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1. Introduction and main results

In this paper, we study mixed-norm estimates in Sobolev spaces for solutions of non-stationary 
Stokes systems with possibly singular measurable coefficients in both divergence and non-
divergence forms. Due to the singularity of the coefficients, our main results are applied to prove 
a new ε-regularity criterion for Leray-Hopf weak solutions of the Navier-Stokes equations. Pre-
cisely, we study the following time-dependent Stokes system with general coefficients:

ut − Di(aijDju) + ∇p = divf, divu = g, (1.1)

where u = u(t, x) ∈ Rd is an unknown vector solutions representing the velocity of the con-
sidered fluid, and p = p(t, x) is an unknown fluid pressure. Moreover, f (t, x) = (fij (t, x)) is 
a given measurable matrix of external forces, g = g(t, x) is a given measurable function, and 
aij = bij (t, x) + dij (t, x) is a given measurable matrix of viscosity coefficients, in which (bij )

and (dij ) are its symmetric and skew-symmetric parts, respectively. We assume that the ma-
trix (aij ) satisfies the following boundedness and ellipticity conditions with ellipticity constant 
ν ∈ (0, 1):

ν|ξ |2 ≤ aij ξiξj , |bij | ≤ ν−1, (1.2)

and

bij = bji, dij ∈ L1,loc, dij = −dji, ∀ i, j ∈ {1,2, . . . , d}. (1.3)

Note that in (1.2), the boundedness is not imposed on the skew-symmetric part (dij )
d
i,j=1 of the 

coefficient matrix (aij )
d
i,j=1. As a result, the viscosity coefficients in (1.1) can be singular.

We also consider non-divergence form Stokes systems

ut − aijDiju + ∇p = f, divu = g, (1.4)

and in this setting, the matrix aij = bij , i.e., dij = 0, f = (f1, f2, . . . , fd) is given measurable 
vector field function, and g = g(t, x) is a given measurable function.

The interest in results concerning solutions in mixed Sobolev norm spaces arises, for example, 
when one wants to have better regularity of traces of solutions for each time slide while treating 
linear or nonlinear equations. See, for instance, [20,26], where the initial-boundary value problem 
for the non-stationary Stokes system in mixed-norm Sobolev spaces was studied. Besides its 
mathematical interests, our motivation to study the Stokes systems (1.1) and (1.4) with variable 
coefficients comes from the study of inhomogeneous fluid with density dependent viscosity, see 
[1,19], as well as the study of the Navier-Stokes equations in general Riemannian manifolds, see 
[6]. Moreover, such problem is also connected to the study of regularity for weak solutions of 
the Navier-Stokes equations as we will explain shortly.

In Theorem 1.9 below, we establish mixed-norm Sobolev estimate for weak solutions of 
(1.1), and in Theorem 1.11 mixed-norm Sobolev estimates for strong solutions of (1.4). In Theo-
rem 1.16 we give a new ε-regularity criterion for Leray-Hopf weak solutions of the Navier-Stokes 
equations.

Before we state these results precisely, we introduce some notation and assumptions that we 
use in this paper. In addition to the ellipticity condition (1.2), we need the following VMOx
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(vanishing mean oscillation in x) condition, first introduced in [17], with constants δ ∈ (0, 1) and 
α0 ∈ [1, ∞) to be determined later.

Assumption 1.5 (δ, α0). There exists R0 ∈ (0, 1/4) such that for any (t0, x0) ∈ Q2/3 and r ∈
(0, R0), there exists āij (t) = b̄ij (t) + d̄ij (t) for which b̄ij (t) and d̄ij (t) satisfy (1.2)-(1.3) and

 

Qr(t0,x0)

|aij (t, x) − āij (t)|α0 dx dt ≤ δα0 ,

where δ ∈ (0, 1) and α0 ∈ [1, ∞).

Here Qρ(z0) is the parabolic cylinder centered at z0 = (t0, x0) ∈ Rd+1 with radius ρ > 0:

Qρ(z0) = (t0 − ρ2, t0) × Bρ(x0),

where Bρ(x0) is the ball in Rd of radius ρ centered at x0 ∈ Rd . For abbreviation, when z0 =
(0, 0), we write Qρ = Qρ(0, 0) and Bρ = Bρ(0).

Remark 1.6. The VMOx-condition in Assumption 1.5 is weaker than the usual full VMO con-
dition in both t and x variables as it does not require any regularity condition on the mean 
oscillation in the time variable t . A simple example is when aij(t, x) = a(t)b(x) with

ν ≤ a(t), b(x) ≤ ν−1, t ∈ (−1,0), x ∈ (−1,1).

If b is a VMO function, then aij (t, x) satisfies Assumption 1.5 even when a(t) is just measurable. 
However, in this case, aij (t, x) does not satisfy the usual full VMO condition in both t and x
variables as the mean oscillation of the function a can be large.

For each s, q ∈ [1, ∞) and each cylindrical domain Q = � × U ⊂ R ×Rd , the mixed (s, q)-
norm of a measurable function u defined in Q is

‖u‖Ls,q (Q) =
⎡
⎢⎣
ˆ

�

⎛
⎝ˆ

U

|u(t, x)|q dx

⎞
⎠

s/q

dt

⎤
⎥⎦

1/s

.

As usual, we define

Ls,q(Q) = {measurable u : Q → R : ‖u‖Ls,q (Q) < ∞} and Lq(Q) = Lq,q(Q).

We also define the parabolic Sobolev space

W 1,2
s,q (Q) = {u : u,Du,D2u ∈ Ls,q(Q), ut ∈ L1(Q)},

and define

H−1
s,q(Q) = {u = divF + h in Q : ‖F‖Ls,q (Q) + ‖h‖Ls,q (Q) < ∞}.
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Naturally, for any u ∈H−1
s,q(Q), we define the norm

‖u‖H−1
s,q (Q)

= inf{‖F‖Ls,q (Q) + ‖h‖Ls,q (Q) |u = divF + h},

and it is easy to see that H−1
s,q(Q) is a Banach space. Moreover, when u ∈ H−1

s,q(Q) and u =
divF + h, we write

〈u,φ〉 =
ˆ

Q

[
− F · ∇φ + hφ

]
dx dt, for any φ ∈ C∞

0 (Q).

We also define

H1
s,q(Q) = {u : u,Du ∈ Ls,q(Q),ut ∈H−1

1,1(Q)}.

When s = q , we will omit one of these two indices and write

Lq(Q) = Lq,q(Q), W 1,2
q (Q) = W 1,2

q,q (Q), H1
q(Q) = H1

q,q(Q), H−1
q (Q) = H−1

q,q(Q).

Remark 1.7. In our definition of W 1,2
s,q (Q) we only require that ut ∈ L1(Q), not ut ∈ Ls,q(Q)

as in the standard notation for the space W 1,2
s,q (Q). Similarly in the definition of H1

s,q(Q), we 

only require ut ∈H−1
1,1(Q), not ut ∈ H−1

s,q(Q). This is because for the Stokes systems, local weak 
solutions may not possess good regularity in the time variable in view of Serrin’s example [23]. 
It is possible to further relax the regularity assumptions of u in t and also p below, but we do not 
pursue in that direction.

For s, q ∈ (1, ∞), we denote s′ and q ′ to be the conjugates of s and q , i.e.,

1/s + 1/s′ = 1, 1/q + 1/q ′ = 1. (1.8)

Then, under the assumption that dkj ∈ Ls′,q ′(Q1) and fkj ∈ L1(Q1) for all i, j = 1, 2, . . . , d , 
g ∈ L1(Q1), we say that a vector field function u = (u1, u2, . . . , ud) ∈ H1

s,q(Q1)
d is a weak 

solution of the Stokes system (1.1) in Q1 if

ˆ

B1

u(t, x) · ∇ϕ(x)dx = −
ˆ

B1

g(t, x)ϕ(x) dx for a.e. t ∈ (−1,0), for all ϕ ∈ C∞
0 (B1)

and

〈∂tuk,φk〉 +
ˆ

Q1

aij (t, x)DjukDiφk dx dt = −
ˆ

Q1

fkjDjφk dtdx,

for any k = 1, 2, . . . , d and φ = (φ1, φ2, . . . , φd) ∈ C∞
0 (Q1)

d such that div[φ(t, ·)] = 0 for t ∈
(−1, 0). On the other hand, a vector field u ∈ W

1,2
1,1 (Q1)

d is said to be a strong solution of (1.4)

on Q1 if (1.4) holds for a.e. (t, x) ∈ Q1 for some p ∈ L1(Q1) with ∇p ∈ L1(Q1)
d .
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We are ready to state the main results of the paper. Our first theorem is about the Ls,q -estimate 
for gradients of weak solutions to (1.1).

Theorem 1.9. Let s, q ∈ (1, ∞), ν ∈ (0, 1), α0 ∈ (min(s, q)/(min(s, q) − 1), ∞), and dij ∈
Ls′,q ′(Q1) with s′, q ′ being as in (1.8) and i, j = 1, 2, . . . , d . There exists δ = δ(d, ν, s, q, α0) ∈
(0, 1) such that the following statement holds. Assume that (1.2)-(1.3) and Assumption 1.5 (δ, α0)

hold. Then, if (u, p) ∈H1
s,q(Q1)

d ×L1(Q1) is a weak solution to (1.1) in Q1, f ∈ Ls,q(Q1)
d×d , 

and g ∈ Ls,q(Q1), it holds that

‖Du‖Ls,q (Q1/2) ≤ N(d, ν, s, q,α0)
[
‖f ‖Ls,q (Q1) + ‖g‖Ls,q (Q1)

]
+ N(d, ν, s, q,R0, α0)‖u‖Ls,q (Q1).

(1.10)

For the non-divergence form Stokes system (1.4), we obtain the following mixed-norm esti-
mates for the Hessian of solutions.

Theorem 1.11. Let s, q ∈ (1, ∞) and ν ∈ (0, 1). There exists δ = δ(d, ν, s, q) ∈ (0, 1) such that 
the following statement holds. Suppose that dij = 0, the ellipticity condition (1.2) and Assump-

tion 1.5 (δ, 1) hold. Then, if u ∈ W
1,2
s,q (Q1)

d is a strong solution to (1.1) in Q1, f ∈ Ls,q(Q1)
d×d , 

and Dg ∈ Ls,q(Q1)
d , then it follows that

‖D2u‖Ls,q (Q1/2) ≤ N(d, ν, q)
[
‖f ‖Ls,q (Q1) + ‖Dg‖Ls,q (Q1)

]
+ N(d, ν, q,R0)‖u‖Ls,q (Q1).

(1.12)

Remark 1.13. By using interpolation and a standard iteration argument, (1.10) and (1.12) still 
hold if we replace the term ‖u‖Ls,q(Q1) on the right-hand sides with ‖u‖Ls,1(Q1).

Several remarks regarding our Theorems 1.9 and 1.11 are in order. The estimates in Theo-
rems 1.9 and 1.11 do not contain any pressure term on the right-hand sides, which seem to be 
new even when the coefficients are constants. One can easily see that the estimates in Theo-
rems 1.9 and 1.11 imply the available regularity estimates such as [24, Proposition 6.7, p. 84] in 
which the regularity for the pressure p is required. Even when q = s = 2 and g ≡ 0, the estimates 
(1.10) and (1.12) are already new for the non-stationary Stokes system with variable coefficients. 
These estimates are known as Caccioppoli type inequalities. When aij = δij , f ≡ 0, and g ≡ 0, 
Caccioppoli type inequalities for Stokes system were established in [14] by using special test 
functions. However, it is not so clear that this method can be extended to systems with vari-
able coefficients and nonzero right-hand side. We also refer the reader to [28,3] for Caccioppoli 
inequalities without the pressure term on the right-hand side for the Navier-Stokes equations.

Sobolev estimates for non-stationary Stokes system with constant coefficients were estab-
lished in [25] many years ago, and recently in [13] with different approach. For stationary Stokes 
system with variable, VMO or partially VMO coefficients, both interior and boundary estimates 
were studied recently in [4,8,9], where slightly more general operators but with bounded co-
efficients were considered. However, the approaches used in these papers do not seem to be 
applicable to the non-stationary Stokes system.

Finally, we mention that the smallness Assumption 1.5 (δ, α0) is necessary for both The-
orem 1.9 and Theorem 1.11. See an example in the well-known paper [21] for linear elliptic 
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equations in which dij = 0, and an example in [11] in which (aij ) is an identity matrix and (dij )

is bounded but not small in the BMO semi-norm.
Next, we give an application of our Ls,q -estimates for the Stokes system. Consider the Navier-

Stokes equations

ut − �u + (u · ∇)u + ∇p = 0, divu = 0. (1.14)

Let u be a Leray-Hopf weak solution of (1.14) in Q1. For each i, j = 1, 2, . . . , d , let dij be the 
solution of the equation

{
�dij = Djui − Diuj in B1
dij = 0 on ∂B1.

(1.15)

Observe that for a.e. t ∈ (−1, 0), we have u(t, ·) ∈ L2(B1). Therefore, the existence and unique-
ness of dij (t, ·) ∈ W

1,2
0 (B1) follows, and the solution dij (t, ·) satisfies the standard energy 

estimate, see (5.4). Let [dij ]Bρ(x0)(t) be the average of dij with respect to x on Bρ(x0) ⊂ B1. 
As a corollary of Theorem 1.9, we obtain the following new ε-regularity criterion for the Navier-
Stokes equation (1.14).

Theorem 1.16. Let α0 ∈ (2(d +2)/(d +4), ∞). There exists ε ∈ (0, 1) sufficiently small depend-
ing only on the dimension d and α0 such that, if u is a Leray-Hopf weak solution of (1.14) in Q1
and

sup
z0∈Q2/3

sup
ρ∈(0,R0)

⎛
⎜⎝

 

Qρ(z0)

|dij (t, x) − [dij ]Bρ(x0)(t)|α0 dx dt

⎞
⎟⎠

1/α0

≤ ε, (1.17)

for every i, j = 1, 2, . . . , d and for some R0 ∈ (0, 1/4) and with dij defined in (1.15), then u is 
smooth in Q1/2.

The parameter α0 in the above theorem can be less than 2, which might be useful in ap-
plications. We would like to note that many other ε-regularity criteria for solutions to the 
Navier-Stokes equations were established, for instance, in [2,12]. See also [24, Chapter 6] for 
further discussion on this. As an immediate consequence of Theorem 1.16, we obtain the follow-
ing regularity criteria for weak solutions to the Navier-Stokes equations, which implies Serrin’s 
regularity criterion in the borderline case established by Fabes-Jones-Rivière [10] and by Struwe 
[27].

Corollary 1.18. Assume that u is a Leray-Hopf weak solution of (1.14) in Q1.
(i) Let s, q ∈ (1, ∞] be such that 2/s +d/q = 1. Suppose that u ∈ Ls((−1, 0); Lw

q (B1)) when 
s < ∞, or the L∞((−1, 0); Lw

d (B1)) norm of u is sufficiently small. Then, u is smooth in Q1/2.
(ii) Let s, q ∈ (1, ∞] be such that 2/s +d/q = 1. Suppose that u ∈ Lw

s ((−1, 0); Lw
q (B1)) with 

a sufficiently small norm. Then, u is smooth in Q1/2.
(iii) Let α ∈ [0, 1), β ∈ [0, d), and s, q ∈ (1, ∞) be constants satisfying

2α + β = 2 + d − 1(> 0),
1

<
1 + 1

, and
1

<
1 + 1 + 1

. (1.19)

s q s q s 2 d + 2 q 2 d + 2 d
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Suppose that u ∈ Ms,α((−1, 0); Mq,β(B1)) with a sufficiently small norm. Then, u is smooth in 
Q1/2.

Here Lw
q is the weak-Lq space, and Mq,β is the Morrey space

‖f ‖Mq,β (B1) :=
⎛
⎜⎝ sup

x0∈B1, r>0

r−β

ˆ

Br (x0)∩B1

|f |q dx

⎞
⎟⎠

1/q

.

Notice that in particular, when d = 3, Corollary 1.18 (i) recovers a result by Kozono [16]. When 
d = 3 and q < ∞, Corollary 1.18 (ii) was obtained in [15]. Our approach only uses linear esti-
mates and is very different from these in [16,15]. It is also worth mentioning that we can take 
q > 1 and s > 10/7 in Corollary 1.18 (iii) in the case when d = 3.

We now briefly describe our methods in the proofs of the main results. Our approaches to 
prove Theorems 1.9 and 1.11 are based on perturbation using equations with coefficients frozen 
in the spatial variable and sharp function technique introduced in [17,18] and developed in [7]. 
As we already mentioned, unlike in the stationary case studying in [4,8,9], even when s = q = 2, 
the estimates (1.10) and (1.12) are not available to start the implementation of the perturbation. 
Our main idea to overcome this is to use the equations of vorticity, which is in the spirit of Serrin 
[23]. Therefore, we need to derive several necessary estimates for the vorticity, and then, use the 
divergence equation and these estimates to derive desired estimates for the solutions. Another 
difficulty is that, because the right-hand side of the estimates do not contain the pressure term, 
the usual localization argument used, for example, in [17,18,7] does not work. Moreover, there 
is no a priori known L2 or L1+ε estimates for (1.1) or (1.4). Therefore, the argument used in 
[4,8,9] does not work in our case either. Here our strategy is to use a two step estimates. First 
we estimate the Lq0 norm of Du by the data, a lower-order norm of u, and the Lq norm of 
Du with a small constant δ, where q > q0. See Lemma 3.1 and Corollary 3.6. Then we use this 
estimate to bound the L1 norm of the vorticity on the right-hand side of the inequality obtained by 
using the Fefferman-Stein sharp function theorem and the Hardy-Littlewood maximal function 
theorem. See the proof of Lemma 3.11. To prove Theorem 1.16, we first rewrite the Navier-
Stokes equations (1.14) into a Stokes system in divergence form (1.1) with coefficients that have 
singular skew-symmetric part (dij ) defined in (1.15). Then, we iteratively apply Theorem 1.9
and the Sobolev embedding theorem to successively improve the regularity of weak solutions.

The rest of the paper is organized as follows. In Section 2, we recall several estimates for 
sharp functions, and derive necessary estimates of solution and its vorticity for Stokes systems 
with coefficients that only depend on the time variable. Section 3 is devoted to the proof of 
Theorem 1.9, while the proof of Theorem 1.11 is presented in Section 4. Finally, in the last 
section, Section 5, we provide the proof of Theorem 1.16 as well as the proof of Corollary 1.18.

2. Preliminary estimates

2.1. Sharp function estimates

The following result is a special case of [7, Theorem 2.3 (i)]. Let X ⊂ Rd+1 be a space of 
homogeneous type, which is endowed with the parabolic distance and a doubling measure μ that 
is naturally inherited from the Lebesgue measure. As in [7], we take a filtration of partitions of 
348



H. Dong and T. Phan Journal of Differential Equations 276 (2021) 342–367
X (cf. [5]) and for any f ∈ L1,loc, we define its dyadic sharp function f #
dy in X associated with 

the filtration of partitions. Also for each q ∈ [1, ∞], Aq is the Muckenhoupt class of weights.

Theorem 2.1. Let s, q ∈ (1, ∞), K0 ≥ 1, and ω ∈ Aq with [ω]Aq ≤ K0. Suppose that f ∈
Ls(ωdμ). Then,

‖f ‖Ls(ωdμ) ≤ N
[
‖f #

dy‖Ls(ωdμ) + μ(X )−1ω(supp(f ))
1
s ‖f ‖L1(μ)

]
,

where N > 0 is a constant depending only on s, q , K0, and the doubling constant of μ.

The following lemma is a direct corollary of Theorem 2.1.

Lemma 2.2. For any s, q ∈ (1, ∞), there exists a constant N = N(d, s, q) > 0 such that

‖f ‖Ls,q (QR) ≤ N
[
‖f #

dy‖Ls,q (QR) + R
2
s
+ d

q
−d−2‖f ‖L1(QR)

]
,

for any R > 0 and f ∈ Ls,q(QR).

Proof. For t ∈ (−R2, 0), let

ψ(t) = ‖f (t, ·)‖Lq(BR) and φ(t) = ‖f #
dy(t, ·) + (|f |)QR

‖Lq(BR).

Moreover, for any ω ∈ Aq((−R2, 0)) with [ω]Aq ≤ K0, we write ω̃(t, x) = ω(t) for all (t, x) ∈
QR . Then, by applying Theorem 2.1 with X = QR , we obtain

‖ψ‖Lq((−R2,0),ω) = ‖f ‖Lq(QR,ω̃) ≤ N‖f #
dy + (|f |)QR

‖Lq(QR,ω̃) = N‖φ‖Lq((−R2,0),ω),

with N = N(d, K0, s). Then, by the extrapolation theorem (see, for instance, [7, Theorem 2.5]), 
we see that

‖ψ‖Ls((−R2,0),ω) ≤ 4N‖φ‖Ls((−R2,0),ω), ∀ ω ∈ As, [ω]As ≤ K0.

Note that in the special case when ω ≡ 1, ‖ψ‖Ls((−R2,0),ω) = ‖f ‖Ls,q (QR) and

‖φ‖Ls((−R2,0),ω) ≤ ‖f #
dy‖Ls,q (QR) + R2/s+d/q(|f |)QR

.

Therefore, the desired estimate follows. �
2.2. Stokes systems with simple coefficients

In this subsection, we consider the time-dependent Stokes system with coefficients that only 
depend on the time variable

ut − Di(aij (t)Dju) + ∇p = 0, divu = 0, (2.3)
349
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where aij = bij (t) + dij (t) with bij = bji and dij = −dji for all i, j = {1, 2, . . . , d}. Moreover, 
aij satisfies the ellipticity condition with ellipticity constant ν ∈ (0, 1): for any ξ ∈ Rd ,

ν|ξ |2 ≤ bij ξiξj , |bij | ≤ ν−1. (2.4)

We have the following gradient estimate.

Lemma 2.5. Assume that (2.4) holds. Let q0 ∈ (1, ∞), and (u, p) ∈ H1
q0

(Q1)
d × L1(Q1) be a 

weak solution to (2.3) in Q1. Then we have

‖D2u‖Lq0 (Q1/2) + ‖Du‖Lq0 (Q1/2) ≤ N(d, ν, q0)‖u − [u]B1(t)‖Lq0 (Q1), (2.6)

where [u]B1(t) is the average of u(t, ·) in B1.

Proof. By a mollification in x, we see that ω = ∇ ×u is a weak solution to the parabolic equation

ωt − Di(aij (t)Djω) = 0 in Q1.

Observe that since the matrix (dij (t))n×n is skew-symmetric, ω is indeed a weak solution of

ωt − Di(bij (t)Djω) = 0 in Q1.

Since the matrix (bij )n×n satisfies the ellipticity condition as in (2.4), we can apply the local H1
p

estimate for linear parabolic equations with coefficients measurable in t (cf. [17,18]) to obtain

‖Dω‖Lq0 (Q2/3) ≤ N(d, ν, q0)‖ω‖Lq0 (Q3/4). (2.7)

Since u is divergence free, we have

�ui = −Di

d∑
k=1

Dkuk +
d∑

k=1

Dkkui =
∑
k �=i

Dk(Dkui − Diuk).

Thus by the local W 1
p estimate for the Laplace operator,

‖Du‖Lq0 (Q1/2) ≤ N‖ω‖Lq0 (Q2/3) + N‖u‖Lq0 (Q2/3).

Similarly,

‖D2u‖Lq0 (Q1/2) ≤ N‖Dω‖Lq0 (Q2/3) + N‖Du‖Lq0 (Q2/3) ≤ N‖Du‖Lq0 (Q3/4)

≤ ε‖D2u‖Lq0 (Q3/4) + Nε−1‖u − [u]B1(t)‖Lq0 (Q3/4)

for any ε ∈ (0, 1), where we used (2.7) in the second inequality, and multiplicative inequalities 
in the last inequality. It then follows from a standard iteration argument that

‖D2u‖Lq0 (Q1/2) ≤ N‖u − [u]B1(t)‖Lq0 (Q1),

from which and multiplicative inequalities we obtain (2.6). The lemma is proved. �
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Recall that for each α ∈ (0, 1], and each parabolic cylinder Q ⊂Rd+1, we write

[[u]]Cα/2,α(Q) = sup
(t,x),(s,y)∈Q
(t,x)�=(s,y)

|u(t, x) − u(s, y)|
|t − s|α/2 + |x − y|α ,

and

‖u‖Cα/2,α(Q) = ‖u‖L∞(Q) + [[u]]Cα/2,α(Q).

Lemma 2.8. Under the assumptions of Lemma 2.5, we have

‖ω‖C1/2,1(Q1/2)
≤ N(d, ν, q0)‖ω‖Lq0 (Q1),

where ω = ∇ × u.

Proof. The lemma follows by using mollifications in x, the interior estimate for parabolic equa-
tions with coefficients measurable in t (see [17,18]), a bootstrap argument, and the parabolic 
embedding inequalities. �
3. Divergence form Stokes system and proof of Theorem 1.9

Note that for each integrable function f defined in a measurable set Q ⊂ Rd+1, (f )Q is the 
average of f in Q, i.e.,

(f )Q =
 

Q

f (t, x) dx dt.

We need to establish several lemmas in order to prove Theorem 1.9. Our first lemma gives the 
control of (|Du|q0)

1/q0
Qr/2

for weak solution u of the Stokes system (1.1).

Lemma 3.1. Let δ, ν ∈ (0, 1), q0 ∈ (1, ∞), q ∈ (q0, ∞). Suppose that (1.2)-(1.3) hold, and 
Assumption 1.5 (δ, α0) holds with α0 ≥ q0q

q−q0
. Then, for any r ∈ (0, R0) and weak solution 

(u, p) ∈ H1
s,q(Qr)

d × L1(Qr) of (1.1) in Qr , we have

(|Du|q0)
1/q0
Qr/2

≤ N(d, ν, q0)
(
(|f |q0)

1/q0
Qr

+ r−1(|u − [u]Br (t)|q0)
1/q0
Qr

)

+ N(d, ν, q0)δ(|Du|q)
1/q
Qr

+ N(d,q0)(|g|q0)
1/q0
Qr

.

Proof. Let (w, p1) be a weak solution to

wt − Di(āij (t)Djw) + ∇p1 = div(IQr f ) + Di(IQr (aij − āij )Dju), divw = IQr g

in (−r2, 0) ×Rd with the zero initial condition on {t = −r2}. Then ∇ × w is a so called adjoint 
solution to the parabolic equation. By duality, we get
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‖∇ × w‖Lq0 ((−r2,0)×Rd ) ≤ N(d, ν, q0)
[
‖f ‖Lq0 (Qr ) + ‖(aij − āij )Dju‖Lq0 (Qr )

]
. (3.2)

Then, from this and the equation divw = IQr g, it follows that

‖Dw‖Lq0 ((−r2,0)×Rd ) ≤ N(d,q0)
[
‖∇ × w‖Lq0 ((−r2,0)×Rd ) + ‖IQr g‖Lq0 ((−r2,0)×Rd )

]
≤ N(d, ν, q0)‖f ‖Lq0 (Qr ) + N(d, ν, q0)‖(aij − āij )Dju‖Lq0 (Qr ) + N(d,q0)‖g‖Lq0 (Qr ).

Thus, we have

(|Dw|q0)
1/q0
Qr

≤ N(d, ν, q0)
[
(|f |q0)

1/q0
Qr

+ (|(aij − āij )Dju|q0)
1/q0
Qr

]
+ N(d,q0)(|g|q0)

1/q0
Qr

≤ N(d, ν, q0)
[
(|f |q0)

1/q0
Qr

+ δ(|Du|q)
1/q
Qr

]
+ N(d,q0)(|g|q0)

1/q0
Qr

, (3.3)

where we used Assumption 1.5 with α0 ≥ q0q
q−q0

and Hölder’s inequality for the middle term on 
the right-hand side in the last inequality. Now (v, p2) := (u − w, p − p1) is a weak solution of

vt − Di(āij (t)Djv) + ∇p2 = 0, divv = 0

in Qr . By Lemma 2.5 with a scaling, we have

(|Dv|q0)
1/q0
Qr/2

≤ r−1(|v − [v]Br (t)|q0)
1/q0
Qr

. (3.4)

By (3.3), (3.4), the triangle inequality, and the Poincaré inequality, we get the desired inequal-
ity. �

For a domain � ⊂Rd and ρ > 0, we denote

�ρ = ⋃
y∈�Bρ(y).

We say that � satisfies the interior measure condition if there exists γ ∈ (0, 1) such that for any 
x0 ∈ � and r ∈ (0, diam�),

|Br(x0) ∩ �|
|Br(x0)| ≥ γ. (3.5)

Corollary 3.6. Let δ, ν ∈ (0, 1), q0 ∈ (1, ∞), q ∈ (q0, ∞), r ∈ (0, R0), T > 0, and � ⊂ Rd

satisfy (3.5) for some γ > 0 and (−T , 0) × � ⊂ Q2/3. Suppose that (1.2)-(1.3) hold, and As-
sumption 1.5 (δ, α0) holds with α0 ≥ q0q

q−q0
. Then, for any weak solution (u, p) ∈ H1

q((−T −
r2, 0) × �r)d × L1((−T − r2, 0) × �r) of (1.1) in (−T − r2, 0) × �r , we have

(|Du|q0)

1
q0
(−T ,0)×�

≤ N(d, ν, q0, γ )
((T + r2)|�r |) 1

q0

1
q

[
(|f |q0)

1
q0
(−T −r2,0)×�r + r−1(|u|q0)

1
q0
(−T −r2,0)×�r
(T |�|) 0
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+ (|g|q0)

1
q0
(−T −r2,0)×�r

]
+ N(d, ν, q0, q, γ )

((T + r2)|�r |) 1
q

(T |�|) 1
q

δ(|Du|q)
1
q

(−T −r2,0)×�r .

(3.7)

Proof. We use a partition of unity argument. By Lemma 3.1, for any x0 ∈ � and t0 ∈ (−T , 0), 
we have

(|Du|q0)Qr/2(t0,x0) ≤ N(d, ν, q0)
[
(|f |q0)Qr(t0,x0) + r−q0(|u|q0)Qr (t0,x0)

]

+ N(d, ν, q0)δ
q0(|Du|q)

q0/q

Qr(t0,x0)
+ N(d,q0)(|g|q0)Qr (t0,x0).

Now to obtain (3.7), it suffices to integrate both sides of the above inequality with respect to 
(t0, x0) ∈ (−T , 0) × � and use Hölder’s inequality and the interior measure condition (3.5). �

In the next lemma we prove a mean oscillation estimate of ∇ × u.

Lemma 3.8. Let q1 ∈ (1, ∞), q0 ∈ (1, q1), δ ∈ (0, 1), r ∈ (0, R0), and κ ∈ (0, 1/2). Assume 
that (1.2)-(1.3) hold, and Assumption 1.5 (δ, α0) holds with α0 ≥ q0q1

q1−q0
. Suppose that (u, p) ∈

H1
s1,q1

(Qr)
d × L1(Qr) is a weak solution to (1.1) in Qr . Then it holds that

(|ω − (ω)Qκr |)Qκr | ≤ N(d, ν, q0)κ
− d+2

q0 (|f |q0)
1/q0
Qr

+ N(n, ν, q0, q1)
(
κ

− d+2
q0 δ + κ

)
(|Du|q1)

1/q1
Qr

,

where ω = ∇ × u.

Proof. Let (w, p1) and (v, p2) be as in the proof of Lemma 3.1. In particular, (w, p1) is a weak 
solution of

wt − Di(āij (t)Djw) + ∇p1 = div[IQr f ] + Di(IQr (aij − āij (t))Dju), divw = IQr g

in (−r2, 0) ×Rd with zero initial condition on {t = −r2}. Also, (v, p2) = (u − w, p − p1) is a 
weak solution of

vt − Di(āij (t)Djv) + ∇p2 = 0, divv = 0

in Qr . Let ω1 = ∇ × w and ω2 = ∇ × v. Observe that ω = ω1 + ω2. Moreover, from (3.2),

(|ω1|q0)
1/q0
Qr

≤ N(d, ν, q0)
[
(|f |q0)

1/q0
Qr

+ δ(|Du|q1)
1/q1
Qr

]
. (3.9)

On the other hand, by applying Lemma 2.8 to ω2 with suitable scaling, we obtain

(|ω2 − (ω2)Qκr |)Qκr ≤ Nκr[[ω2]]C1/2,1(Qr/2)
≤ N(d, ν, q0)κ(|ω2|q0)

1/q0
Qr

≤ N(d, ν, q0)κ
[
(|ω|q0)

1/q0
Qr

+ (|ω1|q0)
1/q0
Qr

]
.
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We then combine the last estimate with (3.9) and the fact that δ ∈ (0, 1) to deduce that

(|ω2 − (ω2)Qκr |)Qκr ≤ N(d, ν, q0)κ
[
(|f |q0)

1/q0
Qr

+ (|Du|q1)
1/q1
Qr

]
. (3.10)

Moreover, by using the inequality

 

Qκr

|ω − (ω)Qκr |dx dt ≤ 2
 

Qκr

|ω − c|dx dt

with c = (ω2)Qκr , and then applying the triangle inequality and Hölder’s inequality, we have

 

Qκr

|ω − (ω)Qκr |dx dt ≤ 2
 

Qκr

|ω − (ω2)Qκr |dx dt

≤ 2
 

Qκr

|ω2 − (ω2)Qκr |dx dt + N(d,q0)κ
− d+2

q0

⎛
⎜⎝
 

Qr

|ω1|q0 dx dt

⎞
⎟⎠

1/q0

.

This last estimate together with (3.9) and (3.10) gives that

(|ω − (ω)Qκr |)Qκr ≤ N(d, ν, q0)
(
κ

− d+2
q0 + κ

)
(|f |q0)

1/q0
Qr

+ N(d, ν, q0)
(
κ

− d+2
q0 δ + κ

)
(|Du|q1)

1/q1
Qr

,

which implies our desired estimate as κ ∈ (0, 1/2). �
Our next lemma gives the key estimates of vorticity ω = ∇ × u and Du in the mixed norm.

Lemma 3.11. Let R ∈ [1/2, 2/3], R1 ∈ (0, R0), δ ∈ (0, 1), κ ∈ (0, 1/2), s, q ∈ (1, ∞), and

α0 ∈ (min(s, q)/(min(s, q) − 1),∞).

Let q1 ∈ (1, min(s, q)) and q0 ∈ (1, q1) such that α0 ≥ q0q1/(q1 − q0). Assume that (1.2)-(1.3)
hold and Assumption 1.5 (δ, α0) is satisfied. Suppose that (u, p) ∈H1

s,q(QR+R1)
d ×L1(QR+R1)

is a weak solution to (1.1) in QR+R1 , and ω = ∇ × u. Then we have

‖ω‖Ls,q (QR) ≤ Nκ
− d+2

q0 ‖f ‖Ls,q (QR+R1/2) + Nκ
− d+2

q0 ‖g‖Ls,q (QR+R1/2)

+ N
(
κ

− d+2
q0 δ + κ

)
‖Du‖Ls,q (QR+R1/2) + NR−1

1 κ
− d+2

q0 ‖u‖Ls,q (QR+R1/2), (3.12)

and
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‖Du‖Ls,q (QR) ≤ Nκ
− d+2

q0 ‖f ‖Ls,q (QR+R1 ) + Nκ
− d+2

q0 ‖g‖Ls,q (QR+R1 )

+ N
(
κ

− d+2
q0 δ + κ

)
‖Du‖Ls,q (QR+R1 ) + NR−1

1 κ
− d+2

q0 ‖u‖Ls,q (QR+R1 ), (3.13)

where N = N(d, ν, s, q, q0, q1).

Proof. We consider two cases.

Case 1: r ∈ (0, R1/2). It follows from Lemma 3.8 that for all z0 ∈ QR ,

(|ω − (ω)Qκr (z0)|)Qκr (z0) ≤N(d, ν, q0)κ
− d+2

q0 (|f |q0)
1/q0
Qr(z0)

+ N(d, ν, q0, q1)
(
κ

− d+2
q0 δ + κ

)
(|Du|q1)

1/q1
Qr(z0)

.

Observe that because r < R1/2, we have Qr(z0) ⊂ QR+R1/2. Therefore,

(|f |q0)
1/q0
Qr(z0)

≤M(IQR+R1/2 |f |q0)1/q0(z0),

(|Du|q1)
1/q1
Qr(z0)

≤ M(IQR+R1/2 |Du|q1)1/q1(z0),

which imply that

(|ω − (ω)Qκr (z0)|)Qκr (z0) ≤ Nκ
− d+2

q0 M(IQR+R1/2 |f |q0)1/q0(z0)

+ N
(
κ

− d+2
q0 δ + κ

)
M(IQR+R1/2 |Du|q1)1/q1(z0).

Case 2: r ∈ [R1/2, 2R/κ) and z0 ∈ QR such that t0 ∈ [−R2 + (κr)2/2, 0]. In this case, we apply 
Corollary 3.6 to get

(|ω − (ω)Qκr (z0)∩QR
|)Qκr (z0)∩QR

≤ 2(|ω|)Qκr (z0)∩QR
≤ 2(|ω|q0)

1
q0
Qκr (z0)∩QR

≤ Nκ
− d+2

q0

[
(|f |q0)

1
q0
Qκr+R1/2(z0)∩QR+R1/2

+ R−1
1 (|u|q0)

1
q0
Qκr+R1/2(z0)∩QR+R1/2

+ (|g|q0)

1
q0
Qκr+R1/2(z0)∩QR+R1/2

]
+ Nκ

− d+2
q1 δ(|Du|q1)

1
q1
Qκr+R1/2(z0)∩QR+R1/2

, (3.14)

where we used R1/2 ≤ r in the last inequality.
Now we take X = QR and define the dyadic sharp function ω#

dy of ω in X . From the above 
two cases, we conclude that for any z0 ∈ X ,

ω#
dy(z0) ≤ N(d, ν, q0)κ

− d+2
q0

[
M(IQR+R1/2(|f | + |g|)q0)1/q0(z0)

+ R−1
1 M(IQR+R1/2(|u|q0))1/q0(z0)

]

+ N(d, ν, q0, q1)
(
κ

− d+2
q1 δ + κ

)
M(IQR+R1/2 |Du|q1)1/q1(z0).
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Recalling that 1 < q0 < q1 < min(s, q), by Lemma 2.2 and the Hardy-Littlewood maximal func-
tion theorem in mixed-norm spaces (see, for instance, [7, Corollary 2.6]),

‖ω‖Ls,q (QR) ≤ N(d, s, q)
[
‖ω#

dy‖Ls,q (QR) + R
2
s
+ d

q
−d−2‖ω‖L1(QR)

]

≤ Nκ
− d+2

q0 ‖M(IQR+R1/2(|f | + |g|)q0)1/q0‖Ls,q (Rd+1)

+ NR−1
1 κ

− d+2
q0 ‖M(IQR+R1/2 |u|q0)1/q0‖Ls,q (Rd+1)

+ N
(
κ

− d+2
q0 δ + κ

)
‖M(IQR+R1/2 |Du|q1)1/q1‖Ls,q (Rd+1) + NR

2
s
+ d

q (|ω|)QR

≤ N
[
κ

− d+2
q0 ‖f ‖Ls,q (QR+R1/2) + κ

− d+2
q0 ‖g‖Ls,q (QR+R1/2) + R−1

1 κ
− d+2

q0 ‖u‖Ls,q (QR+R1/2)

+
(
κ

− d+2
q0 δ + κ

)
‖Du‖Ls,q (QR+R1/2) + R

2
s
+ d

q (|ω|)QR

]
,

where N = N(d, ν, s, q, q0, q1). Similar to (3.14), by Corollary 3.6, the last term on the right-
hand side above is bounded by

NR
2
s
+ d

q

[
(|f |q0)

1
q0
QR+R1/2

+ (|g|q0)

1
q0
QR+R1/2

+ R−1
1 (|u|q0)

1
q0
QR+R1/2

+ δ(|Du|q1)

1
q1
QR+R1/2

]

≤ N
[
‖f ‖Ls,q (QR+R1/2) + ‖g‖Ls,q (QR+R1/2) + R−1

1 ‖u‖Ls,q (QR+R1/2) + δ‖Du‖Ls,q (QR+R1/2)

]
,

where we used Hölder’s inequality in the last line. Combining the two inequalities above gives 
(3.12).

Next we show (3.13). Since divu = g, as in the proof of Lemma 2.5, we have

‖Du‖Ls,q (QR) ≤ N‖ω‖Ls,q (QR+R1/2) + N‖g‖Ls,q (QR+R1/2) + NR−1
1 ‖u‖Ls,q (QR+R1/2). (3.15)

Combining (3.15) and (3.12) with R + R1/2 in place of R, we reach (3.13). The lemma is 
proved. �

Now we are ready to give the proof of Theorem 1.9.

Proof of Theorem 1.9. For k = 1, 2, . . ., we denote Qk = (−(1 − 2−k)2, 0) × B1−2−k . Let k0
be the smallest positive integer such that 2−k0−1 < R0. For k ≥ k0, we apply (3.13) with R =
2/3 − 2−k and R1 = 2−k−1 to get

‖Du‖Ls,q (Qk) ≤ Nκ
− d+2

q0 ‖f ‖Ls,q (Qk+1) + Nκ
− d+2

q0 ‖g‖Ls,q (Qk+1)

+ N
(
κ

− d+2
q0 δ + κ

)
‖Du‖Ls,q (Qk+1) + Nκ

− d+2
q0 2k‖u‖Ls,q (Qk+1). (3.16)

Note that the constants N above are independent of k. We then take κ sufficiently small and then 

δ sufficiently small so that N
(
κ

− d+2
q0 δ + κ

)
≤ 1/3. Finally, we multiply both sides of (3.16) by 

3−k and sum in k = k0, k0 + 1, . . . to get the desired estimate. The theorem is proved. �
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4. Non-divergence form Stokes system and proof of Theorem 1.11

In this section, we consider the non-divergence form Stokes system and give the proof of 
Theorem 1.11. The following lemma is analogous to Lemma 3.1.

Lemma 4.1. Let q0 ∈ (1, ∞), q ∈ (q0, ∞), r ∈ (0, R0), ν, δ ∈ (0, 1), and u ∈ W
1,2
q (Qr)

d be a 
strong solution to (1.4) in Qr . Suppose that (1.2) and Assumption 1.5 (δ, 1) hold. Then we have

(|D2u|q0)
1/q0
Qr/2

≤ N(d,q0)(|Dg|q0)
1/q0
Qr

+ N(d, ν, q0, q)(|f |q0)
1/q0
Qr

+ N(d, ν, q0, q)
[
r−1(|Du − [Du]Br (t)|q0)

1/q0
Qr

+ δ1/q0−1/q(|D2u|q)
1/q
Qr

]
.

(4.2)

Proof. The proof is similar to that of Lemma 3.1. Let (w, p1) be a strong solution to

wt − āij (t)Dijw + ∇p1 = IQr (f + (aij − āij )Diju) divw = φr(g − [g]Br (t))

in (−r2, 0) × Rd with zero initial condition on {t = −r2}, where φr ∈ C∞
0 ((−r2, r2) × Br)

is a standard non-negative cut-off function, which satisfies φr = 1 on Q2r/3 and |Dφr | ≤ 4/r . 
Observe that from the equation divw = φr(g − [g]Br (t)) and the Poincaré inequality, we have

‖D2w‖Lq0 ((−r2,0)×Rd )

≤ N(d,q0)
[
‖Dω‖Lq0 ((−r2,0)×Rd ) + ‖D(φr(g − [g]Br ))‖Lq0 ((−r2,0)×Rd )

]

≤ N(d,q0)
[
‖Dω‖Lq0 ((−r2,0)×Rd ) + ‖Dg‖Lq0 (Qr )

]
,

(4.3)

where ω = ∇ × w. Now ω is a weak solution to the divergence form parabolic equation

ωt − āij (t)Dijω = ∇ × (
IQr (f + (aij − āij )Diju)

)
.

By applying the H1
p estimate for divergence form parabolic equations with coefficients measur-

able in t (see [17,18]) and (4.3), we obtain

‖Dω‖Lq0 ((−r2,0)×Rd ) ≤ N(d, ν, q0)
[
‖f ‖Lq0 (Qr ) + ‖(aij − āij )Diju‖Lq0 (Qr )

]
. (4.4)

It then follows from (4.3) and (4.4) that

‖D2w‖Lq0 ((−r2,0)×Rd )

≤ N(d, ν, q0)
[
‖f ‖Lq0 (Qr ) + ‖(aij − āij )Diju‖Lq0 (Qr )

]
+ N(d,q0)‖Dg‖Lq0 (Qr ).

From this and by using Assumption 1.5 (δ, 1) and Hölder’s inequality for the middle term on the 
right hand side of the last estimate, we have
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(|D2w|q0)
1/q0
Qr

≤ N(d,q0)(|Dg|q0)
1/q0
Qr

+ N(d, ν, q0)
[
(|f |q0)

1/q0
Qr

+ δ1/q0−1/q(|D2u|q)
1/q
Qr

]
. (4.5)

Now (v, p2) := (u − w, p − p1) satisfies

vt − āij (t)Dij v + ∇p2 = 0, divv = [g]Br (t)

in Q2r/3. By Lemma 2.5 applied to Dv with a scaling, we have

(|D2v|q0)
1/q0
Qr/2

≤ r−1(|Dv − [Dv]Br (t)|q0)
1/q0
Qr

. (4.6)

By (4.5), (4.6), the triangle inequality, and the Poincaré inequality, we get the desired inequal-
ity. �
Remark 4.7. By interpolation inequalities and iteration, we can replace the term r−1(|Du −
[Du]Br (t)|q0)

1/q0
Qr

in (4.2) with r−2(|u − [u]Br (t)|q0)
1/q0
Qr

.

Analogous to Corollary 3.6, from Lemma 4.1 we derive the following corollary.

Corollary 4.8. Let δ, ν ∈ (0, 1), q0 ∈ (1, ∞), q ∈ (q0, ∞), r ∈ (0, R0), T > 0, and � ⊂ Rd sat-
isfy (3.5) for some γ > 0 and (−T , 0) ×� ⊂ Q2/3. Suppose that (1.2) and Assumption 1.5 (δ, 1)

hold. Then, for any strong solution (u, p) ∈ W
1,2
q ((−T − r2, 0) ×�r)d ×L1((−T − r2, 0) ×�r)

of (1.4) in (−T − r2, 0) × �r , we have

(|D2u|q0)

1
q0
(−T ,0)×�

≤N(d, ν, q0, γ )
((T + r2)|�r |) 1

q0

(T |�|) 1
q0

[
(|f |q0)

1
q0
(−T −r2,0)×�r

+ r−1(|Du|q0)

1
q0
(−T −r2,0)×�r + (|Dg|q0)

1
q0
(−T −r2,0)×�r

]

+ N(d, ν, q0, q, γ )
((T + r2)|�r |) 1

q

(T |�|) 1
q

δ
1
q0

− 1
q (|D2u|q)

1
q

(−T −r2,0)×�r .

(4.9)

In the next lemma we prove a mean oscillation estimate of Dω.

Lemma 4.10. Let q1 ∈ (1, ∞), q0 ∈ (1, q1), δ ∈ (0, 1), R0 ∈ (0, 1/4), r ∈ (0, R0), and κ ∈
(0, 1/4). Suppose that (1.2) and Assumption 1.5 (δ, 1) hold. Suppose that u ∈ W

1,2
q1 (Qr)

d is a 
strong solution to (1.4) in Qr . Then it holds that

(|Dω − (Dω)Qκr |)Qκr ≤ N(d, ν, q0)κ
− d+2

q0 (|f |q0)
1/q0
Qr

+ N(n, ν, q0, q1)
(
κ

− d+2
q0 δ

1
q0

− 1
q1 + κ

)
(|D2u|q1)

1/q1
Qr

,

where ω = ∇ × u.
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Proof. The proof is similar to that of Lemma 3.8. Let (w, p1) and (v, p2) be as in the proof of 
Lemma 4.1. In particular, (w, p1) is a strong solution of

wt − āij (t)Dijw + ∇p1 = IQr [f + (aij − āij (t))Diju], divw = φr(g − [g]Br (t))

in (−r2, 0) ×Rd with zero initial condition on {t = −r2}. Moreover, (v, p2) = (u − w, p − p1)

is a strong solution of

vt − āij (t)Dij v + ∇p2 = 0, divv = [g]Br (t)

in Q2r/3. Let ω1 = ∇ × w and ω2 = ∇ × v and we see that ω = ω1 + ω2. Moreover, we can 
deduce from (4.4) that

(|Dω1|q0)
1/q0
Qr

≤ N(d, ν, q0)
[
(|f |q0)

1/q0
Qr

+ δ1/q0−1/q(|D2u|q1)
1/q1
Qr

]
. (4.11)

Also, by applying Lemma 2.8 to Dω2 with a suitable scaling, we obtain

(|Dω2 − (Dω2)Qκr |)Qκr ≤ Nκr[[Dω2]]C1/2,1(Qr/3)
≤ N(d, ν, q0)κ(|Dω2|q0)

1/q0
Q2r/3

≤ N(d, ν, q0)κ
[
(|Dω|q0)

1/q0
Qr

+ (|Dω1|q0)
1/q0
Qr

]
.

Then, by combining this last estimate with (4.11) and the fact that δ ∈ (0, 1), we infer that

(|Dω2 − (Dω2)Qκr |)Qκr ≤ N(d, ν, q0)κ
[
(|f |q0)

1/q0
Qr

+ (|D2u|q1)
1/q1
Qr

]
. (4.12)

Now, by using the inequality

 

Qκr

|Dω − (Dω)Qκr |dx dt ≤ 2
 

Qκr

|Dω − c|dx dt

with c = (Dω2)Qκr , and then applying the triangle inequality, and Hölder’s inequality, we have

 

Qκr

|Dω − (Dω)Qκr |dx dt ≤ 2
 

Qκr

|Dω − (Dω2)Qκr |dx dt

≤ 2
 

Qκr

|Dω2 − (Dω2)Qκr |dx dt + N(d,q0)κ
− d+2

q0

⎛
⎜⎝
 

Qr

|Dω1|q0 dx dt

⎞
⎟⎠

1/q0

.

This last estimate together with (4.11) and (4.12) imply that

(|Dω − (Dω)Qκr |)Qκr ≤ N(d, ν, q0)κ
− d+2

q0 (|f |q0)
1/q0
Qr

+ N(d, ν, q0, q1)
(
κ

− d+2
q0 δ1/q0−1/q + κ

)
(|D2u|q1)

1/q1
Qr

.

The proof is then complete. �
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Our next lemma gives the key estimates of Dω and D2u in the mixed norm.

Lemma 4.13. Let R ∈ [1/2, 1], R1 ∈ (0, R0), δ ∈ (0, 1), κ ∈ (0, 1/4), s, q ∈ (1, ∞), q1 ∈
(1, min{s, q}), and q0 ∈ (1, q1). Assume that (1.2) and Assumption 1.5 (δ, 1) hold. Suppose that 
u ∈ W

1,2
s,q (QR+R1)

d is a strong solution to (1.4) in QR+R1 , and ω = ∇ × u. Then we have

‖Dω‖Ls,q (QR) ≤ Nκ
− d+2

q0 ‖f ‖Ls,q (QR+R1/2) + Nκ
− d+2

q0 ‖Dg‖Ls,q (QR+R1/2)

+ N
(
κ

− d+2
q0 δ

1
q0

− 1
q1 + κ

)
‖D2u‖Ls,q (QR+R1/2) + Nκ

− d+2
q0 R−1

1 ‖Du‖Ls,q (QR+R1/2) (4.14)

and

‖D2u‖Ls,q (QR/2) ≤ Nκ
− d+2

q0 ‖f ‖Ls,q (QR+R1 ) + Nκ
− d+2

q0 ‖Dg‖Ls,q (QR+R1 )

+ N
(
κ

− d+2
q0 δ

1
q0

− 1
q1 + κ

)
‖D2u‖Ls,q (QR+R1 ) + Nκ

− d+2
q0 R−1

1 ‖Du‖Ls,q (QR+R1 ). (4.15)

Proof. As in the proof of Lemma 3.11, we discuss two cases.

Case 1: r ∈ (0, R1/2). It follows from Lemma 4.10 that for all z0 ∈ QR ,

(|Dω − (Dω)Qκr (z0)|)Qκr (z0) ≤ N(d, ν, q0)κ
− d+2

q0 (|f |q0)
1/q0
Qr(z0)

+ N(d, ν, q0, q1)
(
κ

− d+2
q0 δ

1
q0

− 1
q1 + κ

)
(|D2u|q1)

1/q1
Qr(z0)

.

Observe that because r < R1/2, we have Qr(z0) ⊂ QR+R1/2. Therefore,

(|f |q0)
1/q0
Qr(z0)

≤ M(IQ
R+R1/2

|f |q0)1/q0(z0), and

(|D2u|q1)
1/q1
Qr(z0)

≤ M(IQ
R+R1/2

|D2u|q1)1/q1(z0),

where M is the Hardy-Littlewood maximal function. These estimates imply that

(|Dω − (Dω)Qκr (z0)|)Qκr (z0) ≤ Nκ
− d+2

q0 M(IQ
R+R1/2

|f |q0)1/q0(z0)

+ N
(
κ

− d+2
q0 δ

1
q0

− 1
q1 + κ

)
M(IQ

R+R1/2
|D2u|q1)1/q1(z0).

Case 2: r ∈ [R1/2, 2R/κ) and z0 ∈ QR such that t0 ∈ [−R2 + (κr)2/2, 0]. In this case, we apply 
Corollary 4.8 to get

(|Dω − (Dω)Qκr (z0)∩QR
|)Qκr (z0)∩QR

≤ 2(|Dω|)Qκr (z0)∩QR
≤ 2(|Dω|q0)

1
q0
Qκr (z0)∩QR

≤ Nκ
− d+2

q0

[
(|f |q0)

1
q0
Qκr+R1/2(z0)∩QR+R1/2

+ R−1
1 (|Du|q0)

1
q0
Qκr+R1/2(z0)∩QR+R1/2

+ (|Dg|q0)

1
q0
Qκr+R1/2(z0)∩QR+R1/2

]
+ Nκ

− d+2
q1 δ

1
q0

− 1
q1 (|D2u|q1)

1
q1
Qκr+R1/2(z0)∩QR+R1/2

,

(4.16)
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where we used R1/2 ≤ r in the last inequality.
Now, we take X = QR and define the dyadic sharp function (Dω)#

dy of Dω in X . From the 
above two cases, we conclude that for any z0 ∈X ,

(Dω)#
dy(z0) ≤ N

[
κ

− d+2
q0 M(IQ

R+R1/2
(|f | + |Dg|)q0)1/q0(z0)

+ R−1
1 M(IQ

R+R1/2
|Du|q0)1/q0(z0)

]
+ N

(
κ

− d+2
q0 δ

1
q0

− 1
q1 + κ

)
M(IQ

R+R1/2
|D2u|q1)1/q1(z0).

Recalling that 1 < q0 < q1 < min{s, q}, by Lemma 2.2 and the Hardy-Littlewood maximal func-
tion theorem in mixed-norm spaces (see, for instance, [7, Corollary 2.6]),

‖Dω‖Ls,q (QR) ≤ N
[
‖(Dω)#

dy‖Ls,q (QR) + R2/s+d/q(|Dω|)QR

]

≤ Nκ
− d+2

q0 ‖M(IQ
R+R1/2

|f |q0)1/q0‖Ls,q (Rd+1) + Nκ
− d+2

q0 ‖M(IQ
R+R1/2

|Dg|q0)1/q0‖Ls,q (Rd+1)

+ N
(
κ

− d+2
q0 δ

1
q0

− 1
q1 + κ

)
‖M(IQ

R+R1/2
|D2u|q1)1/q1‖Ls,q (Rd+1) + NR2/s+d/q(|Dω|)QR

≤ N
[
κ

− d+2
q0 ‖f ‖Ls,q (QR+R1/2) + κ

− d+2
q0 ‖Dg‖Ls,q (QR+R1/2)

+
(
κ

− d+2
q0 δ

1
q0

− 1
q1 + κ

)
‖D2u‖Ls,q (QR+R1/2) + R2/s+d/q(|Dω|)QR

]
.

Similar to (4.16), by Corollary 4.8, the last term on the right-hand side above is bounded by

NR
2
s
+ d

q

[
(|f |q0)

1
q0
QR+R1/2

+ (|Dg|q0)

1
q0
QR+R1/2

+ R−1
1 (|Du|q0)

1
q0
QR+R1/2

+ δ
1
q0

− 1
q1 (|D2u|q1)

1
q1
QR+R1/2

]

≤ N
[
‖f ‖Ls,q (QR+R1/2) + ‖Dg‖Ls,q (QR+R1/2) + R−1

1 ‖Du‖Ls,q (QR+R1/2)

+ δ
1
q0

− 1
q1 ‖D2u‖Ls,q (QR+R1/2)

]
.

Combining the above two inequalities, we reach (4.14).
Next we show (4.15). Since divu = g, as in the proof of Lemma 2.5, we have

‖D2u‖Ls,q (QR) ≤ N‖Dω‖Ls,q (QR+R1/2) + N‖Dg‖Ls,q (QR+R1/2) + NR−1‖Du‖Ls,q (QR+R1/2).

(4.17)
Combining (4.17) and (4.14) with R + R1/2 in place of R, we reach (4.15). The lemma is 
proved. �

Now we are ready to give

Proof of Theorem 1.11. As in the proof of Lemma 1.9, for k = 1, 2, . . ., we denote Qk =
(−(1 − 2−k)2, 0) × B1−2−k . Let k0 be the smallest positive integer such that 2−k0−1 < R0. For 
k ≥ k0, we apply (4.15) with R = 2/3 − 2−k and R1 = 2−k−1 to get
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‖D2u‖Ls,q (Qk) ≤ Nκ
− d+2

q0 ‖f ‖Ls,q (Qk+1) + Nκ
− d+2

q0 ‖Dg‖Ls,q (Qk+1)

+ N
(
κ

− d+2
q0 δ

1
q0

− 1
q1 + κ

)
‖D2u‖Ls,q (Qk+1) + Nκ

− d+2
q0 2k‖Du‖Ls,q (Qk+1). (4.18)

From (4.18) and interpolation inequalities, we get

‖D2u‖Ls,q (Qk) ≤ Nκ
− d+2

q0 ‖f ‖Ls,q (Qk+1) + Nκ
− d+2

q0 ‖Dg‖Ls,q (Qk+1)

+ N
(
κ

− d+2
q0 δ

1
q0

− 1
q1 + κ

)
‖D2u‖Ls,q (Qk+1) + Nκ

−1− 2(d+2)
q0 22k‖u‖Ls,q (Qk+1). (4.19)

Note that the constants N above are independent of k. We then take κ sufficiently small and then 
δ sufficiently small so that

N
(
κ

− d+2
q0 δ

1
q0

− 1
q1 + κ

)
≤ 1/5.

Finally, we multiply both sides of (4.19) by 5−k and sum in k = k0, k0 + 1, . . . to get the desired 
estimate. The theorem is proved. �
5. Regularity for the Navier-Stokes equations

To prove Theorem 1.16, let us recall several well-known results needed for the proof. The first 
result is the classical regularity criterion for Leray-Hopf weak solutions of the Navier-Stokes 
equations established in [23].

Theorem 5.1. For each ρ > 0, let u be a Leray-Hopf weak solution of the Navier-Stokes equa-
tions (1.14) in Qρ which satisfies

sup
t∈(−ρ2,0)

ˆ

Bρ

|u(t, x)|2 dx +
ˆ

Qρ

|∇u(t, x)|2 dx dt < ∞,

and ‖u‖Ls,q (Qρ) < ∞ with some s, q ∈ (1, ∞) such that

d/q + 2/s < 1.

Then, u is smooth in Qρ .

The following classical parabolic Sobolev embedding theorem will be used iteratively in the 
proof.

Lemma 5.2. For each m > 1, let q = m(d+2)
d

. Then, for each ρ > 0, there exists a constant 
N = N(d, m, ρ) > 0 such that

‖f ‖Lq(Qρ) ≤ N sup
2

‖f (t, ·)‖L2(Bρ) + N‖∇f ‖Lm(Qρ).

t∈(−ρ ,0)
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Now, we are ready to prove Theorem 1.16

Proof of Theorem 1.16. Recall that (dij )d×d is the skew-symmetric matrix which satisfies the 
equation

{
�dij = Djui − Diuj B1,

dij = 0 ∂B1.
(5.3)

Then, by the energy estimate for the equation (5.3), we see that

sup
t∈(−1,0)

ˆ

B1

|Ddij (t, x)|2 dx ≤ 4 sup
t∈(−1,0)

ˆ

B1

|u(t, x)|2 dx < ∞, ∀ i, j = 1,2, . . . , d. (5.4)

Let us now denote h = (h1, h2, . . . , hd) by

hj (t, x) = −uj (t, x) −
d∑

i=1

Didij (t, x), (t, x) ∈ Q1, j = 1,2, . . . , d.

Observe that divh(t, ·) = 0 in the sense of distributions in B1 for a.e. t ∈ (−1, 0). Then, we can 
write the nonlinear term in (1.14) as

u · ∇uk =
d∑

j=1

ujDjuk = −
d∑

i=1

DidijDjuk −
d∑

j=1

Dj [hjuk].

As the matrix (dij )d×d is skew-symmetric, we see that

d∑
i,j=1

ˆ
DidijDjukϕ dx = −

ˆ
dijDjukDiϕ dx, ∀ϕ ∈ C∞

0 (B1).

Consequently, u is also a weak solution of the Stokes system

ut − Di[(Id + dij )Dju] + ∇p = divf in Q1, (5.5)

where Id is the d × d identity matrix, and fjk = hjuk .
Next, for each k ∈ N , we define the following sequences

s0 = 2, sk+1 = sk
d + 2

d
, rk = 1

2
+ 1

2k+1 .

Let k0 ∈N be sufficiently large such that

d

sk0

+ 2

sk0

< 1, (5.6)

and let
363



H. Dong and T. Phan Journal of Differential Equations 276 (2021) 342–367
ε = min
{
δ(d,1, sk, sk, α0), k = 1,2, . . . , k0

}
, (5.7)

where δ(d, 1, sk, sk, α0) is defined in Theorem 1.9. Assume that (1.17) holds and we will prove 
Theorem 1.16 with this choice of ε. To this end, we first observe that as (sk)k∈N is an increasing 
sequence

α0 >
2(d + 2)

d + 4
= s1

s1 − 1
≥ sk

sk − 1
, ∀ k ∈N. (5.8)

Now, from (5.3), we see that hj (t, ·) is a harmonic function for a.e. t ∈ (−1, 0), i.e.,

�hj (t, ·) = 0 in B1, ∀ j = 1,2, . . . , d.

Therefore, it follows from this and the estimate (5.4) that for any ρ ∈ (0, 1), we have

‖h‖L∞(Qρ) = sup
t∈(−1,0)

‖h(t, ·)‖L∞(Bρ) ≤ N(d,ρ) sup
t∈(−1,0)

⎛
⎜⎝
 

B1

|h(t, x)|2 dx

⎞
⎟⎠

1/2

≤ N(d,ρ) sup
t∈(−1,0)

⎡
⎢⎣

⎛
⎜⎝
 

B1

|u(t, x)|2 dx

⎞
⎟⎠

1/2

+
d∑

i,j=1

⎛
⎜⎝
 

B1

|Ddij (t, x)|2 dx

⎞
⎟⎠

1/2⎤
⎥⎦

≤ C(d,ρ) sup
t∈(−1,0)

⎛
⎜⎝
 

B1

|u(t, x)|2 dx

⎞
⎟⎠

1/2

< ∞. (5.9)

Let us also denote

‖u‖Vsk
(Qrk

) = sup
t∈(−r2

k ,0)

⎛
⎜⎝
ˆ

Brk

|u(t, x)|2 dx

⎞
⎟⎠

1/2

+
⎛
⎜⎝
ˆ

Qrk

|∇u(t, x)|sk dx dt

⎞
⎟⎠

1/sk

.

Observe that as ‖u‖Vs0 (Qr0 ) < ∞, it follows from Lemma 5.2, u ∈ Ls1(Qr0). From this, (5.7), 
(5.8), and (5.9), we can apply Theorem 1.9 to the equation (5.5) to obtain

‖∇u‖Ls1 (Qr1 ) ≤ N1

[
‖u‖Ls1 (Qr0 ) + ‖f ‖Ls1 (Qr0 )

]
≤ N‖u‖Ls1 (Qr0 ) < ∞.

Consequently, we see that ‖u‖Vs1 (Qr1 ) < ∞, therefore it follows from Lemma 5.2 again that 
u ∈ Ls2(Qr1) < ∞. Hence, by applying Theorem 1.16 again to (5.5) we infer that

‖∇u‖Ls2 (Qr2 ) ≤ N2‖u‖Ls2 (Qr1 ) < ∞.

Repeating this procedure, we then conclude that
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‖∇u‖Lsk+1 (Qrk+1 ) ≤ Nk+1‖u‖Lsk+1 (Qrk
) < ∞, ∀ k ∈ {0,1,2, . . . , k0 − 1}.

From this estimate, Theorem 5.1, and the choice of k0 in (5.6), we see that the conclusion of 
Theorem 1.16 follows. The proof is then complete. �

Finally, we conclude our paper with the proof of Corollary 1.18.

Proof of Corollary 1.18. Note that when s < ∞, the boundedness of Ls((−1, 0); Lw
q (B1))

norm of u implies the smallness of the same norm of u in small cylinders. Therefore, (i) fol-
lows from (ii). Moreover, by the well-known embedding:

Lw
q ↪→ Mq1,λ, when q1 ∈ [1, q) and λ = d(1 − q1/q),

it suffices for us to prove (iii).
By the Calderón-Zygmund estimate in Morrey spaces for the Laplace equation (see, for in-

stance, [22]), we have

‖Ddij (t, ·)‖Mq,β (B1) ≤ N(d,q,β)‖u(t, ·)‖Mq,β (B1) for a.e. t ∈ (−1,0),

which implies that

‖Ddij‖Ms,α((−1,0);Mq,β (B1)) ≤ N(d, s, q,α,β)‖u‖Ms,α((−1,0);Mq,β (B1)). (5.10)

On the other hand, for α0 ∈ (
2(d+2)
d+4 , min{s, dq/(d − q)+}) with (d − q)+ = max{0, d − q}, 

by using (1.19), the Sobolev-Poincaré inequality, and Hölder’s inequality, we see that for any 
z0 ∈ Q2/3 and ρ ∈ (0, 1/3),

 

Qρ(z0)

|dij (t, x) − [dij ]Bρ(x0)(t)|α0 dx dt

≤ N(d,α0)ρ
α0

⎡
⎢⎣

t0 

t0−ρ2

⎛
⎜⎝

 

Bρ(x0)

|Ddij (t, x)|q dx

⎞
⎟⎠

s/q

dt

⎤
⎥⎦

α0
s

= N(d,α0)‖Ddij‖α0
Ms,α((−1,0);Mq,β (B1))

. (5.11)

By combining (5.10) and (5.11), we can apply Theorem 1.16 to conclude the proof. �
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