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Abstract

It is well known that for reaction—diffusion 2-species Lotka—Volterra competition models
with spatially independent reaction terms, global stability of an equilibrium for the reaction
system implies global stability for the reaction—diffusion system. This is not in general true for
spatially inhomogeneous models. We show here that for an important range of such models,
for small enough diffusion coefficients, global convergence to an equilibrium holds for the
reaction—diffusion system, if for each point in space the reaction system has a globally
attracting hyperbolic equilibrium. This work is planned as an initial step towards
understanding the connection between the asymptotics of reaction—diffusion systems with
small diffusion coefficients and that of the corresponding reaction systems.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Given an arbitrary system of reaction—diffusion equations, in general the
asymptotic behavior of the corresponding reaction system gives little information
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on the asymptotic behavior of the reaction—diffusion systems. Suppose, however,
that the reaction system has a globally asymptotically stable equilibrium, in the sense
that this property holds for each point x of the spatial domain. Does this provide
more information? In particular does it imply that the corresponding reaction—
diffusion system has the same property? That it is too optimistic to expect this is
clear from recent intriguing work [29,36]. In [29] for example, it is shown that there is
a class of system consisting of a pair of simultancous reaction—diffusion equations
with homogeneous reaction term (i.e. independent of x) with the following property.
Given any unequal diffusion coefficients p, v, there is a choice of initial conditions
such that the solution blows up in finite time. In view of these results, in what
direction should one look?

It is well known [9] that for large u, v if the reaction—diffusion system has a L~
bounded positively invariant set, for initial conditions in that set, asymptotically the
orbits are close to those of the reaction system for the spatially averaged solution.
For further investigation in this area one may refer to [8,15,16]. It would be
extremely useful if one could extend the class of reaction—diffusion equations for
which the reaction system provides useful information. The obvious direction to
look is to small u, v, where we might hope for global convergence of the reaction—
diffusion system to an equilibrium ‘close’ to that of the corresponding reaction
system, but in view of the above-mentioned results, we must further restrict the class
of equations.

It is difficult to predict the general direction in which we should look, but we may
note that at least for some simple situations, the result is true, in fact for arbitrary u,
v. One such situation is the following Lotka—Volterra system with o, f, b and ¢
positive (by which is always meant strictly positive) constants and zero Neumann
boundary conditions:

u, = pdu + ufo — u — bul, L1
{U,:vAv+v[ﬁ—cu—v]. (1)

Of course this is also true for the analogous predator—prey system. This suggests that
it is reasonable to enquire whether a general competing species model would have
this property; in view of the considerable recent interest in spatially inhomogeneous
models [2-7,10-13,17,19,21-24,27,30,32] a result along these lines would be of
importance. Similarly, the property might also be true for general predator—prey and
other models, such as the migration—selection model from population genetics [28§],
but it is likely to be much harder to prove since a monotonicity structure cannot be
invoked, see Section 5 for further discussion.
Consider then the following general reaction—diffusion system

Uy = ,uAu+ uf(u7 v, x)a

v, = vAv + vg(u, v, x) in Q x (0, 00), (1.2)
u_ v on 92 x (0, ), '

u(x,0) = up(x), v(x,0) =vp(x) in Q.
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We impose the following restrictions required for a general competing species
model.

(HI) (Smoothness). f,g: C! x C! x C'>R.

(H2) (Species limitation). There exists a positive constant M such that for every
xeQ, f(M,0,x)<0, f(0, M, x)<0, g(M,0,x)<0 and g(0, M, x) <0.

(H3) (Inter and intra-specific competition). For every xe@Q, every u>0, v>0,
Su(u,v,x) <0, fo(u,v,x)<0, g,(u,v,x)<0 and g,(u, v, x)<O0.

Here Q< R" is a bounded domain with smooth boundary 9Q and closure Q and
0/0n is differentiation in the direction of the outward unit normal to 9Q. The suffix
‘t" denotes partial differentiation with respect to time and 4 is the Laplacian. The
variables u and v are the densities of the two competing species, so the analysis is
restricted to the non-negative cone.

The corresponding reaction system is

{u,:uf(u,v,xL (1.3)
v, = vg(u, v, x).

We say that (u*(x), v*(x)) is an equilibrium of the reaction system if it satisfies (1.3)
for each xeQ; it is globally attracting if for each x, (u*(x), v*(x)) under (1.3) attracts
orbits in the following sense. If (u*,v*) is in the interior, it attracts the positive cone
in R?. If it is on the v-axis, it also attracts initial values on the positive v-axis (with a
similar property if it is on the u-axis).

We propose the following

Conjecture. Suppose that the reaction system (1.3) has a globally attracting
equilibrium which is hyperbolic except for at most a finite number of values of x.
Then for (1.2), if u, v are small enough, there is an equilibrium (i, 3) of (1.2) which is
globally attracting (for non-negative initial values which are not identically zero),
and lim,,)_, 0,0 (4, 7) = (u*,v*) uniformly in Q.

The progress made towards proving this conjecture will now be described.
Consider first the ‘interior’ case (see Fig. 1) where the global attractor (u*,v*) of (1.3)
lies wholly in the interior of the positive cone, the following being assumed.

(H4) (Unique solution in non-negative cone). For every xeQ, f(u,v,x)=
g(u,v,x) =0 has a unique solution, denoted by (¥*(x),v*(x)) in
{(u,v)eR*:u=0,v>0}. Moreover, u*(x)>0 and v*(x)>0 for every xeQ.

(HS) (Hyperbolicity and local attractivity). For every xeQ, the following holds:

Fugv = So9u) L0, = (@ ()0 (o)) > O (1.4)

Theorem 1.1. Suppose that (H1)-(HS) hold. There exists 6 >0 such that if p,v<9,
(1.2) has a unique coexistence state (i, 7) which is globally asymptotically stable for
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Fig. 1. A typical graph for isoclines f'= g = 0.
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Fig. 2. (a) v,(u, x)>vy(u, x) for every xe Q. (b) vy(u, x)>v,(u,x) for every xe Q. Note that Theorem 1.2
treats case (a).

non-negative, non-trivial initial data (uo, vo). Furthermore, lim, ), 0y (&, 8) = (u*, v*)
uniformly in Q.

Consider next the ‘boundary’ case (see Fig. 2) where (u*,v*) lies on the boundary
of the positive cone for all x, the assumptions being as follows.

(H6) For every xeQ, f(u,v,x)=g(u,v,x)=0 has no solution in
{(u,v) eR?: u>0,v>0}.
(H7) For every xeQ, £(0,0,x)>0, g(0,0,x)>0.

First observe that if (H2), (H3) and (H7) hold, then (1.2) has two semi-trivial
equilibria (i7(x),0) and (0, 3(x)), where & and ¢ are uniquely determined by

pAd + af (4,0,x) =0, @>0 in Q, (1.5)
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and
vAG + 6g(0,5,x) =0, >0 in Q, (1.6)

a zero Neumann conditions being imposed in each case.

For the existence of i, (H7) ensures that any sufficiently small positive constant is
a subsolution of (1.5); by (H2) and (H3), M is a supersolution of (1.5). A standard
sub/super solution argument shows that (1.5) has a positive solution. The uniqueness
of i follows from the monotonicity of f(u,0,x) with respect to u and a sub/super
solution argument [33]. A similar result holds for @. Fig. 2 illustrates the two
possibilities for the zero ‘isoclines’. In the sequel we choose that option shown in Fig.
2a where the v isocline lies above the u isocline, and (0, v*(x)) is the global attracting
equilibrium for (1.3). Clearly, closely analogous arguments apply to the other case
shown in Fig. 2b.

Theorem 1.2. Suppose that (H1)-(H3) and (H6)—(H7) hold. Let (0,v*(x)) be the
globally attracting equilibrium for the reaction system. Then for (1.2), there exists 6 >0
such that if u, v<90, the semi-trivial state (0,9) is globally asymptotically stable among
non-negative non-trivial initial data (uo,vo). Furthermore, lim,, ) (0,0) =
(0,v*(x)) uniformly in Q.

These confirm that at least in an important range of cases the conjecture is true.
Consider though the following ‘mixed’ case, where with Q = (0, 1),

fluv,x) =1—u— L,
{g(u,v,x)—g(z—x)_u_v (1.7)
Then
* K (0,3(2 X)) (O<x<%),
(u, ){(3):222’43)6) (2<x<1). (1.8)

Clearly (u*,v*) is on the boundary u =0 for ngg%, and in the interior

for %<x<l. This case does not fall under either theorem. One may remark
that the hyperbolocity fails at x:%. This causes technical problems in the
proof which we are, at this moment, unable to overcome. However, we
believe that Theorems 1.1 and 1.2 strongly encourage the view that the conjecture
is correct.

This paper is organized as follows: In Section 2 some preliminary results are
given. Sections 3 and 4 are devoted to the proof of the two main
theorems, respectively. Clearly it would be very important if results of this nature
could be extended to a large class of equation, for example to predator—prey
problems, and we discuss this further in Section 5. A technical lemma will be

established in the appendix.
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2. Preliminary results

In this section we establish some preliminary results which will be applied in the
proofs of Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.

Lemma 2.1. In the interior case, assumptions (H3) and (H4) imply (H7).

Proof. This follows from (H3) and the assumption f(u*(x),v*(x),x) =
g(u(x),v*(x),x) = 0 for every xeQ. O

Lemma 2.2. Suppose that (Hl)-(H3), as well as (H4) in the interior case or (H7) in the
boundary case, hold.

(@) For every xeQ, there exist a unique a(x)>0 and a unique B(x)>0 such that
Sf(a(x),0,x) = ¢g(0, f(x),x) =0. Moreover, o(x) and B(x) are continuously
differentiable in Q.

(b) For every xeQ, there exists a unique function vy = vs(u,x), which is defined for
0<u<o(x) and is decreasing in u, such that f(u,vs(u,x),x)=0; moreover,
vr(a(x), x) = 0 for every xeQ.

(¢) For every xeQ, there exists a unique function v, = vy(u,x), which is decreasing in
u and satisfies g(u,vy(u, x), x) = 0; moreover, v,(0,x) = B(x) for every xeQ.

Proof. By Lemma 2.1 we see that (H7) holds. Hence the existence and uniqueness of
o(x) and B(x) follow from (H2) and (H3), and the continuous differentiability of «
and f follow from (HI), (H3) and the implicit function theorem. This proves part (a).
Parts (b) and (c) follow from part (a) and the implicit function theorem. [J

We denote the inverse function of v = vr(u, x) by u = us(v, x). By Lemma 2.2 we
see that us satisfies f(us(v, x),v,x) = 0 and us(0, x) = a(x) for every xe Q. Similarly,
the inverse function of v=uv,(u,x) is denoted by u = u,(v,x) which satisfies
g(uy(v,x),v,x) =0 and u,(B(x),x) =0 for every xeQ. For later applications we
extend the domains of / and g so that the domains of uy, u,, vy and v, are R! x Q and
for every x e Q, they are still strictly decreasing functions of the first component in R!.

Lemma 2.3. Consider the interior case and suppose that (H1)—(HS) hold. Then for
every xeQ,

v (U, x) —vg(u,x) =< 0 u=u(x), (2.1)

Proof. By (HS) we see that vy (u, x) >v,(u, x) for u<u*(x) but close to u*(x). Since
vr(u(x),x) = vy(u*(x),x) and f=¢g=0 has no roots except (u*,v*), we have
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vr(u, x)>vy(u,x) for all xeQ and 0<u<uw*(x). Similarly, vs(u,x)<v,(u,x) for
w (x)<u<a(x). O

Corollary 2.4. Suppose that (H1)~(HS) hold. Then for every xeQ, (0, (x),x)>0
and g(o(x),0,x)>0.

Proof. By Lemma 2.3, uvr(u,x)>v4(u,x) for O<u<u*(x). In particular,
v7(0,x)>vy(0,x) = f(x), which along with f(0,v,(0,x),x) =0 and (H3) implies
that £(0, f(x), x) >0. Similarly, setting # = o(x) we have vy (a(x), x) = 0>v,(a(x), x).
Since g, <0, we have g(a(x),0,x)>g(x(x), vy(x(x), x),x) =0. O

Similar to Lemma 2.3 we have the following result.

Lemma 2.5. Consider the boundary case and suppose that (H1)~(H3) and (H6)—(H7)
hold. Then either (a) the graph of v = vr(u,x) lies below that of v=v,(u,x) for
every xeQ, or (b) the graph of v=v,(u,x) lies below that of v= vs(u,x) for
every xe Q.

Proof. By (H6) we see that the graph of v = v(u, x) and v = v,(u, x) never intersect
for any xeQ, from which and a continuity argument Lemma 2.5 follows. O

Corollary 2.6. Suppose that (H1)-(H3) and (H6)-(H7) hold, and the case (a) of
Lemma 2.5 occurs. Then f(0,B(x),x)<0 and g(«(x),0,x)>0 for every xeQ.
Moreover, us(B(x),x) <0 for every xeQ.

Proof. The proof of f(0,f(x),x)<0 and g(x(x),0,x)>0 is similar to that of
Corollary 2.4, so we omit it. Since f(us(f(x),x), f(x),x) = 0>1(0, B(x), x), by (H3)
and the extension of uy we see that us(f(x), x) <0 for every xe Q. [

3. Global stability: the interior case

Theorem 1.1 will be proved in this section, conditions (H1)-(HS5) being assumed
throughout. An outline of the main steps in the argument are as follows. First, it is
shown that the boundary equilibria are unstable (Lemma 3.1), and next it is proved
in Lemma 3.3, by constructing monotone sequences and using repeated sub/
supersolution arguments, that any coexistence state converges uniformly to the
reaction coexistence state (u*, v*) as u,v— 0. Finally, we prove (Proposition 3.5) that
every coexistence state is asymptotically stable; this is the most difficult step and
requires the use of an argument based on spatial rescaling. Theorem 1.1 follows
immediately from the monotonicity of system (1.2).

Lemma 3.1. There exists 01> 0 small such that if min{p, v} <01, then both (ii,0) and
(0,0) are unstable.
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Proof. Without loss of generality we consider the case 0<p<1. The stability of
(#,0) is determined by the sign of the least eigenvalue, denoted by i, of the
eigenvalue problem

vAY + g(@,0,x)y = =4y in Q, o =0. (3.1)
on| 0
Since #— o uniformly as y—0 (Lemma A.1) and g(«(x), 0, x) >0 (Corollary 2.6), we
see that ¢g(i7,0,x)>0 in Q for 0<u<1, which implies that 1, <0, ie., (,0) is
unstable.
For (0, 7), it suffices to determine the sign of the least eigenvalue, denoted again by
A1, of the eigenvalue problem

udep +1(0,5,x)p = —Ap in Q, w =0. (3.2)
on |y
Integrating (1.6) in Q, we obtain [, dg(0,7,x) = 0, i.e., g(0,7(x), x) changes sign in Q
or ¢g(0,7,x) =0 in Q. Since g(0, f(x),x) =0 (Lemma 2.2) and ¢,(0,v,x) <0, we see
that o<f somewhere in Q. Therefore, since f,(0,v,x)<0, we see that
f(0,7,x)=f£(0, 8, x) for some xeQ. In particular,
min,._5[—f(0,5(x),x)] <min, _5[—f (0, (x), x)] <0, where the last inequality follows
from Corollary 2.4. Note that lim,_o A = min, _s[—f (0, 5(x), x)] (see, e.g. [21]).
Hence 11 <0 for 0<u<1,ie., (0,7) is also unstable when p is sufficiently small. [

By assumption (H3) we see that (1.2) is a monotone system. Hence Lemma 3.1
implies that the following holds (see, e.g. [18]).

Corollary 3.2. If min{u, v} <01, (1.2) has at least one coexistence state.
Next we show convergence of the coexistence state of (1.2) to (u*,v*) as u, v—0.

Lemma 3.3. Let (u,v) denote any coexistence state of (1.2). Then lim,,,_, o0) (4,v) =
(u*,v*) uniformly in Q.

Proof. We set iip = # and adopt a standard iteration method. By a sub/super
solution argument we have u<iiy. Then by (H3) v satisfies

Ov

= =o. (3.3)

oQ

—vAv=vg(iy,v,x) in Q,

Since iy — o uniformly as p— 0, we see that g(i, 0, x) > g(a, 0, x) >0 uniformly in
Q. Hence for <1, again by a sub/super solution argument we see that the following
equation has a unique positive solution:

on|
2 o, (3.4)

_VAQI = ng(ao,yl,X) in Qa -
oQ
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Moreover, v=>p; in Q. Now by the equation of « and (H3), u satisfies

—udu<uf(u,v,x) in Q Ou =0. (3.5)
on| 0
Hence u<i;, where @ is the unique positive solution of
. o
—pday =i f (i, v1,x)  in Q, o (3.6)
In [yg

Here and frequently in the sequel we use uniqueness; in each case the proof follows
the lines indicated in the introduction before Theorem 1.2. For the existence part, it
suffices to observe that (3.5) implies that u is a sub-solution of (3.6), while any
constant greater than or equal to M is a super-solution of (3.6). Thus the existence of
i, follows from a sub/super solution argument.

For every k>1, define v, >0 and @ >0 successively by

. 0
—vAy = veg (-1, 0, X) in Q, e 0, (3.7a)
on |50
_ _ _ . Ol
—pdiy = by f (g, v, x) in Q, =0. (3.7b)
on |50

The existence and uniqueness of {v;};~, and {iix},;~, can be proved similarly as
before. Furthermore, the following inequalities hold:

u< - < <ip_1 <<y <ilp in Q, (3.83.)

V2 20 2ho =20 in Q. (3.8b)

In the same spirit we can construct {u; },~, and {5}, as follows: set 5y = 7, and
define u;, >0 and 7, >0 (k>1) successively by

. 0

g+ e f (w51, x) =0 in @, K| =0, (3.9a)
on |y

_ _ _ . Oy

vAD, + Org(ui, 0k, x) =0 in Q, —| =0. (3.9b)
on |50
Moreover, the following inequalities hold:

UZ S = 2w in Q, (3.10a)
U< SO ST < < <Py in Q. (3.10b)
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For every k=1, we consider the limits of (i, v;) and (u, 0x) as u, v—0. To this
end, we define Up(x)=a(x) for every xeQ. Since g¢g(x(x),0,x)>0 and
g(a(x), M,x)<0, we see that there exists a unique V;(x)>0 such that
g(Oy(x), V1(x),x) =0 in Q. Let U;(x)>0 be the unique positive root of
Sf(u, Vi(x),x) =0. U, exists since f(M,V;(x),x)<0 and f(0, ¥;(x),x)>0. Note
that g(a(x), V1(x),0) = 0>g(a(x), f(x),x). Therefore, by (H3) we see that
V1 (x) <p(x), which in turn implies that £(0, V;(x),x)>/(0, B(x),x) >0, where the
last inequality follows from Corollary 2.4. Similarly, we can define U, and V;
inductively by the following formulae:

g(Uk_1, Vi, x) =0, k=1, Uy(x) = a(x). (3.11a)

(O Viox) =0, k=1 (3.11b)
In the same spirit we can define {Uy, Vi }/—, by

SUk, Vier,x) =0, k=1, Vy(x) = B(x). (3.12a)

g( U, Vi, x) =0, k>1. (3.12b)

We claim that (i, vy) = (U, Vi) and (uy., Br) = (U, Vi) uniformly in Q as u, v—0.
It is ecasy to see that this assertion follows from Lemma A.l via an induction
argument.

Therefore, by (3.8) and (3.10) we see that

U< <U<<  lim u< lim u<--<Ur <0y, (3.13a)

(u,v)—(0,0) (1,v)—(0,0)

Vi< <Vp<--<  lim o< lim v - SV < V. (3.13b)
(1,v) = (0,0) ()= (0,0)

Since { Uy, U, Vi, Vi }i-, are all monotone sequences, we may assume that for
every xeQ,

U(x) :klinolo Uc(x), U(x)= lim Ug(x),

k— oo
P = fim Telx), Vx) = lim V(o). 19
Letting k— + oo in (3.11) and (3.12) we have
f(O(x), V(x),x) = g(U(x), V(x),x) =0, VxeQ. (3.15)
f(l_](X), _(X),X)Zg(U(X),V(X),X)ZO, VxeQ. (316)
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Obviously U, V, V are all non-negative. By (H4) we see that U= U = u*,
V=V=v*"in Since both u* and v* are continuous functions, we see that
Ui, Uy —u*, Vi, Vi—0v" uniformly in Q as k— oo by the following well-known
calculus lemma (see, e.g., [35, Theorem 7.13]):

U,
Q.

Theorem 3.4. Suppose that K is compact set in RN and

(@) {fx}i=, is a sequence of continuous functions on K,
(b) {fi} converges pointwise to a continuous function f on K,
©) fi(x)=fir1(x) for all xeK, k=1,2,3... .

Then fi —f uniformly on K.

Hence by (3.8), (3.10) and the assertion after (3.12) we see that (u,v)— (u*,v")
uniformly in Q as u—0 and v—0. This proves Lemma 3.3. [

Proposition 3.5. There exists some positive constant o, such that if 1<, and v<9,,
then every coexistence state of (1.2) is linearly stable.

Proof. Let (u,v) be any coexistence state of (1.2) and consider the following linear
eigenvalue problem:

pAg + ¢(f + uf) + b -ufy = 2¢  in 2, (3.17a)
vAY + ¢ - vgy + (g + vgy) =AY in Q, (3.17b)
op oy
%_%_0 on 0Q. (3.17¢)

Since (1.2) is a monotone system, by the Krein—Rutman Theorem [25], (3.17) has a
principal eigenvalue, denoted by 4;, and its corresponding eigenfunction (¢, V) can
be chosen such that ¢ >0 in Q and <0 in Q. It suffices to show that A; <0. To this
end, we argue by contradiction: passing to a sequence if necessary, we suppose that
(u,v) is linearly unstable, i.e., 4; =0 for some sequence (u;, vi)— (0,0) as k— + 0.
For the sake of brevity we suppress the subscript k. Let ¢(xo) = maxg ¢p. Then by
(3.17a) and the maximum principle [34] we have

max ¢ - [—f (u(x0),v(x0), x0) — u(x0) fu(u(xo), v(x0), X0) + 41]
< — W(x0) - u(x0) - [=Ai(u(0), 0(x0), x0)]: (3.18)
Let /(x;) = ming ¥. Again, by (3.17b) and the maximum principle we have
mgx (=) - [=g(u(x1), v(x1), x1) — v(x1)go(u(x1), v(x1), X1) + 44]

< mgx ¢ - v(x1) - [—gu(u(x),v(x1),x1)]. (3.19)
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We normalize ¢ such that maxs; ¢ = 1. Passing to a subsequence if necessary we
may assume that xo—x*eQ and x; »XeQ as u—0 and v—0.

We claim that A; is bounded from above if both y and v are sufficiently small. To
prove this assertion we argue by contradiction: Passing to a sequence if necessary, we
suppose that 2; — + oo as u,v—0. Since (u,v) — (u*, v*) uniformly in Q, by (3.19) we
see that maxg (—y) < Cy/4; =0, where C; >0 is some constant independent of p, v.
Then by (3.18) and same argument we have maxg ¢ < C, - maxgs (—)/4; —0 as
u,v—0. Again, C, is some positive constant independent of u,v. However, this
contradicts our assumption maxg ¢ = 1. Therefore, 4; is bounded from above.

Since 4; >0 (by assumption), it follows, passing to a subsequence if necessary, that
we may assume that A, —/1>0 as u, v—0.

By using a sequence if necessary, we may assume that one of the following three
cases holds: (i) u/v—1t for some 7€ (0,+00); (ii) u/v— + o0; (iii) u/v—0. From
symmetry (by exchanging u and v), we need henceforth only consider cases (i) and
(ii).

A standard technique for handling a singular perturbation problem of this nature
is to rescale in space suitably (in fact with scaling factor ,/u or /v). The purpose is to
utilize the uniform convergence result in Lemma 3.3 to localize the analysis in a
neighborhood of x(, and hence x* in the limit x, v—0. We do this rescaling for both
(u,v) and (¢, ) and essentially reduce the problem to a linear elliptic system with
constant coefficients in the whole of R": Such techniques are standard for scalar
elliptic equations, for example see [26].

We first consider the situation when x* € Q. For this case, set

) = d(xo + V), V() =(xo+VVy) (3.20)

for any y satisfying xo + /vyeQ.
Define i(y) = u(xo + v/vy), 5(») = v(xo + v/v»). Then ¢ and ¥ satisfy

B4, + BLF (.8, +V/3¥) + 8,8, .50 + /)
+ afo (@, 8, %0 +Vvy) = 4,
and
A + Ggu(i, 6, x0 + Vvy) + Ylg(i, &, X0 + V)
+ g0 (i1, 8, X0 + VVY)] = A,
where y satisfies xo + /vy€Q. By our assumption, 0< ¢ <1 with q~5(0) = ¢(x0) =
maxg ¢ = 1. Since 4;>0 and (u,v)— (¢*,v*) uniformly, by (3.19) we see that
maxg (—y) < C3 < + oo for some positive constant C3 which is independent of p and

v. Again, since 4;>0 and (u,v)— (u*,v*) uniformly, by (3.18) we see that
—(x0) = C4 >0 for some constant C4 which is also independent of x and v. Hence
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¥(0) = ¥ (x0) < — Cy<0and —C3 <(x) <O for every xe Q. Here we repeatedly used
assumptions (H3), (H4) and Lemma 3.3.

Since ¢ and V are uniformly bounded in the domain {yeR" : xy + \/vyeQ}, we
apply the interior L? estimate for elliptic operators [14] in any finite ball Bz(0) to

deduce that for every p>1 and R>0, |\d~>||wz,,,(BR(0)) and Hl;”l/yz,p(BR(o)) are uniformly
bounded. By the Sobolev embedding theorem, ||q3||C‘~7(BR(O)) and ||$|IC1.7(3R(0)> are
uniformly bounded for every o€ (0, 1). By a standard diagonal process, passing to a
sequence if necessary, we may assume that (¢,1) — (@, ¥) in C'(K) and weakly in
W?P(K), where K is any compact subset of RY. Furthermore, ® and ¥ satisfy

0<P<l, @(0)=1; —C;<¥<0, P(0)< — C4<0. (3.21)

Moreover, since (u, v) — (u*, v*) uniformly in Q, we see that (@, ¥) is a weak solution
(and thus a classical solution by elliptic regularity) of the following linear system for
the case u/v—1e(0,+00):

‘EAy(D—i-a”(I)—i—alz'P:Z(P, yeIRN,
AP +an® +an¥ =¥, yeRY, (3.22)
where

(21 )~ (LR s, Sdetei ) oo

*

*
—~
)

*
N
“

*
S~—"
<
*
=
*
)
<
—~
<
*

A

We claim that there exist no @, ¥ such that (3.21), (3.22) and (3.23) hold. The key
observation is that there exists y>0 such that

ay — 4 —yay <0, y(an — 1) — a2 <O0. (3.24)

To prove the existence of y, note that since 1>0, a;<0fori,j=1,2,and ajjaxn —
apay >0, we have

—dn  _Zant4 (3.25)
—ay + 4 —a
If we choose y such that
- - 7
Tt (3.26)

—an + 4 —ay;

we see that y>0 satisfies (3.24).
With w = 1@ — »¥, we have from (3.22),

Ayw + (a1 — 4 —yan)® + (a1 — ylan — 1)|¥ =0 in RY. (3.27)
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Set
do = min{(a11 —A “/6121)7 —blan—4) - 012]}. (3.28)
T b
By (3.24), 69 >0, and from (3.27) and (3.28),
Ayw=Sw  in RY. (3.29)

From (3.21), w>0, w#0, and w is bounded. Setting 1w = ||w|[ .« gn + 1, We see
that w>w in R and A, W< oW in RY. Therefore, by a sub/super solution argument
in RY (see [31]), there exists w* e C>(R") such that w<w*<win RY and Ayw* = Gow*
in RY. However, it is well-known (see, e.g., [1]) that such w* does not exist. Hence we

reach a contradiction for the case p/v—1€(0,4+00).
For the case pt/v— oo, ® and ¥ satisfy

A,8 =0 in R", (3.30)

AW +an®+ant =¥ in RY. (3.31)
Since @ is bounded and @®(0) = 1, we have ® =1 in R", and by (3.31) and the
boundedness of VP,

—an]
Y=

in RV, (3.32)
ax —

On the other hand, as maxgs ¢ = 1, we may rewrite (3.18) as
= f(u(xo), v(x0), x0) — u(xo) fulu(xo), v(x0), X0) + 41
< = §(0)u(xo) [~ (u(x0), v(x0), x0)]- (3.33)

Passing to the limit in (3.33), since xo—x* and (u,v)— (u*,v*) uniformly, we
deduce that

—ay + A< — P(0) - (—an). (3.34)
Therefore, by (3.32) and (3.34) we get
(—a11 + /T)(/: — azz) <aaiy, (3.35)

which contradicts (3.25) since >0, a;; <0 and a, <0. This contradiction implies
that x* ¢ Q.

Hence we only need to consider the remaining case x*e€dQ, and -either
u/v—>1e(0,+0) or p/v— + oo. The idea is rather standard and it is basically
“straighten the boundary at x** and rescale. Here we follow [26] closely. Without
loss of generality we assume that x* is the origin, and there exists a C? function h(x'),
where x' = (x, ..., xy_1), defined for |x'|<d for some positive constant 6 >0 such
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that: #(0) =0, %(0) =0for ISi<SN—-1,QnU={(¥,xy) : xy>h(x')} and 9Qn
U={(x,xy): xy =h(x")} for some neighborhood U of x* = (0, ...,0), See Fig. 3.
For every ye RY with |y| <1, define H(y) = (Hjy, ..., Hy) by
oh
Hi() =y — yn (), 1<j<N—1,
i) =y = ax,(y) J (3.36)
Hy(y) = yn +h(Y).
Since DH(0) = Iyxy, H has inverse y = G(x), say, for |x|<1. The idea of
introducing the new coordinate system is that locally near the origin, Q2 is yy = 0,
i.e., is flat in the new coordinate. Set G(x) = (G;(x), ..., Gy(x)), and define

N aG; aG; o
bi(y) = AG;(H(y)), 1<j<N. (3.37)

Define q~5(y) = ¢(x) and ¥ (y) = Y(x). Then $ and V satisfy

N 27 N 7
u{z W) gt D B ‘9—‘?} B8 H) + (0,0, HO))

= Widy; 45 Y

+ g, 6, H(y)) + og,(, 5, H(y))] = 21y in By, (3.39)
op O
—=——=0 on = 0} N By, 3.40
aon ~ ovm {yn =0} N By (3.40)

IN

U

Fig. 3. Illustration of the new coordinate system.
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Set yo = G(x¢), and write yo as yo = (¥, o) with yheRY"' and «>0. Since
xo—x* = (0,...,0), we may assume that y, € B;s for sufficiently small x and v. There
are two possibilities for us to consider.

Case A: a/+/v is bounded for all sufficiently small u,v. Using a sequence if
necessary, we may assume that o//v—>d@>0 as u—0 and v—0. Define

(P( ): (y0+\/—z \/—ZN) (2635/\/‘) (3'41)

A

V(2) = P + V2 Vzw)  (z€B], o), (3.42)
where z = (Z/,zy). Hence by (3.38), (3.39), (3.41) and (3.42) we see that ¢ and

satisfy

v

+ ufu(ua v, H(yo + \/‘_)Z 7\/;ZN))]
i £, (i, 6, H(Vy + V2 vew)) = (3.43)

E{Z dj 32 ot \fz b } QLI 6, H(Yy + V2, v/vzy))

Z faza +\/—Z b] +¢vgu(ﬁ7ﬁ,H(y’0+\/$z’,\/;zN))

i

‘mg(”aU»H(J’o‘F\/;Zy\/;ZN))+U‘]b( H(y + Vv Vvzy))] = 2, (3.44)

where zeBJ, o dy(2) = ay0h + V7 Vizn). B(2) = b + V7 iz i) =
a(y),8(z) = 8(y), and ¢ and  also satisfy
99 _ o

aZN = % = 0 on {ZN = O}f\Ba/\/; (345)

Choose a sequence Rj; such that limg_, ., Ry =+oo. For every fixed k,
Bir, CB;/ . provided that v<1. Since @; and bAj are uniformly bounded in px and v
with the C%%) norm, we can apply elliptic L”-estimates up to the boundary [14]
to (3.43)(3.45) in the domain Bj,_and find that ¢ and i are uniformly bounded in
WZJ’(B;R/() for every p> 1. By the Sobolev embedding theorem we see that ¢ and v
are uniformly bounded in C lV(B_fek) for every ye(0,1). By a standard diagonal
process and compactness argument, passing to a sequence if necessary, ¢ — @ and

Y —> ¥ uniformly on any compact subset of IRN, where &, WYe WZP(IRN)mCl(IRN)
with p>1. Since u,v—0 and d;(z)—>J; we see that @ and ¥ satisfy (for the
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case u/v—te(0,+00))

AP +an®+ap¥? =0, zeRY, (3.46)
A.Y +an® +an¥ =P, zeRY, (3.47)
op oV
e . {zv = 0}, (3.48)

where (@), <; ;< is given in (3.23).

By reflection with respect to the hyperplane zy = 0, we can extend @ and ¥ to the
whole space RY and &, ¥ still satisfy (3.22). Note that #>0>Y¥ and &, ¥ are
bounded in RY; moreover, ®(0, ...,0,d) = limy,, ) 0,0)¢(x0) = 1. As shown in the
case x* €2 we see that such @ and ¥ do not exist. This gives the contradiction for
case A with u/v—1e(0,+00).

For case A with u/v— + oo, (3.46) becomes A.® =0 in [R{f. Similarly, by
reflection with respect to zy = 0, we see that ¢ and ¥ satisfy (3.30) and (3.31). The
rest of the proof of this case is the same as that of the case u/v— + oo and x*e€Q.
This completes the proof of case A.

Case B: o/+/v is unbounded for p, v< 1. By passing to a subsequence if necessary,
we may assume that o/\/v— + oo as u,v—0. For this case, set

45(2) = (Z)(J/O +/vz), IP(Z) = lﬁ()/o +Vz). (3.49)

Then ¢ and  satisfy (3.43) and (3.44), respectively, with dij(z) = aij(yo + /vz),

bi(z) = bj(yo + Vz), H(yy +/vZ',\/vzy) being replaced by H(yo + vz), i(z) and
i(z) being defined similarly as before, and ze By, 50 {zy > — %} For any y>0, we
have o/\/v>y if u,v<1 and thus B,(0)<=B;, 4(0) n{zy> —a/\/v} for u,v<1.
Repeating the compactness argument and diagonal process we see that,
passing to a sequence if necessary, qi;—><15 and lﬁ—»(b uniformly on any
compact subset of RY, where & and ¥ again satisfy (3.22). Similarly we
can show as before that such @ and ¥ do not exist, and the proof is
exactly the same as that of the case x*eQ. In conclusion, for case B and
x*€0Q we also reach a contradiction. This completes the proof of
Proposition 3.5. [

Proof of Theorem 1.1. By Proposition 3.5, if p, v< 1, any coexistence state of (1.2) is
linearly stable. By Corollary 3.2, (1.2) has at least one coexistence state. Since (1.2) is
a monotone system, it follows that (see, e.g. [18,20]) (1.2) has a unique coexistence
state and it is globally asymptotically stable. Moreover, by Lemma 3.3, this unique
coexistence state converges to (u*,v*) uniformly as 4—0 and v— 0. This completes
the proof of Theorem 1.1. [
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4. Global stability: the boundary case

We here assume conditions (H1)-(H3), (H6) and (H7), and prove Theorem 1.2. By
Lemma 2.5, we may assume without loss of generality that for every x e Q, the graph
of v = vy(u, x) lies below that of v = v,(u, x). In the proof, it is first noted that (0, 7) is
asymptotically stable (by an argument similar to that used in Lemma 3.1). Next it is
shown that there is no coexistence state. The result follows immediately from the
monotonicity.

Proof of Theorem 1.2. For this case, by a proof similar to that of Lemma 3.1 we can
show that (0,7) is stable for u,v<1. By [18], it suffices to show that (1.2) has no
coexistence states when u and v are sufficiently small. To this end, we argue by
contradiction: if not, suppose that there exist {u,vi},—, Wwith limg_ o =
limg, + oo vk = 0 such that (1.2) with (p,v) = (1, vk) has a positive steady-state
(uk, v) for every k=1, ie.,

W Aug + g f (U, v, x) =0 in Q,
VkAUk + ng(u/ﬂ Uk,x) =0 in Qv

Qur _ Ot _

= on 0 on 0Q. (4.1)

It may help the reader if we note that we shall construct a sequence (uy,;, U, ;),
with the & suffix indicating the diffusion coefficients, and the j suffix giving an
iteration leading to an equilibrium.

Consider the following scalar equation:

wedu + uf (u,0,x) =0 in Q, % =0 on 0Q. (4.2)

Clearly uy is a subsolution of (4.2) and M is a supersolution of (4.2), uy <M and
Su(u,0,x)<0. By a sub/super solution argument, we see that (4.2) has a unique
positive solution, denoted by uy;(x), and ux <wy1, ug) —o(x) uniformly in Q as
u—0. Since g, <0 and u; <uy ), we see that vy satisfies

—vi Avg Z v g (Uk 1, Vi, X)  In Q. (4.3)
Since . —o uniformly, we have g(u 1,0, x)—g(x(x),0,x) uniformly in Q. By

Corollary 2.6, g(a(x),0,x)>0 in Q. Therefore, every sufficiently small positive
constant is a subsolution of the scalar equation

. 0
viedv + vg(uy,0,x) =0 in Q, a—Z =0 on 0Q. (4.4)
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From (4.3) we see that vy is a super-solution of (4.4). Therefore, since ¢g,<0, by a
sub/super solution argument, (4.4) has a unique positive solution, denoted by vy,
and vg >vy in Q.

Inductively we can construct {uy, ;, vk, j}jﬁ‘l for every k=1 as follows: vy ; is the
unique positive solution of

. vy, j
viedog, ; + vk, jg(uk,j, vk j, ) =0 in Q, Thil 0, (4.5)
on |0
and uy, j41 1S the unique positive solution of
. Ouk, j+1
M A jr + e gt f (Ui ji, vy %) = 0 in @, —2 =) = 0. (4.6)
o

Claim. For every k,j=1, both uy_; and vy ; exist and the following inequalities hold:

U= U U =2 2w >0 in Q, (4.7)

Uk>"'>vk.j+l>vk7j>"'20k71>0 in Q. (48)

To establish our assertion for every fixed k=1, we argue by induction on j>1:
note that u; and vy exist, ug1 =u; and v >vg,1 in . Suppose that uy ; and vy ;
exist, ug, ;= u; and v =vg ; in Q. By vk = vk, ; we see that uy satisfies

. 0
— A <uyg f(uge, vg, j,x) in Q, UK\ _ 0. (4.9)
’ on | g
That is, u; is a subsolution of
. ou
wedu+uf (u, v j,x) =0in Q, —| =0. (4.10)

Define vro = 0 for every k>1. Since vy, j > vy, j—1 and f, <0, uy ; satisfies

0uk,j
On

(4.11)

— e Aug, j = uy j f (g, j, vk, j, x) in Q, =0.
0Q
Hence uy ; is a super-solution of (4.10). Since uy j=>ui, by a sub/super solution
argument we see that (4.10) has a unique solution uy ;41 and wy ;> uy jp1 Zur. A
similar argument shows that vy ;1 exists and satisfies vy = v, j41 =0k, ; In Q. This
proves our assertion.

Since limy_, ;o ux = a(x) uniformly in Q, for every j>1, by (4.5), (4.6) and
Lemma A.1 we obtain

lim Uk, j = (/j, lim Vk,j = Vj (412)
k— oo k—
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uniformly in Q; moreover, U; and V; satisfy
V}(x) = maX{th(Uj(x)7x)70}’ (4'13)

Upor (x) = max{uy (V(x). x), 0} (4.14)

for every xeQ, where Uj(x) = a(x).
We deduce from (4.7), (4.8), and (4.12), by letting k— + oo, that

Uiz 202U 22 Iim >0, (4.15)
X ‘ -+

lim gz 2VigzViz-- 21120, (4.16)
k— 400

for every xeQ. By Corollary 2.6 we have g(o(x),v,(a(x), x),x) = 0<g(a(x),0,x).
Hence v,(x(x), x)>0, which implies that v,(U;(x),x)>0 for every j>1 and xeQ.
Therefore, we can write (4.13) as

Vi(x) = V4 (Uj(x), x). (4.17)
Now set
U(x) = lim Ux), V(x)= lim ¥j(x), (4.18)

It then follows from (4.14), (4.17), and (4.18) that

V(x) =v,(U(x),x), (4.19)

U(x) = max{uy(V(x),x),0}. (4.20)

In particular, ¥ (x)>0 for every xeQ.

Claim. U(x) =0 in Q.

To establish this assertion, we argue by contradiction: suppose that there exists xg
such that U(xy)>0. By (4.20) we see that

U(XO) = uf(V(X()),O)>0, (4.21)
which along with ¥V (xo) = v,(U(xp),0) >0 implies that
f(U(XO)v V(XO)VO) = g(U(XO)a V(XO)aO) =0, (422)

which contradicts (H6). This proves the assertion U = 0 in Q, which also implies that
V(x) = v,(0,x) = B(x) for every xe Q.



V. Hutson et al. | J. Differential Equations 211 (2005) 135-161 155

Note that both {U;} /%, and { ¥} /2, are monotone sequences of functions and both
limits U and V are continuous in Q. Hence by Theorem 3.4, U;—0 and V;— f(x)
uniformly in Q. Therefore, us(V;(x),x)— Ur(B(x), x) uniformly in Q. By Corollary
2.6, ur(B(x),x)<0 in Q. Hence for sufficiently large j, say, j>j), we have
Ur(Vj(x), x) <fur(B(x),x)<0 in Q. Therefore by (4.14), Uj(x) =0 for j=jo+ 1.
However, this contradicts the following:

Claim. For every j>1, U;#0 in Q.

To prove this assertion we argue by contradiction: if not, suppose that U, =0 in Q
for some ji > 1. Therefore limy_, o ; = 0 uniformly in Q. Since uy, j =ur >0 in Q,
we see that u; —0 uniformly in Q. By the equation for vy, vx — 8 uniformly in Q. This
implies that f(u, vk, x)—f(0, B(x),x) uniformly in Q. By Corollary 2.6, we have
f(0,B(x),x)<0 in Q. Hence there exists ko>0 large such that for every xeQ,
S (upy (x), v, (x), x) <0. Therefore

/Q Ugy (X) f (g (), Uk, (), Xx) dx < 0. (4.23)

However, by integrating the equation for u;, we have

/Q i () 1ty (), Dy (), ) dlx = 0, (4.24)

which contradicts (4.23). This completes the proof of Theorem 1.2. O

5. Future directions

The extension of the global convergence results for small u, v proved in this paper
for competing species to a wide class of reaction terms and to k equations with k>2,
would provide a valuable tool in the theory of reaction—diffusion systems. There
follow some tentative remarks on the possibilities and difficulties.

First we might consider a k-species cooperative system with k> 2. This of course
yields monotonicity, and in view of the central role that this plays in the proof, there
are fairly good grounds for suggesting that a result along the line established here
would hold. For a k-species competition system, monotonicity is lost and the
situation is unclear.

Probably the obvious and most interesting direction in which to move would be to
extend the results for a pair of homogeneous predator—prey equations to the
inhomogeneous case. We first remark that in the introduction we refer to examples
of [29,36], but in standard competing species and predator—prey problems
dissipativity holds, so the examples are not directly relevant, although they may
possibly suggest difficulties in the way of extensions. It would be interesting and
challenging to discover whether there could be, for example a periodic orbit. We note
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that the iteration technique in this paper can probably be modified to yield the
existence of interior equilibria and their uniform convergence to the reaction
equilibrium.

What then are the difficulties? The loss of monotonicity appears at first sight to be
crucial. The first main difficulties are the uniqueness of the interior equilibrium, and
the asymptotic stability of the equilibrium, due to the uncertain nature of the
spectrum of the corresponding linearized eigenvalue problem, for example the
difficulty of ruling out a Hopf bifurcation. Even if these could be resolved, there
remains the possibly greater hurdle of proving that the asymptotic stability is global.
For 2-species competition models this is an automatic consequence of monotonicity,
but of course this is not the case for a predator—prey model.

We may finally remark that on the other hand, although the monotonicity is
technically an extremely powerful tool in our results, it is not at all clear that it
provides a reliable guide to the correct direction to look for extensions of these
results. There clearly remain a range of central open problems in this area.
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Appendix

Here we establish a convergence result which is used extensively in the proofs of
Theorems 1.1 and 1.2. Some special cases of Lemma A.l are well-known, but
because we cannot locate the proof in the full generality stated, and needed in this
paper, for the sake of completeness we include it here.

Lemma A.1. Suppose that f satisfies the assumptions (H1)-(H3) and V,(x) - Vy(x)
uniformly in Q as u—0+ . Let u,(x) be the unique positive solution of

udu +uf (u, Vu(x),x) =0, %:O on 09Q. (A1)
Then as u—0,
uu(x) = u*(x) := max{us(Vo(x), x),0} (A.2)

uniformly in Q.
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Proof. We consider two different cases.

Case 1: us(Vo(x),x) <0 for every xeQ, i.e., f(0, Vy(x),x) <0 for every xe Q. We
show that u, —0 uniformly in Q as u—0. Let u,(x,) = maxg u,. By the maximum
principle, we have f'(u(x,), V.(x,),x,) =>0. Hence

0< [f ((x0), Vieu)s %) = (0, Viu(xp0), X))
+ [0, Viu(x), x0) = (0, Vo (), X,)]
=fu - u(xy) +fo - [Vi(xn) = Volx)]- (A.3)
Therefore, by (H3) we have u(x,)<C||V, — V||, where C is some positive
constant independent of p. This implies that u, — 0 uniformly.

Case 2: ur(Vo(x), x)>0 for some xe Q, i.e., (0, Vy(x), x) is positive somewhere in
Q. For this case, we first establish the following

Claim. Given any &> 0, there exists u; = p,(g) >0 such that if p<u,(¢), we have
u, (x) <u'(x) + 28 (A4)
for every xeQ.

To prove our assertion, we first seek some function o (x) e C?(Q) such that % =0

on 09, and ||oy — u*|| ., <&/2: to this end, it suffices to consider the equation

—dAay + oy = in Q, %:o on 9Q. (A.5)

It is not difficult to show (e.g., by using Green’s function for the operator —dA + I
with zero Neumann boundary condition) that |jo; — u*||,, >0 as d—0.

Next we show that given ¢ >0, o) + ¢ is a super-solution of (A.1) provided that p is
sufficiently small. To this end, it suffices to see that

pA(oy + &) + (o + &) f (o1 + &, Vi, X)
= pdoy + (a1 +&)[f (o1 + &, Vi, X) — f (o1 + &, Vo, x) + £ (o1 + &, Vo, X)
—f(wr(Vo, x), Vo, x)]
<ulldorl, + (o 4+ e){Il fell o [V = Voll oo + min(=£y) - [—on — & +ur(Vo, x)]}

<ulldon]], + (o1 + )l Soll oo 11V = Vol — 3min(—f,)e] <O,
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where the last inequality holds provided that u is sufficiently small. Therefore, by a
sub/super solution argument and the uniqueness of solutions to (A.l), we have
u, <oy +e<u* + 2¢ for sufficiently small pu.

To show that u, —u* uniformly in Q, we argue by contradiction: suppose not, then
there exist some & >0, some sequence of constants () with limy_, oy, = 0, and
some sequence of points x; € Q such that

|y, (X)) — 1" ()| =0 >0. (A.6)

Passing to a subsequence if necessary, we may assume that x;—x*eQ and
uy, (xx) >a=0. Setting u =y, and x = x; in (A.4) and letting k— oo we have
a<u*(x*) 4 2¢, i.e., a<u*(x*), since ¢ is arbitrary. Passing to the limit in (A.6) we
find that |a — u*(x*)| >¢. Therefore,

u (X*)=a+ . (A7)

We claim that a>0. To see this, note that since a>0 and x; — x*, by (A.7) we may
assume that u*(x;)>gy/2 for suitably large k. In the subdomain Q, = {xeQ:
u*(x)>e¢9/2}, the following uniform lower bound of u, holds: there exist some
positive constants u, and ¢ such that if u<p,, u,(x)>0 for every xe€, ;. Since
X €8, > for sufficiently large k, we have u, (x;)>9, and by letting k— co we get
az0>0.

We now consider the subcase x*€Q. Set x = x; + /iy and wu(y) = wy, (X +
VI»)- Then w satisfies

Ayt uge f (s Vg, (Xk + /1) Xk + Viy) = 0 in- B, (x7), (A-8)

where By, (x*) is the ball in RY centered at x* with radius dj = %dist(x*,@Q),u,;l/ 2
and dist(x*, 9Q) denotes the distance from x* to 9Q. Since u; is uniformly bounded,
as in the proof of Proposition 3.5, by standard elliptic regularity, the Sobolev
embedding theorem and a diagonal process, passing to a subsequence if necessary,
we may assume that u(y) - U(y) in C!(K) and weakly in W (K) for any compact
subset K of RY. Furthermore, U >0 is a weak solution (and thus a classical solution
by elliptic regularity) of

AU+ Uf(U, Vo(x*),x*) =0 in RY, (A.9)

and U(0) = limy_, oty (xx) = @>0. By the maximum principle, U>0 in R".
Since u*(x*)>0, ie., us(Vo(x*),x")>0, we see that f(0, Vo(x*),x*)>0. Hence
by the assumption (H3), the only positive solution of (A.9) is the constant
solution, i.e., U(y)=u*(x*) in RM. In particular, a = U(0) = u*(x*), which
contradicts (A.7).

Next we turn to the case x*e€0dQ. The proof here is essentially the same as
that of Proposition 3.5, i.e., “straightening the boundary at x*”, and we shall
follow closely the proofs starting from (3.35). Define y = G(x) and x = H(y) as
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before. Set 1 (y) = u,, (x). Then a; satisfies

uk{z ;g;} > ,a”"}+ﬁkf<uk7vk(H(y))7H(y>):o (A.10)

i,
in BE}, 0 >0 is some small constant, and

I _ 0 on {yy = 0} Bay. (A.11)
oyn

Set yx = G(xx) and write y, = (¥, y,(CN)), where y} e R¥"! and y,(CN) >0. Without

loss of generality we may assume that x* is the origin. Since x; —»x* = (0, ..., 0), we
may assume that y; € B; for k> 1. There are two possibilities for us to consider: (a)

{y,iN)/\/,tTk},ZC:I is bounded; (b) {y,iN)/\/;Tk};il is unbounded.
If {yE{M /\/Hy }i—; is bounded, using a subsequence if necessary we may assume
that y,((m/\/,ﬂ;—wzo as k— oo. Define

ti(2) = (Vi + Iz ViEN) (A.12)

for zij{/\/ﬁ, where z = (Z/, zy). Therefore, 1 (z) satisfies

0% ou
Z di(y ) k + \/_Z b/ :
i
+ “kf(“ka Vk( 0k + \/lTkZ ) \/#_kZN))J‘I(J/ﬁC +VIkZ', Vigzn)) =0, (A.13)
whete € BY, 1, dy(2) = ay(v, + VI, VI, B(2) = b0k + IR i), and

6uk
8zN =0 on {ZN = O}HB(;/\/—(O) (A14)

As in the proof of Proposition 3.5, by standard elliptic regularity, the Sobolev
embedding theorem and compactness argument, passing to a subsequence if

necessary, we may assume that i (z) — U(z) uniformly on any compact subset of R,
and U(z) satisfies

oU

AU+ Uf(U, Vo(x*),x*) =0 in RY, e
N

=0 on {zy =0} (A.15)

It is easy to see that U>0, U is bounded in RY, and U(0,...,0,7) =
limy_, o uy, (xx) = a>0. By reflection with respect to the hyperplane zy =0, we
can extend U to the whole space R" such that U satisfies (A.9). Similar to the case
x*eQ we see that U(z) = u*(x*) in RY. This again implies « = u*(x*), which is a
contradiction to (A.7).
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For the case x*€9Q and {y,(CN) /~/I Hey unbounded, passing to a subsequence if
necessary we may assume that y,((m/, /iy > oo as k— oo. For this case, setting
i (z) = uy, (yi + p'/?2), and repeating the proof of Case B in Proposition 3.5, we can
also reduce the proof to that of the case when x* € Q to reach the contradiction. This
completes the proof of Lemma A.1. O
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