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Abstract

It is well known that for reaction–diffusion 2-species Lotka–Volterra competition models

with spatially independent reaction terms, global stability of an equilibrium for the reaction

system implies global stability for the reaction–diffusion system. This is not in general true for

spatially inhomogeneous models. We show here that for an important range of such models,

for small enough diffusion coefficients, global convergence to an equilibrium holds for the

reaction–diffusion system, if for each point in space the reaction system has a globally

attracting hyperbolic equilibrium. This work is planned as an initial step towards

understanding the connection between the asymptotics of reaction–diffusion systems with

small diffusion coefficients and that of the corresponding reaction systems.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Given an arbitrary system of reaction–diffusion equations, in general the
asymptotic behavior of the corresponding reaction system gives little information

ARTICLE IN PRESS

�Corresponding author. Fax: +1-614-292-1479.

E-mail address: lou@math.ohio-state.edu (Y. Lou).

0022-0396/$ - see front matter r 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jde.2004.06.003



on the asymptotic behavior of the reaction–diffusion systems. Suppose, however,
that the reaction system has a globally asymptotically stable equilibrium, in the sense
that this property holds for each point x of the spatial domain. Does this provide
more information? In particular does it imply that the corresponding reaction–
diffusion system has the same property? That it is too optimistic to expect this is
clear from recent intriguing work [29,36]. In [29] for example, it is shown that there is
a class of system consisting of a pair of simultaneous reaction–diffusion equations
with homogeneous reaction term (i.e. independent of x) with the following property.
Given any unequal diffusion coefficients m; n; there is a choice of initial conditions
such that the solution blows up in finite time. In view of these results, in what
direction should one look?
It is well known [9] that for large m; n if the reaction–diffusion system has a LN

bounded positively invariant set, for initial conditions in that set, asymptotically the
orbits are close to those of the reaction system for the spatially averaged solution.
For further investigation in this area one may refer to [8,15,16]. It would be
extremely useful if one could extend the class of reaction–diffusion equations for
which the reaction system provides useful information. The obvious direction to
look is to small m; n; where we might hope for global convergence of the reaction–
diffusion system to an equilibrium ‘close’ to that of the corresponding reaction
system, but in view of the above-mentioned results, we must further restrict the class
of equations.
It is difficult to predict the general direction in which we should look, but we may

note that at least for some simple situations, the result is true, in fact for arbitrary m;
n: One such situation is the following Lotka–Volterra system with a; b; b and c

positive (by which is always meant strictly positive) constants and zero Neumann
boundary conditions:

ut ¼ mDu þ u½a� u � bv�;
vt ¼ nDv þ v½b� cu � v�:

�
ð1:1Þ

Of course this is also true for the analogous predator–prey system. This suggests that
it is reasonable to enquire whether a general competing species model would have
this property; in view of the considerable recent interest in spatially inhomogeneous
models [2–7,10–13,17,19,21–24,27,30,32] a result along these lines would be of
importance. Similarly, the property might also be true for general predator–prey and
other models, such as the migration–selection model from population genetics [28],
but it is likely to be much harder to prove since a monotonicity structure cannot be
invoked, see Section 5 for further discussion.
Consider then the following general reaction–diffusion system

ut ¼ mDu þ uf ðu; v; xÞ;
vt ¼ nDv þ vgðu; v; xÞ in O	 ð0;NÞ;
@u
@n

¼ @v
@n

¼ 0 on @O	 ð0;NÞ;
uðx; 0Þ ¼ u0ðxÞ; vðx; 0Þ ¼ v0ðxÞ in %O:

8>>><
>>>:

ð1:2Þ
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We impose the following restrictions required for a general competing species
model.

(HI) (Smoothness). f ; g : Cl 	 C1 	 Cl-R:
(H2) (Species limitation). There exists a positive constant M such that for every

xA %O; f ðM; 0; xÞo0; f ð0;M; xÞo0; gðM; 0; xÞo0 and gð0;M; xÞo0:
(H3) (Inter and intra-specific competition). For every xA %O; every uX0; vX0;

fuðu; v; xÞo0; fvðu; v; xÞo0; guðu; v; xÞo0 and gvðu; v; xÞo0:

Here OCRN is a bounded domain with smooth boundary @O and closure %O and
@=@n is differentiation in the direction of the outward unit normal to @O: The suffix
‘t’ denotes partial differentiation with respect to time and D is the Laplacian. The
variables u and v are the densities of the two competing species, so the analysis is
restricted to the non-negative cone.
The corresponding reaction system is

ut ¼ uf ðu; v; xÞ;
vt ¼ vgðu; v; xÞ:

�
ð1:3Þ

We say that ðu�ðxÞ; v�ðxÞÞ is an equilibrium of the reaction system if it satisfies (1.3)

for each xA %O; it is globally attracting if for each x; ðu�ðxÞ; v�ðxÞÞ under (1.3) attracts
orbits in the following sense. If ðu�; v�Þ is in the interior, it attracts the positive cone

in R2: If it is on the v-axis, it also attracts initial values on the positive v-axis (with a
similar property if it is on the u-axis).
We propose the following

Conjecture. Suppose that the reaction system (1.3) has a globally attracting
equilibrium which is hyperbolic except for at most a finite number of values of x:
Then for (1.2), if m; n are small enough, there is an equilibrium ðũ; ṽÞ of (1.2) which is
globally attracting (for non-negative initial values which are not identically zero),

and limðm;nÞ-ð0;0Þ ðũ; ṽÞ ¼ ðu�; v�Þ uniformly in %O:

The progress made towards proving this conjecture will now be described.
Consider first the ‘interior’ case (see Fig. 1) where the global attractor ðu�; v�Þ of (1.3)
lies wholly in the interior of the positive cone, the following being assumed.

(H4) (Unique solution in non-negative cone). For every xA %O; f ðu; v; xÞ ¼
gðu; v; xÞ ¼ 0 has a unique solution, denoted by ðu�ðxÞ; v�ðxÞÞ in

fðu; vÞAR2 : uX0; vX0g: Moreover, u�ðxÞ40 and v�ðxÞ40 for every xA %O:
(H5) (Hyperbolicity and local attractivity). For every xA %O; the following holds:

ðfugv � fvguÞjðu;v;xÞ¼ðu�ðxÞ;v�ðxÞ;xÞ40: ð1:4Þ

Theorem 1.1. Suppose that (H1)–(H5) hold. There exists d40 such that if m; npd;
(1.2) has a unique coexistence state ðũ; ṽÞ which is globally asymptotically stable for
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non-negative, non-trivial initial data ðu0; v0Þ: Furthermore, limðm;nÞ-ð0;0Þðũ; ṽÞ ¼ ðu�; v�Þ
uniformly in %O:

Consider next the ‘boundary’ case (see Fig. 2) where ðu�; v�Þ lies on the boundary
of the positive cone for all x; the assumptions being as follows.

(H6) For every xA %O; f ðu; v; xÞ ¼ gðu; v; xÞ ¼ 0 has no solution in

fðu; vÞAR2 : u40; v40g:
(H7) For every xA %O; f ð0; 0; xÞ40; gð0; 0; xÞ40:

First observe that if (H2), (H3) and (H7) hold, then (1.2) has two semi-trivial
equilibria ðũðxÞ; 0Þ and ð0; ṽðxÞÞ; where ũ and ṽ are uniquely determined by

mDũ þ ũf ðũ; 0; xÞ ¼ 0; ũ40 in O; ð1:5Þ

ARTICLE IN PRESS

Fig. 1. A typical graph for isoclines f ¼ g ¼ 0:

Fig. 2. (a) vgðu; xÞ4vf ðu;xÞ for every xA %O: (b) vf ðu; xÞ4vgðu;xÞ for every xA %O: Note that Theorem 1.2

treats case (a).
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and

nDṽ þ ṽgð0; ṽ; xÞ ¼ 0; ṽ40 in O; ð1:6Þ

a zero Neumann conditions being imposed in each case.
For the existence of ũ; (H7) ensures that any sufficiently small positive constant is

a subsolution of (1.5); by (H2) and (H3), M is a supersolution of (1.5). A standard
sub/super solution argument shows that (1.5) has a positive solution. The uniqueness
of ũ follows from the monotonicity of f ðu; 0; xÞ with respect to u and a sub/super
solution argument [33]. A similar result holds for ṽ: Fig. 2 illustrates the two
possibilities for the zero ‘isoclines’. In the sequel we choose that option shown in Fig.
2a where the v isocline lies above the u isocline, and ð0; v�ðxÞÞ is the global attracting
equilibrium for (1.3). Clearly, closely analogous arguments apply to the other case
shown in Fig. 2b.

Theorem 1.2. Suppose that (H1)–(H3) and (H6)–(H7) hold. Let ð0; v�ðxÞÞ be the

globally attracting equilibrium for the reaction system. Then for (1.2), there exists d40
such that if m; npd; the semi-trivial state ð0; ṽÞ is globally asymptotically stable among

non-negative non-trivial initial data ðu0; v0Þ: Furthermore, limðm;nÞ-ð0;0Þ ð0; ṽÞ ¼
ð0; v�ðxÞÞ uniformly in %O:

These confirm that at least in an important range of cases the conjecture is true.
Consider though the following ‘mixed’ case, where with O ¼ ð0; 1Þ;

f ðu; v; xÞ ¼ 1� u � 1
2
v;

gðu; v; xÞ ¼ 3
2
ð2� xÞ � u � v:

(
ð1:7Þ

Then

ðu�; v�Þ ¼
ð0; 3

2
ð2� xÞÞ ð0pxo2

3
Þ;

ð3x�2
2
; 4� 3xÞ ð2

3
pxp1Þ:

(
ð1:8Þ

Clearly ðu�; v�Þ is on the boundary u ¼ 0 for 0pxp2
3; and in the interior

for 2
3
oxp1: This case does not fall under either theorem. One may remark

that the hyperbolocity fails at x ¼ 2
3
: This causes technical problems in the

proof which we are, at this moment, unable to overcome. However, we
believe that Theorems 1.1 and 1.2 strongly encourage the view that the conjecture
is correct.
This paper is organized as follows: In Section 2 some preliminary results are

given. Sections 3 and 4 are devoted to the proof of the two main
theorems, respectively. Clearly it would be very important if results of this nature
could be extended to a large class of equation, for example to predator–prey
problems, and we discuss this further in Section 5. A technical lemma will be
established in the appendix.
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2. Preliminary results

In this section we establish some preliminary results which will be applied in the
proofs of Theorems 1.1 and 1.2 in Sections 3 and 4, respectively.

Lemma 2.1. In the interior case, assumptions (H3) and (H4) imply (H7).

Proof. This follows from (H3) and the assumption f ðu�ðxÞ; v�ðxÞ; xÞ ¼
gðu�ðxÞ; v�ðxÞ; xÞ ¼ 0 for every xA %O: &

Lemma 2.2. Suppose that (Hl)–(H3), as well as (H4) in the interior case or (H7) in the

boundary case, hold.

(a) For every xA %O; there exist a unique aðxÞ40 and a unique bðxÞ40 such that

f ðaðxÞ; 0; xÞ ¼ gð0; bðxÞ; xÞ ¼ 0: Moreover, aðxÞ and bðxÞ are continuously

differentiable in %O:
(b) For every xA %O; there exists a unique function vf ¼ vf ðu; xÞ; which is defined for

0pupaðxÞ and is decreasing in u; such that f ðu; vf ðu;xÞ; xÞ 
 0; moreover,

vf ðaðxÞ; xÞ ¼ 0 for every xA %O:
(c) For every xA %O; there exists a unique function vg ¼ vgðu; xÞ; which is decreasing in

u and satisfies gðu; vgðu; xÞ; xÞ 
 0; moreover, vgð0; xÞ ¼ bðxÞ for every xA %O:

Proof. By Lemma 2.1 we see that (H7) holds. Hence the existence and uniqueness of
aðxÞ and bðxÞ follow from (H2) and (H3), and the continuous differentiability of a
and b follow from (HI), (H3) and the implicit function theorem. This proves part (a).
Parts (b) and (c) follow from part (a) and the implicit function theorem. &

We denote the inverse function of v ¼ vf ðu; xÞ by u ¼ uf ðv; xÞ: By Lemma 2.2 we

see that uf satisfies f ðuf ðv; xÞ; v; xÞ ¼ 0 and uf ð0; xÞ ¼ aðxÞ for every xA %O: Similarly,
the inverse function of v ¼ vgðu; xÞ is denoted by u ¼ ugðv; xÞ which satisfies

gðugðv; xÞ; v; xÞ 
 0 and ugðbðxÞ; xÞ ¼ 0 for every xA %O: For later applications we

extend the domains of f and g so that the domains of uf ; ug; vf and vg are R
1 	 %O and

for every xA %O; they are still strictly decreasing functions of the first component in R1:

Lemma 2.3. Consider the interior case and suppose that (H1)–(H5) hold. Then for

every xA %O;

vf ðu; xÞ � vgðu; xÞ ¼
þ 0puou�ðxÞ;
0 u ¼ u�ðxÞ;
� u�ðxÞoupaðxÞ:

8><
>: ð2:1Þ

Proof. By (H5) we see that vf ðu; xÞ4vgðu; xÞ for uou�ðxÞ but close to u�ðxÞ: Since
vf ðu�ðxÞ; xÞ ¼ vgðu�ðxÞ; xÞ and f ¼ g ¼ 0 has no roots except ðu�; v�Þ; we have
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vf ðu; xÞ4vgðu; xÞ for all xA %O and 0puou�ðxÞ: Similarly, vf ðu; xÞovgðu; xÞ for

u�ðxÞoupaðxÞ: &

Corollary 2.4. Suppose that (H1)–(H5) hold. Then for every xA %O; f ð0; bðxÞ; xÞ40
and gðaðxÞ; 0; xÞ40:

Proof. By Lemma 2.3, vf ðu; xÞ4vgðu; xÞ for 0puou�ðxÞ: In particular,

vf ð0; xÞ4vgð0; xÞ ¼ bðxÞ; which along with f ð0; vf ð0; xÞ; xÞ ¼ 0 and (H3) implies

that f ð0; bðxÞ; xÞ40: Similarly, setting u ¼ aðxÞ we have vf ðaðxÞ; xÞ ¼ 04vgðaðxÞ; xÞ:
Since gvo0; we have gðaðxÞ; 0; xÞ4gðaðxÞ; vgðaðxÞ; xÞ; xÞ ¼ 0: &

Similar to Lemma 2.3 we have the following result.

Lemma 2.5. Consider the boundary case and suppose that (H1)–(H3) and (H6)–(H7)
hold. Then either (a) the graph of v ¼ vf ðu; xÞ lies below that of v ¼ vgðu; xÞ for

every xA %O; or (b) the graph of v ¼ vgðu; xÞ lies below that of v ¼ vf ðu; xÞ for

every xA %O:

Proof. By (H6) we see that the graph of v ¼ vf ðu; xÞ and v ¼ vgðu; xÞ never intersect
for any xA %O; from which and a continuity argument Lemma 2.5 follows. &

Corollary 2.6. Suppose that (H1)–(H3) and (H6)–(H7) hold, and the case (a) of

Lemma 2.5 occurs. Then f ð0; bðxÞ; xÞo0 and gðaðxÞ; 0; xÞ40 for every xA %O:
Moreover, uf ðbðxÞ; xÞo0 for every xA %O:

Proof. The proof of f ð0; bðxÞ; xÞo0 and gðaðxÞ; 0; xÞ40 is similar to that of
Corollary 2.4, so we omit it. Since f ðuf ðbðxÞ; xÞ; bðxÞ; xÞ ¼ 04f ð0; bðxÞ; xÞ; by (H3)
and the extension of uf we see that uf ðbðxÞ; xÞo0 for every xA %O: &

3. Global stability: the interior case

Theorem 1.1 will be proved in this section, conditions (H1)–(H5) being assumed
throughout. An outline of the main steps in the argument are as follows. First, it is
shown that the boundary equilibria are unstable (Lemma 3.1), and next it is proved
in Lemma 3.3, by constructing monotone sequences and using repeated sub/
supersolution arguments, that any coexistence state converges uniformly to the
reaction coexistence state ðu�; v�Þ as m; n-0: Finally, we prove (Proposition 3.5) that
every coexistence state is asymptotically stable; this is the most difficult step and
requires the use of an argument based on spatial rescaling. Theorem 1.1 follows
immediately from the monotonicity of system (1.2).

Lemma 3.1. There exists d140 small such that if minfm; ngpd1; then both ðũ; 0Þ and

ð0; ṽÞ are unstable.
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Proof. Without loss of generality we consider the case 0om51: The stability of
ðũ; 0Þ is determined by the sign of the least eigenvalue, denoted by l1; of the
eigenvalue problem

nDcþ gðũ; 0; xÞc ¼ �lc in O;
@c
@n

����
@O
¼ 0: ð3:1Þ

Since ũ-a uniformly as m-0 (Lemma A.1) and gðaðxÞ; 0; xÞ40 (Corollary 2.6), we

see that gðũ; 0; xÞ40 in %O for 0om51; which implies that l1o0; i.e., ðũ; 0Þ is
unstable.
For ð0; ṽÞ; it suffices to determine the sign of the least eigenvalue, denoted again by

l1; of the eigenvalue problem

mDfþ f ð0; ṽ; xÞf ¼ �lf in O;
@c
@n

����
@O
¼ 0: ð3:2Þ

Integrating (1.6) in O; we obtain
R
O ṽgð0; ṽ; xÞ ¼ 0; i.e., gð0; ṽðxÞ; xÞ changes sign in O

or gð0; ṽ; xÞ 
 0 in O: Since gð0; bðxÞ; xÞ 
 0 (Lemma 2.2) and gvð0; v; xÞo0; we see
that ṽpb somewhere in O: Therefore, since fvð0; v; xÞo0; we see that
f ð0; ṽ;xÞXf ð0;b; xÞ for some xAO: In particular,
minxA %O½�f ð0; ṽðxÞ; xÞ�pminxA %O½�f ð0; bðxÞ; xÞ�o0; where the last inequality follows
from Corollary 2.4. Note that limm-0 l1 ¼ minxA %O½�f ð0; ṽðxÞ; xÞ� (see, e.g. [21]).
Hence l1o0 for 0om51; i.e., ð0; ṽÞ is also unstable when m is sufficiently small. &

By assumption (H3) we see that (1.2) is a monotone system. Hence Lemma 3.1
implies that the following holds (see, e.g. [18]).

Corollary 3.2. If minfm; ngpd1; (1.2) has at least one coexistence state.

Next we show convergence of the coexistence state of (1.2) to ðu�; v�Þ as m; n-0:

Lemma 3.3. Let ðu; vÞ denote any coexistence state of (1.2). Then limðm;nÞ-ð0;0Þ ðu; vÞ ¼
ðu�; v�Þ uniformly in %O:

Proof. We set %u0 ¼ ũ and adopt a standard iteration method. By a sub/super
solution argument we have up %u0: Then by (H3) v satisfies

�nDvXvgð %u0; v; xÞ in O;
@v

@n

����
@O
¼ 0: ð3:3Þ

Since %u0-a uniformly as m-0; we see that gð %u0; 0; xÞ-gða; 0; xÞ40 uniformly in
%O: Hence for m51; again by a sub/super solution argument we see that the following
equation has a unique positive solution:

�nD
%
v1 ¼

%
v1gð %u0;

%
v1; xÞ in O;

@
%
v1

@n

����
@O
¼ 0: ð3:4Þ
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Moreover, vX
%
v1 in %O: Now by the equation of u and (H3), u satisfies

�mDupuf ðu;
%
v1; xÞ in O;

@u

@n

����
@O
¼ 0: ð3:5Þ

Hence up %u1; where %u1 is the unique positive solution of

�mD %u1 ¼ %u1 f ð %u1;
%
v1; xÞ in O;

@ %u1
@n

����
@O
¼ 0: ð3:6Þ

Here and frequently in the sequel we use uniqueness; in each case the proof follows
the lines indicated in the introduction before Theorem 1.2. For the existence part, it
suffices to observe that (3.5) implies that u is a sub-solution of (3.6), while any
constant greater than or equal to M is a super-solution of (3.6). Thus the existence of

%u1 follows from a sub/super solution argument.
For every kX1; define

%
vk40 and %uk40 successively by

�nD
%
vk ¼

%
vkgð %uk�1;

%
vk;xÞ in O;

@
%
vk

@n

����
@O
¼ 0; ð3:7aÞ

�mD %uk ¼ %uk f ð %uk;
%
vk; xÞ in O;

@ %uk

@n

����
@O
¼ 0: ð3:7bÞ

The existence and uniqueness of f
%
vkgNk¼1 and f %ukgNk¼1 can be proved similarly as

before. Furthermore, the following inequalities hold:

up?p %ukp %uk�1p?p %u1p %u0 in %O; ð3:8aÞ

vX?X%vkX%vk�1X?X %v1 in %O: ð3:8bÞ

In the same spirit we can construct f
%
ukgNk¼1 and f%vkgNk¼1 as follows: set %v0 ¼ %v; and

define
%
uk40 and %vk40 (kX1) successively by

mD
%
uk þ

%
uk f ð

%
uk; %vk�1; xÞ ¼ 0 in O;

@
%
uk

@n

����
@O
¼ 0; ð3:9aÞ

nD%vk þ %vkgð
%
uk; %vk; xÞ ¼ 0 in O;

@ %vk

@n

����
@O
¼ 0: ð3:9bÞ

Moreover, the following inequalities hold:

uX?X
%
ukX

%
uk�1X?X

%
u1 in %O; ð3:10aÞ

vp?p%vkp%vk�1p?p %v1p%v0 in %O: ð3:10bÞ
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For every kX1; we consider the limits of ð %uk;
%
vkÞ and ð

%
uk; %vkÞ as m; n-0: To this

end, we define %U0ðxÞ ¼ aðxÞ for every xA %O: Since gðaðxÞ; 0; xÞ40 and
gðaðxÞ;M; xÞo0; we see that there exists a unique

%
V1ðxÞ40 such that

gð %U0ðxÞ;
%
V1ðxÞ; xÞ ¼ 0 in %O: Let %U1ðxÞ40 be the unique positive root of

f ðu;
%
V1ðxÞ; xÞ ¼ 0: %U1 exists since f ðM;

%
V1ðxÞ; xÞo0 and f ð0;

%
V1ðxÞ; xÞ40: Note

that gðaðxÞ;
%
V1ðxÞ; 0Þ ¼ 04gðaðxÞ; bðxÞ; xÞ: Therefore, by (H3) we see that

%
V1ðxÞobðxÞ; which in turn implies that f ð0;

%
V1ðxÞ; xÞ4f ð0; bðxÞ; xÞ40; where the

last inequality follows from Corollary 2.4. Similarly, we can define %Uk and
%
Vk

inductively by the following formulae:

gð %Uk�1;
%
Vk; xÞ ¼ 0; kX1; %U0ðxÞ ¼ aðxÞ: ð3:11aÞ

f ð %Uk;
%
Vk;xÞ ¼ 0; kX1: ð3:11bÞ

In the same spirit we can define f
%
Uk; %VkgNk¼1 by

f ð
%
Uk; %Vk�1; xÞ ¼ 0; kX1; %V0ðxÞ ¼ bðxÞ: ð3:12aÞ

gð
%
Uk; %Vk; xÞ ¼ 0; kX1: ð3:12bÞ

We claim that ð %uk;
%
vkÞ-ð %Uk;

%
VkÞ and ð

%
uk; %vkÞ-ð

%
Uk; %VkÞ uniformly in %O as m; n-0:

It is easy to see that this assertion follows from Lemma A.1 via an induction
argument.
Therefore, by (3.8) and (3.10) we see that

%
U1p?p

%
Ukp?p lim

ðm;nÞ-ð0;0Þ
up lim

ðm;nÞ-ð0;0Þ
up?p %Ukp? %U0; ð3:13aÞ

%
V1p?p

%
Vkp?p lim

ðm;nÞ-ð0;0Þ
vp lim

ðm;nÞ-ð0;0Þ
vp?p %Vkp? %V0: ð3:13bÞ

Since f
%
Uk; %Uk;

%
Vk; %VkgNk¼1 are all monotone sequences, we may assume that for

every xA %O;

%UðxÞ ¼ lim
k-N

%UkðxÞ;
%
UðxÞ ¼ lim

k-N %
UkðxÞ;

%VðxÞ ¼ lim
k-N

%VkðxÞ;
%
VðxÞ ¼ lim

k-N %
VkðxÞ:

8<
: ð3:14Þ

Letting k-þN in (3.11) and (3.12) we have

f ð %UðxÞ;
%
VðxÞ; xÞ ¼ gð %UðxÞ;

%
VðxÞ; xÞ ¼ 0; 8xA %O: ð3:15Þ

f ð
%
UðxÞ; %VðxÞ; xÞ ¼ gð

%
UðxÞ; %VðxÞ; xÞ ¼ 0; 8xA %O: ð3:16Þ
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Obviously %U;
%
U; %V;

%
V are all non-negative. By (H4) we see that %U 


%
U 
 u�;

%V 

%
V 
 v� in %O: Since both u� and v� are continuous functions, we see that

%Uk;
%
Uk-u�; %Vk;

%
Vk-v� uniformly in %O as k-N by the following well-known

calculus lemma (see, e.g., [35, Theorem 7.13]):

Theorem 3.4. Suppose that K is compact set in RN and

(a) ffkgNk¼1 is a sequence of continuous functions on K,

(b) ffkg converges pointwise to a continuous function f on K,
(c) fkðxÞXfkþ1ðxÞ for all xAK ; k ¼ 1; 2; 3y .

Then fk-f uniformly on K.

Hence by (3.8), (3.10) and the assertion after (3.12) we see that ðu; vÞ-ðu�; v�Þ
uniformly in %O as m-0 and n-0: This proves Lemma 3.3. &

Proposition 3.5. There exists some positive constant d2 such that if mpd2 and npd2;
then every coexistence state of (1.2) is linearly stable.

Proof. Let ðu; vÞ be any coexistence state of (1.2) and consider the following linear
eigenvalue problem:

mDfþ fðf þ ufuÞ þ c � ufv ¼ lf in O; ð3:17aÞ

nDcþ f � vgu þ cðg þ vgvÞ ¼ lc in O; ð3:17bÞ

@f
@n

¼ @c
@n

¼ 0 on @O: ð3:17cÞ

Since (1.2) is a monotone system, by the Krein–Rutman Theorem [25], (3.17) has a
principal eigenvalue, denoted by l1; and its corresponding eigenfunction ðf;cÞ can
be chosen such that f40 in %O and co0 in %O: It suffices to show that l1o0: To this
end, we argue by contradiction: passing to a sequence if necessary, we suppose that
ðu; vÞ is linearly unstable, i.e., l1X0 for some sequence ðmk; nkÞ-ð0; 0Þ as k-þN:
For the sake of brevity we suppress the subscript k: Let fðx0Þ ¼ max %O f: Then by

(3.17a) and the maximum principle [34] we have

max
%O

f � ½�f ðuðx0Þ; vðx0Þ; x0Þ � uðx0Þ fuðuðx0Þ; vðx0Þ; x0Þ þ l1�

p� cðx0Þ � uðx0Þ � ½�fvðuðx0Þ; vðx0Þ;x0Þ�: ð3:18Þ

Let cðx1Þ ¼ min %O c: Again, by (3.17b) and the maximum principle we have

max
%O

ð�cÞ � ½�gðuðx1Þ; vðx1Þ; x1Þ � vðx1Þgvðuðx1Þ; vðx1Þ; x1Þ þ l1�

pmax
%O

f � vðx1Þ � ½�guðuðx1Þ; vðx1Þ; x1Þ�: ð3:19Þ
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We normalize f such that max %O f ¼ 1: Passing to a subsequence if necessary we

may assume that x0-x�A %O and x1-x̂A %O as m-0 and n-0:
We claim that l1 is bounded from above if both m and n are sufficiently small. To

prove this assertion we argue by contradiction: Passing to a sequence if necessary, we

suppose that l1-þN as m; n-0: Since ðu; vÞ-ðu�; v�Þ uniformly in %O; by (3.19) we
see that max %O ð�cÞpC1=l1-0; where C140 is some constant independent of m; n:
Then by (3.18) and same argument we have max %O fpC2 �max %O ð�cÞ=l1-0 as

m; n-0: Again, C2 is some positive constant independent of m; n: However, this
contradicts our assumption max %O f ¼ 1: Therefore, l1 is bounded from above.

Since l1X0 (by assumption), it follows, passing to a subsequence if necessary, that

we may assume that l1-%lX0 as m; n-0:
By using a sequence if necessary, we may assume that one of the following three

cases holds: (i) m=n-t for some tAð0;þNÞ; (ii) m=n-þN; (iii) m=n-0: From
symmetry (by exchanging m and n), we need henceforth only consider cases (i) and
(ii).
A standard technique for handling a singular perturbation problem of this nature

is to rescale in space suitably (in fact with scaling factor
ffiffiffi
m

p
or

ffiffiffi
n

p
). The purpose is to

utilize the uniform convergence result in Lemma 3.3 to localize the analysis in a
neighborhood of x0; and hence x� in the limit m; n-0: We do this rescaling for both
ðu; vÞ and ðf;cÞ and essentially reduce the problem to a linear elliptic system with

constant coefficients in the whole of RN : Such techniques are standard for scalar
elliptic equations, for example see [26].
We first consider the situation when x�AO: For this case, set

*fðyÞ ¼ fðx0 þ
ffiffiffi
n

p
yÞ; *cðyÞ ¼ cðx0 þ

ffiffiffi
n

p
yÞ ð3:20Þ

for any y satisfying x0 þ
ffiffiffi
n

p
yAO:

Define ũðyÞ ¼ uðx0 þ
ffiffiffi
n

p
yÞ; ṽðyÞ ¼ vðx0 þ

ffiffiffi
n

p
yÞ: Then *f and *c satisfy

m
n
Dy

*fþ *f½ f ðũ; ṽ; x0 þ
ffiffiffi
n

p
yÞ þ ũfuðũ; ṽ; x0 þ

ffiffiffi
n

p
yÞ�

þ *cũfvðũ; ṽ; x0 þ
ffiffiffi
n

p
yÞ ¼ l1 *f;

and

Dy
*cþ *fṽguðũ; ṽ; x0 þ

ffiffiffi
n

p
yÞ þ *c½gðũ; ṽ; x0 þ

ffiffiffi
n

p
yÞ

þ ṽgvðũ; ṽ; x0 þ
ffiffiffi
n

p
yÞ� ¼ l1 *c;

where y satisfies x0 þ
ffiffiffi
n

p
yAO: By our assumption, 0p *fp1 with *fð0Þ ¼ fðx0Þ ¼

max %O f ¼ 1: Since l1X0 and ðu; vÞ-ðu�; v�Þ uniformly, by (3.19) we see that

max %O ð�cÞpC3oþN for some positive constant C3 which is independent of m and
n: Again, since l1X0 and ðu; vÞ-ðu�; v�Þ uniformly, by (3.18) we see that
�cðx0ÞXC440 for some constant C4 which is also independent of m and n: Hence
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*cð0Þ ¼ cðx0Þp� C4o0 and �C3p *cðxÞp0 for every xA %O:Here we repeatedly used
assumptions (H3), (H4) and Lemma 3.3.

Since %f and %c are uniformly bounded in the domain fyARN : x0 þ
ffiffiffi
n

p
yAOg; we

apply the interior Lp estimate for elliptic operators [14] in any finite ball BRð0Þ to
deduce that for every p41 and R40; jj *fjjW 2;pðBRð0ÞÞ and jj *cjjW 2;pðBRð0ÞÞ are uniformly

bounded. By the Sobolev embedding theorem, jj *fjjC1;aðBRð0ÞÞ and jj *cjjC1;aðBRð0ÞÞ are

uniformly bounded for every aAð0; 1Þ: By a standard diagonal process, passing to a

sequence if necessary, we may assume that ð *f; *cÞ-ðF;CÞ in C1ðKÞ and weakly in

W 2;pðKÞ; where K is any compact subset of RN : Furthermore, F and C satisfy

0pFp1; Fð0Þ ¼ 1; �C3pCp0; Cð0Þp� C4o0: ð3:21Þ

Moreover, since ðu; vÞ-ðu�; v�Þ uniformly in %O; we see that ðF;CÞ is a weak solution
(and thus a classical solution by elliptic regularity) of the following linear system for
the case m=n-tAð0;þNÞ:

tDyFþ a11Fþ a12C ¼ %lF; yARN ;

DyCþ a21Fþ a22C ¼ %lC; yARN ; ð3:22Þ

where

a11 a12

a21 a22


 �
¼

u�ðx�Þ fuðu�ðx�Þ; v�ðx�Þ;x�Þ u�ðx�Þ fvðu�ðx�Þ; v�ðx�Þ; x�Þ
v�ðx�Þguðu�ðx�Þ; v�ðx�Þ; x�Þ v�ðx�Þgvðu�ðx�Þ; v�ðx�Þ; x�Þ


 �
: ð3:23Þ

We claim that there exist no F; C such that (3.21), (3.22) and (3.23) hold. The key
observation is that there exists g40 such that

a11 � %l� ga21o0; gða22 � %lÞ � a12o0: ð3:24Þ

To prove the existence of g; note that since %lX0; aijo0 for i; j ¼ 1; 2; and a11a22 �
a12a2140; we have

�a12

�a22 þ %l
o
�a11 þ %l
�a21

: ð3:25Þ

If we choose g such that

�a12

�a22 þ %l
ogo

�a11 þ %l
�a21

; ð3:26Þ

we see that g40 satisfies (3.24).
With w ¼ tF� gC; we have from (3.22),

Dyw þ ða11 � %l� ga21ÞFþ ½a12 � gða22 � %lÞ�C ¼ 0 in RN : ð3:27Þ
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Set

d0 ¼ min
�ða11 � %l� ga21Þ

t
;
�½gða22 � %lÞ � a12�

g

� �
: ð3:28Þ

By (3.24), d040; and from (3.27) and (3.28),

DywXd0w in RN : ð3:29Þ

From (3.21), wX0; wc0; and w is bounded. Setting %w ¼ jjwjjLNðRnÞ þ 1; we see

that %w4w in RN and Dy %wpd0 %w in RN : Therefore, by a sub/super solution argument

in RN (see [31]), there exists w�AC2ðRNÞ such that wpw�p %w in RN and Dyw� ¼ d0w�

in RN : However, it is well-known (see, e.g., [1]) that such w� does not exist. Hence we
reach a contradiction for the case m=n-tAð0;þNÞ:
For the case m=n-N; F and C satisfy

DyF ¼ 0 in RN ; ð3:30Þ

DyCþ a21Fþ a22C ¼ %lC in RN : ð3:31Þ

Since F is bounded and Fð0Þ ¼ 1; we have F 
 1 in RN ; and by (3.31) and the
boundedness of C;

C 
 �a21

a22 � %l
in RN : ð3:32Þ

On the other hand, as max %O f ¼ 1; we may rewrite (3.18) as

� f ðuðx0Þ; vðx0Þ; x0Þ � uðx0Þ fuðuðx0Þ; vðx0Þ; x0Þ þ l1

p� *cð0Þuðx0Þ½�fvðuðx0Þ; vðx0Þ; x0Þ�: ð3:33Þ

Passing to the limit in (3.33), since x0-x� and ðu; vÞ-ðu�; v�Þ uniformly, we
deduce that

�a11 þ %lp�Cð0Þ � ð�a12Þ: ð3:34Þ

Therefore, by (3.32) and (3.34) we get

ð�a11 þ %lÞð%l� a22Þpa21a12; ð3:35Þ

which contradicts (3.25) since %lX0; a11p0 and a22p0: This contradiction implies
that x�eO:
Hence we only need to consider the remaining case x�A@O; and either

m=n-tAð0;þNÞ or m=n-þN: The idea is rather standard and it is basically
‘‘straighten the boundary at x�’’ and rescale. Here we follow [26] closely. Without

loss of generality we assume that x� is the origin, and there exists a C2 function hðx0Þ;
where x0 ¼ ðx1;y; xN�1Þ; defined for jx0jod for some positive constant d40 such
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that: hð0Þ ¼ 0; @h
@xi
ð0Þ ¼ 0 for 1pipN � 1; O-U ¼ fðx0; xNÞ : xN4hðx0Þg and @O-

U ¼ fðx0;xNÞ : xN ¼ hðx0Þg for some neighborhood U of x� ¼ ð0;y; 0Þ; See Fig. 3.
For every yARN with jyj51; define HðyÞ ¼ ðH1;y;HNÞ by

HjðyÞ ¼ yj � yN

@h

@xj

ðy0Þ; 1pjpN � 1;

HNðyÞ ¼ yN þ hðy0Þ:
ð3:36Þ

Since DHð0Þ ¼ IN	N ; H has inverse y ¼ GðxÞ; say, for jxj51: The idea of
introducing the new coordinate system is that locally near the origin, @O is yN ¼ 0;
i.e., is flat in the new coordinate. Set GðxÞ ¼ ðG1ðxÞ;y;GNðxÞÞ; and define

aijðyÞ ¼
XN

c¼1

@Gi

@xc
ðHðyÞÞ @Gj

@xc
ðHðyÞÞ; 1pi; jpN;

bjðyÞ ¼ DGjðHðyÞÞ; 1pjpN: ð3:37Þ

Define *fðyÞ ¼ fðxÞ and *cðyÞ ¼ cðxÞ: Then *f and *c satisfy

m
XN

i; j¼1
aijðyÞ

@2 *f
@yi@yj

þ
XN

j¼1
bjðyÞ

@ *f
@yj

( )
þ *f½ f ðũ; ṽ;HðyÞÞ þ ũfuðũ; ṽ;HðyÞÞ�

þ *cũf̃vðũ; ṽ;HðyÞÞ ¼ l1 *f in Bþ
2d; ð3:38Þ

n
XN

i; j¼1
aijðyÞ

@2 *c
@yi@yj

þ
XN

j¼1
bjðyÞ

@ *c
@yj

( )
þ *fṽguðũ; ṽ;HðyÞÞ

þ *c½g̃ðũ; ṽ;HðyÞÞ þ ṽgvðũ; ṽ;HðyÞÞ� ¼ l1 *c in Bþ
2d; ð3:39Þ

@ *f
@yN

¼ @ *c
@yN

¼ 0 on fyN ¼ 0g-B2d; ð3:40Þ

where B2d ¼ fyARN : jyjo2dg; Bþ
2d ¼ B2d-RN

þ ; ũðyÞ ¼ uðxÞ and ṽðyÞ ¼ vðxÞ:
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Set y0 ¼ Gðx0Þ; and write y0 as y0 ¼ ðy0
0; aÞ with y0

0ARN�1 and aX0: Since

x0-x� ¼ ð0;y; 0Þ; we may assume that y0ABd for sufficiently small m and n: There
are two possibilities for us to consider.

Case A: a=
ffiffiffi
n

p
is bounded for all sufficiently small m; n: Using a sequence if

necessary, we may assume that a=
ffiffiffi
n

p
-%aX0 as m-0 and n-0: Define

#fðzÞ ¼ *fðy0
0 þ

ffiffiffi
n

p
z0;

ffiffiffi
n

p
zNÞ ðzABþ

d=
ffiffi
n

p Þ; ð3:41Þ

#cðzÞ ¼ *cðy0
0 þ

ffiffiffi
n

p
z0;

ffiffiffi
n

p
zNÞ ðzABþ

d=
ffiffi
n

p Þ; ð3:42Þ

where z ¼ ðz0; zNÞ: Hence by (3.38), (3.39), (3.41) and (3.42) we see that #f and #c
satisfy

m
n

X
i; j

âij

@2 #f
@zi@zj

þ
ffiffiffi
n

p X
j

b̂j

@ #f
@zj

( )
þ #f½ f ðû; v̂;Hðy0

0 þ
ffiffiffi
n

p
z0;

ffiffiffi
n

p
zNÞÞ

þ û fuðû; v̂;Hðy0
0 þ

ffiffiffi
n

p
z0;

ffiffiffi
n

p
zNÞÞ�

þ #cû fvðû; v̂;Hðy0
0 þ

ffiffiffi
n

p
z0;

ffiffiffi
n

p
zNÞÞ ¼ l1 #f; ð3:43Þ

X
i; j

âij

@2 #f
@zi@zj

þ
ffiffiffi
n

p X
j

b̂j

@ #f
@zj

þ #fv̂guðû; v̂;Hðy0
0 þ

ffiffiffi
n

p
z0;

ffiffiffi
n

p
zNÞÞ

þ #c½gðû; v̂;Hðy0
0 þ

ffiffiffi
n

p
z0;

ffiffiffi
n

p
zNÞÞ þ v̂gvðû; v̂;Hðy0

0 þ
ffiffiffi
n

p
z0;

ffiffiffi
n

p
zNÞÞ� ¼ l1 #c; ð3:44Þ

where zABþ
d=

ffiffi
n

p ; âijðzÞ ¼ aijðy0
0 þ

ffiffiffi
n

p
z0;

ffiffiffi
n

p
zNÞ; b̂jðzÞ ¼ bjðy0

0 þ
ffiffiffi
n

p
z0;

ffiffiffi
n

p
zNÞ; ûðzÞ ¼

ũðyÞ; v̂ðzÞ ¼ ṽðyÞ; and #f and #c also satisfy

@ #f
@zN

¼ @ #c
@zN

¼ 0 on fzN ¼ 0g-Bd=
ffiffi
n

p : ð3:45Þ

Choose a sequence Rk such that limk-þN Rk ¼ þN: For every fixed k;

Bþ
4Rk

CBþ
d=

ffiffi
n

p provided that n51: Since âij and b̂j are uniformly bounded in m and n

with the C2ðBd=
ffiffi
n

p Þ norm, we can apply elliptic Lp-estimates up to the boundary [14]

to (3.43)–(3.45) in the domain Bþ
2Rk

and find that #f and #c are uniformly bounded in

W 2;pðBþ
2Rk

Þ for every p41: By the Sobolev embedding theorem we see that #f and #c

are uniformly bounded in C1;gðBþ
Rk
Þ for every gAð0; 1Þ: By a standard diagonal

process and compactness argument, passing to a sequence if necessary, #f-F and
#c-C uniformly on any compact subset of RN

þ ; where F; CAW 2;pðRN
þÞ-C1ðRN

þÞ
with p41: Since m; n-0 and âijðzÞ-dij we see that F and C satisfy (for the
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case m=n-tAð0;þNÞ)

tDzFþ a11Fþ a12C ¼ %lF; zARN
þ ; ð3:46Þ

DzCþ a21Fþ a22C ¼ %lF; zARN
þ ; ð3:47Þ

@F
@zN

¼ @C
@zN

¼ 0 fzN ¼ 0g; ð3:48Þ

where ðaijÞ1pi; jp2 is given in (3.23).

By reflection with respect to the hyperplane zN ¼ 0; we can extend F and C to the

whole space RN and F;C still satisfy (3.22). Note that FX0XC and F;C are

bounded in RN ; moreover, Fð0;y; 0; %aÞ ¼ limðm;nÞ-ð0;0Þfðx0Þ ¼ 1: As shown in the

case x�AO we see that such F and C do not exist. This gives the contradiction for
case A with m=n-tAð0;þNÞ:
For case A with m=n-þN; (3.46) becomes DzF ¼ 0 in RN

þ : Similarly, by

reflection with respect to zN ¼ 0; we see that F and C satisfy (3.30) and (3.31). The
rest of the proof of this case is the same as that of the case m=n-þN and x�AO:
This completes the proof of case A.

Case B: a=
ffiffiffi
n

p
is unbounded for m; n51: By passing to a subsequence if necessary,

we may assume that a=
ffiffiffi
n

p
-þN as m; n-0: For this case, set

#fðzÞ ¼ *fðy0 þ
ffiffiffi
n

p
zÞ; #cðzÞ ¼ *cðy0 þ

ffiffiffi
n

p
zÞ: ð3:49Þ

Then #f and #c satisfy (3.43) and (3.44), respectively, with âijðzÞ ¼ aijðy0 þ
ffiffiffi
n

p
zÞ;

b̂jðzÞ ¼ bjðy0 þ
ffiffiffi
n

p
zÞ; Hðy0

0 þ
ffiffiffi
n

p
z0;

ffiffiffi
n

p
zNÞ being replaced by Hðy0 þ nzÞ; ûðzÞ and

v̂ðzÞ being defined similarly as before, and zABd=
ffiffi
n

p -fzN4� affiffi
n

p g: For any g40; we

have a=
ffiffiffi
n

p
4g if m; n51 and thus Bgð0ÞCBd=

ffiffi
n

p ð0Þ-fzN4� a=
ffiffiffi
n

p
g for m; n51:

Repeating the compactness argument and diagonal process we see that,

passing to a sequence if necessary, #f-F and #c-F uniformly on any

compact subset of RN ; where F and C again satisfy (3.22). Similarly we
can show as before that such F and C do not exist, and the proof is
exactly the same as that of the case x�AO: In conclusion, for case B and
x�A@O we also reach a contradiction. This completes the proof of
Proposition 3.5. &

Proof of Theorem 1.1. By Proposition 3.5, if m; n51; any coexistence state of (1.2) is
linearly stable. By Corollary 3.2, (1.2) has at least one coexistence state. Since (1.2) is
a monotone system, it follows that (see, e.g. [18,20]) (1.2) has a unique coexistence
state and it is globally asymptotically stable. Moreover, by Lemma 3.3, this unique
coexistence state converges to ðu�; v�Þ uniformly as m-0 and n-0: This completes
the proof of Theorem 1.1. &
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4. Global stability: the boundary case

We here assume conditions (H1)–(H3), (H6) and (H7), and prove Theorem 1.2. By

Lemma 2.5, we may assume without loss of generality that for every xA %O; the graph
of v ¼ vf ðu; xÞ lies below that of v ¼ vgðu; xÞ: In the proof, it is first noted that ð0; ṽÞ is
asymptotically stable (by an argument similar to that used in Lemma 3.1). Next it is
shown that there is no coexistence state. The result follows immediately from the
monotonicity.

Proof of Theorem 1.2. For this case, by a proof similar to that of Lemma 3.1 we can
show that ð0; ṽÞ is stable for m; n51: By [18], it suffices to show that (1.2) has no
coexistence states when m and n are sufficiently small. To this end, we argue by

contradiction: if not, suppose that there exist fmk; nkgNk¼1 with limk-þNmk ¼
limk-þNnk ¼ 0 such that (1.2) with ðm; nÞ ¼ ðmk; nkÞ has a positive steady-state
ðuk; vkÞ for every kX1; i.e.,

mkDuk þ uk f ðuk; vk; xÞ ¼ 0 in O;

nkDvk þ vkgðuk; vk; xÞ ¼ 0 in O;

@uk

@n
¼ @vk

@n
¼ 0 on @O: ð4:1Þ

It may help the reader if we note that we shall construct a sequence ðuk; j; vk; jÞ;
with the k suffix indicating the diffusion coefficients, and the j suffix giving an
iteration leading to an equilibrium.
Consider the following scalar equation:

mkDu þ uf ðu; 0; xÞ ¼ 0 in O;
@u

@n
¼ 0 on @O: ð4:2Þ

Clearly uk is a subsolution of (4.2) and M is a supersolution of (4.2), ukpM and
fuðu; 0; xÞo0: By a sub/super solution argument, we see that (4.2) has a unique

positive solution, denoted by uk;1ðxÞ; and ukpuk;1; uk;1-aðxÞ uniformly in %O as

m-0: Since gup0 and ukpuk;1; we see that vk satisfies

�nkDvkXvkgðuk;1; vk; xÞ in O: ð4:3Þ

Since uk;1-a uniformly, we have gðuk;1; 0; xÞ-gðaðxÞ; 0;xÞ uniformly in %O: By
Corollary 2.6, gðaðxÞ; 0; xÞ40 in %O: Therefore, every sufficiently small positive
constant is a subsolution of the scalar equation

nkDv þ vgðuk;1; v; xÞ ¼ 0 in O;
@v

@n
¼ 0 on @O: ð4:4Þ
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From (4.3) we see that vk is a super-solution of (4.4). Therefore, since gvo0; by a
sub/super solution argument, (4.4) has a unique positive solution, denoted by vk;1;

and vkXvk;1 in %O:
Inductively we can construct fuk; j; vk; jgNj¼1 for every kX1 as follows: vk; j is the

unique positive solution of

nkDvk; j þ vk; jgðuk; j; vk; j; xÞ ¼ 0 in O;
@vk; j

@n

����
@O
¼ 0; ð4:5Þ

and uk; jþ1 is the unique positive solution of

mkDuk; jþ1 þ uk; jþ1 f ðuk; jþ1; vk; j; xÞ ¼ 0 in O;
@uk; jþ1
@n

����
@O
¼ 0: ð4:6Þ

Claim. For every k; jX1; both uk; j and vk; j exist and the following inequalities hold:

uk;1X?Xuk; jXuk; jþ1X?Xuk40 in %O; ð4:7Þ

vkX?Xvk; jþ1Xvk; jX?Xvk;140 in %O: ð4:8Þ

To establish our assertion for every fixed kX1; we argue by induction on jX1:

note that uk;1 and vk;1 exist, uk;1Xuk and vkXvk;1 in %O: Suppose that uk; j and vk; j

exist, uk; jXuk and vkXvk; j in %O: By vkXvk; j we see that uk satisfies

�mkDukpuk f ðuk; vk; j; xÞ in O;
@uk

@n

����
@O
¼ 0: ð4:9Þ

That is, uk is a subsolution of

mkDu þ uf ðu; vk; j ; xÞ ¼ 0 in O;
@u

@n

����
@O
¼ 0: ð4:10Þ

Define vk;0 
 0 for every kX1: Since vk; jXvk; j�1 and fvo0; uk; j satisfies

�mkDuk; jXuk; j f ðuk; j; vk; j ; xÞ in O;
@uk; j

@n

����
@O
¼ 0: ð4:11Þ

Hence uk; j is a super-solution of (4.10). Since uk; jXuk; by a sub/super solution

argument we see that (4.10) has a unique solution uk; jþ1 and uk; jXuk; jþ1Xuk: A

similar argument shows that vk; jþ1 exists and satisfies vkXvk; jþ1Xvk; j in %O: This
proves our assertion.

Since limk-þNuk;1 ¼ aðxÞ uniformly in %O; for every jX1; by (4.5), (4.6) and

Lemma A.1 we obtain

lim
k-N

uk; j ¼ Uj; lim
k-N

Vk; j ¼ Vj ð4:12Þ
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uniformly in %O; moreover, Uj and Vj satisfy

VjðxÞ ¼ maxfVgðUjðxÞ; xÞ; 0g; ð4:13Þ

Ujþ1ðxÞ ¼ maxfuf ðVjðxÞ; xÞ; 0g ð4:14Þ

for every xA %O; where U1ðxÞ ¼ aðxÞ:
We deduce from (4.7), (4.8), and (4.12), by letting k-þN; that

U1X?XUjXUjþ1X?X lim
k-þN

ukX0; ð4:15Þ

lim
k-þN

vkX?XVjþ1XVjX?XV1X0; ð4:16Þ

for every xA %O: By Corollary 2.6 we have gðaðxÞ; vgðaðxÞ; xÞ; xÞ ¼ 0ogðaðxÞ; 0; xÞ:
Hence vgðaðxÞ; xÞ40; which implies that vgðUjðxÞ; xÞ40 for every jX1 and xA %O:
Therefore, we can write (4.13) as

VjðxÞ ¼ VgðUjðxÞ; xÞ: ð4:17Þ

Now set

UðxÞ :¼ lim
j-N

UjðxÞ; VðxÞ :¼ lim
j-N

VjðxÞ: ð4:18Þ

It then follows from (4.14), (4.17), and (4.18) that

VðxÞ ¼ vgðUðxÞ; xÞ; ð4:19Þ

UðxÞ ¼ maxfuf ðVðxÞ; xÞ; 0g: ð4:20Þ

In particular, VðxÞ40 for every xA %O:

Claim. UðxÞ 
 0 in %O:

To establish this assertion, we argue by contradiction: suppose that there exists x0

such that Uðx0Þ40: By (4.20) we see that

Uðx0Þ ¼ uf ðVðx0Þ; 0Þ40; ð4:21Þ

which along with Vðx0Þ ¼ vgðUðx0Þ; 0Þ40 implies that

f ðUðx0Þ;Vðx0Þ; 0Þ ¼ gðUðx0Þ;Vðx0Þ; 0Þ ¼ 0; ð4:22Þ

which contradicts (H6). This proves the assertion U 
 0 in %O; which also implies that
VðxÞ ¼ vgð0; xÞ ¼ bðxÞ for every xA %O:
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Note that both fUjgNj¼1 and fVjgNj¼1 are monotone sequences of functions and both
limits U and V are continuous in %O: Hence by Theorem 3.4, Uj-0 and Vj-bðxÞ
uniformly in %O: Therefore, uf ðVjðxÞ;xÞ-Uf ðbðxÞ; xÞ uniformly in %O: By Corollary

2.6, uf ðbðxÞ; xÞo0 in %O: Hence for sufficiently large j; say, jXj0; we have

Uf ðVjðxÞ; xÞp1
2
uf ðbðxÞ; xÞo0 in %O: Therefore by (4.14), UjðxÞ 
 0 for jXj0 þ 1:

However, this contradicts the following:

Claim. For every jX1; Ujc0 in %O:

To prove this assertion we argue by contradiction: if not, suppose that Uj1 
 0 in %O
for some j1X1: Therefore limk-Nuk; j1 ¼ 0 uniformly in %O: Since uk; j1Xuk40 in %O;
we see that uk-0 uniformly in %O: By the equation for vk; vk-b uniformly in %O: This
implies that f ðuk; vk; xÞ-f ð0; bðxÞ; xÞ uniformly in %O: By Corollary 2.6, we have

f ð0;bðxÞ; xÞo0 in %O: Hence there exists k040 large such that for every xA %O;
f ðuk0ðxÞ; vk0ðxÞ; xÞo0: ThereforeZ

O
uk0ðxÞ f ðuk0ðxÞ; vk0ðxÞ; xÞ dxo0: ð4:23Þ

However, by integrating the equation for uk0 we haveZ
O

uk0ðxÞ f ðuk0ðxÞ; vk0ðxÞ; xÞ dx ¼ 0; ð4:24Þ

which contradicts (4.23). This completes the proof of Theorem 1.2. &

5. Future directions

The extension of the global convergence results for small m; n proved in this paper
for competing species to a wide class of reaction terms and to k equations with k42;
would provide a valuable tool in the theory of reaction–diffusion systems. There
follow some tentative remarks on the possibilities and difficulties.
First we might consider a k-species cooperative system with k42: This of course

yields monotonicity, and in view of the central role that this plays in the proof, there
are fairly good grounds for suggesting that a result along the line established here
would hold. For a k-species competition system, monotonicity is lost and the
situation is unclear.
Probably the obvious and most interesting direction in which to move would be to

extend the results for a pair of homogeneous predator–prey equations to the
inhomogeneous case. We first remark that in the introduction we refer to examples
of [29,36], but in standard competing species and predator–prey problems
dissipativity holds, so the examples are not directly relevant, although they may
possibly suggest difficulties in the way of extensions. It would be interesting and
challenging to discover whether there could be, for example a periodic orbit. We note
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that the iteration technique in this paper can probably be modified to yield the
existence of interior equilibria and their uniform convergence to the reaction
equilibrium.
What then are the difficulties? The loss of monotonicity appears at first sight to be

crucial. The first main difficulties are the uniqueness of the interior equilibrium, and
the asymptotic stability of the equilibrium, due to the uncertain nature of the
spectrum of the corresponding linearized eigenvalue problem, for example the
difficulty of ruling out a Hopf bifurcation. Even if these could be resolved, there
remains the possibly greater hurdle of proving that the asymptotic stability is global.
For 2-species competition models this is an automatic consequence of monotonicity,
but of course this is not the case for a predator–prey model.
We may finally remark that on the other hand, although the monotonicity is

technically an extremely powerful tool in our results, it is not at all clear that it
provides a reliable guide to the correct direction to look for extensions of these
results. There clearly remain a range of central open problems in this area.
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Appendix

Here we establish a convergence result which is used extensively in the proofs of
Theorems 1.1 and 1.2. Some special cases of Lemma A.1 are well-known, but
because we cannot locate the proof in the full generality stated, and needed in this
paper, for the sake of completeness we include it here.

Lemma A.1. Suppose that f satisfies the assumptions (H1)–(H3) and VmðxÞ-V0ðxÞ
uniformly in %O as m-0þ : Let umðxÞ be the unique positive solution of

mDu þ uf ðu;VmðxÞ; xÞ ¼ 0;
@u

@n
¼ 0 on @O: ðA:1Þ

Then as m-0;

umðxÞ-u�ðxÞ :
 maxfuf ðV0ðxÞ; xÞ; 0g ðA:2Þ

uniformly in O:
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Proof. We consider two different cases.

Case 1: uf ðV0ðxÞ; xÞp0 for every xA %O; i.e., f ð0;V0ðxÞ; xÞp0 for every xA %O: We

show that um-0 uniformly in O as m-0: Let umðxmÞ ¼ max %O um: By the maximum

principle, we have f ðuðxmÞ;VmðxmÞ; xmÞX0: Hence

0p ½ f ðuðxmÞ;VmðxmÞ; xmÞ � f ð0;VmðxmÞ; xmÞ�

þ ½ f ð0;VmðxmÞ; xmÞ � f ð0;V0ðxmÞ; xmÞ�

¼ fu � uðxmÞ þ fv � ½VmðxmÞ � V0ðxmÞ�: ðA:3Þ

Therefore, by (H3) we have uðxmÞpCjjVm � V0jjN; where C is some positive

constant independent of m: This implies that um-0 uniformly.

Case 2: uf ðV0ðxÞ; xÞ40 for some xA %O; i.e., f ð0;V0ðxÞ; xÞ is positive somewhere in
%O: For this case, we first establish the following

Claim. Given any e40; there exists m1 ¼ m1ðeÞ40 such that if mom1ðeÞ; we have

umðxÞpu�ðxÞ þ 2e ðA:4Þ

for every xA %O:

To prove our assertion, we first seek some function a1ðxÞAC2ð %OÞ such that @a1
@n

¼ 0

on @O; and jja1 � u�jj
N
pe=2: to this end, it suffices to consider the equation

�dDa1 þ a1 ¼ u� in O;
@a1
@n

¼ 0 on @O: ðA:5Þ

It is not difficult to show (e.g., by using Green’s function for the operator �dDþ I

with zero Neumann boundary condition) that jja1 � u�jj
N
-0 as d-0:

Next we show that given e40; a1 þ e is a super-solution of (A.1) provided that m is
sufficiently small. To this end, it suffices to see that

mDða1 þ eÞ þ ða1 þ eÞ f ða1 þ e;Vm; xÞ

¼ mDa1 þ ða1 þ eÞ½ f ða1 þ e;Vm; xÞ � f ða1 þ e;V0; xÞ þ f ða1 þ e;V0; xÞ

� f ðuf ðV0; xÞ;V0; xÞ�

pmjjDa1jjN þ ða1 þ eÞfjj fvjjNjjVm � V0jjN þminð�fuÞ � ½�a1 � eþ uf ðV0; xÞ�g

pmjjDa1jjN þ ða1 þ eÞ½jj fvjjNjjVm � V0jjN � 1
2
minð�fuÞe�p0;
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where the last inequality holds provided that m is sufficiently small. Therefore, by a
sub/super solution argument and the uniqueness of solutions to (A.1), we have
umpa1 þ epu� þ 2e for sufficiently small m:
To show that um-u� uniformly in %O; we argue by contradiction: suppose not, then

there exist some e040; some sequence of constants ðmkÞ with limk-Nmk ¼ 0; and

some sequence of points xkA %O such that

jumk
ðxkÞ � u�ðxkÞjXe040: ðA:6Þ

Passing to a subsequence if necessary, we may assume that xk-x�A %O and
umk

ðxkÞ-aX0: Setting m ¼ mk and x ¼ xk in (A.4) and letting k-N we have

apu�ðx�Þ þ 2e; i.e., apu�ðx�Þ; since e is arbitrary. Passing to the limit in (A.6) we
find that ja � u�ðx�ÞjXe0: Therefore,

u�ðx�ÞXa þ e0: ðA:7Þ

We claim that a40: To see this, note that since aX0 and xk-x�; by (A.7) we may

assume that u�ðxkÞXe0=2 for suitably large k: In the subdomain Oe0=2 :
 fxA %O :

u�ðxÞXe0=2g; the following uniform lower bound of um holds: there exist some

positive constants m2 and d such that if mom2; umðxÞXd for every xAOe0=2: Since

xkAOe0=2 for sufficiently large k; we have umk
ðxkÞXd; and by letting k-N we get

aXd40:
We now consider the subcase x�AO: Set x ¼ xk þ

ffiffiffiffiffi
mk

p
y and ukðyÞ ¼ umk

ðxk þffiffiffiffiffi
mk

p
yÞ: Then uk satisfies

Dyuk þ uk f ðuk;Vmk
ðxk þ

ffiffiffiffiffi
mk

p
yÞ; xk þ

ffiffiffiffiffi
mk

p
yÞ ¼ 0 in Bdk

ðx�Þ; ðA:8Þ

where Bdk
ðx�Þ is the ball in RN centered at x� with radius dk ¼ 1

2 distðx�; @OÞm�1=2k ;

and distðx�; @OÞ denotes the distance from x� to @O: Since uk is uniformly bounded,
as in the proof of Proposition 3.5, by standard elliptic regularity, the Sobolev
embedding theorem and a diagonal process, passing to a subsequence if necessary,

we may assume that ukðyÞ-UðyÞ in C1ðKÞ and weakly in W 2;PðKÞ for any compact
subset K of RN : Furthermore, UX0 is a weak solution (and thus a classical solution
by elliptic regularity) of

DU þ Uf ðU ;V0ðx�Þ; x�Þ ¼ 0 in RN ; ðA:9Þ

and Uð0Þ ¼ limk-Numk
ðxkÞ ¼ a40: By the maximum principle, U40 in RN :

Since u�ðx�Þ40; i.e., uf ðV0ðx�Þ; x�Þ40; we see that f ð0;V0ðx�Þ; x�Þ40: Hence

by the assumption (H3), the only positive solution of (A.9) is the constant

solution, i.e., UðyÞ 
 u�ðx�Þ in RN : In particular, a ¼ Uð0Þ ¼ u�ðx�Þ; which
contradicts (A.7).
Next we turn to the case x�A@O: The proof here is essentially the same as

that of Proposition 3.5, i.e., ‘‘straightening the boundary at x�’’, and we shall
follow closely the proofs starting from (3.35). Define y ¼ GðxÞ and x ¼ HðyÞ as
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before. Set ũkðyÞ ¼ umk
ðxÞ: Then ũk satisfies

mk

X
i; j

aijðyÞ
@2ũk

@yi@yj

þ
X

j

bj

@ũk

@yj

( )
þ ũk f ðũk;VkðHðyÞÞ;HðyÞÞ ¼ 0 ðA:10Þ

in Bþ
2d; d40 is some small constant, and

@ũk

@yN

¼ 0 on fyN ¼ 0g-B2d: ðA:11Þ

Set yk ¼ GðxkÞ and write yk ¼ ðy0
k; y

ðNÞ
k Þ; where y0

kARN�1 and y
ðNÞ
k X0: Without

loss of generality we may assume that x� is the origin. Since xk-x� ¼ ð0;y; 0Þ; we
may assume that ykABd for kb1: There are two possibilities for us to consider: (a)

fy
ðNÞ
k =

ffiffiffiffiffi
mk

p gNk¼1 is bounded; (b) fy
ðNÞ
k =

ffiffiffiffiffi
mk

p gNk¼1 is unbounded.
If fy

ðNÞ
k =

ffiffiffiffiffi
mk

p gNk¼1 is bounded, using a subsequence if necessary we may assume

that y
ðNÞ
k =

ffiffiffiffiffi
mk

p
-gX0 as k-N: Define

ûkðzÞ ¼ ũkðy0
k þ

ffiffiffi
m

p
kz0;

ffiffiffi
m

p
kzNÞ ðA:12Þ

for zABþ
d=

ffiffi
m

p ; where z ¼ ðz0; zNÞ: Therefore, ûkðzÞ satisfies

X
i; j

âijðyÞ
@2ûk

@yi@yj

þ ffiffiffiffiffi
mk

p X
j

b̂j

@ûk

@yj

þ ûk f ðûk;VkðHðy0
k þ

ffiffiffiffiffi
mk

p
z0;

ffiffiffiffiffi
mk

p
zNÞÞ;Hðy0

k þ
ffiffiffiffiffi
mk

p
z0;

ffiffiffiffiffi
mk

p
zNÞÞ ¼ 0; ðA:13Þ

where zABþ
d=

ffiffiffiffi
mk

p ; âijðzÞ ¼ aijðy0
k þ

ffiffiffiffiffi
mk

p
z0;

ffiffiffiffiffi
mk

p
zNÞ; b̂jðzÞ ¼ bjðy0

k þ
ffiffiffiffiffi
mk

p
z0;

ffiffiffiffiffi
mk

p
zNÞ; and

@ûk

@zN

¼ 0 on fzN ¼ 0g-Bd=
ffiffiffiffi
mk

p ð0Þ: ðA:14Þ

As in the proof of Proposition 3.5, by standard elliptic regularity, the Sobolev
embedding theorem and compactness argument, passing to a subsequence if

necessary, we may assume that ûkðzÞ-ÛðzÞ uniformly on any compact subset of RN ;
and UðzÞ satisfies

DU þ Uf ðU ;V0ðx�Þ; x�Þ ¼ 0 in RN
þ ;

@Û

@zN

¼ 0 on fzN ¼ 0g: ðA:15Þ

It is easy to see that UX0; U is bounded in RN ; and Uð0;y; 0; gÞ ¼
limk-N umk

ðxkÞ ¼ a40: By reflection with respect to the hyperplane zN ¼ 0; we

can extend Û to the whole space RN such that Û satisfies (A.9). Similar to the case

x�AO we see that ÛðzÞ 
 u�ðx�Þ in RN : This again implies a ¼ u�ðx�Þ; which is a
contradiction to (A.7).
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For the case x�A@O and fy
ðNÞ
k =

ffiffiffiffiffi
mk

p gNk¼1 unbounded, passing to a subsequence if

necessary we may assume that y
ðNÞ
k =

ffiffiffiffiffi
mk

p
-N as k-N: For this case, setting

ûkðzÞ ¼ umk
ðyk þ m1=2zÞ; and repeating the proof of Case B in Proposition 3.5, we can

also reduce the proof to that of the case when x�AO to reach the contradiction. This
completes the proof of Lemma A.1. &
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