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In this paper we consider a free boundary problem for a reaction–
diffusion logistic equation with a time-dependent growth rate.
Such a problem arises in the modeling of information diffusion
in online social networks, with the free boundary representing
the spreading front of news among users. We present several sharp
thresholds for information diffusion that either lasts forever or
suspends in finite time. In the former case, we give the asymptotic
spreading speed which is determined by a corresponding elliptic
equation.
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1. Introduction

Online social networks have recently become important media for spreading information and
facilitating the building of social relations among a huge number of people. Research efforts on un-
derstanding information diffusion have a significant impact on real life applications such as product
marketing, political online campaign, etc. Extensive investigations have been made to understand net-
work structure, user interactions, and traffic properties [1,9,13,14,17] and to study the characteristics
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Fig. 1. Conceptual illustration of the information spreading in online social networks (adapted from [19]).

of information diffusion [4,10,18,21]. Mathematical modeling has played an increasingly important
role in understanding information diffusion in online social networks (see [8,20] and references
therein).

Most existing models of information diffusion on online social networks have concentrated on the
temporal dimension. Recently a Diffusive Logistic (DL) model was proposed in [19] to study the pro-
cess of information diffusion process in online social networks over time and position. To describe
distance in online social networks, they defined a natural metric called friendship hops. The met-
ric is measured by the number of hops from one user to another in social network graphs, and
is different from the physical distances between users. From the definition of the distance metric,
users in an online social network can be classified into groups according to their distance x from
the source s. Let Ux represent the users with distance x to the source. The total user population is
U = {U1, U2, . . . , Ux, . . . , Um}, where m is the maximum distance from the source s to the users and
its value varies according to the definition of the distance (see Fig. 1).

Let u(t, x) denote the density of influenced users at time t and distance x. The density of influ-
enced users u(t, x) depends on two major factors. First, the users in U y (y �= x) can influence those in
Ux through direct or indirect friendship links that are usually bidirectional or reciprocal in a manner
of random walk. Secondly, the users in Ux could influence each other. Then information diffusion pro-
cess in online social networks can be divided into the following two parts: growth part and diffusion
part. As widely used in spatial biology and epidemiology, the diffusion process is modeled by the
Laplacian and the growth part by a logistic equation [12]. They proposed in [19] a model described
by the following partial differential equation:

⎧⎪⎪⎨⎪⎪⎩
ut − duxx = r(t)u

(
1 − u

K

)
, t > 1, l < x < L,

u(1, x) = u0(x), l � x � L,

ux(t, l) = 0, ux(t, L) = 0, t > 1,

(1.1)

where r, K and d indicate the intrinsic growth rate, the carrying capacity, and the diffusion rate,
respectively. L and l represent the upper and lower bounds of the distances between the source s
and other social networks users. In [19] the diffusive logistic model in online social networks was
validated against a real dataset collected from a popular social news site, http://www.digg.com/. The
experiment results show that the DL model is indeed able to characterize and predict the process of
information propagation in online social networks. For example, let K = 25, d = 0.01 and
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r(t) = 1.4e−1.5(t−1) + 0.25,

for the most popular news with 24,099 votes in Digg, the average prediction accuracy of the DL model
over all distances during the first 6 hours is 92.08%.

In online social networks, most of the users are clustered in a few number of friendship hops and
the growth process plays a major rule. The intrinsic growth rate r(t) is often dependent on time t .
More specifically, r(t) is a decreasing function of t , reflecting the fact that users gradually lose their
interest to news.

In above system, l and L are fixed, which means the distance between the source s and the users
in the social networks is constant over time. But in reality, the distance changes as time proceeds.
To describe such scenario, recently, Du and Lin [6] proposed the following free boundary model to
describe the spreading of a new or invasive species:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ut − duxx = u(a − bu), t > 0, 0 < x < h(t),

ux(t,0) = 0, u
(
t,h(t)

) = 0, t > 0,

h′(t) = −μux
(
t,h(t)

)
, t > 0,

h(0) = h0, u(0, x) = u0(x), 0 � x � h0,

(1.2)

where a and b are constants. They showed that problem (1.2) has a unique solution (u(t, x),h(t))
defined for all t > 0, with u(t, x) > 0 and h′(t) > 0. They gave a spreading–vanishing dichotomy of the
model. In addition, they proved expanding front that moves at a constant speed for enough long time
if spreading occurs.

Motivated by [6], in this paper we investigate the DL model with a free boundary for online social
networks. The system is given in the following form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ut − duxx = r(t)u

(
1 − u

K

)
, t > 0, 0 < x < h(t),

ux(t,0) = 0, u
(
t,h(t)

) = 0, t > 0,

h′(t) = −μux
(
t,h(t)

)
, t > 0,

h(0) = h0, u(0, x) = u0(x), 0 � x � h0.

(1.3)

The initial function u0(x) belongs to Σ(h0) for some h0 > 0, where

Σ(h0) = {
ϕ ∈ C2([0,h0]

)
: ϕ′(0) = ϕ(h0) = 0, ϕ(x) > 0 in [0,h0)

}
.

u(t, x) represents the density of influenced users with distance x at time t . x = h(t) is the moving
boundary to be determined and represents the spreading front of news (such as movie recommenda-
tion) among users. ux(t,0) = 0 means no news traveling in the left part. Hence we only need consider
the diffusion in the right part. K is the carrying capacity, d is the diffusion rate, and r(t) is intrinsic
growth rate.

As we discussed above, in the following, we always assume that

(A) r(t) is a decreasing function of time t with a positive lower bound, i.e., 0 < r∞ � r(t) � r(0).

In general, we call h′(t) = −μux(t,h(t)) Stefan condition, where μ represents the diffusion ability
of the information in the new area. As we all known, Stefan condition has been used in many areas.
For example, it was used to model the wound healing [3], the melting of ice [16], the spreading of
species [5,6,11].

The paper is structured as follows. In Section 2, we first show that the solution of (1.3) is global
and unique, and the free boundary x = h(t) is increasing. Then we present the comparison principle.
Finally, we use the comparison principle to give the upper bound of the solution.
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In Section 3, we show that the information traveling either lasts forever or suspends in finite

time, that is, if h0 > π
2

√
d

r∞ , then h∞ = ∞ and limt→+∞ u(t, x) = K in any bounded domain, which

means the information diffusion lasts forever. On the other hand, if h∞ < ∞, then h∞ � π
2

√
d

r∞
and limt→+∞ ‖u(t, ·)‖C([0,h(t)]) = 0 uniformly. In the other words, the information vanishes in finite
time.

In Section 4, by constructing an upper solution we prove that if λ is sufficiently small, the infor-
mation vanishing must occur. Then we show that there exists a threshold λ∗ which is dependent on
ϕ ∈ Σ(h0) such that when λ > λ∗ , the information with the initial data u0 = λϕ travels in the whole
distance. Otherwise, the information vanishing happens.

In Section 5, we demonstrate that if the information spreading happens, the expanding front x =
h(t) moves at a constant speed k0, which is determined by an elliptic equation derived from the free
boundary problem (1.3). Finally, we show that spreading speed k0 is continuously dependent on r∞ ,
K , μ, d, and satisfies

lim
μK

d →+∞
k0√
r∞d

= 2, lim
μK

d →0

k0√
r∞d

d

μK
= 1√

3
.

The paper ends with a brief discussion.

2. Existence and uniqueness

We first present the local existence and uniqueness of the solution by the contraction mapping
theorem. The global existence is then given by a priori estimate of the solution.

Theorem 2.1. Let D = {(t, x) ∈ R
2: t ∈ [0,∞), x ∈ [0,h(t)]}. For any α ∈ (0,1), problem (1.3) admits a

unique solution

(u,h) ∈ C (1+α)/2,1+α(D) × C1+α/2([0,∞)
)
.

Furthermore,

0 < u(t, x) � M, 0 < h′(t) � C

for all t > 0, 0 < x < h(t), where C and M are positive constants.

Proof. This theorem can be proved by using the same methods in [6] (see Section 2). For brevity, the
detailed proof is omitted. �
Lemma 2.2 (Comparison principle).

(i) Suppose that u ∈ C(D∗
T0

) ∩ C1,2(D∗
T0

), h ∈ C1([T0, T ]) with D∗
T0

= {(t, x) ∈ R
2: 0 � T0 < t � T ,

0 < x < h(t)}, and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ut − duxx � r(t)u

(
1 − u

K

)
, T0 < t � T , 0 < x < h(t),

u = 0, h′(t) � −μux, T0 < t � T , x = h(t),

ux(t,0) � 0, T0 < t � T ,

(2.1)
h(T0) � h(T0), u(T0, x) � u(T0, x), 0 � x � h(T0).
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Then the solution (u,h) of the free boundary problem (1.3) satisfies

h(t) � h(t) and u(t, x) � u(t, x)

for (t, x) ∈ [T0, T ] × [0,h(t)].
(ii) Assuming that u ∈ C(D∗

T0
) ∩ C1,2(D∗

T0
), h(t) ∈ C1([T0, T ]) with D∗

T0
= {(t, x) ∈ R

2: 0 � T0 < t � T ,

0 < x < h(t)}, and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ut − duxx � r(t)u

(
1 − u

K

)
, T0 < t � T , 0 < x < h(t),

u = 0, h′(t) � −μux, T0 < t � T , x = h(t),

ux(t,0) � 0, T0 < t � T ,

h(T0) � h(T0), u(T0, x) � u(T0, x), 0 � x � h(T0).

(2.2)

Then the solution (u,h) of the free boundary problem (1.3) satisfies

h(t) � h(t) and u(t, x) � u(t, x)

for (t, x) ∈ [T0, T ] × [0,h(t)].

It follows from Lemma 2.2 that

Corollary 2.3. u � u, where

u = K e
∫ t

0 r(τ )dτ

(
K

‖u0‖∞
− 1 + e

∫ t
0 r(τ )dτ

)−1

is the solution of ⎧⎨⎩
du

dt
= r(t)u

(
1 − u

K

)
, t > 0,

u(0) = ‖u0‖∞.

(2.3)

3. Spreading and vanishing

It follows from Theorem 2.1 that x = h(t) is monotonically increasing. We then have that
limt→+∞ h(t) := h∞ ∈ (0,+∞].

Definition 3.1. The information is vanishing if

h∞ < ∞ and lim
t→+∞

∥∥u(t, ·)∥∥C([0,h(t)]) = 0,

while the information is spreading if

h∞ = ∞ and lim
t→+∞ u(t, x) = K

uniformly for x in any bounded set of [0,∞).
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Lemma 3.2. Suppose that (A) hold.

(i) If h∞ < ∞, then h∞ � π
2

√
d

r∞ .

(ii) If h∞ < π
2

√
d

r∞ , then limt→+∞ ‖u(t, ·)‖C([0,h(t)]) = 0.

Proof. (i) We prove that h∞ � π
2

√
d

r∞ by contradiction. If h∞ > π
2

√
d

r∞ , namely there exists T such

that l := h(T ) > π
2

√
d

r∞ . That is, r∞ > λ1 := d( π
2l )

2, where λ1 denotes the first eigenvalue of the prob-

lem

{−dψ ′′ = λψ in (−l, l),

ψ(−l) = ψ(l) = 0,
(3.1)

the correspondence eigenfunction ψ(x) = cos( π
2l x). For any small ε > 0, it follows from the above

results and the continuity that λε
1 < r∞ , where λε

1 is the first eigenvalue of the problem

{−dψ ′′ − εψ ′ = λψ in (−l, l),

ψ(−l) = ψ(l) = 0.
(3.2)

For any given small ε > 0, we consider the problem

⎧⎨⎩−dw ′′ − εw ′ = r∞w

(
1 − w

K

)
in (−l, l),

w(±l) = 0.

(3.3)

For this logistic problem, using Proposition 3.3 in [2] yields that problem (3.3) admits a unique posi-
tive solution w = wε . Obviously, w(x) is symmetric about x = 0, and then it is easy to get w ′(x) < 0
for x ∈ (0, l]. Furthermore, w < K for x ∈ [−l, l] by using the comparison principle. Motivated by [6],
we define v(t, x) = w( l

h(t) x). Direct calculations yield that

vt = − lx

h2(t)
h′(t)w ′, vxx = l2

h2(t)
w ′′,

vt − dvxx = l2

h2(t)

[
− x

l
h′(t)w ′ − dw ′′

]
.

From Theorem 2.1, h′(t) → 0 as t → +∞. Hence we can find a T ′ > T such that h′(t) < ε l
h∞ for t � T ′ .

That is, h∞
l h′(t) < ε. We then have

vt − dvxx � l2

h2(t)

[−εw ′ − dw ′′] = l2

h2(t)
r∞w

(
1 − w

K

)

� r∞w

(
1 − w

K

)
= r∞v

(
1 − v

K

)
.
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We choose a sufficiently small δ such that u(T ′, x) = δv(T ′, x) � u(T ′, x), and then have

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut − duxx � r∞u

(
1 − u

K

)
, t > T ′, 0 < x < h(t),

ux(t,0) = 0, u
(
t,h(t)

) = 0, t � T ′,
u
(
T ′, x

)
� u

(
T ′, x

)
, 0 � x � h

(
T ′).

(3.4)

According to Lemma 2.2, we obtain u(t, x) � u(t, x) for t � T ′ , 0 � x � h(t). Using the comparison
principle, we have

ux
(
t,h(t)

)
� ux

(
t,h(t)

) = δ
l

h(t)
w ′(l) → δ

l

h∞
w ′(l) < 0.

But the free boundary implies that

ux
(
t,h(t)

) = − 1

μ
h′(t) → 0 as t → +∞.

Thus the proof is completed.
The proof of (ii) can be performed by constructing a vanishing upper solution. We omit the proof

here, but a strong conclusion (Theorem 3.4) is given instead. �
Corollary 3.3. If h0 � π

2

√
d

r∞ , then h∞ = ∞.

Theorem 3.4. If h∞ < ∞, then limt→+∞ ‖u(t, ·)‖C([0,h(t)]) = 0.

Proof. Suppose lim supt→+∞ ‖u(t, ·)‖C([0,h(t)]) = ε > 0 by contradiction. We first show that for any
0 < α < 1

‖u‖C (1+α)/2,1+α([0,∞)×[0,h(t)]) + ‖h‖C1+α/2([0,∞)) � C, (3.5)

where C depends on h0, α, ‖u0‖C2([0,h0]) and h∞ .

In fact, we consider a transformation y = h0x
h(t) , which straightens the free boundary x = h(t) to the

line y = h0.
Let u(t, x) = v(t, y), and direct calculations show that

ut = vt + v y
∂ y

∂t
= vt − h′(t)

h(t)
yv y, uxx = h2

0

h2(t)
v yy .

Hence the free boundary problem (1.3) becomes⎧⎪⎪⎪⎨⎪⎪⎪⎩
vt − h′(t)y

h(t)
v y − d

h2
0

h2(t)
v yy = r(t)v

(
1 − v

K

)
, t > 0, 0 < y < h0,

v y(t,0) = v(t,h0) = 0, t > 0,

v(0, y) = u0(y), 0 � y � h0.

(3.6)

It follows from Theorem 2.1 that
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∥∥∥∥r(t)v

(
1 − v

K

)∥∥∥∥
L∞

� C1,

∥∥∥∥h′(t)y

h(t)

∥∥∥∥
L∞

� C2,

∥∥∥∥ h2
0

h2(t)

∥∥∥∥
L∞

� C3,

where C1, C2, C3 are constants.
Using the L p estimates for parabolic equation and Sobolev imbedding theorem gives that

‖v‖C (1+α)/2,1+α([0,∞)×[0,h0]) � C4,

where C4 is a constant depending on α, h0, C1, C2, C3, and ‖u0‖C2([0,h0]) . We immediately ob-
tain (3.5).

It follows from the assumption lim supt→+∞ ‖u(t, ·)‖C([0,h(t)]) = ε > 0 that there exists a sequence
(tk, xk) in (0,+∞) × [0,h(t)), such that u(tk, xk) � ε/2 for k ∈ N , and tk → +∞ as k → +∞. Since xk
is bounded, there exists a subsequence {xkn } such that xkn → x0 ∈ [0,h∞) as n → +∞.

Define un(t, x) = u(tkn + t, x) for t ∈ (−tkn ,∞), x ∈ [0,h(tkn + t)). It follows from the parabolic
regularity that {un} has a subsequence {uni } satisfying uni → ũ as i → +∞, where ũ satisfies the
following problem

ũt − dũxx = r∞ũ

(
1 − ũ

K

)
, t ∈R, 0 < x < h∞.

Since that ũ(0, x0) � ε/2, we then have ũ > 0 in (−∞,∞)×[0,h∞). Note that r∞(1 − ũ
K ) is bounded

by N := ‖r∞(1 − ũ
K )‖L∞ . Using the Hopf lemma to the equation ũt − dũxx � −Nũ at the point (0,h∞)

yields that ũx(0,h∞) � −σ0, where σ0 is a positive constant.
On the other hand, since ‖h‖C1+α/2([0,∞)) � C and h′(t) > 0, we have h′(t) → 0 as t → +∞. There-

fore,

ux
(
tkn ,h(tkn)

) = − 1

μ
h′(tkn ) → 0, n → ∞.

But the fact ‖u‖C (1+α)/2,1+α([0,∞)×[0,h(t)]) � C implies

ux
(
tkn ,h(tkn)

) = (un)x
(
0,h(tkn)

) → ũx(0,h∞) � −σ0, n → ∞,

which leads to a contradiction. �
Lemma 3.5. Suppose that (A) hold. If h∞ = ∞, then limt→+∞ u(t, x) = K uniformly for x in any bounded set
of [0,∞).

Proof. It follows from Corollary 2.3 that u(t, x) � u(t) for t > 0, 0 � x � h(t), where

u = K e
∫ h0

0 r(τ )dτ

(
K

‖u0‖∞
− 1 + e

∫ h0
0 r(τ )dτ

)−1

is the solution of the problem (2.3).
Clearly we obtain limt→+∞ u(t) = K , and then lim supt→+∞ u(t, x) � K uniformly for x ∈ [0,∞).

Since h∞ = ∞, there exists tl > 0 such that l := h(tl) > π
2

√
d

r∞ . Let ul be the solution of the following

problem ⎧⎪⎪⎨⎪⎪⎩
(ul)t − d(ul)xx = r∞ul

(
1 − ul

K

)
, t > tl, 0 < x < l,

(ul)x(t,0) = 0, ul(t, l) = 0, t � tl,

u (t , x) = u(t , x), 0 � x � l.

(3.7)
l l l
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Using Lemma 2.2 gives that ul(t, x) � u(t, x) for t � tl and 0 � x � l. Since r∞ > (π
2l )

2d, it follows from
a well-known result that ul(t, x) → u∗

l (x) as t → +∞ uniformly in the compact subset of [0, l), where
u∗

l is the solution of the following problem

⎧⎨⎩−d(u∗
l )xx = r∞u∗

l

(
1 − u∗

l

K

)
, −l < x < l,

u∗
l (−l) = u∗

l (l) = 0.

(3.8)

Applying Lemma 2.2 of [7], we know u∗
l (x) → K as l → +∞ uniformly in any compact subset of

[0,∞). So lim inft→+∞ u(t, x) � K and then limt→+∞ u(t, x) = K uniformly in any compact subset of
[0,∞). �
4. Sharp threshold given by the initial value

In [6], a threshold value of μ was constructed for the species spreading or vanishing. But here
we consider the effect of the initial users’ size and let u0(x) = λϕ(x) with ϕ ∈ Σ(h0). It follows from

Corollary 3.3 that if h0 � π
2

√
d

r∞ , then h∞ = ∞ for any λ > 0, the other cases will be given in the

following lemma.

Lemma 4.1. Suppose that (A) hold.

(i) Assume that h0 < π
2

√
d

r(0)
. If λ is sufficiently small, then h∞ < ∞ and limt→+∞ ‖u(t, ·)‖C([0,h(t)]) = 0.

(ii) Assume that h0 < π
2

√
d

r∞ . If λ is big enough, then h∞ = ∞ and limt→+∞ u(t, x) = K uniformly in any

compact subset of [0,∞).

Proof. (i) Motivated by [15], we set

ξ(t) := h0

(
1 + δ − δ

2
e−αt

)
, t � 0,

v(y) := cos

(
π

2
y

)
, 0 � y � 1,

w(t, x) := εe−βt v

(
x

ξ(t)

)
, t � 0, 0 � x � ξ(t),

where ε > 0 is small such that πμε � αδh2
0. Moreover, α, β and δ are positive constants.

Direct calculations yield that

wt − dwxx − r(t)w

(
1 − w

K

)
� εe−βt v

[
−β + dπ2

4ξ2(t)
− r(0)

]
.

Since that h0 < π
2

√
d

r(0)
, there exists a unique δ > 0 such that

(
π

2

)2 d

(1 + δ)2h2
− r(0) = 1

2

[(
π

2

)2 d

h2
− r(0)

]
.

0 0
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Taking α = β = 1
4 ( dπ2

4h2
0

− r(0)), we then have

wt − dwxx − r(t)w

(
1 − w

K

)
� 0 for t > 0, 0 < x < ξ(t).

In addition,

−μwx
(
t, ξ(t)

) = εe−βt μπ

2ξ(t)
� εe−βt μπ

2h0
� ξ ′(t) for t > 0.

Moreover, when λ � ε
‖ϕ‖L∞ cos π

2+δ
, we have

u0(x) � ε cos
π

2 + δ
� w(0, x) for 0 < x < h0.

Namely,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

wt − dwxx � r(t)w

(
1 − w

K

)
, t > 0, 0 < x < ξ(t),

w = 0, ξ ′(t) � −μwx, t > 0, x = ξ(t),

wx(t,0) = 0, t > 0,

ξ(0) = h0

(
1 + δ

2

)
, u0(x) � w(0, x), 0 � x � h0.

(4.1)

Using Lemma 2.2 gives that

h(t) � ξ(t) and u(t, x) � w(t, x) for t > 0, 0 � x � h(t).

Thus

h∞ � lim
t→+∞ ξ(t) = h0(1 + δ) < ∞,

which together with Theorem 3.4 shows that

lim
t→+∞

∥∥u(t, ·)∥∥C([0,h(t)]) = 0.

(ii) Similarly as in [6], let λ1 be the first eigenvalue of this problem⎧⎨⎩−dϕ′′
1 − 1

2
ϕ′

1 = λ1ϕ1, 0 < x < 1,

ϕ′
1(0) = ϕ1(1) = 0

(4.2)

and corresponding eigenfunction ϕ1 can be chosen positive in [0,1) and ‖ϕ1‖L∞ = 1. Furthermore, it
is easy to see that λ1 > 1

16d and ϕ′
1 < 0 in [0,1).

We now construct a suitable lower solution to (1.3). Firstly, we take 0 < α � min{1,h2
0}, X =

1 + π
2

√
d

r , T0 > X2. Define
∞
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U (t, x) = K0

(t + α)m
ϕ1

(
x√

t + α

)
for 0 � t � T0, 0 � x �

√
t + α,

h(t) = √
t + α, 0 � t � T0.

Let λ be big enough such that

U (0, x) = K0

αm
ϕ1

(
x√
α

)
� u0(x) = λϕ(x).

Choosing K0 and m such that

−2μK0ϕ
′
1(1) > (T0 + 1)m, m > λ1 + (T0 + 1)

‖r(t)U‖L∞

K
,

we then have

U t − dU xx − r(t)U

(
1 − U

K

)
� − K0

(t + α)m+1

(
dϕ′′

1 + 1

2
ϕ′

1 + λ1ϕ1

)
.

Namely,

Ut − dU xx � r(t)U

(
1 − U

K

)
for 0 < x < h(t), 0 < t � T0.

Moreover,

h′ + μU x
(
t,h(t)

) = 1

2
√

t + α
+ μK0

(t + α)m
√

t + α
ϕ′

1(1) < 0.

Then we have ⎧⎪⎪⎪⎨⎪⎪⎪⎩
U t − dU xx � r(t)U

(
1 − U

K

)
, 0 < t � T0, 0 < x < h(t),

U = 0, h′ � −μU x, 0 < t � T0, x = h(t),

U x(t,0) = 0, 0 < t � T0.

(4.3)

In addition, h(0) = √
α � h0, applying Lemma 2.2 immediate gives that

h(t) � h(t) in [0, T0].
Hence,

h(T0) � h(T0) = √
T0 + α �

√
T0 >

π

2

√
d

r∞
.

It follows from Corollary 3.3 and Lemma 3.5 that h∞ = ∞ and spreading happens. �
Theorem 4.2 (Threshold result). Suppose that (A) hold. Assuming that (u,h) is the solution of (1.3) with the
initial value u0(x) = λϕ(x) for some λ > 0. Then there exists a λ∗ = λ∗(h0,ϕ) ∈ [0,∞) such that vanishing
happens when 0 < λ � λ∗ , and spreading happens when λ > λ∗ .
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Proof. It follows from Corollary 3.3 that spreading always happens if h0 � π
2

√
d

r∞ . Hence in this case

we have λ∗(h0,ϕ) = 0 for any ϕ ∈ Σ(h0).

For the remaining case that h0 < π
2

√
d

r∞ , define

λ∗ = sup
{
λ: h∞(λϕ) < +∞} ∈ [0,+∞].

In the view of Lemma 4.1(ii), the spreading must happen when λ is large enough. Thus we get λ∗ ∈
[0,+∞). It follows from Lemma 3.2 that h∞ � π

2

√
d

r∞ when 0 < λ < λ∗ and h∞ = ∞ when λ > λ∗ .

It remains to show that h∞ � π
2

√
d

r∞ if λ = λ∗ . Next we use the contradiction argument to

demonstrate the conclusion. Suppose that h∞ = ∞ when λ = λ∗ . Hence we can find T > 0 such

that h(T ) > π
2

√
d

r∞ + 1. Since the solution of (1.3) continuously depends on the initial value, we can

find a sufficiently small ε > 0 such that the solution with u0 = (λ∗ −ε)ϕ , denoted by (uε,hε), satisfy-

ing hε(T ) > π
2

√
d

r∞ . This implies that the information spreading happens to the case that λ = λ∗ − ε,

which contradicts to the definition of λ∗ . �
5. Spreading speed

This section deals with the asymptotic spreading speed. We will show that when the infor-
mation spreading happens, the free boundary moves at a constant speed for large time, that is,
limt→+∞ h(t)

t = k0, where k0 is determined by the corresponding elliptic problem of (1.3) and sat-
isfies k0 = μV ′

k0
(0) with Vk(x) satisfying

⎧⎨⎩−dV ′′ + kV ′ = r∞V

(
1 − V

K

)
, x > 0,

V (0) = 0.

(5.1)

The next result shows that k0 is well defined, and the proof is similar to Proposition 4.1 in [6]
with slight modifications.

Proposition 5.1. For any 0 < k < 2
√

r∞d, problem (5.1) admits a unique positive solution V = Vk. In addition,
V ′

k(x) > 0 for x � 0, V ′
k1

(0) > V ′
k2

(0), Vk1(x) > Vk2 (x) for x > 0 and k1 < k2 . And for each μ there exists a

unique k0 = k0(μ) ∈ (0,2
√

r∞d ) such that μV ′
k0

(0) = k0 .

Lemma 5.2. Suppose that (A) hold. If h∞ = +∞, then lim inft→+∞ h(t)
t � k0 .

Proof. As in [6], first we consider

⎧⎨⎩−dω′′ + k0ω
′ = r∞ω

(
1 − ω

K

)
, 0 < x < l,

ω(0) = ω(l) = 0.

(5.2)

Then we define

ω0(x) =
{

ωl0(x), 0 � x � a0,

ωl0(a0), x > a0,
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where a0 ∈ (0, l0), such that ωl0 (a0) = max[0,l0] ωl0 . We can verify that ω0 satisfies

⎧⎨⎩−dω′′
0 + k0ω

′
0 � r∞ω0

(
1 − ω0

K

)
, 0 � x < +∞,

ω0(0) = 0, ω0(x) < K , x � 0.

(5.3)

According to Lemma 3.5, we know that for any ε > 0 there exists T := Tε,a0 such that

h(T ) > a0 and u(T , x) � K
√

1 − ε, ∀x ∈ [0,a0].

We define

w = √
1 − εω0

(
η(t) − x

)
, t > 0, 0 � x � η(t), η(t) = (1 − ε)k0t + a0, t > 0.

Direct computation yields that

wt − dwxx �
√

1 − ε
(
k0ω

′
0 − dω′′

0

)
� r∞

√
1 − εω0

(
1 − ω0

K

)
� r∞w

(
1 − w

K

)
for t > 0 and 0 < x < η(t). Similarly as in the proof of Theorem 4.2 in [6], we get

η′(t) = (1 − ε)k0 <
√

1 − εμω′
l0
(0) = √

1 − εμω′
0(0) = −μwx

(
t, η(t)

)
,

w(0, x) = √
1 − εω0(a0 − x) �

√
1 − εK � u(T , x), ∀x ∈ [0,a0],

wx(t,0) = −√
1 − εω′

0

(
η(t)

) = 0.

Hence, it follows from Lemma 2.2 that

h(t + T ) � η(t) for t > 0.

Then

lim inf
t→+∞

h(t)

t
� lim

t→+∞
η(t − T )

t
= (1 − ε)k0.

As ε is an arbitrarily positive number, we have lim inft→+∞ h(t)
t � k0. �

Lemma 5.3. Suppose that (A) hold. If h∞ = +∞, then lim supt→+∞ h(t)
t � k0 .

Proof. For any sufficiently small ε0, since limt→+∞ r(t) = r∞, there exists T > 0 such that

r(t) < r∞ + ε0, t � T .
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From the proof of Lemma 3.5, we know lim supt→+∞ u(t, x) � K , uniformly for 0 � x < ∞. Hence,
there exists T0 > T such that

u(t, x) � K (1 − ε0)
−1, t � T0, x � 0.

Next we use the similar methods with Theorem 4.2 in [6] and construct a suitable upper solution of
problem (1.3). We first consider the following problem with the solution νε0⎧⎨⎩−dν ′′ + k(ε0)ν

′ = (r∞ + ε0)ν

(
1 + δ(ε0) − ν

K

)
, x > 0,

ν(0) = 0,

(5.4)

where k(ε0) = μν ′
ε0

(0). If ε0 → 0, then δ(ε0) → 0. With Proposition 5.1, ν ′
ε0

(x) > 0 for x � 0, and
νε0 → K (1 + δ(ε0)), as x → +∞. Hence there exists X which is a positive large number, such that

νε0(x) > K
(
1 + δ(ε0)

)
(1 − ε0) for x � X .

We define

h(t) = (1 − ε0)
−2k(ε0)t + X + h(T0), t � T0,

u(t, x) = (1 − ε0)
−2νε0

(
h(t) − x

)
, t � T0, 0 � x � h(t).

Clearly, we obtain

u
(
t,h(t)

) = 0, ux(t,0) � 0, t � T0,

h′(t) = −μux
(
t,h(t)

)
, t � T0,

h(T0) � h(T0), u(T0, x) > 0, h(T0) < x < h(T0),

and for 0 < x < h(T0),

u(T0, x) = (1 − ε0)
−2νε0

(
h(T0) − x

)
� (1 − ε0)

−1 K
(
1 + δ(ε0)

)
� u(T0, x).

Using Lemma 2.2, we get

u(t, x) � u(t, x) and h(t) � h(t), t � T0, 0 < x < h(t).

Then

lim sup
t→+∞

h(t)

t
� lim

t→+∞
h(t)

t
= k(ε0)(1 − ε0)

−2.

It is well known that νε0 continuously depends on ε0, that is, as ε0 → 0, νε0 → Vk0 and k(ε0) → k0.

Let ε0 → 0, we easily obtain

lim sup
t→+∞

h(t)

t
� k0. �

Combining Lemmas 5.2 and 5.3 gives the following main result.
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Theorem 5.4. Suppose that (A) hold. If h∞ = +∞, then limt→+∞ h(t)
t = k0 .

Next we show how the asymptotic spreading speed k0 changes as the parameters in (1.3) vary, see
Proposition 4.3 in [6].

Theorem 5.5. Let k0 be the asymptotic spreading speed determined by Proposition 5.1. Then we have

lim
μK

d →+∞
k0√
r∞d

= 2 and lim
μK

d →0

k0√
r∞d

d

μK
= 1√

3
.

6. Discussion

In this paper, we have examined a DL model with a free boundary x = h(t), which describes
the information diffusion in online social networks. The dynamic behavior of information diffusion

with spreading front x = h(t) are discussed. It was proved that if h0 > π
2

√
d

r∞ , then h∞ = ∞ and

limt→+∞ u(t, x) = K uniformly on any compact subset of R
1, that is, the information diffuses in the

whole distance. However, if h0 < π
2

√
d

r∞ , whether or not the information is spreading depends on the

initial users’ size. For u0(x) = λϕ(x), there exists a threshold λ∗ such that if λ � λ∗ , then h∞ < ∞
and limt→+∞ ‖u(t, ·)‖C([0,h(t)]) = 0, that is, the information spreads in a finite portion of population
over finite time and vanishing happens. If λ > λ∗ , the information spreading happens (Theorem 4.2).
Moreover, if the information is spreading, we showed that for large time, the information spreading
front x = h(t) moves at a constant speed k0, which is less than the minimal wave speed, 2

√
r∞d (see

Theorem 5.5).
To our best knowledge, this paper is the first try to model information diffusion by using the free

boundary to describe the moving front. We feel that it is reasonable to conclude that the free bound-
ary problem is able to capture several important characteristics of information diffusion in online
networks.
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