) − W(t,K)

h′
n

.

Consequently,

lim
n→+∞

W(tn,Kn) − W(t,K)

hn

≥ D↑W(t,K)(1,F ).

This implies the first equality in (6). The second one follows by similar arguments. �
Example 1. We provide next an example of computation of a directional derivative, assuming, 
for the sake of simplicity, that the function is time independent. Let g : K (RN) → R be given 
by

g(K) = max
x∈K

φ(x),

where φ :RN → R is continuously differentiable. Then g is locally Lipschitz continuous and for 
any K ∈ K (RN), F ∈ Lip(RN, RN)
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D↑g(K)(F ) = lim inf
h→0+

g((Id + hF)(K)) − g(K)

h
.

Fix K ∈ K (RN) and consider any x̄ ∈ K such that g(K) = φ(x̄). Then for every h > 0, 
g((Id + hF)(K)) ≥ φ(x̄ + hF(x̄)) implying that D↑g(K)(F ) ≥ 〈∇φ(x̄), F(x̄)〉. Since x̄ is an 
arbitrary maximizer, we deduce that

D↑g(K)(F ) ≥ max
x∈K,g(K)=φ(x)

〈∇φ(x),F (x)〉.

Consider next a sequence hi > 0 converging to 0 such that

D↑g(K)(F ) = lim
i→+∞

g((Id + hiF )(K)) − g(K)

hi

,

and let xi ∈ K be such that

g((Id + hiF )(K)) = φ(xi + hiF (xi)).

Taking a subsequence and keeping the same notation we may assume that xi converge to some 
y ∈ K . Since φ(xi + hiF (xi)) ≥ φ(x̄ + hiF (x̄)), taking the limit we obtain φ(y) ≥ φ(x̄). Hence 
φ(y) = φ(x̄). The inequality g(K) ≥ φ(xi) yields

lim
i→+∞

g((Id + hiF )(K)) − g(K)

hi

≤ lim sup
i→+∞

φ(xi + hiF (xi)) − φ(xi)

hi

.

Using that φ ∈ C1 and taking the limit we obtain D↑g(K)(F ) ≤ 〈∇φ(y),F (y)〉 and therefore

max
x∈K,g(K)=φ(x)

〈∇φ(x),F (x)〉 ≤ D↑g(K)(F ) ≤ 〈∇φ(y),F (y)〉.

Consequently,

D↑g(K)(F ) = max
x∈K,g(K)=φ(x)

〈∇φ(x),F (x)〉.

3. Value function of a mutational optimal control problem

Let (E, d) be a metric space such that for every x ∈ E and r > 0, the ball B(x, r) is compact 
in E, and let (U, dU) be a metric space of control parameters. Define

U := {u(·) : [0,1] → U | u(·) is Lebesgue measurable} . (7)

Let �(E) be a given nonempty subset of transitions on (E, d) endowed with the pseudo-
distance d� and f : E × U → �(E) be continuous. It is said to be Lipschitz continuous in the 
first argument uniformly in u, if for a constant λ > 0 we have d�(f (x, u), f (y, u)) ≤ λ d(x, y)

for all x, y ∈ E, u ∈ U .
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Given the cost function g : E →R ∪ {+∞} we associate to it the optimal control problem

minimize g(z(1))

over all the solutions of the mutational control system

(S0)

{ ◦
z(·) � f

(
z(·), u(·)), u(·) ∈ U

z(t) = x,

where t ∈ [0, 1] and x ∈ E are given.
Recall, cf. [2,17], that a function z(·) : [t, 1] → E is called a solution of (S0) corresponding to a 
control u(·) ∈ U if z(·) is Lipschitz continuous, z(t) = x and

lim
h→0+

1

h
· d

(
f
(
z(s), u(s)

)(
h, z(s)

)
, z

(
s + h

)) = 0 for a.e. s ∈ [t,1[.

The value function V : [0, 1] × E → R ∪ {±∞} associated with the above optimal control 
problem is defined by: for all t ∈ [0, 1] and x ∈ E,

V (t, x) = inf {g(z(1)) | z(·) is a solution of (S0) on [t,1]} ∈ R∪ {±∞},

where we have set V (t, x) = +∞ if there is no solution to (S0) defined on [t, 1].
A solution-control pair (z̄(·), ū(·)) of (S0) is called optimal at (t, x) if V (t, x) = g(z̄(1)).
In this section we show under what circumstances the value function is a solution of the 

contingent Hamilton-Jacobi inequalities. In the next section, in the case of morphological control 
systems, we study uniqueness of such solutions.

Theorem 3.1. Let f : E × U → �(E) be Lipschitz continuous in the first argument uniformly in 
u and

sup
x∈E,u∈U

(
α
(
f (x,u)

) + β
(
f (x,u)

))
< +∞.

Then, the value function V verifies the final time condition V (1, ·) = g(·) and the following 
contingent inequalities:

(i) For all (t, x) in the domain of V with t < 1, sup
u∈U

◦
D↑(−V )(t, x)(1, f (x,u)) ≤ 0;

(ii) If (t, x) in the domain of V with t < 1, is so that there exists an optimal control ū(·) ∈ U at 

(t, x) which is continuous from the right at t , then inf
u∈U

◦
D↑V (t, x)(1, f (x,u)) ≤ 0.

Proof. Fix (t, x) in the domain of V with t < 1. To prove (i), pick any ū ∈ U and consider the 
control u(·) ≡ ū. By [17, Theorem 15, p. 38] applied with y(·) ≡ x and 

◦
y(·) � 0, there exists a 

unique Lipschitz solution z(·) : [0, 1] → E to the mutational equation 
◦
z(s) � f

(
z(s), ū

)
for a.e. 

s ∈ [0, 1], z(t) = x. Hence,
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V
(
t, z(t)

) ≤ V
(
t + h, z(t + h)

)
, ∀h ∈ [0,1 − t].

Since z(·) is a primitive of f (z(·), ū), we deduce from [17, Theorem 15, p. 38] applied with 
y(s) = f (x, ū)(s, x) and from the Lipschitz continuity of f with respect to the first argument, 
that for any ε > 0,

d
(
z(t + h),f (x, ū)(h, x)

) ≤ εh whenever h > 0 is sufficiently small.

Consequently, for every h > 0 small enough, there exists zh ∈ B
(
f (x, ū

)
(h, x), εh) such that 

V
(
t, z(t)

) ≤ V
(
t + h, zh

)
. Then,

0 ≥ lim inf
h→0+

−V (t + h, zh) + V (t, x)

h
≥ ◦

D↑(−V )(t, x)(1, f (x, ū)).

Since ū ∈ U is arbitrary, we proved that sup
u∈U

◦
D↑(−V )(t, x)(1, f (x,u)) ≤ 0.

To prove (ii) consider an optimal solution-control pair (x̄(·), ū(·)) at (t, x) such that ū(·) is 
continuous from the right at t . Then

V
(
t, x̄(t)

) = V
(
t + h, x̄(t + h)

)
, ∀h ∈ [0,1 − t].

Furthermore, ϕ(s) := d�(f (x̄(s), ū(s), f (x̄(t), ū(t))) is continuous from the right at t and 
ϕ(t) = 0. Define y(t +s) := f (x̄(t), ū(t))(s, x̄(t)) for s ∈ [0, 1 − t]. Then 

◦
y(·) � f

(
x̄(t), ū(t)

)
on 

[0, h] for every small h > 0. Thus, by [17, Proposition 21, p. 41], d
(
x̄(t +h), f

(
x, ū(t)

)
(h, x)

)
=

o(h) for small h > 0.
Consequently, for every ε > 0 and any h > 0 small enough, there exists x̄h ∈

B
(
f (x, ū(t)

)
(h, x), εh) such that V

(
t, x

) = V
(
t + h, x̄h

)
. Hence,

0 = lim
h→0+

V (t + h, x̄h) − V (t, x)

h
≥ ◦

D↑V (t, x)(1, f (x, ū(t)))

and therefore inf
u∈U

◦
D↑V (t, x)(1, f (x,u)) ≤ 0. �

4. Main results

In this section we state our main results. To facilitate reading their proofs are postponed to 
Section 6.

Let (U, dU ) be a metric space of control parameters and define the set of controls U by (7).
Consider a continuous map f : K (RN) × U → Lip(RN, RN), a map g : K (RN) → R ∪

{+∞} and the optimal control problem

minimize g
(
K(1)

) [P ]

over all the solutions K(·) : [t0, 1] → K (RN) to the morphological control system
◦
K(·) � f

(
K(·), u(·)), u(·) ∈ U and K(t0) = K0, [S]
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where t0 ∈ [0, 1] and K0 ∈ K (RN) are given. That is the right hand side of the control system 
in [S] corresponds to F(K, t) := f (K, u(t)) of Definition 2.10.

Under some technical assumptions, for every u(·) ∈ U there exists a solution K(·) to the 
above morphological control system, cf. [17, Theorem 4, p. 388 and Remark 16, p. 113].

If for some λ > 0, the mapping f (·, u) is λ-Lipschitz for every u ∈ U , then [17, Proposition 
21, p. 41] and the Gronwall lemma imply that for every u(·) ∈ U such a solution K(·) is unique.

The following result (see [17, Proposition 24, p. 415 and its proof, and Proposition 57, p. 64]) 
characterizes primitives as reachable sets.

Proposition 4.1. Assume that the metric space (U, dU) is complete and separable and that the 
continuous map f : K (RN) × U → Lip(RN, RN) satisfies

sup
u∈U,K∈K (RN)

(
Lip f (K,u) + ||f (K,u)||∞

)
< +∞ .

Then for any t0 ∈ [0, 1], K0 ∈ K (RN) and any control u(·) ∈ U , there exists a unique so-
lution K(·) : [t0, 1] → K (RN) of the morphological control system in [S]. Furthermore, for 
every time t ∈ [t0, 1], K(t) coincides with the reachable set Vf (K(·),u(·))(t, K0) of the differential 
equation

x′(τ ) = f
(
K(τ),u(τ)

)(
x(τ)

)
for a.e. τ ∈ [t0,1], x(t0) ∈ K0.

Throughout this paper we say that f : K (RN) × U → Lip(RN, RN) satisfies (H1) if the 
following two assumptions hold true:

(i) f is continuous, bounded with uniformly bounded Lipschitz constant:

A := sup
u∈U,K∈K (RN)

Lip f (K,u) < +∞, ρ := sup
u∈U,K∈K (RN)

||f (K,u)||∞ < +∞;

(ii) for any K ∈ K (RN), the set f (K, U) := {f (K,u)| u ∈ U} is convex.

Observe that if U is compact and (H1) (i) is satisfied, then the graph of f (·, U) is closed with 
respect to the local uniform convergence in Lip (RN, RN).

We have the following existence result whose proof is given in Section 6.1.

Theorem 4.2. Let g : K (RN) → R ∪ {+∞} be lower semicontinuous and (U, dU) be compact. 
Assume that f : K (RN) × U → Lip(RN, RN) satisfies (H1) and is Lipschitz in the first argu-
ment uniformly in u, i.e. for some λ1 > 0,

||f (K,u) − f (K ′, u)||∞ ≤ λ1 dH

(
K,K ′) for all K,K ′ ∈ K (RN) and any u ∈ U.

Then, for every initial condition (t0, K0) ∈ [0, 1] × K (RN), there exists an optimal solution to 
the morphological control problem [P ], [S].

The value function V : [0, 1] × K (RN) → R ∪ {±∞} associated with the problem [P ], [S]
is defined by: for any t0 ∈ [0, 1] and K0 ∈ K (RN),
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V (t0,K0) = infg
(
K(1)

)
over all the solutions K(·) to the morphological control system [S].

Clearly V is nondecreasing along any trajectory of [S] and is constant along optimal trajecto-
ries. Also V satisfies the dynamic programming like properties.

Theorem 4.3. Assume (H1) (i) and that f is Lipschitz in the first argument uniformly in u. If 
g is continuous, then V is continuous. Furthermore, if g is locally Lipschitz, then V is locally 
Lipschitz on [0, 1] × K (RN).

Theorem 4.4. Under all the assumptions of Theorem 4.2, V is lower semicontinuous on [0, 1] ×
K (RN).

Proofs of the above two theorems are postponed to Sections 6.5 and 6.6.

Definition 4.5. A continuous map W : [0, 1] × K (RN) → R is called a contingent solution 
to the morphological Hamilton-Jacobi equation (associated with [P], [S]) if it satisfies the 
boundary condition W(1, ·) = g(·) and the following contingent inequalities: for all (t, K) ∈
[0, 1[×K (RN),

(i) inf
u∈U

D↑W(t,K)(1, f (K,u)) ≤ 0,

(ii) sup
u∈U

D↑(−W)(t,K)(1, f (K,u)) ≤ 0.

If (U, dU ) is compact and f is continuous in the second variable, then it is not difficult to 
realize that for any (t, K) ∈ [0, 1[×K (RN), the infimum of D↑W(t,K)(1, f (K,u)) over all 
u ∈ U (possibly equal to −∞) is attained at some ū ∈ U , i.e. we have the following result.

Proposition 4.6. Let (U, dU) be compact, f : K (RN) ×U → Lip(RN, RN) be continuous and 
W : [0, 1] × K (RN) → R ∪ {+∞}. Then for every (t, K) in the domain of W with t < 1, there 
exists ū ∈ U satisfying

D↑W(t,K)(1, f (K, ū)) = inf
u∈U

D↑W(t,K)(1, f (K,u)).

We next state our main result.

Theorem 4.7. Assume that (U, dU) is compact, g is continuous, f is Lipschitz continuous in the 
first argument uniformly in u and satisfies (H1). Then V is the unique continuous contingent 
solution to the morphological Hamilton-Jacobi equation.

We also have the following two comparison results.

Proposition 4.8. Assume (H1) and that (U, dU) is compact. Let W : [0, 1] × K (RN) → R ∪
{+∞} be lower semicontinuous, with W(1, ·) = g(·) and

inf D↑W(t,K)(1, f (K,u)) ≤ 0,

u∈U
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for all (t, K) in the domain of W with t < 1. Then V ≤ W .

Proposition 4.9. Assume that (U, dU) is compact and the map f is Lipschitz continuous in the 
first argument uniformly in u and satisfies (H1) (i).
Let W : [0, 1] × K (RN) → R ∪ {−∞} be upper semicontinuous with W(1, ·) = g(·) and

sup
u∈U

D↑(−W)(t,K)(1, f (K,u)) ≤ 0,

for all (t, K) in the domain of W with t < 1. Then W ≤ V .

The above two Propositions are deduced in Sections 6.3 and 6.4 from the viability theorem 
for morphological differential inclusions.

We provide next two examples of dynamics f satisfying assumptions of our main results.

Example 2. Let U, Ũ be compact metric spaces, R > 0 be given and f : K (RN) × U × Ũ →
Lip(RN, RN) be as follows

f (K,u1, u2)(x) = f1(x,u1) + min(R,max
z∈K

‖z‖) · ϕ(x,u2), ∀ x ∈ RN,

where

• f1 : RN × U →RN and ϕ :RN × Ũ → RN are continuous and bounded;
• f1, ϕ are Lipschitz continuous in the first argument uniformly with respect to the second 

one;
• the sets 

⋃
u∈U f1(·, u) and 

⋃
u′∈Ũ ϕ(·, u′) are convex.

The last assumption is verified for instance when U, Ũ are convex subsets of Euclidean spaces 
and f1 and ϕ are affine with respect to controls. The above f can be used to model a dynamic of 
agents influenced by the leaders (maximizers) up to some threshold.

We first verify that f is Lipschitz continuous with respect to the first argument. Since the 
minimum of two Lipschitz continuous maps is also Lipschitz continuous, there is a constant 
L > 0 such that for any K1, K2 ∈ K (RN), u1, u2 ∈ U , x ∈ RN , we have

∣∣∣f (K1, u1, u2)(x) − f (K2, u1, u2)(x)

∣∣∣
=

∣∣∣f1(x,u1) + min(R, max
z∈K1

‖z‖) · ϕ(x,u2) − f1(x,u1) − min(R, max
z∈K2

‖z‖) · ϕ(x,u2)

∣∣∣
=

∣∣∣min(R, max
z∈K1

‖z‖) − min(R, max
z∈K2

‖z‖)
∣∣∣ ·

∣∣∣ϕ(x,u2)

∣∣∣ ≤ L

∣∣∣ϕ(x,u2)

∣∣∣ · dH (K1,K2).

Since ϕ is bounded we conclude that f is Lipschitz continuous with respect to the first argument 
uniformly in (u1, u2). Our assumptions immediately imply that (H1) (i) is satisfied. To check
(H1) (ii), let K ∈ K (RN), x ∈ RN , λ ∈ [0, 1], u1, u2 ∈ U, u′ , u′ ∈ Ũ . Then
1 2
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λf (K,u1, u2)(·) + (1 − λ)f (K,u′
1, u

′
2)(·)

= λf1(·, u1) + λmin(R,max
z∈K

‖z‖) · ϕ(·, u2) + (1 − λ)f1(·, u′
1)

+ (1 − λ)min(R,max
z∈K

‖z‖) · ϕ(·, u′
2)

=
[
λf1(·, u1) + (1 − λ)f1(·, u′

1)
]
+ min(R,max

z∈K
‖z‖) ·

[
λϕ(·, u2) + (1 − λ)ϕ(·, u′

2)
]
.

By the convexity assumption, there are u3 ∈ U, u′
3 ∈ Ũ such that

(
λf1(·, u1) + (1 − λ)f1(·, u′

1), λϕ(·, u2) + (1 − λ)ϕ(·, u′
2)

)
=

(
f1(·, u3), ϕ(·, u′

3)
)
.

Thus λf (K, u1, u2)(·) + (1 −λ)f (K, u′
1, u

′
2)(·) = f (K, u3, u′

3)(·) ∈ f (K, U, ̃U) implying (H1)
(ii).

Example 3. For a nonempty convex compact subset C of RN denote by σ(C, ·) the support 
function of C defined by σ(C, p) = maxc∈C〈p, c〉 for any p ∈ RN . Let ∂σ (C, ·) be the subdif-
ferential of convex analysis of the support function. Recall that σ(C, ·) is locally Lipschitz and 
therefore for a.e. p ∈ RN the set ∂σ (C, p) is a singleton equal to argmaxc∈C〈p, c〉. The Steiner 
point s(C) of C is defined by

s(C) = 1

V ol(BN)

∫
BN

∂σ(C,p)dp = 1

V ol(BN)

∫
BN

argmaxc∈C〈p, c〉dp,

where V ol(BN) is the Lebesgue measure of N -dimensional unit ball BN in RN . Steiner point 
of C can be seen as an expectation of the maximizer of 〈p, c〉 over C, kind of “center” of the 
convex set C. By [4, Theorem 9.4.1]), s(C) ∈ C and s(·) is Lipschitz in the Hausdorff metric 
with the Lipschitz constant depending only on N .

Let U be a compact metric space, Ũ ⊂ Rm be a convex compact set, R > 0 be given and 
f : K (RN) × U × Ũ → Lip(RN, RN) be as follows

f (K,u1, u2)(x) = f1(x,u1) + max(0,R − max
z∈K

‖z‖) · �(s(coK))u2, ∀ x ∈ RN,

where co K stands for the convex hull of K , f1 satisfies the assumptions of Example 2, � :
RN → L(Rm, RN) is a Lipschitz function and L(Rm, RN) denotes the space of linear operators 
from Rm into RN . The above f can be used to model a dynamic of agents influenced by the 
crowd as long as the crowd remains strictly inside the restricted area B(0, R). Steiner point of 
the set coK can be seen as the relaxed mean of the crowd K of agents and �(s(coK))u2 as the 
controlled direction imposed on the “center” of coK . In the same way as in Example 2 we check 
that f (·, u) is Lipschitz uniformly in u and satisfies (H1).

5. Optimal feedback

Let (U, dU ) be compact and f : K (RN) × U → Lip(RN, RN) satisfies (H1) (i). Assump-
tions of Theorem 4.2 guarantee the existence of optimal solutions to the morphological optimal 
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control problem [P ], [S] for any (t0, K0) ∈ [0, 1] × K (RN). Let V be the associated value 
function.

For any t ∈ [0, 1[ and any K ∈ K (RN), define the compact valued map

G(t,K) := {
f (K,u)

∣∣ u ∈ U, D↑V (t,K)
(
1, f (K,u)

) ≤ 0
}

and the optimal feedback set-valued map

UG(t,K) := {u ∈ U | f (K,u) ∈ G(t,K)}

also having compact values.
Consider the morphological differential inclusion

◦
K(·) ∩ G(·,K(·)) �= ∅. [Q]

Recall that K(·) : [0, 1] → K (RN) is a solution to [Q] if for almost every t ∈ [0, 1], there exists 

F ∈ G(t, K(t)) such that VF belongs to the mutation 
◦
K(t).

Theorem 5.1. Assume that (U, dU) is compact, f : K (RN) ×U → Lip(RN, RN) satisfies (H1) 
(i) and is Lipschitz continuous in the first argument uniformly in u. If V is locally Lipschitz, then 
for every t0 ∈ [0, 1[ and K0 ∈ K (RN), the tube K(·) is optimal for [P], [S] if and only if 
K(t0) = K0 and K(·) is a solution of [Q] defined on the time interval [t0, 1].

The proof of Theorem 5.1 provided below yields the following Corollary.

Corollary 5.2. Under the assumptions of Theorem 5.1, if V is locally Lipschitz, then for every 
t0 ∈ [0, 1[ and K0 ∈ K (RN) a solution-control pair (K(·), ū(·)) is optimal for [P], [S] if and 
only if K(t0) = K0 and

◦
K(t) � f (K(t), ū(t)), ū(t) ∈ UG(t,K(t)) a.e. in [t0,1].

Proof of Theorem 5.1. Let K(·) : [0, 1] → K (RN) be a solution to the morphological inclu-
sion [Q] with K(t0) = K0. Since G(t, K(t)) ⊆ f (K(t), U), by [17, Proposition 25, p. 416]), 

K(·) is a solution of 
◦
K(·) � f (K(·), u(·)) for some measurable control u(·) ∈ U . Thus for a.e. 

t ∈ [0, 1],

D↑V
(
t,K(t)

)(
1, f

(
K(t), u(t)

)) ≤ 0 . (8)

Set ϕ(s) = V (s, K(s)). Since V is locally Lipschitz and K(·) is Lipschitz, we know that ϕ is Lip-
schitz continuous on [t0, 1]. By Rademacher’s Theorem, ϕ is differentiable almost everywhere 

in [t0, 1]. Let t ∈ [0, 1[ be so that ϕ′(t) exists, 
◦
K(t) � Vf

(
K(t),u(t)

) and (8) holds true. Then,

ϕ′(t) = lim
V

(
t + h,K(t + h)

) − V
(
t,K(t)

)
.

h→0+ h
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By the Lipschitz continuity of V , (5) and Proposition 2.12,

ϕ′(t) = D↑V
(
t,K(t)

)(
1, f

(
K(t), u(t)

))
.

From inequality (8), we deduce that ϕ′(t) ≤ 0. This implies that V is non-increasing along the 
trajectory K(·). Since V is also non-decreasing along this trajectory, it follows that V (·, K(·)) is 
constant and therefore K(·) is an optimal solution to [P ], [S].

Conversely, let (K̄(·), ū(·)) be an optimal solution-control pair of [P], [S]. Thus it satisfies for 
every t ∈ [t0, 1[,

V (t + h, K̄(t + h)) = V (t, K̄(t)), ∀h ∈ [t,1 − t]. (9)

Set ϕ(s) = V (s, K̄(s)). Let t ∈ [0, 1[ be so that 
◦
K(t) � Vf

(
K(t),u(t)

). Since V is locally Lipschitz, 
(9), (5) and Proposition 2.12 yield

0 = ϕ′(t) = D↑V
(
t, K̄(t)

)(
1, f

(
K̄(t), ū(t)

))
.

Consequently, D↑V
(
t, K̄(t)

)(
1, f

(
K̄(t), ū(t)

)) = 0, which means that K̄(.) is a solution 
of [Q]. �
6. Proofs of results of Section 4

6.1. Proof of Theorem 4.2

Fix (t0, K0) ∈ [0, 1] × K (RN). If t0 = 1 there is nothing to prove. Assume next t0 < 1 and 
consider a minimizing sequence of controls un(·) ∈ U and for each n ∈ N , let Kn(·) : [t0, 1] →
K (RN) be the solution to the morphological equation

◦
Kn(t) � f

(
Kn(t), un(t)

)
a.e. t ∈ [t0,1] Kn(t0) = K0.

Then limn→∞ g(Kn(1)) = V (t0, K0).

� From (H1) and Proposition 4.1, it follows that for each n ∈N , Kn(·) is ρ-Lipschitz contin-
uous with respect to dH . This implies that:

(i) the family {Kn(·)}n is equicontinuous;
(ii)

⋃
n∈N

t∈[t0,1]

Kn(t) is contained in the ball B(K0, ρ) ⊂ K (RN).

In fact, for any n ∈N and for all t ∈ [t0, 1], dH

(
Kn(t), K0

) = dH

(
Kn(t), Kn(t0)

) ≤ ρ|t − t0| ≤ ρ. 
The Ascoli-Arzéla Theorem, see for instance, [17, Theorem 82, p. 491]) implies that there exists 
a subsequence, again denoted by Kn, converging uniformly to a continuous set-valued map K(·) :
[t0, 1] → K (RN). Moreover, K(·) is ρ-Lipschitz continuous because for all t, t ′ ∈ [t0, 1],
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dH (K(t),K(t ′)) ≤ dH (K(t),Kn(t)) + dH (Kn(t),Kn(t
′)) + dH (Kn(t

′),K(t ′))
≤ dH (K(t),Kn(t)) + ρ|t − t ′| + dH (Kn(t

′),K(t ′)).

Letting n to tend to ∞, we obtain that dH(K(t), K(t ′)) ≤ ρ|t − t ′|. Furthermore, since Kn(t0) =
K0, we know that K(t0) = K0.

The lower semicontinuity of g implies that V (t0, K0) ≥ g(K(1)) and therefore it remains to 
show that K(·) is a solution of [S]. 

� Define gn(·) : [t0, 1] → Lip(RN, RN) by gn(t) := f
(
Kn(t), un(t)

)
. Then

sup
t∈[t0,1]

Lip gn(t) ≤ sup
u∈U,K∈K (RN)

Lip f (K,u) < +∞,

sup
t∈[t0,1]

||gn(t)||∞ ≤ sup
u∈U,K∈K (RN)

||f (K,u)||∞ < +∞.

For any compact subset Q ⊂ RN denote by C0(Q, RN) the Banach space of all continuous 
functions from Q into RN with the norm of uniform convergence. For r > 0, let Br denote the 
closed ball in RN of radius r centered at zero, and define

Wr :=
{
gn(t)|Br

∣∣∣ n ∈ N, t ∈ [t0,1]
}

⊂ C0(Br ,R
N).

For every integer r > 0, the family Wr is uniformly bounded and equicontinuous. According 
to [17, Proposition 83, p. 491], for every integer r > 0, Wr is weakly compact with respect 

to the topology || · ||∞. Due to [17, Proposition 85, p. 492], the set 
{
gn(·)|Br

∣∣∣ n ∈ N
}

is rela-

tively weakly compact in L1
([t0, 1], C0(Br , RN)

)
. Then, for every integer r > 0, we can extract 

a subsequence weakly converging to some gr(·) ∈ L1
([t0, 1], C0(Br , RN)

)
. Let us construct a 

function g(·) ∈ L1
([t0, 1], C0(RN, RN)

)
by induction using the above arguments.

Since for r = 1, the set 
{
gn(·)|B1

∣∣∣ n ∈ N
}

is relatively weakly compact in L1
([t0, 1],

C0(B1, RN)
)
, there exists a subsequence (gni

(·)|B1
)i weakly converging to some g1(·) ∈

L1
([t0, 1], C0(B1, RN)

)
, i.e. for every q ∈ L1

([t0, 1], C0(B1, RN)
)∗,

lim
i→∞

〈
q,gni

(·)|B1

〉 = 〈
q,g1(·)〉.

Observe that there exists a subsequence of (gni
(·))i , denoted by (gnij

(·))j , such that gnij
(·)|B2

converges weakly to g2(·) in L1
([t0, 1], C0(B2, RN)

)
, i.e. for every p ∈ L1

([t0, 1],
C0(B2, RN)

)∗,

lim
j→∞

〈
p,gnij

(·)|B2

〉 = 〈
p,g2(·)〉. (10)

Or, (gnij
(·))j being a subsequence of (gni

(·))i , we know that (gnij
(·)|B1

)j converges weakly to 

g1(·) and for any q ∈ L1
([t0, 1], C0(B1, RN)

)∗,

lim
〈
q,gnij

(·)|B1

〉 = 〈
q,g1(·)〉. (11)
j→∞
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Fix any q ∈ L1
([t0, 1], C0(B1, RN)

)∗, and define q̂ ∈ L1
([t0, 1], C0(B2, RN)

)∗ by taking

〈q̂,w〉 = 〈q,w|B1
〉, ∀ w ∈ L1([t0,1],C0(B2,R

N)
)
. (12)

Due to (10), we infer that

lim
j→∞

〈
q̂, gnij

(·)|B2

〉 = 〈
q̂, g2(·)〉.

By equality (12), 〈
q̂, gnij

(·)|B2

〉 = 〈
q,gnij

(·)|B1

〉
and

〈
q̂, g2(·)〉 = 〈

q,g2(·)|B1

〉
.

Thus,

lim
j→∞

〈
q,gnij

(·)|B1

〉 = 〈
q,g2(·)|B1

〉
.

From (11) we deduce that for any q ∈ L1
([t0, 1], C0(B1, RN)

)∗, 
〈
q, g1(·)〉 = 〈

q, g2(·)|B1

〉
. Since 

q ∈ L1
([t0, 1], C0(B1, RN)

)∗ is arbitrary, it follows that g1(·) = g2(·)|B1
. Using the induction ar-

gument, we construct a function g(·) : [t0, 1] → C0(RN, RN) such that g|Br
= gr where, for any 

integer r > 0, gr(·) is the weak limit in L1
([t0, 1], C0(Br , RN)

)
of a subsequence of (gn(·)|Br

).

� Recall that the sequence Kn(·) converges uniformly to K(·) when n tends to +∞. Fix ε > 0. 
Since f (·, u) is λ1-Lipschitz continuous for each u ∈ U and for all large n we have

||f (
Kn(t), un(t)

) − f
(
K(t), un(t)

)||∞ ≤ λ1 dH

(
Kn(t),K(t)

)
< ε ∀ t ∈ [t0,1].

Let A denote the set of functions in Lip(RN, RN) with Lipschitz constant not greater than 2λ1
and B∞ = {ϕ ∈ C0(RN, RN) | supx∈RN |ϕ(x)| ≤ 1}. Then for all large n,

gn(t) ∈ f
(
K(t), un(t)

) + εB∞ ∩ A

for all t ∈ [t0, 1]. Therefore for all large n,

gn(t)|Br
∈ f

(
K(t), un(t)

)
|Br

+ (εB∞ ∩ A )|Br

⊂
⋃
u∈U

f
(
K(t), u

)
|Br

+ (εB∞ ∩ A )|Br
for every [t0,1]

for any integer r > 0. Note that the sets 
⋃
u∈U

f
(
K(t), u

)
|Br

and (εB∞ ∩ A )|Br
are convex and 

compact in Lip(Br, RN). Define for every integer r > 0 and for every t ∈ [t0, 1] the convex 
compact set

Qr
ε(t) :=

⋃
f
(
K(t), u

)
|Br

+ (εB∞ ∩ A )|Br
⊆ Lip(Br,R

N).
u∈U
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We already know that for all large n, gn(t)|Br
∈ Qr

ε(t) for every t ∈ [t0, 1]. Let

�r
ε :=

{
ϕ ∈ L1([t0,1],C0(Br,R

N)
) ∣∣∣ ϕ(t) ∈ Qr

ε(t) a.e. in [t0,1]
}

Clearly �r
ε is convex. Furthermore, since any convergent sequence in L1

([t0, 1], C0(Br, RN)) has 
a subsequence converging a.e. in [0, 1], the set �r

ε is closed in L1
([t0, 1], C0(Br, RN)). By our 

construction, for some n0 > 0 the sequence 
(
gn(·)|Br

)
n≥n0

is in �r
ε and has a subsequence con-

verging weakly in L1
([t0, 1], C0(Br , RN)) to g(·)|Br

. By Mazur’s theorem, g(·)|Br
∈ �r

ε . Thus, 
for a.e. t ∈ [t0, 1],

g(t)|Br
∈ Qr

ε(t) :=
⋃
u∈U

f
(
K(t), u

)
|Br

+ (εB∞ ∩ A )|Br
.

Since ε > 0 is arbitrary, this yields g(t)|Br
∈

⋃
u∈U

f
(
K(t), u

)
|Br

a.e. in [t0, 1].
Fix t ∈ [t0, 1] such that the above inclusion holds for every integer r > 0 and let ur ∈ U be 

such that g(t)|Br
= f

(
K(t), ur

)
|Br

. The set U being compact, there exists a subsequence uri con-

verging to some ū ∈ U . Furthermore, for every x ∈ Bri and any n ≥ i we have f
(
K(t), uri

)
(x) =

f
(
K(t), urn

)
(x). Taking the limit when n → ∞ we get f

(
K(t), uri

)
(x) = f

(
K(t), ū

)
(x) for 

every x ∈ Bri . Hence g(t)(x) = f
(
K(t), ū

)
(x) for every x ∈ Bri . Finally, i being arbitrary, we 

deduce that g(t) ∈
⋃
u∈U

f
(
K(t), u

)
. By [17, Lemma 26, p. 416], there exists u(·) ∈ U such that

g(t) = f
(
K(t), u(t)

)
for a.e. t ∈ [t0,1].

�We claim that K(·) solves the morphological equation 
◦
K(t) � g(t) for a.e. t ∈ [t0, 1], that is 

K(t) is the reachable set at time t of the system x′(s) = g(s)(x(s)) for a.e. s ∈ [t0, 1] with 
x(t0) ∈ K0.

Since Kn(·) is the solution to 
◦

Kn(·) � gn(·) with Kn(t0) = K0, by Proposition 4.1, the compact 
set Kn(t) ⊂ RN coincides with the reachable set

Vgn(·)(t,K0)

=
{
x(t)

∣∣∣ x ∈ W 1,1([t0,1],RN), x′(s) = gn(s)
(
x(s)

)
for a.e. s ∈ [t0,1], x(t0) ∈ K0

}
.

We first show that K(t) ⊂ Vg(·)(t, K0) for every t ∈ [t0, 1]. Indeed, we know that for any 
t ∈ [t0, 1],

K(t) = lim
n→+∞Kn(t) = lim

n→+∞Vgn(·)(t,K0).

Let x ∈ K(t). Then there exists a sequence zn(·) ∈ W 1,1([t0, 1], RN) such that{
z′
n(s) = gn(s)

(
zn(s)

)
a.e. s ∈ [t0,1]

zn(t0) ∈ K0, limn→∞ zn(t) = x
1080
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Consider an integer r > 0 such that |zn(s)| ≤ r for all s ∈ [t0, 1] and every n. We recall that 
there exists a subsequence of (gn(·)|Br

)n, denoted by (gnk
(·)|Br

)k weakly converging to g(·)|Br

in L1
([t0, 1], C0(Br, RN)

)
. By the Ascoli-Arzéla theorem, taking a subsequence and keeping 

the same notation we may assume that (znk
(·))k converges uniformly to a continuous function 

z(·) : [t0, 1] → RN . Moreover, z(·) is Lipschitz continuous and

z(t0) = lim
k→+∞ znk

(t0) ∈ K0, z(t) = lim
k→+∞ znk

(t) = x.

It remains to show that

z′(s) = g(s)|Br
(z(s)) for a.e. s ∈ [t0,1].

By Mazur’s Lemma, see for instance [20, Lemma 10.19], we can find a function N :N → N and 
a set of real numbers {σ(l)k| k = l, . . . ,N(l)} such that

σ(l)k ≥ 0,

N(l)∑
k=l

σ (l)k = 1, (13)

and the sequence (vr,l(·))l defined by the convex combinations

vr,l(·) =
N(l)∑
k=l

σ (l)k gnk
(·)|Br

(14)

converges strongly to g(·)|Br
∈ L1

([t0, 1], C0(Br , RN)
)
, i.e.

lim
l→∞

1∫
t0

sup
y∈Br

|vr,l(s)(y) − g(s)|Br
(y)| ds = 0.

In particular,

lim
l→∞

1∫
t0

|vr,l(s)(z(s)) − g(s)|Br
(z(s))| ds = 0. (15)

On the other hand, gnk
(s)(·) : RN → RN are Lipschitz continuous with the same Lipschitz con-

stant. Hence, for some μ > 0 and any s ∈ [t0, 1]

|gnk
(s)|Br

(znk
(s)) − gnk

(s)|Br
(z(s))| ≤ μ|znk

(s) − z(s)|,
implying that

gnk
(s)|Br

(znk
(s)) ∈ gnk

(s)|Br
(z(s)) + μ|znk

(s) − z(s)|B1.

Since z′ (s) = gn (s)| (zn (s)) a.e. in [t0, 1],
nk k Br k
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z′
nk

(s) ∈ gnk
(s)|Br

(z(s)) + μ|znk
(s) − z(s)|B1 for a.e. s ∈ [t0,1].

Consequently, for any τ ∈ [t0, 1]

lim
l→+∞

τ∫
t0

N(l)∑
k=l

σ (l)kz
′
nk

(s) ds ∈ lim
l→+∞

τ∫
t0

N(l)∑
k=l

σ (l)kgnk
(s)|Br

(z(s)) ds

+ lim
l→+∞μ

τ∫
t0

N(l)∑
k=l

σ (l)k|znk
(s) − z(s)| ds B1

⇒ lim
l→+∞

N(l)∑
k=l

σ (l)k

(
znk

(τ ) − znk
(t0)

)
= lim

l→+∞

τ∫
t0

N(l)∑
k=l

σ (l)kgnk
(s)|Br

(z(s)) ds.

But

lim
l→+∞

N(l)∑
k=l

σ (l)k

(
znk

(τ ) − znk
(t0)

)

= lim
l→+∞

N(l)∑
k=l

σ (l)k

(
znk

(τ ) − z(τ )
)

+ lim
l→+∞

N(l)∑
k=l

σ (l)k

(
z(τ ) − z(t0)

)

+ lim
l→+∞

N(l)∑
k=l

σ (l)k

(
z(t0) − znk

(t0)
)

= z(τ ) − z(t0).

This and (15) yield

z(τ ) − z(t0) =
τ∫

t0

g(s)|Br
(z(s)) ds.

Hence, z′(τ ) = g(τ)|Br
(z(τ )) for a.e. τ ∈ [t0, 1], which implies that x = z(t) ∈ Vg(·)(t, K0).

We show next that Vg(·)(t, K0) ⊂ K(t) for all t ∈ [t0, 1]. Let x ∈ Vg(·)(t, K0). Then there 
exists z(·) ∈ W 1,1

([t0, 1], RN
)

such that{
z′(s) = g(s)

(
z(s)

)
a.e. s ∈ [t0,1]

z(t0) ∈ K0, z(t) = x.

We have to check that z(t) ∈ K(t). Consider yn(·) ∈ W 1,1
([t0, 1], RN

)
such that for every n ∈N ,{

y′
n(s) = gn(s)

(
yn(s)

)
a.e. s ∈ [t0,1]

yn(t0) = z(t0)

Then for every s ∈ [t0, 1] we have
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yn(s) = z(t0) +
s∫

t0

gn(τ)(yn(τ ))dτ.

Consider an integer r > 0 such that |yn(s)| ≤ r for all s ∈ [t0, 1] and every n and a subse-
quence of (gn(·)|Br

)n, denoted by (gnk
(·)|Br

)k weakly converging to g(·)|Br
in

L1
([t0, 1], C0(Br , RN)

)
. For the same reasons as before, we may assume that (ynk

(·))k con-
verges uniformly to some y(·) : [t0, 1] → RN . Since gn(τ)(·) are A-Lipschitz, we deduce that 
for every s ∈ [t0, 1],

y(s) = z(t0) +
s∫

t0

gn(τ)(y(τ ))dτ + δn(s),

where limn→∞ sups∈[t0,1] |δn(s)| = 0. Let N : N → N and a set of real numbers {σ(l)k| k = l,

. . . , N(l)} be such that (13) holds true and the sequence (vr,l(·))l defined by (14) converges to 
g(·)|Br

strongly in L1
([t0, 1], C0(Br , RN)

)
. Then for every s ∈ [t0, 1],

y(s) = z(t0) +
s∫

t0

N(l)∑
k=l

σ (l)kgnk
(y(τ ))dτ +

N(l)∑
k=l

σ (l)kδnk
(s).

As before, taking the limit when l → ∞ we get

y(s) = z(t0) +
s∫

t0

g(τ)(y(τ ))dτ

and, from the uniqueness of solution to the ODE y′(s) = g(s)(y(s)), y(t0) = z(t0), we deduce 
that y(·) = z(·). In particular,

z(t) = lim
k→∞ynk

(t) ∈ lim
k→+∞Knk

(t) = K(t).

6.2. Proof of Theorem 4.7

The proofs of Theorem 4.3, Proposition 4.8 and Proposition 4.9 are given in subsections 6.3, 
6.4 and 6.5. Here we apply these results to prove Theorem 4.7.

By Propositions 4.8 and 4.9 if W : [0, 1] × K (RN) → R is a continuous contingent solution 
to the morphological Hamilton-Jacobi equation, then W = V . By Theorem 4.3, V is continuous. 
Clearly V (1, ·) = g(·). It remains to prove that V satisfies inequalities (i), (ii) of Definition 4.5.

By Theorem 3.1 and Proposition 2.12 the inequality (ii) is satisfied for any (t, K) ∈
[0, 1[×K (RN). Fix (t0, K0) ∈ [0, 1[×K (RN). We claim that D↑V (t0,K0)(1, f (K0, ū)) ≤ 0
for some ū ∈ U . Indeed, by Theorem 4.2 there exists a solution-control pair (K(·), u(·)) of the 
morphological control system [S] satisfying V (t0, K0) = g(K(1)). Then,

V
(
t0 + h,K(t0 + h)

) = V
(
t0,K0

)
, ∀h ∈ [0,1 − t0]. (16)
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Consider any sequence of scalars hn > 0 converging to 0. By Proposition 4.1, for any n suffi-
ciently large, K(t0 +hn) coincides with the reachable set Vf (K(·),u(·))

(
t0 +hn, K0

)
at time t0 +hn

of the system

x′(s) = f
(
K(s),u(s)

)(
x(s)

)
, x(t0) ∈ K0.

Since u(·) is measurable and U is complete and separable, there exist simple measurable maps 
vi : [t0, 1] → U converging pointwise to u(·). Define

φ(s) := f (K0, u(t0 + s))|K0 ∈ C0(K0,R
N) ∀ s ∈ [0,1 − t0].

By continuity of f we know that φ is the pointwise limit of simple functions f (K0, vi(t0 +·))|K0 . 
Since f is also bounded, φ is Bochner integrable. The set f (K0, U)|K0 := {f (K0, u)|K0 | u ∈ U}
being convex and compact in C0(K0, RN), from the separation theorem we deduce that,

hn∫
0

φ(s) ds ∈ hnf
(
K0,U

)
|K0

.

Let un ∈ U be such that

hn∫
0

φ(s) ds = hnf
(
K0, un

)
|K0

.

Consider a subsequence (unj
)j converging to some ū ∈ U . Then

hnj∫
0

φ(s) ds = hnj
f
(
K0, ū

)
|K0

+ õ(hnj
), (17)

where limj→∞ ‖õ(hnj
)‖/hnj

= 0 and ‖ · ‖ denotes the norm of C0(K0, RN). From the very 
definition of the Bochner integral we deduce that

hn∫
0

f
(
K0, u(t0 + s)

)(
x(t0)

)
ds = lim

i→∞

hn∫
0

f
(
K0, vi(t0 + s)

)(
x(t0)

)
ds =

hn∫
0

φ(s)ds
(
x(t0)

)
.

Fix y ∈ K(t0 + hn) and let x(·) ∈ W 1,1
([t0, t0 + hn], RN

)
be such that{

x′(s) = f
(
K(s),u(s)

)(
x(s)

)
for a.e. s ∈ [t0, t0 + hn]

x(t0) ∈ K0, x(t0 + hn) = y.
(18)

We know that for some constants c1 > 0, c2 > 0, K(·) is c1-Lipschitz continuous and x(·) is 
c2-Lipschitz continuous, i.e. that for any t ∈ [t0, 1[,
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dH (K(t + s),K(t)) ≤ c1|s| and |x(t + s) − x(t)| ≤ c2|s| whenever s ∈ [0,1 − t].

Hence

y = x(t0 + hn) = x(t0) +
hn∫

0

x′(t0 + s) ds

= x(t0) +
hn∫

0

f
(
K(t0 + s), u(t0 + s)

)(
x(t0 + s)

)
ds

= x(t0) +
hn∫

0

f
(
K0, u(t0 + s)

)(
x(t0)

)
ds + o(hn)

= x(t0) +
hn∫

0

φ(s) ds
(
x(t0)) + o(hn)

with |o(hn)| ≤ ch2
n and c independent from y.

This and (17) imply that for any y ∈ K(t0 + hnj
) we can find x0 ∈ K0 such that∣∣y − x0 − hnj

f
(
K0, ū

)
(x0)

∣∣ ≤ ‖õ(hnj
)‖ + ch2

nj
.

Observe next that for any x0 ∈ K0, the solution of the ODE z′ = f
(
K(s), u(s)

)
(z), z(t0) = x0

satisfies z(t0 + hnj
) ∈ K(t0 + hnj

). Therefore, the above estimates yield

dH (K(t0 + hnj
), (Id + hnj

f (K0, ū))
(
K0

)
) = o(hnj

).

Thus, Definition 2.11 and (16) imply that

0 = lim
j→∞

V (t0 + hnj
,K(t0 + hnj

)) − V (t0,K0)

hnj

≥ D↑V (t0,K0)(1, f (K0, ū))

completing the proof.

6.3. Proof of Proposition 4.8

Define the set-valued map FU : K (RN) � Lip(RN, RN) by FU(K) := {f (K,u) | u ∈ U}. 
By (H1), FU has nonempty convex compact values. Moreover, the graph of FU is a 
closed subset of K (RN) × Lip(RN, RN) (with respect to the local uniform convergence in 
Lip(RN, RN)), because f is continuous and U is compact.

We define the set-valued map F̃U :R × K (RN) ×R � Lip(RN+2, RN+2) by

F̃U(t,K, r) := {(1, f (K,u),0) | u ∈ U} ,

where (1, f (K, u), 0)(t, x, z) = (1, f (K, u)(x), 0) for every u ∈ U and (t, x, z) ∈ R ×RN ×R.
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Thus (1, f (K, u), 0) induces a transition

V(1,f (K,u),0) : [0,1] × (
R× K (RN) ×R) → R× K (RN) ×R

by means of the reachable sets to the system

⎧⎪⎨⎪⎩
t ′ = 1

x′ = f (K,u)(x)

z′ = 0 .

Obviously, values of F̃U are nonempty, compact and convex and the graph of F̃U is closed 
with respect to the local uniform convergence in Lip(RN+2, RN+2). Since W satisfies a con-
tingent inequality of Proposition 4.8, by Proposition 2.12 and Proposition 4.6 for any (t, K) in 

the domain of W with t < 1, we have 
◦
D↑W(t, K)(1, Vf (K,u)) ≤ 0 for some u ∈ U . This and 

Proposition 2.7 imply that any t ∈ [0, 1[ and any K ∈ K (RN) with (t, K) in the domain of W , 
there exists u ∈ U such that

V(1,f (K,u),0) ∈ ◦
T E p(W)(t,K,W(t,K)).

Hence for any (t, K, r) ∈ E p(W) with t < 1 there is u ∈ U satisfying V(1,f (K,u),0) ∈
◦
T E p(W)(t, K, r).

Fix any t0 ∈ [0, 1[ and K0 ∈ K (RN). If W(t0, K0) = +∞, then W(t0, K0) ≥ V (t0, K0). 
Assume next that W(t0, K0) is finite.

From the Viability theorem [18, Theorem 3.11] applied on the closed set E p(W) ∪([1, ∞[×K (RN) ×R
)
, we deduce that there exists K̃(·) : [t0, 1] → R × K (RN) ×R solution 

to the morphological inclusion 
◦
K̃(·) ∩ F̃U(K̃(·)) �= ∅ with K̃(t0) = (t0, K0, W(t0, K0)) which 

verifies for every t ∈ [t0, 1[, K̃(t) ∈ E p(W). Continuity of K̃ and closedness of E p(W) yield 
K̃(1) ∈ E p(W). The definition of F̃U ensures the existence of a map K(·) : [t0, 1] → K (RN)

solving the morphological inclusion 
◦
K(·) ∩ FU(K(·)) �= ∅ with K(t0) = K0 satisfying

W(t,K(t)) ≤ W(t0,K0), ∀ t ∈ [t0,1]. (19)

Then [17, Proposition 25, p. 416] implies the existence of a control u(·) ∈ U such that K(·)
is the solution to the morphological equation 

◦
K(·) � f (K(·), u(·)), K(t0) = K0. Hence we get 

from (19),

W(t0,K0) ≥ W(1,K(1)) = g(K(1)) ≥ V (t0,K0).

Since t0 ∈ [0, 1[ and K0 ∈ K (RN) are arbitrary, we deduce that V ≤ W .
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6.4. Proof of Proposition 4.9

By the contingent inequality of Proposition 4.9, Proposition 2.12 and Proposition 2.7, for 
every (t, K) in the domain of W with t < 1 and every r ≥ −W(t, K) we have

(1,Vf (K,u),0) ∈ ◦
T E p(−W)(t, x, r) ∀u ∈ U. (20)

Let (t0, K0) ∈ [0, 1[×K (RN). If W(t0, K0) = −∞, then W(t0, K0) ≤ V (t0, K0). Also 
if V (t0, K0) = +∞, then W(t0, K0) ≤ V (t0, K0). Assume next that W(t0, K0) is finite and 
V (t0, K0) < +∞.

Fix ε > 0, R > 0 and let K(·) : [t0, 1] → K (Rn) be a solution to the morphological equation 
◦
K(·) � f (K(·), u(·)) for some u(·) ∈ U satisfying K(t0) = K0 and such that

g(K(1)) ≤
{

V (t0,K0) + ε
2 if V (t0,K0) > −∞

−R − ε
2 otherwise.

Since u(·) is measurable, there is a sequence of continuous functions ui(·) : [t0, 1] → U such 
that

lim
i→∞dU(ui(t), u(t)) = 0 a.e. in [t0,1].

Furthermore, we can approximate continuous functions ui(·) by piecewise constant functions 
νk
i (·) : [t0, 1] → U that are continuous from the left and converge to ui(·) uniformly on [t0, 1]

when k → ∞. This implies that for a sequence 
(
ν

ki

i

)
i

we have

lim
i→∞dU (ν

ki

i (t), u(t)) = 0 a.e. in [t0,1].

To simplify the notation set νi := ν
ki

i . For i ∈N fixed, the function νi(·) can be written as

νi(·) = γ0χ[a0,a1](·) +
p∑

j=1

γjχ]aj ,aj+1](·),

where γj ∈ U for j = 0, ..., p, t0 = a0 < a1 < · · · < ap+1 = 1 and χI denotes the in-
dicator function of an interval I ⊆ R. By (20) and the Viability theorem [18, Theorem 
3.11] applied on the closed set E p(−W) ∪ ([1, ∞[×K (RN) × R

)
to the map (t, K, r) →

(1, f (K, γ0), 0), there exists Ki(·) : [a0, a1] → K (RN) solution to the morphological equation 
◦

Ki(·) � f (Ki(·), γ0), Ki(a0) = K0 satisfying

−W(s,Ki(s)) ≤ −W(a0,Ki(a0)), for every s ∈ [a0, a1],
or equivalently,

W(s,Ki(s)) ≥ W(t0,K0), for every s ∈ [a0, a1].
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Using the induction argument, we extend Ki(·) on the interval [t0, 1] as the solution of the control 
system in [S] corresponding to the control νi(·) satisfying

W(s,Ki(s)) ≥ W(t0,K0), for every s ∈ [t0,1]. (21)

We claim that limi→∞ dH

(
Ki(s), K(s)

) = 0 for s ∈ [t0, 1]. Indeed, since, for some λ > 0, f is 
λ-Lipschitz continuous in the first variable uniformly in u, by Proposition 2.9 for a.e. t ∈ [t0, 1]
we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

α
(
Vf (Ki(t), νi (t))

)
≤ Lip f

(
Ki(t), νi(t)

) ≤ A,

d�

(
Vf (Ki(t),νi (t)),Vf (K(t),u(t))

)
≤ ||f (Ki(t), νi(t)) − f (K(t), u(t))||∞
≤ λdH (Ki(t),K(t)) + ‖f (K(t), u(t)) − f (K(t), νi(t))‖∞.

By [17, Proposition 21, p. 41], we obtain that for every t ∈ [t0, 1],

dH

(
K(t),Ki(t)

) ≤ eAt

t∫
t0

[
λdH (Ki(s),K(s)) + ‖f (K(s), u(s)) − f (K(s), νi(s))‖∞

]
e−Asds.

Gronwall’s Lemma implies that for a constant M > 0 and every i ≥ 1 we have

dH

(
K(t),Ki(t)

) ≤ M

t∫
t0

‖f (K(s), u(s)) − f (K(s), νi(s))‖∞ds ∀ t ∈ [t0,1].

Since dU(νi(·), u(·)) converge to 0 almost everywhere in [t0, 1], and f is bounded and contin-
uous, by the Lebesgue dominated convergence theorem, limi→∞ dH

(
K(t), Ki(t)

) = 0 for all 
t ∈ [t0, 1]. By the upper semicontinuity of W , also g is upper continuous. We deduce from (21)
that for all large i,

W(t0,K0) ≤ W(1,Ki(1)) = g(Ki(1)) ≤ g(K(1)) + ε

2
≤

{
V (t0,K0) + ε if V (t0,K0) > −∞
−R otherwise.

Since ε > 0, R > 0 are arbitrary, W(t0, K0) ≤ V (t0, K0). Finally, using that t0 ∈ [0, 1[ and K0 ∈
K (RN) are arbitrary, we get W ≤ V .

6.5. Proof of Theorem 4.3

We need the following Lemma:

Lemma 6.1. Assume that f : K (RN) × U → Lip (RN, RN) is λ1-Lipschitz continuous in the 
first argument for every u ∈ U and that A := sup

u∈U,K∈K (RN)

Lip f (K,u) < +∞. Then for every 

control u(·) ∈ U , t0 ∈ [0, 1[, any solutions K(·), K ′(·) : [t0, 1] → K (RN) to the morphological 
equations
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◦
K(·) � f

(
K(·), u(·)), ◦

K ′(·) � f
(
K ′(·), u(·)),

satisfy the following inequality

dH (K(t),K ′(t)) ≤ e(A+λ1)t dH (K(t0),K
′(t0)), ∀ t ∈ [t0,1].

Proof. Fix t ∈ [t0, 1]. By Proposition 2.9, supu∈U,K∈K (RN) α
(
Vf (K,u)

) ≤ A and

d�

(
Vf (K(t),u(t)),Vf (K ′(t),u(t))

)
≤ ||f (

K(t), u(t)
) − f

(
K ′(t), u(t)

)||∞ ≤ λ1 dH

(
K(t),K ′(t)

)
.

Thus, [17, Proposition 21, p. 41] implies that for every t ∈ [0, 1],

dH

(
K(t),K ′(t)

) ≤
(
dH

(
K(t0),K

′(t0)
) + λ1

t∫
t0

dH

(
K(s),K ′(s)

)
e−Asds

)
eAt .

The Gronwall lemma completes the proof. �
Proof of Theorem 4.3

By (H1) (i), for every u ∈ U and K0 ∈ K (RN), the solution K(·) : [t0, 1] → K (RN) to the 

morphological equation 
◦
K(·) � f

(
K(·), u(·)), K(t0) = K0 satisfies K(1) ⊂ B(K0, ρ). Hence V

has finite values.
Assume first that g is locally Lipschitz. Fix t0, t ′0 ∈ [0, 1] with t ′0 < t0 and K0, K ′

0 ∈ K (RN). 
Let ε > 0 and u(·) ∈ U be such that the corresponding solution K(·) : [t0, 1] → K (RN) to the 

morphological system 
◦
K(·) � f

(
K(·), u(·)), K(t0) = K0, satisfies g(K(1)) ≤ V (t0, K0) + ε. Let 

K ′(·) : [t ′0, 1] → K (RN) be the solution to 
◦

K ′(·) � f
(
K ′(·), u(·)), K ′(t ′0) = K ′

0.
Since g is locally Lipschitz continuous and (H1) (i) is satisfied, by Lemma 6.1, there exists a 
constant c > 0 depending only on λ1, A and a constant L depending only on ρ and the magnitude 
of K0, K ′

0 such that

V (t ′0,K ′
0) − V (t0,K0) ≤ g(K ′(1)) − g(K(1)) + ε

≤ L dH

(
K(1),K ′(1)

) + ε

≤ c L dH

(
K(t0),K

′(t0)
) + ε

Note that

dH (K ′(t0),K(t0)) ≤ dH (K ′(t0),K ′(t ′0)) + dH (K ′(t ′0),K(t0))

= dH (K ′(t0),K ′(t ′0)) + dH (K ′
0,K0).

Since K ′(·) is ρ-Lipschitz continuous, from the last two inequalities we obtain

V (t ′0,K ′
0) − V (t0,K0) ≤ cL

[
ρ|t0 − t ′0| + dH (K ′

0,K0)
]
+ ε.
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Consider u′(·) ∈ U and K ′(·) : [0, 1] → K (RN) solving the morphological system 
◦

K ′(·) �
f
(
K ′(·), u′(·)), K ′(t ′0) = K ′

0 and satisfying g(K ′(1)) ≤ V (t ′0, K ′
0) + ε. Let K(·) : [t0, 1] →

K (RN) be the solution to 
◦
K(·) � f

(
K(·), u′(·)), K(t0) = K0. Using the same arguments as 

before, we show that

V (t0,K0) − V (t ′0,K ′
0) ≤ cL

[
ρ|t0 − t ′0| + dH (K ′

0,K0)
]
+ ε .

Since ε > 0 is arbitrary, we conclude that

|V (t0,K0) − V (t ′0,K ′
0)| ≤ cρL|t0 − t ′0| + cLdH (K ′

0,K0),

implying the local Lipschitz continuity of V . The fact that the continuity of g implies the conti-
nuity of V follows by similar arguments.

6.6. Proof of Theorem 4.4

Fix (t0, K0) ∈ [0, 1] ×K (RN). Consider a sequence (tn, Kn) in [0, 1] ×K (RN) converging 
to (t0, K0). Theorem 4.2 implies the existence of controls un(·) ∈ U such that the solutions K̄n :
[tn, 1] → K (RN) of 

◦
K̄n(s) � f

(
K̄n(s), un(s)

)
, K̄n(tn) = Kn satisfy V (tn, Kn) = g(K̄n(1)). We 

extend K̄n(·) on the interval [0, 1] by setting K̄n(s) = Kn for every 0 ≤ s < tn. Using the same 
arguments as those in the proof of Theorem 4.2, we show that K̄n(·) has a subsequence, again 
denoted by K̄n(·), converging uniformly to a solution K(·) : [0, 1] → K (RN) of the morpho-
logical control system [S] on [t0, 1].

Since g is lower semicontinuous and the sequence K̄n(·) converges uniformly to K(·) in 
K (RN),

V (t0,K0) ≤ g(K(1)) ≤ lim inf
n→∞ g(K̄n(1)) = lim inf

n→∞ V (tn,Kn).

By the arbitrariness of (tn, Kn), V is lower semicontinuous at (t0, K0). The arbitrariness of 
(t0, K0) ends the proof.
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