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1. Introduction

In this paper, we study the ranking properties for invariant sets of dynamical systems. Let us look
at the following simple gradient system,

dx=-Vfx)dt, xeR", (1.1)

where f(x) is a given energy function. Much attention has been paid to the critical points {xi}f’: 1
of the energy function f(x) which are invariant sets of the given gradient system. The invariant sets
correspond to the extreme states of the energy function f, and those extremes are of great interest
in practice. In fact, finding (globally) minimal energy states has been considered as a fundamental
problem and widely exists in physics, chemistry, biology, economy, engineering and many other dis-
ciplines. Despite of extensive literature on optimizations, searching for global optimizers still remains
challenging in many applications, especially when the function f has a complicated energy landscape
with multiple local minimizers.

A major hurdle in global optimization is to determine which extreme points are the global min-
imizers if one may find many (if not all) extreme points. By comparing the values of the energy
function at all extreme points, one can determine the global minimizers. It is indispensable to have
a descending (or ascending) order among invariant sets of dynamical systems for searching for global
minimizers.

To the best of our knowledge, there are no efficient numerical methods to generate such an order
of invariant sets for dynamical systems in practice. Note that Morse theory and the Conley index only
give a partial order in theory. For a gradient-like system on a compact metric space, there exists a
natural Lyapunov energy function which is strictly decreasing along non-constant orbits. Therefore
the Lyapunov function provides a partial order among invariant sets in [10]. For general systems,
the Morse decomposition theorem states that any compact metric space can be decomposed into
finite number of invariant (Morse) sets and their connecting orbits. Conley also proposes a connection
matrix to detect the transitions among invariant (Morse) sets (see [10,16,17,32] for details).

On the other hand, the order in the Morse decomposition depends on the choice of Lyapunov
function. It is impractical to construct a Lyapunov function for a general dynamical system, and also
not feasible to design any (efficient) numerical method to compute the decomposition through homo-
topy and homology concepts for the global optimization problem. No such theory exists for random
dynamical systems, although random dynamical systems are widely used in applications.

One of more important motivations for us is to effectively create a natural order for general dy-
namical systems which are not gradient-like systems or do not have any associated energy function.
Thus the classical energy concept to provide a partial order among invariant sets and their orbits
cannot be adapted. However, it is commonly observed that certain invariant sets such as stable crit-
ical points or limit cycles in many non-gradient-like systems are more attractive and essential (or
preferred) than other invariant sets for the systems. Note that more trajectories go to a sink than
to sources or saddle points. It is natural to ask which invariant sets are more stable with respect to
random perturbations.

In [7], we study how to extend the Conley index theory through random dynamical systems to
construct global information called the Conley-Markov matrix for dynamical systems. Different from
the previous works of the third author [22-26], the main idea in [7] is to use the Conley connection
matrix to obtain global information and to use the transition probability (Markov matrix) from the
Fokker-Planck equation [4,5,31,9] for the local information between two invariant sets. The Conley-
Markov matrix provides a combination of topological information and probabilistic information for
the invariant sets.

This paper, together with [7,8], reports on our recent efforts along this direction. The main goal of
this paper is to introduce a natural order based on the Conley-Markov matrix for general dynamical
systems. For the Conley connection matrix on R", we can use Cech cohomology or Alexander-Spanier
cohomology for those Conley index pairs and/or those invariant subsets connecting isolated invariant
subsets. The construction in [7] carries through for this case. But we only focus on the role of the
Markov matrix arising from the Fokker-Planck equation to detect the natural order among invariant
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subsets (invariant regions) in R". This is inspired by a simple observation from the Gibbs distribution
that more trajectories asymptotically accumulate in neighborhoods of global minima for gradient-like
systems when white noise is presented. l.e., the probabilities of trajectories going to neighborhoods
of the global minima are in general larger than those of trajectories going to other regions provided
that the white noise is small and the time is large.

By using the Fokker-Planck equation to calculate the transition probabilities between neighbor-
hoods of invariant sets, we form a Markov matrix with prescribed neighborhoods of invariant sets
and the time for presenting white noises. A total ranking, which we call natural order among the in-
variant sets, is defined by comparing column sums of the Markov matrix, called the natural energy.
For the invariant sets with the greatest natural energy, the invariant sets are stable and trajectories
flow into those stable invariant sets with the greatest probability. In general the partial order among
invariant sets of a flow, if it exists, is finer than our natural order. But the natural order provides an
efficient way to approximate the induced partial order by the flow, at least among the stable invariant
sets.

For gradient-like systems, our natural order can recover the descending order defined by the
energy function among those stable invariant sets. For general systems, a positive real number is
assigned to the total ranking of each neighborhood of an invariant set. This is different from the clas-
sical Morse theory in which a nonnegative integer is assigned to a critical point. This allows us to
distinguish similar invariant sets that produce the same Morse indices or the same Conley indices
from homotopy types. A natural order depends on different parameters of the invariant sets: the
neighborhood of the invariant set, the time period T,! the intensity of white noises, and the initial
condition of the Fokker-Planck equation. These extra parameters avoid many technical complications
and create a more computation friendly environment in practice. The natural order defined in this
paper can be treated as an “energy” value for each invariant set. Moreover, it is possible to extend
the energy properties for the natural order, and one may also apply the natural order to many energy
related problems.

The paper is organized as follows. In Section 2, we compare some known methods with the Markov
matrix in a simple example. In Section 3, we review some relevant results in Conley index theory and
random dynamical systems. In Section 4, the Markov matrix, the natural energy and the natural order
for dynamical systems are given. In Section 5, we obtain similar results for general systems in finite
dimensional spaces and compute various numerical results at the end.

2. A simple example
In this section, we consider the gradient flow on the unit circle S =R/(27Z),
X =sinx,
as an example to illustrate our purpose and method. As shown in Fig. 1, it is easy to check that the
invariant sets of the equation consist of two critical points: {0} is a repeller and {7} is an attractor.
The following questions are of interest to study.
(1) Are there invariant sets near {0} and {r}?
(2) If yes to (1), are there connecting orbits between the invariant sets?
(3) Which invariant set is the global minimum (or most stable state) of the system?
To answer these questions, let us analyze them by some existing methods.

2.1. Classical Conley index method

The initial step to find invariant subsets of the vector field for this problem can be the choice of
upper semi-circle and lower semi-circle. By verifying the isolated invariant neighborhood, we have

1 The time period T is not a stopping time; it is a fixed non-random time.



S.-N. Chow et al. / ]. Differential Equations 252 (2012) 3116-3141 3119

1.5

051

1t

-15
-15 -1 -05 0 0.5 1 1.5

Fig. 1. Phase portrait of x = sinx.

that I(N) = ¢, where I(N) denotes the isolated invariant set in A/ (see Section 3.1 for its definition).
Then one can choose another left semi-circle and the right semi-circle.

(1) Let us consider the Conley index method (see [10,11,16,17,28-30]). Since we know that there
may be invariant sets near {0} and {rr}, we choose neighborhoods Ny and N of {0} and {7}, respec-
tively. Note that any nonzero trajectory starting from Ay will depart the neighborhood in some time,
so the Conley index for the neighborhood A is a pointed 1-dimensional circle [S!]. Therefore, by the
Wazewski property of the Conley index, we conclude that there is a nontrivial invariant set in Nj.
By computing I(Np) = {0}, we obtain that {0} is actually an isolated invariant set. Similarly, if we
consider the neighborhood N}, the Conley index for this neighborhood is a pointed 0-dimensional
sphere [SC]. Therefore, by contracting the neighborhood N again and again, we can conclude that
{mr} is an isolated invariant set.

(2) Now we consider the connecting orbits between the two invariant sets {0} and {r}. The two
invariant subsets are the isolated critical points of a Morse function cosx for the gradient flow. There-
fore, the connection matrix of Morse sets {0} and {7} is

0 A, m)
0 0 ’

where A(0, ) is the connection mapping between the homology groups associated to {0} and {r}.
The homological connection A(0, r) counts the oriented number of trajectory flows from {0} to {7}
with a fixed orientation. By taking the counterclockwise orientation, the trajectory from {0} to {m}
on the lower semi-circle contributes —1, and the trajectory from {0} to {7} on the upper semi-circle
contributes +1. Therefore A(0, r) = 0. By taking the clockwise orientation, A(0, r) =0 by switching
the —1 with the +1. One can use this to obtain the homology information of the manifold S! as the
following:

CH,({S'}) = CH,({0}) ® CH.({m}).

Hence we cannot conclude the existence of connecting orbits between {0} and {7} by the connection
mapping.

(3) In this example, according to the Morse decomposition, the state space can be decomposed
into two neighborhoods of the invariant sets and the connecting orbits between them, i.e. there is
connecting orbit from {0} to {;r}. Therefore, {;r} should be the global minimum. But from the homo-
logical Conley connection matrix, there is no information about the existence of trajectory a priori. On
the other hand, we can obtain a Markov matrix M€ (T) with entries in the first column being small
and those in the second column being near 1, which will be described later in this paper. Now the
matrix M€(T) shows that there is a flow which goes from {0} to {sr}. This already finds the global
maximum at {0} and the global minimum at {7} for the original problem.
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2.2. Method of random dynamical system

We perturb the system via a small white noise:
dx = sinxdt + /2 dW (t), (2.1)

where W (t) is the standard one-dimensional Brownian motion, the unit circle is identified with S! =
R/(2mZ) and the small white noise is measured by a small positive parameter €. Under the white
noise W (t), the trajectory starting from any point will reach every point of the circle almost surely.
Therefore,

e there is no (random) invariant set in usual sense (in the random dynamical system), except for
the trivial invariant sets ¢ and S1;

e it is meaningless to consider connecting orbit in usual sense between invariant sets since any two
sets can be connected.

The perturbed system generates a random dynamical system. Except for ¢, the only random invari-
ant set is the whole circle S! since the additive white noise will push the particle to any point in a
finite time even for small €. Therefore, even for small €, it seems that no information about (random)
invariant sets and connecting orbits of the original unperturbed system can be obtained.

Many authors, see [2, Chapter 9] and [3,13,12] for example, study stochastic bifurcations or
stochastic stability by assuming that the equation is perturbed by multiplicative noise and that the
stochastic differential equation has the same deterministic fixed points as that of the original deter-
ministic one. In other words, the intensity of the noise decreases to zero near the invariant sets of the
original deterministic differential equations. In this paper, we abandon the restriction that the noise
is vanishing near the invariant sets.

2.3. Random Conley index method

Recently, Liu [25] has shown that there is a well defined Conley index for discrete random dynamic
systems through the Frank and Richeson construction for mappings. However, extending the method
in [25] to the flow case is still a challenging problem. There are essential difficulties to extend the
Conley index for discrete random dynamical systems to that for stochastic flows. One simple reason
is that a discrete random dynamical system is an iteration of a random mapping, so it can only have
a finite jump at each iteration step (of course the jump size varies at each step); while a stochastic
flow (driven by a white noise) can have arbitrary large jumps in arbitrary small time intervals by the
property of Brownian motion, so the Conley index pair can hardly be incorporated to stochastic flows
driven by white noises. Even for random flows driven by bounded real noises, defining the Conley
index is also challenging. The reason is that: given a random compact set N, in spite of the fact that
@(t,w) : X — X is continuous, the sets ¢(t, w)N(w) and N(6;@w) may be far from being approximated
when t is small since the mapping t — N(6;w) is only measurable. Therefore a Conley index pair is
not well defined for random flows driven by bounded noises (see the following section or [7,25] for
more discussions).

If we consider the time-1 map of the random dynamical system generated by (2.1), i.e. the time-
discrete random dynamical system, then we have the same result on random invariant sets of the
time continuous random dynamical systems. The empty set and the whole circle are the only random
invariant sets with respect to the time-discrete random dynamical system. Thus the only random
isolated invariant set is the whole circle and the corresponding random isolating neighborhood is also
the whole circle. Therefore, we cannot obtain any useful information about the original system by this
method.

2.4. Annealing method
By the classical annealing method, we can perturb the system as follows:

dx =sinxdt + o (t) dW (t),
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converge to the attractive critical point {m} and the convergence time is exponentially long. At the
same time, we note that the locally unstable rest point {0} is invisible by this method. The critical
point {0} makes no difference to other points, except for {;r}. Therefore, by annealing method, we
can arrive at the global minimum of the original system (note that the state space being compact is
essential). The flaw is that this method ignores all the invariant sets that are not locally stable and
that the convergence time is too long.

where o (t) =

for large c (see [6] for details). The transition probability of the system will

2.5. The Fokker-Planck equation - a statistic method

By considering the stochastic differential equation

dx =sinxdt + v/2e dW (t),

by the random dynamical system method in Section 2.2, there are no nontrivial invariant sets for the
perturbed system no matter how small € is. When € is appropriately small, we only need to observe
some time (not too long) to find out accumulating trajectories from the neighborhood of the invariant
set {0} to the neighborhood of the invariant set {;r}. Hence we can regain the global minimum as
that of the annealing method, and the merit is that the time spent is relatively much less. Actually,
this method can be used to study the connecting orbits among invariant sets and it is easy to use in
numerical simulations.

3. Conley index theory and random dynamical systems
In this section, we briefly review the Conley index theory and random dynamical systems.
3.1. Conley index theory

In [17], Franzosa showed a refinement for the Conley index pair and defined the Conley connection
matrix for partially ordered Morse decompositions of isolated invariant sets. We briefly recall the
concepts in this subsection.

Let I be a Hausdorff topological space and the flow y -t from I x R — I" satisfies y - 0=y,
y-(t+s)y=(y-t)-sforevery y el" and t,seR. A set S is invariant if S-t =S for every t € R. For
any subset U, the w-limit set and the w*-limit set of U are given by w(U) =(,.ocl(U - [t, c0)) and
@*(U) ==o cl(U - (—o0, t]). Let S C I' be a compact invariant set and U C S. Both w(U) and w*(U)
are compact invariant subsets of S.

For two disjoint invariant sets S, the set of connections from S_ to S is defined by C(S_, S;+) =
{y: o({y}) C S+, o*({{y}) € S_}. Assume that the flow y is defined on a compact set S (S could
be a compact invariant set in some larger space which need not be compact). A compact invariant
subset A of S is called an attractor if it is the w-limit set of some neighborhood of itself. Similarly, a
compact invariant subset R of S is called a repeller if it is the w*-limit set of some neighborhood of
itself. Given an attractor A and a repeller R, if for any x € X\(AUR), the w-limit set of x belongs to A
and the w*-limit set of S belongs to R, then (A, R) is called an attractor-repeller pair decomposition
of S and R is the repeller corresponding to A (conversely A is the attractor corresponding to R). The
invariant set S can be written S= A U R U C(R, A). For each attractor-repeller pair (A, R), there is a
Lyapunov function L: S — [0, 1] such that L takes on the value O on A, takes on the value 1 on R
and strictly decreases along the orbits outside of A UR.

A partially ordered set (P, <) consists of a finite set P along with a strict partial order relation <
with the transitivity property only. An interval I C P is a subset of P such that given i, j € I and
i<k<jthenkel.

Definition 3.1. For a flow y on a Hausdorff space I" and a compact invariant set S C I", a finite
collection {M(sr) | w € P} of disjoint compact invariant sets in S is called a Morse decomposition of S
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if there exists a partial order 71, 72, ...,y of P such that for every y € S\ (U, cp M(7r) there exist
indices i, j € {1,2,..., N} such that i < j and w(y) C M(7;) and w*(y) C M (7). The order with the
described property is called admissible, and the sets M (sr) are called Morse sets.

For a given Morse decomposition {M () | w € P} of compact invariant sets in S, there is a filtra-
tion of attractors Aj, i=1,..., N, and the associated filtration of repellers R;, i=1,..., N, such that
(Ai, Ri), i=1,..., N, are attractor-repeller pair decompositions of S with

B=ApGA1 & ---GCAv=S and S=Rp2R12---2Rn=0
and that the N sets given by
Mi=A;iNR;_1, 1<i<N,

are just the Morse sets in the given Morse decomposition {M(sr) | & € P}. For any given Morse decom-
position, there is a Lyapunov function L : S — [0, 1] satisfying the property that L takes on different
constant values on different Morse sets and L is strictly decreasing along the orbits outside of Morse
sets.

Theorem 1 (Morse Decomposition Theorem). (See [10].) Given a Morse decomposition of a compact invariant
set, there is a Lyapunov function which takes on different constant values on each Morse set and is strictly
decreasing along orbits outside of Morse sets.

In general, a Morse decomposition of a given invariant set S with an a prior partial order P is a
collection of finite compact invariant subsets of S (invariant subsets are generalized critical points),
and there are connecting orbits between these ‘generalized’ critical points according to the partial
order. The global minimal point will be located in the generalized critical points such that the con-
necting orbits flow in.

If S is a compact invariant set and {M(w) | w € P} is a Morse decomposition of S, then for
m,7m’ € P one has the definition m < v’ if w # 7’ and 7 lies below 7’ for every admissible or-
der of P. This defines a partial order on P. A subset I C P is an interval if 7/, 7" € I and 7 € P with
' <m<n” thenmwel.

A compact invariant set S is isolated if there exists a compact neighborhood N of S such that
S=IN):={y el]|y -RcN}. The compact subset A is called an isolating neighborhood of S. An
index pair (N7, Np) for an isolated invariant set S is a pair of compact sets in I with properties
(1) No c N7 and N7\ Ny is a neighborhood of S = I(cl(N7 \ No)); (2) Ny is positively invariant
in NVq; and (3) for y - [0, c0) ¢ N7 there exists a t > 0 with y -[0,t] c N7 and y -t € Np. The concept
of an index pair and the existence of index pairs plays a fundamental role in the Conley index theory
for isolated invariant set (see [10,11,28]).

For admissible order of the Morse decomposition M = {M(;r)}zcp and an interval I, let M(I) =
(Ujeg M (i) U (Ui’jel C(M(m;), M(7tj))), then it is an isolated invariant set; an index filtration
{N(D}iea(<) is a generalization of index pair established by Franzosa in [16, Definition 3.4]. If
(I, J) € Ir(<), then (M(I), M(])) is an attractor-repeller pair in M(IJ). In particular, M(I) is an at-
tractor in S with complementary repeller M(P \ I) provided that I is an attracting interval in (P, <).
There is a family of compact forward invariant sets {N'(I): for attracting intervals in P} such that

(i) WV'(J), N(D) is an index pair for M(J \ I) for all attracting intervals I C J,

{HYNINH=NDONN), NATU J)=NT)UN(]) for all attractor intervals I, J.

Recall that h(S) is the Conley index of S as a homotopy type of a pointed topological space, and
CH.(S;R) = H,(h(S); R) is the homological version of Conley index as a more computable object
than the homotopy index. For compact closed oriented manifolds, the coefficients R can be replaced
by the integer coefficients Z. Let

A €P CH.(M(i);: R) — D CH.(M(i); R)

ieP ieP
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be a linear map such that A = (A(i, j))i jep as a matrix map, where A(, j) : CH,(M(i); R) —
CH.(M(j); R). Similarly, we have A(I) = (A(, j))i,jer-

Definition 3.2. For a Morse decomposition M(S) of an invariant set S, A is called a Conley connection
matrix if (i) A is an upper triangular matrix, (ii) A o A =0 if A(, j) is of degree —1 for every i, j.

Note that the original Conley connection matrix definition in [16,17] requires an isomorphism for
each interval I € P between the homology of A(I) and CH,(M(I)), and this isomorphism is compati-
ble with long exact sequences induced by all pairs (I, J) (see [17,28]).

Theorem 2. (1) There exists a Conley connection matrix for a Morse decomposition.

(2) The nontrivial connection entry A(i, j) # 0 implies that C(M(7;), M(7t;)) # 0.

(3) Suppose that a Morse-Smale flow has no periodic orbits. Each nonzero map in the connection matrix is
flow defined. The Conley connection matrix is unique.

The first two results are proved by Franzosa [16,17], and the third by Reineck [29,30]. Franzosa [17]
constructed a non-unique Conley connection matrix at the bifurcation point.

Without the partial order, one can also define the Conley connection matrix for the general dy-
namical system with finitely many compact invariant subsets and the connecting orbits among the
invariant subsets.

Definition 3.3. The Conley connection matrix for the finitely many invariant subset {Sy}yeca is given
by

Ap: @D CHu(Sa: R) — @D CH.(Sa: R)

acA acA

a linear map such that Ay = (A(«, B))a,pea, Where
A(e, B) : CHy(Sq; R) = CHA(Sp; R).

Remarks. (1) Although this is similar to the connection matrix defined in Franzosa [16,17], our defi-
nition of a connection matrix A4 is not upper triangular since A does not have any partial order.

(2) In fact we allow A(w, o) as the possible nonzero diagonals in the connection matrix. This
definition is used in our result [7] for the invariant subsets of X(t,w) = X — €&(t, w) which depend
on the path of diffusion process &(t, w) for finitely many invariant subsets in a compact manifold M.

3.2. Random dynamical systems

We give a brief review on random dynamic systems and introduce some notations in this subsec-
tion. See [2] for more details on this subject.

Definition 3.4. A measurable (CK k=0, ..., 00, C®) random dynamical system on the measurable
(Ck k=0,...,00,C?) space (CK, k=0,...,00,C?-manifold) (X, B) over a metric dynamical system
(82, F,P, (6(t))ter) with time T is a mapping

d:Tx2xX—>X, (t,w,x)—> ¢, w,x),

with the following properties:

(i) Measurability: ¢ is (B(T) ® F ® B, B)-measurable.

(ii) Regularity: ¢ (t,w) : X — X is measurable (CK, k=0, ..., 00, C?).

(iii) Cocycle condition: ¢ (0, w) =idx for all w € £2 and ¢(t + s, w) = P (t, 0(S)w) o P (s, w) for all
s,teT,we 2.
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It is known that stochastic and random differential equations generate time continuous random
dynamical systems; random difference equations and random mappings generate time discrete ran-
dom dynamical systems; in particular, the time-1 mapping of a time continuous random dynamical
system generates a time discrete random dynamical system.

Given a random dynamic system, one can define the measurable skew product flow

Ot (w,x) = (0w, ¢ (t, w)x),

for all t € T. Here the skew product of the metric dynamical system (£2,F,P, (6(t));eT) and the
cocycle ¢(t,w) on X gives a measurable dynamic system ©(t) : 2 x X — §2 x X, and every such
a measurable skew product dynamic system ® defines a cocycle ¢ over a metric dynamical system
(82, F, P, (0()tem).

Suppose that the probability ;& on (£2 x X, F ® B) is invariant for the skew product ® (with
respect to ¢), i.e. ©(t)u = u for all t € T. A probability w is an invariant measure for the random
dynamic system ¢ if w is invariant for the skew product ® and wou =P, where 7 : 2 x X — 2
is the canonical projection. By Theorem 1.2.10 of [2], the invariant measure for C° random dynamic
system ¢ is non-empty, provided that X is a compact metric space. Let P(X) be the set of subsets
of X, and A: 2 — P(X) be a function with values in P(X) (called a random set). Let dx be a metric
on X.

Definition 3.5. (1) A map A: 2 — P(X) is called a random closed (or compact) set if w +— dx(x, A(w))
is measurable for each x € X and A(w) is closed (or compact) for each w € £2, where dx (x, A(w)) =
inf{dx(x, y): y € A(w) C X}.

(2) Let C C £2 x X. A random set C is called forward (or backward) invariant if ¢(t, w)C(w) C
CHtw) (or CO(t)w) C p(t,w)C(w)) P-as. for all t € TT.

(3) A random set C is an invariant if ¢ (t, ®)C(w) = C(B(H)w) P-a.s. for all t € TT.

4. Markov matrix for gradient systems on R"
We study the Conley-Markov matrix for the stochastic differential equation which is related to our

original dynamical system.
Consider the flow generated by V (x) in R":

dx=Vx)dt R"
X (x)dt, xeR", (41)
x(0) = xp.
Adding a white noise on the dynamical system, we have the stochastic differential equation
{dx:V(x)dtJm/zedW(t), xe R, (42)
x(0) = Xo, '

where W (t) is an n-dimensional Brownian motion and € is a positive constant.

We note that the solution of (4.2) is a Markov process on [0, T]. Associated to this Markov process,
there corresponds a transition probability function P(s, x; t, B),2 and this transition probability admits
a density function, called transition density function, p(s, x; t, y), such that

P(s,x; t, B)=/p(s,x; t,y)dy
B

2 The transition probability function P(s, x; t, B) means the probability of the stochastic trajectory entering the set B at time t
if we start from x at time s, here 0 <s <t.
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for any Borel set B C R". If the transition density function p(s, x; t, y) is measurable in all its argu-
ments, then one has the Kolmogorov-Chapman equation for the transition density function

p(s, x; t,y)=/p(s,><;u,2)p(u,z; t,y)dz, YO<s<u<t.
]Rn

See Chapter 3 of [19]. By the meaning of transition probability function P(s, x; t, B), the Kolmogorov-
Chapman equation for the transition probability follows

P(s,x;t, B):/P(u,y; t,B)P(s,x;u,dy), VO<s<ucx<t.

RN

Note that, in (4.2), the coefficients are independent of t, so the corresponding Markov process is
time homogeneous. In this case, we can simply denote P(s, x;t, B) by P(t —s, x, B) and p(s, x; t, y) by
p(t —s,x,y). The transition density function p(t, &, x) is a fundamental solution of the Fokker-Planck
equation when it is regarded as a function of (t, x):

9
a_lt’ —€eAp—V-(pV), (%) € (0, +00) x R".

Let us consider the Cauchy problem

ou n
E:eAu—V-(uV), (x,t) e R" x (0, +00), (43)
u(x,0) = f(x), xeR",

where f(x) > 0 is bounded, continuous or measurable, and satisfies fRn f(x)dx=1.1If V and divV
are locally Holder continuous and uniformly bounded and f(x) is twice continuously differentiable,
then nonnegative solution of (4.3) is unique by results in [19, Chapter 2, §9]. By classical parabolic
theory, the solution u can be explicitly expressed by

u(x,t) = f p(t.£.x) F(£) dE. (4.4)

Rn

This unique nonnegative solution u(-,t) of (4.3) is actually the density function of the Markov process
associated to (4.2) at time t. In (4.2), the initial value x¢ is a random variable with density function
given by u,? then

P(x(t)eB):/u(t,x)dx, VB C R",
B

where x(t) is the solution to the stochastic differential equation (4.2). When € = 0 in (4.2), the
stochastic differential equation reduces to the ordinary differential equation (4.1). In this case, the
initial point xo is a deterministic point, and the solution x(t) is an ordinary solution of (4.1) such that

1, x(t) € B,

P(O’X;t’B)z{o X(t) ¢ B.

For details on relations between the Markov process and the Fokker-Planck equation, see [14,19].

3 This means that P(xg € B) :fB ug(x) dx for any Borel set B C R".
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Consider the gradient system
dx=-Vfx)dt, xeR", (4.5)
with the following assumptions.

(H1) limpy- oo f (x) = 00.
(H2) The system (4.5) has finitely many fixed points.

To study the gradient system (4.5), we consider the randomly perturbed system
dx=-Vfx)dt++2edW(t), xeR". (4.6)

Then the transition probability density function u(x,t) of the perturbed system (4.6) satisfies the
Fokker-Planck equation:

ur=€Au+V-uVvf). (4.7)

Assume that u€ is the stationary solution of the Fokker-Planck equation, i.e., u¢ satisfies the cor-
responding elliptic equation

€EAUS + V- (uVf)=0.
We have that u€(x) = ke=/®/€ is the stationary solution of (4.7) provided that

/ e T®/€dx < 0 (4.8)

Rn

and the constant k= = [, e~/ ®/€ dx. The stationary solution u€ is called the Gibbs measure in statis-
tical mechanics. One may add a dissipation condition to guarantee (4.8) to ensure the existence of the
Gibbs measure. For instance, if there exist constants a, b > 0 such that f(x) > a|x| whenever |x| > b,
then (4.8) holds. If u(t,x) is the solution to (4.7) with initial condition u(0, x) = ug(x) where ug(x)
satisfies [pn uo(x)dx =1, under some mild conditions in [27,31], then one has

/u(t,x)dx:l, forallt >0 and tlim u(t,x) =u€(x).
—00

Rn

Assume that {x; e R": i=1,...,N} is the set of isolated fixed points of the unperturbed sys-
tem (4.5). Let

8= min |[|x; —xj|.
1<i, j<N

Denote by B; := By (x;) the open ball centered at x; with radius «, where o < § is a constant. In
this paper, we focus on the Markov matrix role arising from the Fokker-Planck equation to detect the
natural order and possibly partial order among invariant subsets (invariant regions).

Assume that nonnegative continuous functions ug. i=1,...,N, satisfy supp(ug) C B; and that

fR" uf)(x) dx = 1. Consider the Cauchy problem

{ut=eAu+V~(uvf), xeRY, (4.9)

u(0,x) = ul)(x)

and assume that u€i(t, x) is the solution to (4.9).
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Definition 4.1. Let
T
mfj = %//ue’i(t,x) dxdt,
0 Bj
be the average probability that the trajectories of (4.6) starting from B; spend in B; over the time

period T. The Markov matrix with e-diffusion M€ (T) of (4.5) is the N x N matrix with entries given
by m;:
j

€ € €
myyp My - My

€ € €
m m e m

21 My 2N

M&(T) = ; :

€ € €

Myp Myy o0 Mgy

The elements of the Markov matrix are probabilities values related to time T, the perturbation
parameter €, the neighborhood B}, and the initial condition uy in (4.9). For convenience, we also use
notations M or M€ if they do not cause any confusion.

Definition 4.2. Let Sj(T) = ZIN:l mfj be the sum of the j-th column of M*(T), j=1,...,N. S; is
called the natural energy of x;.

The natural energy of x; denotes the total ‘probability’ that the trajectory starting from all the fixed
points x;, i =1,...,n, will connect to x; in the period [0, T] through the stochastic process (4.6). Note
that Sj may be greater than 1 since 0 < mfj <1 and hence 0 < Sj < N. Thus it is reasonable to believe
that the global minimal points are actually x, with k satisfying

€ _ €
Sk _m]aij.

Definition 4.3. The natural order ‘<.’ among {xj; j=1,..., N} is defined by

e Xj <cx if and only if S§(T) < Sj(T);
o Xi=c X;j if SE(T) = S(T).

From the definition, it is clear that the natural order among {x;; j=1,...,N} depends on the
choice of €, T, the neighborhood selection Bj, and the initial condition uf). This seems to be unfa-
vorable as the order may change if different parameters are chosen. However, we would like to use
one simple example to argue that this flexible property may be desirable in many practical problems,
especially when finite time behavior of the invariant sets is the subject of study. In addition, with
proper selections of the parameters, the natural order can recover the order induced by the original
energy function f.

Let us consider the following system with the energy function f given in Fig. 2. There are five
critical points in the gradient system with three stable sinks and two unstable source. The middle
one Xy is the global minimizer for the function f. However, if the initial state is uniformly distributed
in the region and noise level € is small, the trajectories will have much larger probability staying near
the local minima x; and x3 in a finite time interval [0, T] than staying in the neighborhood of x.
Therefore, it is more likely to observe x; or x3 than x;. In fact, xo is only more attractive when T is
large enough.

The dependence of the natural order on the selection of the neighborhood B; becomes relative
less crucial if noise is weak enough and time T is large enough. This can be seen in the following
theorem.
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0.2
0 KA
X3
-0.4
-0.6
-0.8
1t
-1.2¢+ X,

-20 -15 -10 -5 0 5 10 15 20

Fig. 2. The energy function f with 5 critical points. Although the middle one is the global minima, it is less likely to be observed
in a finite time interval if the initial state is uniformly distributed in the region.

Theorem 3. For any n > 0, there exists €9(n) > 0 with the property that, for € < €p(n), there exists
To(n, €) > 0 such that when T > To(n, €),

N
> omG>1-n, i=1,....N.
j=1

In particular, we have the following probability
P(R"\ Do) <1,
where Dy is the union of neighborhoods of stable critical points.

Proof. Consider the Cauchy problem

—_— . n
[ut_eAu+V @vf), xeR", (4.10)

u(0, x) = uog(x)

with ug satisfying up > 0 and /]R” ugdx = 1. Note that (4.10) has a unique steady state u€(x) =

ke=f®/€ and that any solution to (4.10) converges to the unique steady state when t — oo and
that the convergence is uniform on any compact sets in R", see [27,31] for details. Moreover, when
€ — 0, the steady state u¢ converges to the Dirac measure concentrating on global minimum points
of f, see [6,20] for details.

Note that Dy = Uf’zl B;, recalling that B; is the a neighborhood of critical point x; of f. For
arbitrary n > 0, there exists an €g > 0 such that for any € < €,

/uf(x)dx >1-n/4

Do

Let u(t, x) be the solution to (4.10). For the given € < €, choose To such that

/|u(t,x) —uf()|dx <n/4, Vt=To.
Do
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Therefore, when t > To,

/u(t,x)dx>fue(x)dx—fyue(x)—u(t,x)\dxg1—n/4—n/4>1—n/2. (411)
Do Do Do

In particular, if we take ug in (4.10) such that supp(ug) C B; and that fRn up(x)dx =1, and as before,
we denote by u€-i(t,x) the solution with this initial condition. Then (4.11) holds with u€i(t,x) in
place of u(t, x).

Choose Tg such that

TO—T0> 1—)’)
To ~ 1-—n/2"

(4.12)

Therefore, when T > Ty,

N N ] T ; T
Zmiéj:Zf/./Ue’i(f,X)ddez¥//u€”’(t,x)dxdt
0

=1 =1 Bj 0 Do
To T
= %(//ue'i(t,x)dxdt+//u€’i(t, X) dxdt)
0 Do %, Do
T
> %//ué’i(t,x)dxdt
To Do

. T
T—-T 1 :
= 9. = /fue"(t,x)dxdt
T T —To
To Do

>T—T0' 1_Q
T 2

>1-n,

where the second inequality holds by (4.11) for u€-i(t, x) and the last inequality holds by (4.12) to-
gether with the fact that T > Tg. The proof is complete. O

The dependence of the natural order on the initial condition uy becomes also less crucial due to
the forthcoming Remark 5.1.

5. Markov matrix for general systems

In this section, we extend the definitions of Markov matrix and natural order to general dissipative
systems.
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5.1. A natural order for invariant sets

We consider the following general system perturbed by white noise
dx=F(x)dt ++2edW (), xeR". (5.1)

The transition probability density function of the perturbed system satisfies the Fokker-Planck equa-
tion: We assume that the unperturbed system

dx=F(x)dt (5.2)

has a compact global attractor .4, which has a Morse decomposition {M,-}fvzl. Let us denote N; as a
small neighborhood of M;, and also assume that they are disjoint.

Given a dynamical system and its associated finite disjoint invariant sets, a very natural question
is to find a kind of ranking or ordering among these invariant sets. For a general system, an obvious
total order can be defined by a Lyapunov function. Unfortunately, this total order is often non-unique.
Different Lyapunov functions may produce different orders. On the other hand, there exists a very
natural partial order ‘<’ induced by the flow itself: M; < M; if and only if there is some point x such
that the w-limit of x belongs to M; and the w*-limit set of x belongs to M}, i.e. there is a connecting
orbit from M; to M;. In fact, the classical Conley connection matrix is an N x N matrix whose entries
are maps between homology groups associated to the various invariant sets. These entries can be used
to detect the connecting orbits among different invariant sets, hence to determine the flow induced
order among invariant sets. However, we need to compute the homology groups of each invariant
set and the maps between these groups to get the connection matrix, which may not come simple
in general. More importantly, we must note that the induced order by the flow is only a partial
order.

In a similar fashion as with gradient systems, we will define the Markov matrix for invariant sets
{Mj}ﬁ\’: ; through the corresponding Fokker-Planck equation

uy=€Au—V-@uF), u@0x=ux), xeR" (5.3)

Take {AG}Y, such that each A is a small neighborhood of M; and that A are disjoint. Assume

that nonnegative continuous functions u{), i=1,...,N, satisfy supp(ug) CintA; and [, ug(x) dx=1.
Then the solution u€-i(¢t,x) > 0 of (5.3) satisfies

/ uSi(t,x)dx=1 foreacht>0.
Rn

We drop the super index i in u€i(t, x) in the following discussion if no confusion is caused.
Definition 5.1. We can also define the average probability that the trajectories starting from A; en-

ters N in the period [0, T] by

T
‘l .
my o= / / Ui (¢, x) dxdt. (5.4)
0 A,



S.-N. Chow et al. / ]. Differential Equations 252 (2012) 3116-3141 3131

The Markov matrix of invariant sets {M,'}l’»\’:1 with e-diffusion, denoted by M€(T), of (5.2) is defined as

€ € €
myp My - My

€ € €
m m oo m

21 22 2N

MET) =]

€ € €

My My -0 My

Following the classical linear Fokker-Planck equation theory (see [15] and [18, Chapter 6]), there
exists a unique stationary solution u€ of the Cauchy problem (5.3) that satisfies

(1) €eAu¢ — V- (uF)=0.
(2) For any Borel measurable set B C R", we have lim;_ oo fB u(t,x)dx= fB u€(x) dx.

Definition 5.2. 5§ is the natural energy of the invariant set M, where S := >N, my; is the sum of
the j-th column of M€, j=1,...,N.

Definition 5.3. The natural order ‘<.’ among the invariant sets {Mj; j=1,..., N} is defined by

e Mj <¢ M; if and only if Sf <S§.
o Mj=¢ Mj ifo:S;.

The natural energy Sj denotes the total ‘probability’ that the trajectory starting from all the N’s
will enter Aj in the period [0, T]. Note that Sj may be greater than 1 since 0 < mfj < 1 and hence
0< Sj < N.

If S}, = max; Sj, then My is the most stable invariant set in probability sense. If we decompose
the My further and repeat the above argument, we can locate the most stable invariant set more
precisely.

Thus, we use the Markov matrix to produce a natural order among disjoint invariant subsets of S.
And we remark that the this method has the merits of being simple and practically useful in numer-
ical simulations. More importantly, when there are several local minimal points for gradient systems
(‘minimal’ invariant sets for general systems), the classical Conley index theory cannot distinguish
which one is global minimal or most stable. By our Markov matrix, we can do this easily.

Remark 5.1. If we consider the initial value problem of (5.1), i.e.
dx=F(x)dt + v2edW(t), x(0)=xg (5.5)

with xo being a random variable, then the initial condition ug in the corresponding Fokker-Planck
equation

ur=€Au—V . (uF), u(0,x) = ug(x) (5.6)

is actually the density function for the distribution of xo. When the initial condition xo in (5.5) is
varied, the ug in (5.6) is varied correspondingly. By [1, Theorem 7.3.1], we know that the solution
of (5.5) is continuously dependent on its initial value, so its distribution u(t, x) dx varies continuously.
This implies that the natural energy and the natural order of invariant sets remain unchanged when
the initial condition ug varies not much.

Next, we introduce a quantization strategy for the Markov matrix and compare it with the classical
Conley connection matrix.
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According to the decreasing natural order of the invariant sets in Definition 5.3, we relabel the
invariant sets and we still use Mj, i =1, ..., N, to denote the relabeled invariant sets. Then we obtain
a relabeled Markov matrix with e-diffusion of the invariant sets {Mi}l“:], which we still denote by M¢.
For this relabeled matrix, we let

0, i>]j,
e = 0, i<j,m;=0, (5.7)
1, i<j,mfj>0,

where mfj =0 is up to a numerical threshold.
Then we have the following definition.

Definition 5.4. The matrix

ms,  ms, msy
~e € €
ms, m m

- 21 M2 2N

M(T) = : )
M€ ~s M€
Myp Myz o0 My

N

is the quantized connection matrix of the invariant sets {M;};_, if each rﬁfj is given by (5.7).

The quantized connection matrix can recover some information of the Conley connection matrix.
For instance, if rﬁfj =1, then it indicates that there is a connecting orbit from M; to Mj. If m;; is
trivial in the classical Conley connection matrix theory, then one cannot conclude that there exists
a connecting orbit from M; to M; (see [17]). On the other hand, we can detect all the connecting
orbits by the Markov matrix in the sense of probability. In fact, we compute the probabilities from
‘neighborhoods’ of invariant sets to ‘neighborhoods’ of invariant sets, instead of from invariant sets to
invariant sets. This guarantees that mfj > 0 for any sufficiently small € > 0 up to appropriate choices
of the parameters, provided that there are connecting orbits from M; to M;. Hence rﬁfj =1 in the
quantized connection matrix, i.e., the existence of connecting orbits is predicted.

Example 5.1. Let us return to the simple example in Section 2. We obtain a Markov matrix M€ (T)
with entries in the first column being sufficiently small and those in the second column being near 1
when € is small. So the quantized connection matrix for invariant sets {0} and {7} is given by (8 (l))
Since m$; =0 up to numerical threshold, we can conclude that there are no connecting orbits from
neighborhood of {7} to that of {0}. Since m{, =1, we can conclude that there is at least one con-

necting orbit from a small neighborhood of {0} to a small neighborhood of {r}.

Example 5.2. For a given Morse decomposition with Morse sets {Mi},“: 1» by Definitions 5.1-5.4, there
are the associated Markov matrix with e-diffusion for these Morse sets, the natural energy of each
Morse set, the natural order among the Morse sets and quantized connection matrix for the Morse

decomposition.

Remark 5.2. By the Markov matrix and the natural order among finite number of invariant subsets,
we obtain stable trajectory flows connecting invariant subsets. This recovers some partial order among
these invariant subsets induced by the flow. In general, a partial order may be finer than our natural
order since the connecting orbits from a source to a saddle point or from a saddle point to another
saddle point are hard to detect by the natural order. But the natural order provides an efficient way
to find the partial order among the stable invariant sets.
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5.2. A generalized Morse decomposition

We assume that S is an invariant set, that Si,..., Sy are invariant subsets of S, and that there
exist disjoint neighborhoods M, ..., Ny of S1,...,Sn. We also assume that nonnegative continuous
functions ug, i =1,..., N, satisfy supp(ug) C intA; and [, uf(x)dx = 1. Let us consider the Cauchy
problem

Ur=€Au—V-(UuF), xeR",
{t (uF) (58)

u(0,x) = ul (x)
and assume that u€-(t, x) is the solution to (5.8). Then we define a generalized Morse decomposition.

Definition 5.5. Let

€

myp My - My
€ € €
M€ (T) = My My -0 MMy
€ € €
Myp Myy o0 My
be a Markov matrix with
T
1 )
mfj = T//u“(t, x)dxdt, 1<i,j<N, (5.9)
0 Nj

where u€i(t, x) is the solution to (5.8).

For given disjoint neighborhoods N7, ..., Ny of Sq,...,Sn, {Si: i=1,...,N} is called a general-
ized Morse decomposition of S if for every n > 0 there exists €g > 0 with the property that for given
0 < € < ¢q there exists Tg > 0 such that for T > Ty

> m§>1-n. 1<i<N.
j

It is clear that a Morse decomposition is a generalized one if € is sufficiently small and T is
sufficiently large. The classical Morse decomposition in Theorem 1 contains more information than
the generalized one in Definition 5.5.

5.3. Relation with deterministic case
In order to study the system
dx=F(x)dt, xeR", (5.10)
in the previous subsection, we consider the stochastically perturbed system

dx=Fx)dt + vV2edW (), xeR"

We consider the following natural question. What is the limiting behavior of the Markov matrix when
the intensity of the perturbation converges to zero (¢ — 0)?
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Consider the Cauchy problem
ur+V-wF)=0, xeR",
{ t+V-(UuF) (511)

u(0,x) =ug(x)

with ug(x) > 0 and fRn ug(x) dx = 1. For simplicity, we assume that ug is in C>*(R"), where CZ%(R")
is the space of twice continuously differentiable functions with the twice derivative being Holder
continuous with exponent c.

Denote Dt g =[0, T] x Bg(0), where Br(0) is the open ball centered at the origin with radius R.
Let Ctl) be the class of C! functions ¢(t,x) which vanish outside of a compact subset in t >0, i.e.,
(suppp) N (t > 0) C Dr.g, and ¢ =0 when t =T or x € dBg(0). Following [33], we recall a weak
solution of (5.11).

Definition 5.6. A bounded measurable function u(x,t) is called a weak solution of the Cauchy prob-
lem (5.11) with initial value ug, provided that for all ¢ € C}), the following holds

f (ugs + uF - Vo) dxdt+/u0¢(0, x)dx =0. (512)
R"x[0,T] R"

Theorem 4. Assume that | div F| is bounded in R". Then there exists a weak solution u of (5.11) such that
u =lime_qu€ in the L' (R" x [0, T1) topology, where u€ is the solution to

u¢ +vV.(u€F)=€Au¢, xeR",
{+ V- (uF) (5.13)
u€(0, x) = ug(x).
If u also belongs to L2(R™ x [0, T1), then it is unique. Moreover, there exists a matrix M®(T) such that,
lim M€(T) = M%(T). (5.14)
e—0

Proof. We use the vanishing viscosity method to prove the existence. Consider the viscous equa-
tion (5.13). It is known that (5.13) has a unique solution u€(t, x) by the classical parabolic theory and
the following estimate

”u6 ||C2*a(Rn><(0,T)) < C”uO”CZ-D‘(Rn) (515)

(see [15, Theorem 6] or [21, p. 390, (14.5)] for details). By the formula of the fundamental solution
(dependent on €) of (5.13) and the estimates for the fundamental solution (see [21, p. 376 (13.1)]),
there exists a constant c¢ in (5.15) which is independent of €. Hence for any R > 0 and T > 0, we have

oue du
//’ueydxdt, //‘i dxdt, //‘L

Xy at
Dr g Dt r Dr,r

for k=1,...,n and a constant K(R, T) which is independent of €. Therefore the set {u€} is compact
in the L'(Dr ) norm. By the standard diagonal process, there is a subsequence {u€)p2, with e-0
converging almost everywhere in R" x [0, T] to a bounded function u(t,x) when [ — co. We prove
that this u(t, x) is a weak solution of (5.11). Consider the integration

// (uf —eAu® + V- (u°F))pdxdt

R"x[0,T]

dxdt < K(R,T)
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for arbitrary ¢ € Cé. By using that ¢ has compact support, the integration by parts and the divergence
theorem, we get

uf¢dxdt=/(u€¢)|g dx — // u€¢ dxdt

R"x[0,T] Rn R"x[0,T]
- / () (x, 0) dx — / / u gy dxd,
Rn R"x[0,T]
// Aucpdxdt = // Au¢dxdt (supp¢ C Br(0) x [0, T])
R"x[0,T) Bg(0)x[0,T]
:/ / oVu€ -nids — // Vu€ . Vo dxdt
0 9Bg(0) Bg(0)x[0,T]
// Vu€ . V¢ dxdt,
R"x[0,T]

and similarly

// u F ¢dxdt_ // u F qbdxdt

R"x[0,T] Bgr(0)x[0,T]
T
:/ / SUF - fidsdt — // UF - Ve dxdr
0 3BR(0) Bgr(0)x[0,T]

// u¢F - V¢ dxdt,

Rﬂ [

where 7 stands for the unit outer normal of 3B (0) and ds stands for the (n — 1)-dimensional area
element in 9B (0). Note that

(uf —€Au +V-(u°F))¢pdxdt =0
RPx[0,T]
due to uf —eAu€+ V- (u°F) =0, we have
u€pedxdt — e // Vu€ - V¢ dxdt + // ueF-Vq&dxdt—i-/uo(x)q&(x, 0)dx=0
RPx[0,T] RPx[0,T] R7x[0,T] R"
Letting € — 0, we get
// (u¢>¢+uF~V¢>)dxdt+/u0¢(x,0)dx=0
R"x[0,T] Rr

Hence we obtain the existence of the solution.



3136 S.-N. Chow et al. / J. Differential Equations 252 (2012) 3116-3141

For the uniqueness, it suffices to prove that there is only the zero solution in L%(R" x [0, T]) to
the Cauchy problem

(5.16)

{uﬁ—V-(uF):O,
u(0,x)=0.

Multiplying by u and integrating with respect to x in R" on both sides of (5.16), we have

1d_

EEWMMW=—/@WMFHMMNHM.

Rll
By integrating by parts, it follows that
1 2.
u(Vu-F)dx= -3 u“div F dx,
R™ R"
o)
d 2 2 g
a||u||L2(Rn) = —fu div F dx.
Rﬂ

Since |div F| is bounded, we have

d 2 2
a ”u ”LZ(R”) < COHSt”u ”Lz(R”)'

Then Gronwall inequality enforces that ||u(t)||%2 (&

where for t € [0, T]. The proof is complete. O

)y = 0 for t € [0, T]. That is, u(t) =0 almost every-

Remark 5.3. From the proof of Theorem 4, if xg is a fixed point of the system x = F(x), then the Dirac
function u(t, x) = 8x, is always a solution of (5.11) in the sense of (5.12). This coincides with our
intuition. Because the evolution of the density function for the transition probability of the system
X = F(x) satisfies the non-viscous equation (5.11), thus this intuition on the Dirac type solution is
correct.

5.4. Examples for connection matrix

Example 5.3. We compute the connection matrix and the probability density function, the solution of
Fokker-Planck equation p(x,t), for the following 1-D equation,

dx=-Vfx)dt+v2edW (), (5.17)
where f(x) is a potential function defined by
f) =—akx—1)+x%/10,

with o =5 in the experiments, and W (t) is the standard Brownian motion.
It is easy to identify that there are three critical points for the corresponding deterministic equa-
tion, residing approximately at x; = —5.4, x =1 and x3 = 4.4.
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Fig. 3. The probability density functions with three different initial conditions at x; and time T =3 and parameter € = 18. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 4. The probability density functions with three different initial conditions at x; and time T =3 and parameter € =4.5. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

The Fokker-Planck equation for (5.17) is

(e =V(Vf(x)pi) +€Api, (518)

with initial condition as a Dirac §-function

Pi(X, O)|t=0 = Ox; (X). (5.19)

We use the Crank-Nicholson scheme to solve the Fokker-Planck equation for p(x,t) with t € [0, T],
where T =3 in this example.

Figs. 3-6 show the solutions p at time T for different parameter € values as 18,4.5,1.125 and
0.28125 respectively. In all plots, we use “blue” for the p started at xi, “green” for the p started
at x and “red” for x3. It is worth pointing out that the probability density functions p, for the initial
condition concentrated at x, = 1, the unstable critical point, become vanishing near x, regardless
the value of €, while p; and ps still cluster near their critical points respectively, especially when €
becomes smaller.

The time dependent connection matrix is defined as

ce®) =[c; )], (5.20)
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Fig. 5. The probability density functions with three different initial conditions at x; and time T =3 and parameter € = 1.125.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 6. The probability density functions with three different initial conditions at x; and time T =3 and parameter € = 0.28125.
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

where cfj(t) is defined by

() = / pi(x, t) dx, (5.21)

Bu (xj)

and By (xj) is a small ball centered at x; with radius c. Clearly, ci‘j(t) is the probability that the
trajectories originated from x; reach a small neighborhood of x; at time t.

To consider the total probability of the trajectories starting with x; and at least reaching a small
ball around x; during the period [0, T], we defined a finite time connection matrix

M€(T) = [mg], (5.22)
where
T
== / (1) d. (5.23)

0
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Table 1
The connection matrices for different parameter € values.
€ M¢€(3) c<(3)
r0.4829 0.0000 0.0000 0.8139 0.0000 0.00007
18 0.3133 0.0188 0.0870 0.7452 0.0000 0.0556
L0.0913 0.0106 0.2753. L0.0012 0.0001 0.6587
r0.7931 0.0000 0.0000 T r0.8139 0.0000 0.00001
4.5 0.5315 0.0263 0.1282 0.7452 0.0000 0.0556
L0.0003 0.0000 0.6412 L0.0012 0.0001 0.6587
r0.9791 0.0000 0.0000 7 r0.9849 0.0000 0.00007
1.125 0.7245 0.0420 0.0959 0.9722 0.0000 0.0120
L 0.0000 0.0000 0.9213 . L 0.0000 0.0000 0.9336.]
r0.9998 0.0000 0.0000 0.9999 0.0000 0.00007
0.28125 0.7853 0.0597 0.0406 0.9996 0.0000 0.0003
L 0.0000 0.0000 0.9980. L 0.0000 0.0000 0.9988

The difference between C€(t) and M€ (T) is that C¢(t) describes an instant property at time t while
M€ (T) is the accumulated information in the period [0, T]. The trajectories contributed to M€ (T) may
not stay within the small ball B (x;) through out the period.

In Table 1, we present the two matrices M€ (T) and C¢(T) with T = 3, and parameter € = 18, 4.5,
1.125, and 0.28125 respectively.

We note that for all the matrices (both C¢(T) and M¢(T)), the first column always has the largest
sum, the second column always has the smallest sum, and the third column is in the middle. This
gives an order (x1,X3,X2) to the corresponding critical points that x; is the global minimizer. We
also note that as € becomes smaller, ci1 and c33 are close to 1, which can be interpreted as that
both of the points are essentially stable points. The probability of staying at the corresponding point
becomes 1 when the intensity of the noise diminished. On the other hand, cy; remains close to zero,
and both ¢y and c3p are zero regardless how small € is. In this sense, x, is a critical point that is
nearly invisible if noise (it does not matter how small it is) is present, so it can be excluded from the
essential set of critical points.

Example 5.4. In this example, we consider a non-gradient example. Consider the system

{dx: (ax —y —x(3 + y2)) dt + v2€ dW1 (1), (5.24)

dy = (x +ay — y(x* + y?)) dt + v2e dW;(0),

where « is a constant and Wq(t), W, (t) are independent Brownian motions. It is well known that
when € =0, the system (5.24) undergoes a Hopf bifurcation when o passes through 0: when o <0,
the system has 0 as an attractor; when « > 0, 0 changes its stability to an unstable fixed point and
there is a stable limit cycle, denoted by S!, with center at the origin and radius ./a. The Fokker-
Planck equation associated to (5.24) is

ur=€Au—V-UV) (5.25)

with V = (ax — y —x(x2 + y?), x+ay — yxZ + y*) .

Let o < 0. Given T > 0, € > 0, and the initial value ug being the uniform density on the disk D!,
the shape of the solution u of (5.25) at time T will be approximated the Dirac measure with mass at
the origin.

Let a =1, we choose a small neighborhood N7 of the origin and another small neighborhood N>
of the circle S'. Given T = 1.5, € =0.045, and the initial value uy being the uniform density on the



3140 S.-N. Chow et al. / J. Differential Equations 252 (2012) 3116-3141

300

Fig. 7. Probability density function at T = 1.5. It shows that the trajectories are clustered near a neighborhood of the stable
limit circle.

disk D1, the shape of the solution u of (5.25) at time T will be like a crater as shown in Fig. 7. And
similarly to Example 5.3, we can obtain the Markov matrix

e (044 056
M (T)_<0.04 0.96 )

Obviously, the element m{, of M€(T) becomes larger with respect to the time T. Therefore we can
conclude that there exists a connecting orbit from small neighborhood of 0 to small neighborhood
of S,
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