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Using the multilinear estimates, which were derived for proving
well-posedness of the generalized Korteweg–de Vries (gKdV)
equation, it is shown that if the initial data belongs to Gevrey
space Gσ , σ � 1, in the space variable then the solution to the
corresponding Cauchy problem for gKdV belongs also to Gσ in the
space variable. Moreover, the solution is not necessarily Gσ in the
time variable. However, it belongs to G3σ near 0. When σ = 1
these are analytic regularity results for gKdV.
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1. Introduction and the main result

For k = 1,2,3, . . . we consider the Cauchy problem for the generalized KdV equation{
∂t u + ∂3

x u + uk∂xu = 0, x ∈ T, t ∈ R,

u(x,0) = ϕ(x),
(1.1)

and we prove the following regularity result in Gevrey spaces.
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Theorem 1.1. Let σ � 1. If the initial data ϕ(x) is in the Gevrey space Gσ (T) then the Cauchy problem for gKdV
(1.1) has a unique solution u(x, t), which as a function of x belongs to Gσ (T) for all t near zero. Furthermore,
u(x, t) as a function of t fails to be in Gr,1 � r < 3σ , near 0. However, it belongs to G3σ near zero for every x
on the circle.

Since Gevrey functions on the circle belong to every Sobolev space, existence and uniqueness
of solution to the Cauchy problem (1.1) follow from the well-posedness in Sobolev spaces results
available in the literature. When k = 1 we have the KdV equation, which has been shown by Kenig,
Ponce and Vega [28] to be locally well-posed in Hs(T) for all s � −1/2 and for complex-valued
functions, using a contraction mapping argument. Global well-posedness for real-valued functions
and for the same range of Sobolev indices was established by Colliander, Keel, Staffilani, Takaoka and
Tao [9]. Well-posedness for s � 0 was established earlier by Bourgain [5]. Furthermore, well-posedness
for KdV in Hs(T), s � −1, in a weaker sense has been proved by Kappeler and Topalov [21], using
inverse scattering techniques. When k = 2 then we have the mKdV equation, which is locally [28]
and globally [9] well-posed in Hs(T) for s � 1/2. Global well-posedness in L2(T) was shown in [22].
When k > 2 local well-posedness for gKdV was established in [5]. When the non-linearity ∂x[uk+1]
is replaced by the more general form ∂x[F (u)], where F is a polynomial of degree k + 1, then local
well-posedness for the corresponding KdV type equation in the periodic case has been established
in [10].

On the real line the gKdV equation is locally well-posed in Hs(R) for all s � 1
2 − 2

k if k � 4 [26].
For more results about the well-posedness of gKdV in the periodic and/or non-periodic case and for
various values of k we refer the reader to Birnir, Kenig, Ponce, Svanstedt and Vega [4], Kenig, Ponce
and Vega [26–29], Bona and Smith [3], Bourgain [6] and [7], Ginibre and Tsutsumi [14], Kato [23], Saut
and Temam [30], Sjöberg [31], Tao [32], Christ, Colliander and Tao [8], and the references therein.

Analytic and Gevrey regularity properties for KdV-type equations have been studied extensively
by many authors in the literature. For example, in [34], Trubowitz showed that the solution to the
periodic initial value problem for the KdV with analytic initial data is analytic in the space variable
(see also [16] for another proof based on bilinear estimates). Kato and Masuda [24] showed that if
the initial state of the KdV equation has an analytic continuation that is analytic and L2 in a strip
containing the real axis, then the solution has the same property for all time, though the width of
the strip might decrease with time. Results of this type have been also obtained by Hayashi in [19]
and [20]. For Gevrey and analytic regularizing effects for the KdV and generalized KdV equations we
refer the reader to De Bouard, Hayashi and Kato [11], Kato and Ogawa [25], Tarama [33] and the
references therein.

Well-posedness for the non-periodic gKdV equation in spaces of analytic functions has been proved
by Grujić and Kalisch [17]. Using the analytic spaces Gσ ,s introduced by Foias and Temam [13] and
which are defined by the norm

‖ϕ‖2
Gσ ,s =

∫
R

(
1 + |ξ |)2s

e2σ (1+|ξ |)∣∣ϕ̂(ξ)
∣∣2

dξ < ∞,

they showed that for given initial data that are analytic in a symmetric strip {z = x + iy: |y| < σ }
in the complex plane of width 2σ there exists a time T such that the corresponding gKdV solution
is analytic in the same strip during the time period [0, T ]. In other words, the uniform radius of
spatial analyticity does not shrink as time progresses. Further results on the uniform radius of spatial
analyticity have been established by Bona, Grujić and Kalisch [2].

Unlike the result in [17] our proof in the periodic case yields that the uniform radius of spatial an-
alyticity may shrink as time progresses. This can be seen by looking at the estimates (2.11) and (2.17).
When σ = 1 (the analytic case) the width of the strip of analyticity for the initial data is twice the
size of the width of the strip of analyticity of the solution at later times. Of course, this can be im-
proved by choosing the constant C0 in the norms (2.12) and (2.14) in an optimal way. Replacing C0 in
these definitions by 2C0 − ε, where ε > 0 is arbitrarily small, results to an arbitrarily small shrinking
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of the uniform radius of spatial analyticity. However, it is not clear if this method can give a result
like the one proved in [17] for the non-periodic case.

This paper is structured as follows. In Section 2 we prove that the solution to the Cauchy problem
(1.1) is Gevrey in x provided the initial data is also Gevrey. To accomplish this, we differentiate our
gKdV initial value problem repeatedly and produce an infinite system of KdV type equations for u j =
∂ i

xu with the non-linearity being a (k + 1)-multilinear function of u� , � � j. Then using multilinear
estimates, we prove that this system has a unique solution in space whose norm encodes the Gevrey
estimates. In Section 3 we present a periodic Gevrey initial data, of order σ > 1, such that the solution
to the Cauchy problem (1.1) is not in Gr , in time, if 1 � r < 3σ . This is done by using a Gevrey
function, constructed by Džanašija in [12], which is a solution to the following Carleman problem:
Given a sequence of complex numbers, {mn}, satisfying |mn| � Bn+1nnσ , n = 0,1, . . . , where B is a positive
constant and σ > 1, is there a Gevrey function f (x) of order σ , defined on [−1,1], such that f (n)(0) = mn,
n = 0,1, . . .? Finally, in Section 4 we prove G3σ regularity in time by using the Gσ -estimates in the
space variable and some tools from the method of majorant series (see for example [1]).

2. Gevrey regularity in the space variable

We begin by differentiating the initial value problem (1.1) j times with respect to x to obtain the
following system {

∂t
(
∂

j
x u

) + ∂3
x

(
∂

j
x u

) + ∂
j

x
(
uk∂xu

) = 0,

∂
j

x u(x,0) = ∂
j

xϕ(x), j ∈ N0
.= {0,1,2, . . .}.

(2.1)

Letting

B j(u)
.= ∂

j
x
(
uk∂xu

)
= 1

k + 1
∂x

[
∂

j
x
(
uk+1)]

= 1

k + 1
∂x

j∑
m1=0

m1∑
m2=0

· · ·
mk−1∑
mk=0

(
j

m1

)(
m1

m2

)
· · ·

(
mk−1

mk

)
· ∂ j−m1

x u∂
m1−m2
x u · · · ∂mk−1−mk

x u∂
mk
x u, (2.2)

and u j = ∂
j

x u and ϕ j = ∂
j

x ϕ the Cauchy problem (2.1) reads as{
∂t u j + ∂3

x u j + B j(u0, u1, . . . , u j) = 0,

u j(x,0) = ϕ j(x), j ∈ N0,
(2.3)

where B j is the following (k + 1)-multilinear expression

B j(u)
.= B j(u0, u1, . . . , u j)

= 1

k + 1
∂x

j∑
m1=0

m1∑
m2=0

· · ·
mk−1∑
mk=0

(
j

m1

)(
m1

m2

)
· · ·

(
mk−1

mk

)
· u j−m1 um1−m2 · · · umk−1−mk umk . (2.4)

Taking Fourier transform with respect to x in (2.3), solving the resulting differential equation in t and
using inverse Fourier transform reduces the Cauchy problem (2.3) to the following system of integral
equations
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u j(x, t) = W (t)ϕ j(x) −
t∫

0

W (t − τ )B j(u0, u1, . . . , u j)(x, τ )dτ , (2.5)

where W (t) = e−t∂3
x . Next we localize in the time variable by using a cut-off function ψ(t) ∈

C∞
0 (−1,1) with 0 � ψ � 1 and such that ψ(t) ≡ 1 for |t| < 1/2. Multiplying (2.5) with ψ , we have

ψ(t)u j(x, t) = ψ(t)W (t)ϕ j(x) − ψ(t)

t∫
0

W (t − τ )B j(u0, u1, . . . , u j)(x, τ )dτ

.= T j(u0, u1, . . . , u j). (2.6)

The idea of the proof is to find a fixed point of the mappings T j in an appropriate space. Thinking
that this space contains function that are defined on T × R and using Fourier transform we write T j
as

T j(u0, u1, . . . , u j) = ψ(t)
∑
n∈Z

ei(nx+n3t)ϕ̂ j(n)

+ iψ(t)
∑
n∈Z

ei(nx+n3t)

∞∫
−∞

ei(λ−n3)t − 1

λ − n3
B̂ j(u)(n, λ)dλ. (2.7)

Next, we recall the spaces needed here. For s � 0 the Bourgain space X s is defined by

Xs = {
u ∈ L2(T × R): |||u|||Xs < ∞}

,

where

|||u|||Xs =
(∑

n∈Z

|n|2s
∫
R

(
1 + ∣∣λ − n3

∣∣)∣∣̂u(n, λ)
∣∣2

dλ

)1/2

. (2.8)

These spaces were used by Bourgain [5,6], Kenig, Ponce and Vega [26] and many other authors. The
X s norm barely fails to control the L∞

t Hs
x norm. To correct this problem Colliander, Keel, Staffilani,

Takaoka and Tao [9,10] introduced the spaces

Y s .= {
u ∈ L2(T × R): |||u|||Y s < ∞}

,

where

|||u|||Y s
.= |||u|||Xs +

(∑
n∈Z

|n|2s
(∫

R

∣∣̂u(n, λ)
∣∣dλ

)2)1/2

. (2.9)

Our motivation for using the spaces Y s is the following simple but useful result.

Lemma 2.1. If u ∈ Y s then

∥∥u(·, t)
∥∥

Hs(T)
� 1

2π
|||u|||Y s , for all t. (2.10)
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Proof. We have

∥∥u(·, t)
∥∥

Hs =
(∑

n∈Z

|n|2s
∣∣̂ux(n, t)

∣∣2
)1/2

=
(∑

n∈Z

|n|2s

∣∣∣∣ 1

2π

∫
R

eiλt û(n, λ)dλ

∣∣∣∣2)1/2

� 1

2π
|||u|||Y s . �

Also, we shall need the following lemma, whose proof can be found in [16].

Lemma 2.2. There is c = c(ψ) > 0 such that

|||ψu|||Y s � c|||u|||Y s ,

for all u ∈ Y s.

Idea for proving Gevrey regularity in x. In terms of the Hs-norm the condition that ϕ belongs to the
Gevrey space Gσ (T), σ � 1, reads as follows

‖ϕ j‖Hs(T) � M0

(
1

2C0

) j

( j!)σ , j ∈ N0, (2.11)

where M0 and C0 are some positive constants and ϕ j = ∂
j

x ϕ . Therefore if we let {ϕ} = (ϕ0,ϕ1,ϕ2, . . .)

and define the norm

∥∥{ϕ}∥∥s
.=

∞∑
j=0

C j
0

( j!)σ ‖ϕ j‖Hs(T), (2.12)

then by (2.11), we have ‖{ϕ}‖s < ∞. Then, we see that a natural space for expressing Gevrey regular-
ity in x is the following

Gσ
(
Y s) .= {

(v0, v1, v2, . . .)
.= {v}: v j ∈ Y s, j ∈ N0 and

∣∣∣∣∣∣{v}∣∣∣∣∣∣ < ∞}
, (2.13)

where the norm is defined by

∣∣∣∣∣∣{v}∣∣∣∣∣∣ .=
∞∑
j=0

C j
0

( j!)σ ‖v j‖Y s . (2.14)

Therefore, if we could show the existence of solutions u j to (2.3) such that {u} = (u0, u1, . . .) satisfies

∣∣∣∣∣∣{u}∣∣∣∣∣∣ < ∞, (2.15)



2586 H. Hannah et al. / J. Differential Equations 250 (2011) 2581–2600
then we would have shown that
C j

0
( j!)σ ‖u j‖Y s < M1, for some positive constant M1. Thus, we would

have

‖u j‖Y s � M1

(
1

C0

) j

( j!)σ , j ∈ N0. (2.16)

This together with Lemma 2.1 gives

∥∥∂
j

x u(·, t)
∥∥

Hs(T)
= ∥∥u j(·, t)

∥∥
Hs(T)

� ‖u j‖Y s � M1

(
1

C0

) j

( j!)σ , j ∈ N0, (2.17)

for all t near to 0, which means that u(·, t) ∈ Gσ (T). This is precisely what we need to conclude that
u has Gσ regularity in the space variable x. Note that the constant C0 in (2.12) and (2.14) can be
chosen in a more optimal way.

Existence of solutions u j satisfying (2.15). We must show that there exist solutions u j to (2.1), or to
its equivalent (2.3), satisfying condition (2.15). For this we define the map

{u} = (u0, u1, . . .) �→ T
({u}) = (

T0(u0), T1(u0, u1), . . .
)
, (2.18)

where T j(u0, u1, . . . , u j) is given by

T j(u0, u1, . . . , u j) = ψ(t)W (t)ϕ j(x) − ψ(t)

t∫
0

W (t − τ )B j(u0, u1, . . . , u j)(x, τ )dτ (2.19)

with

B j(u0, u1, . . . , u j) = 1

k + 1
∂x

j∑
m1=0

m1∑
m2=0

· · ·
mk−1∑
mk=0

(
j

m1

)(
m1

m2

)
· · ·

(
mk−1

mk

)
· u j−m1 um1−m2 · · · umk−1−mk umk . (2.20)

The following result states that T goes from Gσ (Y s) to Gσ (Y s) and that it is a contraction on an
appropriate ball.

Lemma 2.3. Let s � 1/2. There exists a constant c > 0 such that

∣∣∣∣∣∣T ({u})∣∣∣∣∣∣ � c
(∣∣∣∣∣∣{u}∣∣∣∣∣∣k+1 + ∥∥{ϕ}∥∥s

)
(2.21)

and

∣∣∣∣∣∣T ({u}) − T
({v})∣∣∣∣∣∣ � c

(
k∑

�=0

∣∣∣∣∣∣{u}∣∣∣∣∣∣k−�∣∣∣∣∣∣{v}∣∣∣∣∣∣�)∣∣∣∣∣∣{u} − {v}∣∣∣∣∣∣ (2.22)

where {u}, {v} ∈ Gσ (Y s).

For the proof of Lemma 2.3 we shall need the following result.
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Proposition 2.4. Let s � 1/2. There exists a constant c = cψ > 0 such that∥∥T j(u0, u1, . . . , u j)
∥∥

Y s � c‖ϕ j‖Hs

+ c
j∑

m1=0

m1∑
m2=0

· · ·
mk−1∑
mk=0

(
j

m1

)(
m1

m2

)
· · ·

(
mk−1

mk

)
· ‖u j−m1‖Y s ‖um1−m2‖Y s · · · ‖umk−1−mk‖Y s ‖umk‖Y s (2.23)

for all u0, u1, . . . , u j ∈ Y s.

Proof of Lemma 2.3. By the definition of the norm ||| · ||| and Proposition 2.4 we have

∣∣∣∣∣∣T ({u})∣∣∣∣∣∣ =
∞∑
j=0

C j
0

( j!)σ
∥∥T j(u0, u1, . . . , u j)

∥∥
Y s

� c
∞∑
j=0

C j
0

( j!)σ
[
‖ϕ j‖Hs +

j∑
m1=0

m1∑
m2=0

· · ·
mk−1∑
mk=0

(
j

m1

)(
m1

m2

)
· · ·

(
mk−1

mk

)

· ‖u j−m1‖Y s ‖um1−m2‖Y s · · · ‖umk−1−mk‖Y s ‖umk‖Y s

]
. (2.24)

Since σ � 1 it follows from (2.24) that

∣∣∣∣∣∣T ({u})∣∣∣∣∣∣ � c
∞∑
j=0

C j
0

( j!)σ
[
‖ϕ j‖Hs +

j∑
m1=0

m1∑
m2=0

· · ·
mk−1∑
mk=0

(
j

m1

)σ (
m1

m2

)σ

· · ·
(

mk−1

mk

)σ

· ‖u j−m1‖Y s ‖um1−m2‖Y s · · · ‖umk−1−mk‖Y s ‖umk‖Y s

]
. (2.25)

Reordering the sums we obtain

∣∣∣∣∣∣T ({u})∣∣∣∣∣∣ � c
∥∥{ϕ}∥∥s + c

∞∑
mk=0

Cmk
0

(mk!)σ ‖umk‖Y s

·
∞∑

mk−1=mk

C
mk−1−mk
0

((mk−1 − mk)!)σ ‖umk−1−mk‖Y s · · ·
∞∑

j=m1

C j−m1
0

( j − m1!)σ ‖u j−m1‖Y s

� c
∥∥{ϕ}∥∥s + c

∣∣∣∣∣∣{u}∣∣∣∣∣∣k+1
. (2.26)

The proof of inequality (2.21) is complete.
Next we show the contraction property. Using the definition of the map T we have∣∣∣∣∣∣T ({u}) − T

({v})∣∣∣∣∣∣
=

∞∑
j=0

C j
0

( j!)σ
∥∥T j(u0, u1, . . . , u j) − T j(v0, v1, . . . , v j)

∥∥
Y s
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=
∞∑
j=0

C j
0

( j!)σ
∥∥∥∥∥ψ(t)

t∫
0

W (t − τ )
[

B j(u0, . . . , u j) − B j(v0, . . . , v j)
]
(x, τ )dτ

∥∥∥∥∥
Y s

. (2.27)

By the definition (2.20) of B j(u0, . . . , u j) we have

B j(u0, . . . , u j) − B j(v0, . . . , v j)

= 1

k + 1
∂x

{ j∑
m1=0

m1∑
m2=0

· · ·
mk−1∑
mk=0

(
j

m1

)(
m1

m2

)
· · ·

(
mk−1

mk

)

· [u j−m1 um1−m2 · · · umk−1−mk umk − v j−m1 vm1−m2 · · · vmk−1−mk vmk ]
}

.

Defining m0 = j, mk+1 = 0 and vm−1−m0 = umk+1−mk+2 = 1, this can be rewritten as

B j(u0, . . . , u j) − B j(v0, . . . , v j)

= 1

k + 1
∂x

{ j∑
m1=0

m1∑
m2=0

· · ·
mk−1∑
mk=0

(
j

m1

)(
m1

m2

)
· · ·

(
mk−1

mk

)

·
k∑

�=0

(um�−m�+1 − vm�−m�+1)vm−1−m0 · · · · · vm�−1−m�
· um�+1−m�+2 · · · · · umk−mk+1

}
.

Using the last identity and the fact that σ � 1 we get

∣∣∣∣∣∣T ({u}) − T
({v})∣∣∣∣∣∣ � c

k∑
�=0

{ ∞∑
j=0

C j
0

( j!)σ
[ j∑

m1=0

m1∑
m2=0

· · ·
mk−1∑
mk=0

(
j

m1

)σ (
m1

m2

)σ

· · ·
(

mk−1

mk

)σ

· ‖um�−m�+1 − vm�−m�+1‖Y s ‖vm0−m1‖Y s · · · · · ‖vm�−1−m�
‖Y s

· ‖um�+1−m�+2‖Y s · · · · · ‖umk‖Y s

]}
.

Now, reordering the sums we have

∣∣∣∣∣∣T ({u}) − T
({v})∣∣∣∣∣∣

� c
k∑

�=0

∞∑
mk=0

Cmk
0

((mk)!)σ |||umk |||Y s

·
∞∑

m =m

C
mk−1−mk
0

((mk−1 − mk)!)σ |||umk−1−mk |||Y s · · ·
∞∑

m =m

C
m�+1−m�+2
0

((m�+1 − m�+2)!)σ |||um�+1−m�+2 |||Y s
k−1 k �+1 �+2
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·
∞∑

m�−1=m�

C
m�−1−m�

0

((m�−1 − m�)!)σ |||vm�−1−m�
|||Y s · · ·

∞∑
m0=m1

Cm0−m1
0

((m0 − m1)!)σ |||vm0−m1 |||Y s

·
∞∑

m�=m�+1

C
m�−m�+1
0

((m� − m�+1)!)σ |||um�−m�+1 − vm�−m�+1 |||Y s ,

which implies

∣∣∣∣∣∣T ({u}) − T
({v})∣∣∣∣∣∣ � c

(
k∑

�=0

∣∣∣∣∣∣{u}∣∣∣∣∣∣k−�∣∣∣∣∣∣{v}∣∣∣∣∣∣�)∣∣∣∣∣∣{u} − {v}∣∣∣∣∣∣.
The proof of Lemma 2.3 is now complete. �

Next proposition shows that our map T is in fact a contraction.

Proposition 2.5. Let s � 1/2. For initial data ϕ satisfying the smallness condition

∥∥{ϕ}∥∥s � 3k − 1

3k+1c
k+1

k (k + 1)
k+1

k

(2.28)

if we choose

r = 1

3c
1
k (k + 1)

1
k

and

B(0, r)
.= {{u} ∈ Gσ

(
Y s):

∣∣∣∣∣∣{u}∣∣∣∣∣∣ � r
}
,

then T : B(0, r) → B(0, r) is a contraction. More precisely we have

∣∣∣∣∣∣T ({u})∣∣∣∣∣∣ � r for all {u} ∈ B(0, r)

and

∣∣∣∣∣∣T ({u}) − T
({v})∣∣∣∣∣∣ �

(
1

3

)k∣∣∣∣∣∣{u} − {v}∣∣∣∣∣∣ for all {u}, {v} ∈ B(0, r).

Proof. Applying Lemma 2.3 gives

∣∣∣∣∣∣T ({u})∣∣∣∣∣∣ � c
∣∣∣∣∣∣{u}∣∣∣∣∣∣k+1 + c

∥∥{ϕ}∥∥s

� c

(
1

3c
1
k (k + 1)

1
k

)k+1

+ c

(
3k − 1

3k+1c
k+1

k (k + 1)
k+1

k

)

= c · 3k

k+1
k+1

k
k+1

k
3 c (k + 1)
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= c

3c1+ 1
k (k + 1)

k+1
k

� 1

3c
1
k (k + 1)

1
k

= r.

We also have

∣∣∣∣∣∣T ({u}) − T
({v})∣∣∣∣∣∣ � c

(
k∑

�=0

∣∣∣∣∣∣{u}∣∣∣∣∣∣k−�∣∣∣∣∣∣{v}∣∣∣∣∣∣�)∣∣∣∣∣∣{u} − {v}∣∣∣∣∣∣
� c

(
k∑

�=0

rk−�r�

)∣∣∣∣∣∣{u} − {v}∣∣∣∣∣∣
= crk(k + 1)

∣∣∣∣∣∣{u} − {v}∣∣∣∣∣∣
= c

(
1

3c
1
k (k + 1)

1
k

)k

(k + 1)
∣∣∣∣∣∣{u} − {v}∣∣∣∣∣∣

=
(

1

3

)k∣∣∣∣∣∣{u} − {v}∣∣∣∣∣∣.
The proof of Proposition 2.5 is complete. �

Therefore by Proposition 2.5 there exists a unique solution {u} satisfying (2.15). Then the function
u = u0(x, t) is a solution to the gKdV initial value problem (1.1) with lifespan |t| < 1/2, by our cut-off
function ψ . Therefore u is Gevrey of order σ in x for all |t| < 1/2.

The proof of the first part of Theorem 1.1 (Gevrey regularity in the variable x) will be complete
once Proposition 2.4 is proved. However, this proposition is a consequence of the following result (see
[16]).

Lemma 2.6. Let s � 1/2. For all u0, u1, . . . , u j in Y s there exists a positive constant C such that

(∑
n∈Ż

|n|2s
∫
R

|̂B j(u0, . . . , u j)(n, λ)|2
1 + |λ − n3| dλ

) 1
2

+
(∑

n∈Ż

|n|2s
(∫

R

|̂B j(u0, . . . , u j)(n, λ)|
1 + |λ − n3| dλ

)2) 1
2

� C
j∑

m1=0

m1∑
m2=0

· · ·
mk−1∑
mk=0

(
j

m1

)(
m1

m2

)
· · ·

(
mk−1

mk

)
‖u j−m1‖Y s

· ‖um1−m2‖Y s · · · ‖umk−1−mk‖Y s ‖umk‖Y s .

Lemma 2.6 is a direct consequence of the multilinear estimates in [10], which we restate here.

Theorem 2.7. For s � 1/2, and w1, w2, . . . , wk+1 ∈ Y s, we have

∥∥w1 · w2 · · · wk∂x(wk+1)
∥∥

Z s � ‖w1‖Y s ‖w2‖Y s · · · ‖wk+1‖Y s (2.29)

where
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‖w‖Z s
.=

(∑
n∈Ż

|n|2s
∫
R

|ŵ(n, λ)|2
1 + |λ − n3| dλ

) 1
2

+
(∑

n∈Ż

|n|2s
(∫

R

|ŵ(n, λ)|
1 + |λ − n3| dλ

)2) 1
2

. (2.30)

Remark. The smallness assumption (2.28) in Proposition 2.5 can be removed but the proof becomes
more technical. For the case of the KdV, see for example [9].

3. Failure of Gr -regularity in time if 1 ��� r < 3σ

Replacing t with −t we can write our gKdV initial value problem as follows

{
∂t u = ∂3

x u + uk∂xu,

u(x,0) = ϕ(x), x ∈ T, t ∈ R,
(3.1)

where ϕ is a real-valued function to be chosen appropriately.
In the case of analytic initial data (σ = 1) non-analytic solutions of the Cauchy problem (3.1) which

do not belong to Gr for any r in [1,3) have been constructed in [15], although they are complex-
valued when k � 3. Therefore, here we shall focus our attention to the case σ > 1 and to real-valued
initial data.

We begin the study of this case by recalling the following lemma from [18], which is useful in
estimating the higher-order derivatives of a solution with respect to t .

Lemma 3.1. If u is a solution to (3.1) then for every j ∈ {1,2, . . .} we have

∂
j

t u = ∂
3 j
x u +

j∑
q=1

∑
|α|+2q=3 j

Cq
α

(
∂
α1
x u

) · · · (∂αqk+1
x u

)
, where Cq

α � 0. (3.2)

Next, we recall some definitions and results related to Carleman’s problem for Gevrey functions.

Definition 3.2. Let {mn} be a sequence of positive numbers. We denote by C(mn) the class of all
functions f (x), infinitely differentiable on [−1,1], for each of which there is an A > 0 such that

∣∣ f (n)(x)
∣∣ � An+1mn, (3.3)

for all x ∈ [−1,1] and n = 0,1,2, . . . .

The following result is about the construction of a function f (x) in C(nnσ ). Its proof can be found
in Džanašija [12].

Lemma 3.3. For every σ > 1 and every sequence of complex numbers {vn}, satisfying

|vn| � Bn+1nnσ (3.4)

for some B > 0, there exists a function f (x) ∈ C(nnσ ) for which

f (n)(0) = vn.
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We will use this result for the sequence of real numbers

vn = (n!)σ , n = 0,1,2, . . . .

Since n! � nn , n = 0,1,2, . . . we have

|vn| = (n!)σ � nnσ , n = 0,1,2, . . .

and therefore, in this case, the constant B mentioned in Lemma 3.3 can be chosen so that B = 1.
Thus, it follows from Lemma 3.3 that there exists

f (x) ∈ C
(
nnσ

)
such that f (n)(0) = vn = (n!)σ .

Moreover, since nn � n!en , n = 0,1,2, . . . it follows from (3.3) that there exists a constant A > 0 such
that for all x ∈ [−1,1] we have

∣∣ f (n)(x)
∣∣ � An+1nnσ � An+1(n!)σ enσ � Cn+1(n!)σ , n = 0,1, . . . (3.5)

where C = max{A, Aeσ }. Thus (3.5) implies that f ∈ Gσ ((−1,1)). Next we modify f (x) so that it has
compact support in (−1,1). For this we choose a cut-off function χ ∈ Gσ

c (−1,1) such that χ(x) ≡ 1
for |x| < 1

2 and χ(x) ≡ 0 for |x| > 3
4 . If ϕ is the 2π -periodic extention of χ f then by the algebra

property for Gevrey functions we have ϕ ∈ Gσ (T). We also have the relation inherited by f (x),

ϕn(0) = f n(0) = (n!)σ . (3.6)

Now, we are ready to state and prove the main result of this section.

Theorem 3.4. Let σ > 1 be given and k ∈ {1,2, . . .}. The real-valued solution to the gKdV Cauchy problem
(3.1) with real-valued initial data ϕ in the Gevrey space Gσ (T) may not be in Gr , with 1 � r < 3σ , in the
time variable t. More precisely, if ϕ ∈ Gσ (T) is the function constructed above to satisfy estimate (3.6) then
the corresponding gKdV solution is not in Gr in t for 1 � r < 3σ .

Proof. By using formula (3.2) and (3.6) we obtain

∂
j

t u(0,0) = ∂
3 j
x u(0,0) +

j∑
q=1

∑
|α|+2q=3 j

Cq
α∂

α1
x u(0,0) · · · ∂αqk+1

x u(0,0)

= ϕ(3 j)(0) +
j∑

q=1

∑
|α|+2q=3 j

Cq
αϕ(α1)(0) · · ·ϕ(αqk+1)(0)

� ϕ(3 j)(0) = (
(3 j)!)σ � ( j!)3σ ,

for any j ∈ {1,2, . . .}, which implies that u(0, ·) /∈ G3σ−ε for any ε > 0, i.e., we have proved that
u(0, ·) /∈ Gr for 1 � r < 3σ and for t near 0. �
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4. G3σ -regularity in the time variable

We begin by introducing some notation. For σ � 1 and c > 0 we consider the sequences

mq = c(q!)σ
(q + 1)2

, q = 0,1,2, . . . (4.1)

and

Mq = ε1−qmq, ε > 0 and q = 1,2,3, . . . . (4.2)

One can show (see [1]) that there is c > 0 such that the following inequality holds

∑
0���k

(
k

�

)
m�mk−� � mk. (4.3)

Removing the endpoints 0 and k in the left-hand side of (4.3) and using the sequence Mq we obtain

∑
0<�<k

(
k

�

)
M�Mk−� � εMk, for any ε > 0. (4.4)

Next, one can check that for any ε > 0 the sequence Mq satisfies the following inequality

M j � εM j+1, for j � 2. (4.5)

Also, one can check that for a given C > 1 there exists ε0 > 0 such that for any 0 < ε � ε0 we have

C j+1 j!σ � M j, for j � 2. (4.6)

Remark 4.1. It follows from the definition of M1 and M2 that

M1 = c

4
= 9

4(2!)σ εM2
.= aεM2, where a = 9

4(2!)σ .

Now we are ready to begin the proof of Gevrey regularity in time. We begin by rephrasing the
Gevrey regularity in the space variable x proved in Section 2 as follows

∣∣∂�
x u(x, t)

∣∣ � C�+1(�!)σ , ∀x ∈ T, |t| � δ, ∀� ∈ {0,1, . . .} (4.7)

for some C > 0. Also, we define the following constants

M0 = c

8
and M = max

{
2,

8C

c
,

4C2

c

}
, (4.8)

where c is as in (4.3) and C as in (4.7).
Now we will prove our main result of this section.
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Lemma 4.2. Let u(x, t) be the solution to the Cauchy problem (3.1). If u(x, t) satisfies inequality (4.7) then
there exists ε0 > 0 such that for any 0 < ε � ε0 we have∣∣∂ j

t ∂�
x u(x, t)

∣∣ � Mkj+1M�+3 j, j ∈ {0,1,2, . . .}, � ∈ {0,1,2 . . .} (4.9)

for all (x, t) ∈ T × [−δ, δ].

In order to prove Lemma 4.2 we shall need the following key result.

Lemma 4.3. Given �,k ∈ {0,1,2, . . .} we have

�∑
p=0

k∑
q=0

(
�

p

)(
k

q

)
L(�−p)+3(k−q)Lp+1+3q �

m∑
r=1

(
m

r

)
Lr Lm−r, (4.10)

where L j , j = 0,1, . . . ,m are positive real numbers with m = � + 3k + 1.

Proof. For �,k ∈ {0,1,2, . . .} given let m = �+3k+1. For k = � = 0 inequality (4.10) reads L0L1 � L0L1,
which is true. Therefore, we assume that either k � 1 or � � 1. Then, changing the order of the
summations and making a change of variables gives

�∑
p=0

k∑
q=0

(
�

p

)(
k

q

)
L(�−p)+3(k−q)Lp+1+3q

=
k∑

q=0

�∑
p=0

(
�

p

)(
k

q

)
L(�−p)+3(k−q)Lp+1+3q

=
k∑

q=0

�+1+3q∑
r=1+3q

(
�

r − 1 − 3q

)(
k

q

)
Lm−r Lr

=
m∑

r=1

i1(r)∑
q=i0(r)

(
�

r − 1 − 3q

)(
k

q

)
Lm−r Lr, (4.11)

with i0(r) = max{0, [[ r−�−1
3 ]]}, i1(r) = min{[ r−1

3 ],3k}, where [x] is the integer part of a number x and
[[x]] is the lesser integer that is greater than or equal to x. To complete the proof of inequality (4.10)
we must to show that

i1(r)∑
q=i0(r)

(
�

r − 1 − 3q

)(
k

q

)
�

(
m

r

)
. (4.12)

This is a consequence of the following result.

Lemma 4.4.

θ∑
q=i0(r)

(
�

r − 1 − 3q

)(
k

q

)
�

(
m − 2k + 2θ

r

)
(4.13)

for all i0(r) � θ � i1(r).
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In fact, using (4.13) with θ = i1(r) it suffices to show that(
m − 2k + 2i1(r)

r

)
�

(
m

r

)
. (4.14)

For i1(r) = k relation (4.14) holds as an equality. If 0 � i1(r) < k then 1 � 2(k − i1(r)) and therefore
m − 2k + 2i1(r) � m − 1 < m, which shows that (4.14) holds as a strict inequality. This completes the
proof of Lemma 4.3. �
Proof of Lemma 4.4. We prove it by induction on θ . For this, we use the following elementary in-
equality: If a,b, c ∈ N, b � a then (

a

b

)
�

(
a + c

b + c

)
. (4.15)

Applying (4.15) with a = �, b = r − 1 − 3i0(r), c = 1 + 2i0(r) and using the definition of m gives(
�

r − 1 − 3i0(r)

)
=

(
m − 1 − 3k

r − 1 − 3i0(r)

)
�

(
m − 3k + 2i0(r)

r − i0(r)

)
. (4.16)

Now, since for α,β,γ , δ ∈ N with α � β and γ � δ we have that(
β

α

)(
δ

γ

)
�

(
β + δ

α + γ

)
, (4.17)

from (4.16) we get(
�

r − 1 − 3i0(r)

)(
k

i0(r)

)
�

(
m − 3k + 2i0(r)

r − i0(r)

)(
k

i0(r)

)
�

(
m − 2k + 2i0(r)

r

)
,

which proves (4.13) for θ = i0(r).
Next, we assume that (4.13) holds for i0(r) � θ < i1(r) and we will prove it for (θ + 1). By using

the induction hypotheses we obtain

θ+1∑
q=i0(r)

(
�

r − 1 − 3q

)(
k

q

)
=

θ∑
q=i0(r)

(
�

r − 1 − 3q

)(
k

q

)
+

(
�

r − 1 − 3(θ + 1)

)(
k

θ + 1

)

�
(

m − 2k + 2θ

r

)
+

(
�

r − 1 − 3(θ + 1)

)(
k

θ + 1

)
.

It follows from (4.15) applied with a = �, b = r − 1 − 3(θ + 1), c = 2(θ + 1) that(
�

r − 1 − 3(θ + 1)

)
�

(
� + 2(θ + 1)

r − θ − 2

)
.

Now, using the last inequality, (4.17), the definition of m together with(
ν

μ

)
+

(
ν

μ + 1

)
=

(
ν + 1

μ + 1

)
we have
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θ+1∑
q=i0(r)

(
�

r − 1 − 3q

)(
k

q

)
�

(
m − 2k + 2θ

r

)
+

(
� + 2(θ + 1)

r − θ − 2

)(
k

θ + 1

)

�
(

m − 2k + 2θ

r

)
+

(
� + k + 2θ + 2

r − 1

)
=

(
m − 2k + 2θ

r

)
+

(
m − 1 − 2k + 2θ + 2

r − 1

)
�

(
m − 2k + 2θ

r

)
+

(
m − 2k + 2θ + 1

r − 1

)
+

(
m − 2k + 2θ

r − 1

)
�

(
m − 2k + 2θ + 1

r

)
+

(
m − 2k + 2θ + 1

r − 1

)
�

(
m − 2k + 2(θ + 1)

r

)
,

which completes the proof of Lemma 4.4. �
Now we are ready to complete the proof of the estimates (4.9) for ∂

j
t ∂�

x u(x, t).

Proof of Lemma 4.2. We will prove (4.9) by induction. Let j = 0. For � = 0 it follows from (4.7) and
the definition of M that ∣∣u(x, t)

∣∣ � C � MM0, ∀(x, t) ∈ T × [−δ, δ].
Similarly, for � = 1 we have∣∣∂xu(x, t)

∣∣ � C2 � MM1, ∀(x, t) ∈ T × [−δ, δ].
For � � 2 it follows from (4.7) and (4.6) that there exists ε0 > 0 such that for any 0 < ε � ε0 we have∣∣∂�

x u(x, t)
∣∣ � C�+1(�!)σ � M� � MM�, ∀(x, t) ∈ T × [−δ, δ].

This completes the proof of (4.7) for j = 0 and � ∈ {0,1, . . .}.
Next, we will assume that (4.9) is true for 0 � q � j and � ∈ {0,1,2, . . .} and we will prove it for

q = j + 1 and � ∈ {0,1,2, . . .}. We begin by noticing that∣∣∂ j+1
t ∂�

x u
∣∣ = ∣∣∂ j

t ∂�
x

(
uk∂xu

) + ∂
j

t ∂�+3
x u

∣∣
�

∣∣∂ j
t ∂�

x

(
uk∂xu

)∣∣ + ∣∣∂ j
t ∂�+3

x u
∣∣.

Using the induction hypotheses and the condition M > 2 we estimate the second term ∂
j

t ∂�+3
x u as

follows ∣∣∂ j
t ∂�+3

x u
∣∣ � Mkj+1M(�+3)+3 j = Mkj+1M�+3( j+1)

� 1

2
Mk( j+1)+1M�+3( j+1). (4.18)

Next, we estimate the non-linear term ∂
j

t ∂�
x (uk∂xu). Using Leibniz’s formula we write ∂�

x (uk∂xu) as
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∂�
x

(
uk∂xu

) =
�∑

p1=0

p1∑
p2=0

· · ·
pk−1∑
pk=0

(
�

p1

)(
p1

p2

)
· · ·

(
pk−1

pk

)
· ∂�−p1

x u∂
p1−p2
x u · · · ∂ pk−1−pk

x u∂
pk+1
x u,

which gives

∂
j

t ∂�
x

(
uk∂xu

) =
�∑

p1=0

p1∑
p2=0

· · ·
pk−1∑
pk=0

j∑
j1=0

j1∑
j2=0

· · ·
jk−1∑
jk=0

·
(

�

p1

)(
p1

p2

)
· · ·

(
pk−1

pk

)(
j

j1

)(
j1

j2

)
· · ·

(
jk−1

jk

)
· ∂ j− j1

t ∂
�−p1
x u∂

j1− j2
t ∂

p1−p2
x u · · · ∂ jk−1− jk

t ∂
pk−1−pk
x u∂

jk
t ∂

pk+1
x u.

Thus, using the induction hypotheses the last equality gives

∣∣∂ j
t ∂�

x

(
uk∂xu

)∣∣ �
�∑

p1=0

p1∑
p2=0

· · ·
pk−1∑
pk=0

j∑
j1=0

j1∑
j2=0

· · ·
jk−1∑
jk=0

·
(

�

p1

)(
p1

p2

)
· · ·

(
pk−1

pk

)(
j

j1

)(
j1

j2

)
· · ·

(
jk−1

jk

)
· Mk( j− j1)+1M(�−p1)+3( j− j1)Mk( j1− j2)+1M(p1−p2)+3( j1− j2) · · ·
· Mk( jk−2− jk−1)+1M(pk−2−pk−1)+3( jk−2− jk−1)

· Mk( jk−1− jk)+1M(pk−1−pk)+3( jk−1− jk)Mkjk+1M(pk+1)+3 jk . (4.19)

Next, using Lemma 4.3 with p = pk , � = pk−1, q = jk , k = jk−1, L j = M j , m = pk−1 + 3 jk−1 + 1 and
(4.4) we obtain

pk−1∑
pk=0

jk−1∑
jk=0

(
pk−1

pk

)(
jk−1

jk

)
M(pk−1−pk)+3( jk−1− jk)M(pk+1)+3 jk

�
m∑

r=1

(
m

r

)
Mr Mm−r

= Mm M0 +
m−1∑
r=1

(
m

r

)
Mr Mm−r � M0Mm + εMm

= (M0 + ε)Mm = (M0 + ε)Mpk−1+3 jk−1+1. (4.20)

Similarly, using Lemma 4.3 with p = pk−1, � = pk−2, q = jk−1, k = jk−2, L j = M j , m = pk−2 +3 jk−2 +1
and (4.4) gives

pk−2∑
p =0

jk−2∑
j =0

(
pk−2

pk−1

)(
jk−2

jk−1

)
M(pk−2−pk−1)+3( jk−2− jk−1)Mpk−1+3 jk−1+1
k−1 k−1
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�
m∑

r=1

(
m

r

)
Mr Mm−r

= Mm M0 +
m−1∑
r=1

(
m

r

)
Mr Mm−r � M0Mm + εMm

= (M0 + ε)Mm = (M0 + ε)Mpk−2+3 jk−2+1. (4.21)

Continuing this way we obtain all possible inequalities like (4.19), (4.20), (4.21). Combining these
inequalities together (4.5) and Remark 4.1 we obtain

∣∣∂ j
t ∂�

x

(
uk∂xu

)∣∣ �
�∑

p1=0

p1∑
p2=0

· · ·
pk−1∑
pk=0

j∑
j1=0

j1∑
j2=0

· · ·
jk−1∑
jk=0

·
(

�

p1

)(
p1

p2

)
· · ·

(
pk−1

pk

)(
j

j1

)(
j1

j2

)
· · ·

(
jk−1

jk

)
· Mk( j− j1)+1M(�−p1)+3( j− j1)Mk( j1− j2)+1M(p1−p2)+3( j1− j2) · · ·
· Mk( jk−2− jk−1)+1M(pk−2−pk−1)+3( jk−2− jk−1)

· Mk( jk−1− jk)+1M(pk−1−pk)+3( jk−1− jk)Mkjk+1M(pk+1)+3 jk

� Mkj+k+1(M0 + ε)k M�+3 j+1

� Mk( j+1)+1(M0 + ε)kε2M�+3( j+1).

Note that in the last inequality we have used the fact that � + 3 j + 1 � 2 since we are assuming that
either j 
= 0 or � 
= 0.

Now, choosing ε � ε0
.=

√
1

2(M0+1)k < 1 we obtain that

(M0 + ε)kε2 � (M0 + 1)kε2 � (M0 + 1)k 1

2(M0 + 1)k
= 1

2
.

Hence,

∣∣∂ j
t ∂�

x

(
uk∂xu

)∣∣ � 1

2
Mk( j+1)+1M�+3( j+1). (4.22)

Finally, combining (4.18) and (4.22) gives (4.9) for q = j + 1 and � ∈ {0,1,2, . . .}. This completes the
proof of Lemma 4.2. �
End of proof of G3σ regularity in time. Recalling (4.9) we have

∣∣∂ j
t ∂�

x u(x, t)
∣∣ � Mkj+1M�+3 j, j ∈ {0,1,2, . . .}, � ∈ {0,1,2 . . .}

for all (x, t) ∈ T × [−δ, δ], where Mq = ε1−q c(q!)σ
(q+1)2 , q = 1,2, . . . . Applying this inequality for j ∈

{1,2, . . .} and � = 0 gives
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∣∣∂ j
t u(x, t)

∣∣ � Mkj+1M3 j = MMkjε1−3 j c((3 j)!)σ
(3 j + 1)2

� Mεc

[
Mk

ε3

] j(
(3 j)!)σ

� L j+1((3 j)!)σ
� L j+1[(25) j

( j!)3]σ
� A j+1( j!)3σ (4.23)

where L = max{Mεc, Mk

ε3 } and A = max{L, (32)σ L}. We also have from (4.9) that

∣∣u(x, t)
∣∣ � MM0 = M

c

8
, (4.24)

for all (x, t) ∈ T × [−δ, δ]. Setting C = max{M c
8 , A} it follows from (4.23) and (4.24) that for j ∈

{0,1, . . .} we have ∣∣∂ j
t u(x, t)

∣∣ � C j+1( j!)3σ ,

for all (x, t) ∈ T × [−δ, δ]. Hence, u ∈ G3σ in the time variable. This completes the proof of Theo-
rem 1.1. �
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