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Abstract

In this paper we continue to deal with the initial–boundary value problem for the coupled Keller–Segel–
Stokes system

⎧⎪⎪⎨
⎪⎪⎩

nt + u · ∇n = �n − ∇ · (nS(x,n, c) · ∇c), (x, t) ∈ � × (0, T ),

ct + u · ∇c = �c − c + n, (x, t) ∈ � × (0, T ),

ut + ∇P = �u + n∇φ, (x, t) ∈ � × (0, T ),

∇ · u = 0, (x, t) ∈ � × (0, T ),

where � ⊂R
d is a bounded domain with smooth boundary and the chemotactic sensitivity S is not a scalar 

function but rather attains values in Rd×d , and satisfies |S(x, n, c)| ≤ CS (1 + n)−α with some CS > 0
and α > 0. When d = 2, our previous work (J. Differential Equations, 2015) has established the existence 
of global bounded classical solutions under the subcritical assumption α > 0, which is consistent with the 
corresponding results of the fluid-free system, but the method seems to be invalid in the three-dimensional 
setting.

In this paper, for the case d = 3, we develop a new method to establish the existence and boundedness 
of global classical solutions for arbitrarily large initial data under the assumption α > 1

2 , which is slightly 
stronger than the corresponding subcritical assumption α > 1

3 on the fluid-free system, where such an 
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assumption is essentially necessary and sufficient for the existence of global bounded solutions. The key 
idea here is to establish the general Lp regularity of u from a rather low Lp regularity of n, which will be 
obtained by a new combinational functional.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we shall consider the following initial–boundary value problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nt + u · ∇n = �n − ∇ · (nS(x,n, c) · ∇c
)
, x ∈ �, t > 0,

ct + u · ∇c = �c − c + n, x ∈ �, t > 0,

ut + ∇P = �u + n∇φ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0,(∇n − nS(x,n, c)∇c
) · ν = ∇c · ν = 0, u = 0, x ∈ ∂�, t > 0,

n(x,0) = n0(x), c(x,0) = c0(x), u(x,0) = u0(x), x ∈ �,

(1.1)

for the unknown bacterial density n, the nutrient concentration c, the fluid velocity u and the 
associated pressure P in a bounded domain � ⊂ R

3 with smooth boundary ∂�, where ν de-
notes the unit outward normal vector field on ∂�, the gravitational potential function φ and the 
tensor-valued sensitivity function S : � × [0, ∞)2 → R

3×3 are supposed to be given parameter 
functions. Systems of this type arise in the modeling of bacterial populations, like Escherichia 
coli, in which the cells live in a viscous fluid so that cells and chemical substrates are transported 
with fluid, and that the motion of the fluid is under the influence of gravitational forcing gener-
ated by aggregation of cells [26,35]. This kind of model can also be used to the studies of coral 
broadcast spawning [12,18].

Before going into our mathematical analysis, we recall some important progresses on sys-
tem (1.1) and its variants. In biological contexts, many simple life-forms can exhibit a complex 
collective behavior. Chemotaxis is one particular mechanism responsible for some instances of 
such demeanor, where the organism, like bacteria, adapts its movement according to the concen-
trations of a chemical signal. Considering that in nature some bacteria, like Bacillus subtilis and 
Escherichia coli, often live in a viscous fluid, Tuval et al. [35] conducted a detailed experiment 
to describe the chemotaxis–fluid interaction. More precisely, they observed the large-scale con-
vection patterns in a water drop sitting on a glass surface containing Bacillus subtilis, oxygen 
diffusing into the drop through the fluid-air interface and proposed the following mathemati-
cal model to describe the dynamics of the cell concentration, oxygen concentration, and fluid 
velocity:

⎧⎪⎪⎨
⎪⎪⎩

nt + u · ∇n = �n − ∇ · (nS(c)∇c),

ct + u · ∇c = �c − nf (c),

ut + κ(u · ∇)u + ∇P = �u + n∇φ,

∇ · u = 0

(1.2)
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with κ = 1. The chemotactic sensitivity function S(c) and the per-capita oxygen consumption 
rate f (c) are given scalar functions. The coefficient κ is related to the strength of nonlinear fluid 
convection. In particular, when the fluid flow is slow, we can use the Stokes equation instead of 
the Navier–Stokes one, i.e., κ = 0 (see [9,25]). As to the mathematical analysis of system (1.2), 
numerous results in the past several years have concentrated on the natural first question of local 
and global solvability of corresponding initial(–boundary) value problems in either bounded or 
unbounded domains � under various assumptions of the scalar functions S and f . For instance, 
in the two-dimensional setting, the diffusive mechanism turns out to be strong enough so as to 
allow for the construction of global bounded weak/classical solutions [4,10,24,42,54], while in 
the three-dimensional setting, some more restrictive assumptions on S and f are needed to ensure 
the existence of global bounded weak solutions for κ = 0 [42] or of global classical solutions for 
general κ ∈ R under some smallness assumptions on the initial data [4,5,10,30,51], and until 
recently, the existence of global bounded weak solutions for general κ ∈ R and large initial 
data has been demonstrated by Winkler [47]. Very recently, the large time behavior of classical 
solutions to (1.2) in the two-dimensional case (see [44,52]) and the eventual smoothness of weak 
solutions in the three-dimensional case (see [48]) have also been investigated. Quite a few results 
on global existence and boundedness properties have also been obtained for the variant of (1.2)
obtained on replacing linear diffusion �n by the porous medium-type nonlinear diffusion �nm

for several ranges of m > 1 (see e.g. [9,11,24,32,33,36,46,53]). On the other hand, when the 
chemotactic sensitivity S(c) in system (1.2) is replaced by the matrix S(x, n, c), which is justified 
in the recent experimental findings and suggests that chemotactic migration need not necessarily 
be oriented along the gradient of the chemical substance, but may rather involve rotational flux 
components [49,50], some new approaches have been developed to construct the global bounded 
weak/classical solutions [3,17,37,46,45].

The results obtained so far indicate that finite-time blow-up phenomena of solutions, which 
related to the extreme facet of bacterial aggregation, do not occur for system (1.2) even though the 
Stokes fluid is included. However, this is not necessarily true for system (1.1), of which a typical 
feature is the production of chemoattractant by the bacteria, in contrast to (1.2) with consumption 
of nutrient. Indeed, the signal production mechanism may bring about the spontaneous formation 
of aggregates even in the classical Keller–Segel system without fluid interaction, as given by 
letting S ≡ 1 in

{
nt = �n − ∇ · (nS(n)∇c

)
,

ct = �c − c + n
(1.3)

in � ⊂ R
d . For instance, it is well-known that for large classes of initial data, solutions of sys-

tem (1.3) blow up when either d ≥ 3, or d = 2 and the total mass of cells is large, while global 
bounded solutions can be constructed under appropriate smallness conditions on the initial data 
[27,43]. On the other hand, such explosion phenomena can be ruled out when S(n) is related 
to the prototypical assumption of volume-filling effect. Precisely, it has been shown that for the 
Keller–Segel system with n-dependent sensitivities S(n), all solutions are global and uniformly 
bounded provided that

S(n) ≤ C(1 + n)−α with α > 1 − 2
(1.4)
d
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(see [15,19]), while under some technical assumptions the solution may blow up if � ⊂ R
d

(d ≥ 2) is a ball and

S(n) > Cn−α with α < 1 − 2

d

(see [15,40]). For the more related works in this direction, we mention that a corresponding 
quasilinear version has been deeply investigated by [6–8,31] (see also the recent survey [1]). 
From the view of biology, the chemotactic movement of cells is inhibited near points where the 
cells are densely packed (see [28]) under such hypothesis. For the Keller–Segel-fluid system 
of the form (1.1), the mechanism for preventing blow-up is more subtle. As far as we know, 
there are only few results which deal with chemotaxis–fluid interaction in the presence of a 
signal production mechanism. In particular, for S = I, the identity matrix, the literature so far 
concentrates on either the construction of small-data solutions [20], on systems involving logistic 
growth restrictions as an additional dissipative mechanism [12,34] or on the sublinear signal 
production [2]. For general matrix S , there are only two results (see [38,39]) which deal with the 
two-dimensional Keller–Segel–(Navier–)Stokes system of the form (1.1) and demonstrate the 
existence of global bounded classical solutions with large initial data under the assumption of

|S(x,n, c)| ≤ CS(1 + n)−α (1.5)

with α > 0, which is consistent with the corresponding result (1.4) for the fluid-free system (1.3).

Main results. In this paper, we investigate the initial–boundary value problem for the coupled 
Keller–Segel–Stokes system (1.1) with the matrix-valued sensitivity function S in the three-
dimensional setting. In contrast to the previous studies on system (1.2), such a problem is much 
more delicate, for which the regularization signal absorption mechanism from (1.2) is no longer 
available, and for which thus a much more colorful dynamics must be expected as already indi-
cated by known facts for the fluid-free Keller–Segel system (1.3).

Our main purpose is to examine how far the volume-filling effect of the form in (1.5) con-
tinues to determine the existence of global bounded classical solutions to system (1.1) in the 
three-dimensional setting. To formulate this more precisely, let us suppose that S = (Sij )3×3
satisfies

Sij ∈ C2(�̄ × [0,∞) × [0,∞)
)

for i, j ∈ {1,2,3} (1.6)

and

|S(x,n, c)| ≤ CS(1 + n)−α for some constants α > 0 and CS > 0. (1.7)

The assumption α > 0 implies that when the cell density increases, the effect of chemotaxis is 
weakened. In view of the analysis for the fluid-free Keller–Segel system (1.3), in the three dimen-
sional case, some further algebraic saturation assumptions are needed to obtain the existence of 
global bounded solutions to system (1.1) with large initial data. Indeed, we will show that α > 1

2
is enough to rule out the blow-up in finite or infinite time, which is slightly stronger than the 
corresponding assumption α > 1

3 on the fluid-free system. Such a result is new even in the case 
of scalar chemotactic sensitivity S, but this matrix-valued generalization results in considerable 
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mathematical difficulties due to the fact that chemotaxis systems with such rotational fluxes lose 
some energy structure, which has served as a key to the analysis for scalar-valued S.

We shall assume throughout this paper that the initial data satisfy

⎧⎪⎨
⎪⎩

n0 ∈ C0(�), n0 ≥ 0 and n0 �≡ 0 in �̄

c0 ∈ W 1,∞(�), c0 ≥ 0 and c0 �≡ 0 in �̄

u0 ∈ D(Aβ
r ) for all r ∈ (1,∞) and some β ∈

(3

4
,1

)
,

(1.8)

where Ar denotes the Stokes operator with domain D(Ar ) := W 2,r (�) 
⋂

W
1,r
0 (�) 

⋂
Lr

σ (�)

with Lr
σ (�) := {

ϕ ∈ Lr(�) | ∇ · ϕ = 0
}

for r ∈ (1, ∞).
As for the gravitational potential φ in (1.1), we require that it is independent of time and 

satisfies

φ ∈ W 2,∞(�). (1.9)

Under these assumptions, we can establish the existence of global bounded classical solutions to 
system (1.1) for general (large) data. Precisely, we have the following global existence result.

Theorem 1.1. Suppose that (1.6)–(1.9) hold with α > 1
2 . Then system (1.1) admits a global clas-

sical solution (n, c, u, P), which is uniformly bounded in the sense that

‖n(·, t)‖L∞(�) + ‖c(·, t)‖W 1,∞(�) + ‖u(·, t)‖W 1,∞(�) ≤ C for all t ∈ (0,∞) (1.10)

with some positive constant C. This solution is unique, up to addition of constants to P .

Remark 1.1. One way to relax the restriction on α is to replace the linear diffusion �n by the 
porous medium diffusion �nm with m suitably large. This problem has been investigated by the 
recent preprint [29] (see also [23] for the 2D case).

Main idea and plan of this paper. Due to the loss of a favorable quasi-energy structure and of 
the regularization signal absorption mechanism, compared with the constant scalar sensitivity S

and with the signal consumption case, respectively, our approach underlying the derivation of 
Theorem 1.1 will be based on an entropy-like estimate involving the functional of the form

‖n(·, t)‖Lp(�) + ‖∇c(·, t)‖L2q (�)

for solutions of system (1.1), where we eventually intend to choose p and q arbitrarily large. 
This idea is similar to its two-dimensional version [38]. However, in contrast to the two-
dimensional case, a major technical difficulty here lies in that the evident mass conservation 
property 

∫
�

n ≡ ∫
�

n0 is not sufficient to derive some useful regularity information of u and c. 
Indeed, in [38], we can use some regular properties of Stokes operator to directly obtain the key 
Lp estimates of u and c for any p > 1 from the basic spatial L1 bound of n. In this paper, for the 
three-dimensional case, we will develop a new approach to do this, which consists of some boot-
strap arguments on solutions of the boundary regularized system (2.1). Precisely, we shall first 
track the time evolution of the combinational functional of the form 

∫
�

n2α
ε +∫

�
c2
ε (Lemma 2.3). 

Taking this as a starting point of a series of arguments, we establish the Lp1 boundedness of uε
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for some p1 > 3 (Corollary 2.1). Then it is possible for us to obtain a coupled estimate of 
∫
�

n
p
ε

and 
∫
�

|∇cε|2 for some p < 8
3α + 1

3 (Lemma 2.7), which further enforces the regularity of uε

in arbitrary Lp space. Next we can derive the desired entropy estimate of the form ‖nε‖Lp(�) +
‖∇cε‖L2q (�), which eventually shows the boundedness of nε and ∇cε in arbitrary Lp space 
(Corollary 2.3). These boundedness together with the extension criterion of local solution en-
sures the existence of global bounded solution (nε, cε, uε, Pε) for the regularized system (2.1). 
Finally, Theorem 1.1 is proved through a limit procedure in the regularized system in Section 3.

2. Approximation by homogeneous Neumann boundary problems

To overcome the difficulties brought by the nonlinear boundary condition, we shall first deal 
with some boundary regularized approximate problems in this section. We follow an idea from 
[22] and introduce an appropriate regularization in which Sε defined below vanishes near the 
lateral boundary.

Let 
{
ρε

}
ε∈(0,1)

⊂ C∞
0 (�) be a family of standard cut-off functions satisfying 0 ≤ ρε ≤ 1 in �

for all ε ∈ (0, 1) and ρε → 1 in � pointwisely as ε → 0. Then we define

Sε(x, n, c) = ρε(x)S(x,n, c), (x,n, c) ∈ � × [0,∞) × [0,∞)

for ε ∈ (0, 1). It is clear that for each fixed ε ∈ (0, 1), Sε vanishes on ∂� and still satisfies (1.7)
with the values of CS and α unchanged.

We now consider the following approximate problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

nεt + uε · ∇nε = �nε − ∇ · (nεSε(x, nε, cε)∇cε

)
, x ∈ �, t > 0,

cεt + uε · ∇cε = �cε − cε + nε, x ∈ �, t > 0,

uεt + ∇Pε = �uε + nε∇φ, x ∈ �, t > 0,

∇ · uε = 0, x ∈ �, t > 0,

∂nε

∂ν
= ∂cε

∂ν
= 0, uε = 0, x ∈ ∂�, t > 0,

nε(x,0) = n0(x), cε(x,0) = c0(x), uε(x,0) = u0(x), x ∈ �.

(2.1)

By an adaptation of well-established fixed point arguments, we can establish the following local 
existence result for regularized problem (2.1).

2.1. Local existence of classical solutions to the regularized system

We first state the local solvability of system (2.1), which can by proved by a straightforward 
adaptation of the corresponding procedure in Lemma 2.1 of Winkler [42] to our current setting.

Lemma 2.1. Suppose that (1.6)–(1.9) hold. Then for each ε ∈ (0, 1), there exist Tmax,ε ∈ (0, ∞]
and a classical solution (nε, cε, uε, Pε) to system (2.1) in � × (0, Tmax,ε) such that

nε ∈ C0(�̄ × [0, Tmax,ε)
) ∩ C2,1(�̄ × (0, Tmax,ε)

)
,

cε ∈ C0(�̄ × [0, Tmax,ε)
) ∩ C2,1(�̄ × (0, Tmax,ε)

)
,

uε ∈ C0(�̄ × [0, Tmax,ε)
) ∩ C2,1(�̄ × (0, Tmax,ε)

)
,

Pε ∈ C1,0(�̄ × (0, Tmax,ε)
)
.
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Moreover, we have nε > 0 and cε > 0 in �̄ × (0, Tmax,ε), and

if Tmax,ε < ∞, then ‖nε(·, t)‖L∞(�) + ‖cε(·, t)‖W 1,∞(�) + ‖Aβuε(·, t)‖L2(�) → ∞
as t → Tmax,ε, (2.2)

where β is taken from (1.8). This solution is unique, up to addition of constants to Pε.

The following lemma is very basic but important and will be frequently used in the sequel.

Lemma 2.2. For each ε ∈ (0, 1), the solution of (2.1) satisfies∫
�

nε(·, t) =
∫
�

n0 for all t ∈ (0, Tmax,ε) (2.3)

and

∫
�

cε(·, t) ≤ max

⎧⎨
⎩

∫
�

c0,

∫
�

n0

⎫⎬
⎭ for all t ∈ (0, Tmax,ε). (2.4)

Proof. The first conclusion directly results from an integration of the first equation in (2.1)
over �. Then from the second equation in (2.1) we have that

d

dt

∫
�

cε +
∫
�

cε =
∫
�

nε =
∫
�

n0 for all t ∈ (0, Tmax,ε),

which implies (2.4) through an comparison argument. �
2.2. Some low regularity estimates for nε and cε

In this section, we shall propose some low regularity estimates for nε and cε , by tracking the 
time evolution of a certain combinational functional of them, which will be a starting point of a 
series of arguments. Such a functional is motivated by a similar energy-like structure used in [39]
(see Section 5 there).

Lemma 2.3. Suppose that (1.6)–(1.9) hold with α > 1
2 . There exists a positive constant C de-

pending on α, n0, c0 and u0 such that for all ε ∈ (0, 1) we have∫
�

n2α
ε (·, t) ≤ C (2.5)

and ∫
�

c2
ε(·, t) ≤ C (2.6)

on (0, Tmax,ε).
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Proof. Testing the first equation in (2.1) by n2α−1
ε and using the solenoidality of uε , the subcrit-

icality assumption (1.7) and Young’s inequality, we see that

1

2α

d

dt

∫
�

n2α
ε + (2α − 1)

∫
�

n2α−2
ε |∇nε|2 = (2α − 1)

∫
�

n2α−1
ε ∇nε ·

(
Sε(x,nε, cε) · ∇cε

)

≤ (2α − 1)Cs

∫
�

nα−1
ε |∇nε| |∇cε|

≤ 2α − 1

2

∫
�

n2α−2
ε |∇nε|2 + 2α − 1

2
C2

s

∫
�

|∇cε|2

for all t ∈ (0, Tmax,ε), which implies that

d

dt

∫
�

n2α
ε + 2α − 1

α

∫
�

|∇nα
ε |2 ≤ α(2α − 1)C2

s

∫
�

|∇cε|2 := C1

∫
�

|∇cε|2

for all t ∈ (0, Tmax,ε). (2.7)

In order to absorb the rightmost integral in (2.7) appropriately, we multiply the second equa-
tion in (2.1) by cε to obtain from Hölder’s inequality that

1

2

d

dt

∫
�

c2
ε +

∫
�

|∇cε|2 +
∫
�

c2
ε =

∫
�

nεcε ≤ ‖cε‖L6(�)‖nε‖
L

6
5 (�)

(2.8)

for all t ∈ (0, Tmax,ε). Due to the Sobolev embedding W 1,2(�) ↪→ L6(�) in the three-
dimensional setting, there exists C2 > 0 such that

‖cε‖2
L6(�)

≤ C2‖∇cε‖2
L2(�)

+ C2‖cε‖2
L1(�)

for all t ∈ (0, Tmax) which together with (2.4) gives that

‖cε‖2
L6(�)

≤ C2‖∇cε‖2
L2(�)

+ C3

for all t ∈ (0, Tmax) with some constant C3 > 0. Thus by means of Young’s inequality, in (2.8)
we proceed to estimate

∫
�

nεcε ≤ 1

2C2
‖cε‖2

L6(�)
+ C2

2
‖nε‖2

L
6
5 (�)

≤ 1

2

∫
�

|∇cε|2 + C3

2C2
+ C2

2
‖nε‖2

L
6
5 (�)

for all t ∈ (0, Tmax,ε). (2.9)

We then invoke the Gagliardo–Nirenberg inequality to find C4 > 0 such that
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C2

2
‖nε‖2

L
6
5 (�)

= C2

2
‖nα

ε ‖
2
α

L
6

5α (�)

≤ C4‖∇nα
ε ‖

2
α
·a

L2(�)
‖nα

ε ‖
2
α
·(1−a)

L
1
α (�)

+ C4‖nα
ε ‖

2
α

L
1
α (�)

for all t ∈ (0, Tmax,ε), where a = α
6α−1 ∈ (0, 1). Recalling the mass conservation (2.3) and notic-

ing that a < α due to α > 1
3 , we assert from Young’s inequality that

C2

2
‖nε‖2

L
6
5 (�)

≤ C5‖∇nα
ε ‖

2
α
·a

L2(�)
+ C5 ≤ 2α − 1

8C1α

∫
�

|∇nα
ε |2 + C6

for all t ∈ (0, Tmax) with some positive constants C5 and C6. This together with (2.9) and (2.8)
leads to

d

dt

∫
�

c2
ε +

∫
�

|∇cε|2 + 2
∫
�

c2
ε ≤ 2α − 1

4C1α

∫
�

|∇nα
ε |2 + 2C6 + C3

C2
(2.10)

for all t ∈ (0, Tmax,ε).
Then we can infer from an appropriate linear combination of (2.10) and (2.7) that

d

dt

{∫
�

n2α
ε + 2C1

∫
�

c2
ε

}
+ 2α − 1

2α

∫
�

|∇nα
ε |2 + 2C1

∫
�

|∇cε|2 + 4C1

∫
�

c2
ε

≤ 4C1C6 + 2C1C3

C2
for all t ∈ (0, Tmax,ε). (2.11)

If we integrate (2.11) directly, we can only assert that the functional 
∫
�

n2α
ε (·, t) +2C1

∫
�

c2
ε(·, t)

grows in time at most linearly. To establish its uniform bound further, we employ the Gagliardo–
Nirenberg inequality again to estimate

∫
�

n2α
ε = ‖nα

ε ‖2
L2(�)

≤ C7

⎛
⎝∥∥∇nα

ε

∥∥ 2(2α−1)

2α− 1
3

L2(�)

∥∥nα
ε

∥∥ 4
6α−1

L
1
α (�)

+ ∥∥nα
ε

∥∥2

L
1
α (�)

⎞
⎠

for all t ∈ (0, Tmax) with some positive constant C7. Then Young’s inequality and the mass con-
servation (2.3) entail the existence of positive constants C8 and C9 such that

∫
�

n2α
ε ≤ C8

⎛
⎝∥∥∇nα

ε

∥∥ 2(2α−1)

2α− 1
3

L2(�)
+ 1

⎞
⎠ ≤ (2α − 1)

2α

∫
�

|∇nα
ε |2 + C9 for all t ∈ (0, Tmax). (2.12)

A similar argument together with (2.4) shows that

2C1

∫
c2
ε ≤ 2C1

∫
|∇cε|2 + C10 (2.13)
� �
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with some C10 > 0. Setting y(t) := ∫
�

n2α
ε (·, t) + 2C1

∫
�

c2
ε(·, t) for t ∈ (0, Tmax,ε) and then 

using (2.11), (2.12) and (2.13), we have

y′(t) + y(t) ≤ 4C1C6 + 2C1C3

C2
+ C9 + C10,

which immediately implies that

y(t) ≤ C11 := max

⎧⎨
⎩

∫
�

n2α
0 + 2C1

∫
�

c2
0, 4C1C6 + 2C1C3

C2
+ C9 + C10

⎫⎬
⎭

for all t ∈ (0, Tmax,ε). This uniform bound gives the desired low regularity estimates (2.5)
and (2.6). �
2.3. Regularity of uε in arbitrary Lp spaces

In this section, we will establish the Lp regularity of uε for any p > 1. From the third equation 
of (1.1), our argument will be based on the Lp regularity of nε , which is rather low as we see 
from Lemma 2.3. To overcome this difficulty, we will use a bootstrap argument. Precisely, we 
first use the third equation of (1.1) and the Lp regularity of nε obtained in Lemma 2.3 to derive 
some low Lp regularity for uε . Then by tracking the evolution of a new functional, we obtain the 
higher regularity of nε from this low regularity of uε , which in turn gives the Lp regularity of uε

for arbitrarily large p.
We begin with recalling several basic facts related to the Stokes operator [13,14]. For each 

r ∈ (1, ∞), the Helmholtz projection acts as a bounded linear operator Pr from Lr(�) onto its 
solenoidal subspace Lr

σ (�) := {ϕ ∈ Lr(�) | ∇ ·ϕ = 0}. The realization Ar of the Stokes operator 
A in Lr

σ (�) with domain D(Ar ) := W 2,r (�) ∩ W
1,r
0 (�) ∩ Lr

σ (�) is sectorial and generates an 

analytic semigroup (e−tAr )t≥0 in Lr
σ (�). Moreover, Ar possesses closed fractional powers Aβ

r

with dense domains for any β ∈R. We shall omit an explicit index r whenever there is no danger 
of confusion in the remaining part of this paper, for that Pr , Aβ

r and (e−tAr )t≥0 are all actually 
independent of r ∈ (1, ∞) whenever applied to smooth functions.

We then introduce the following lemma, which shows that, roughly speaking, up to projec-
tion to divergence-free vector fields, functions from Lp (p ≥ 1) can be viewed as elements of 
D(A−γ

p0 ) for any p0 > p and suitable γ > 0.

Lemma 2.4 (see [46], Lemma 3.3). Suppose that 1 ≤ p < p0 < ∞, and that γ ∈ (0, 1) is such 
that 2γ − 3

p
> − 3

p0
. Then there exists C > 0 such that

‖A−γPϕ‖Lp0 (�) ≤ C‖ϕ‖Lp(�)

for all ϕ ∈ C∞
0 (�).

The following lemma is the foundation of our bootstrap argument, which shows the gain of 
regularity of uε from the a priori regularity of nε .
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Lemma 2.5. Let p ∈ [1, +∞) and r ∈ [1, +∞] be such that

⎧⎨
⎩ r <

3p

3 − 2p
if p ≤ 3

2 ,

r ≤ ∞ if p > 3
2 .

(2.14)

Then for all K > 0 there exists C = C(p, r, K, u0, φ) such that if for some ε ∈ (0, 1) we have

‖nε(·, t)‖Lp(�) ≤ K for all t ∈ (0, Tmax,ε), (2.15)

then

‖uε(·, t)‖Lr(�) ≤ C for all t ∈ (0, Tmax,ε). (2.16)

Proof. For any p and r satisfying (2.14), we can fix r0 such that r0 ∈ ( 3
2 ( 1

p
− 1

r
), 1

)
for r ∈

[1, ∞) and r0 ∈ ( 3
2p

, 1
)

for r = ∞. It then follows from the variation-of-constants representation

uε(t) = e−tAu0 +
t∫

0

e−(t−τ)AP(nε(·, τ ) · ∇φ)dτ for all t ∈ (0, Tmax,ε)

and Young’s inequality that

‖uε(t)‖Lr(�) ≤ ‖e−tAu0‖Lr(�) +
t∫

0

∥∥Ar0e−(t−τ)AA−r0P
(
nε(·, τ )∇φ

)∥∥
Lr(�)

dτ (2.17)

for all t ∈ (0, Tmax,ε). Since u0 ∈ Lr
σ (�) as a consequence of (1.8), we have

‖e−tAu0‖Lr(�) ≤ C1 (2.18)

for some positive constant C1. On the other hand, when r ∈ [1, ∞), by the smoothing effect and 
decay estimates of the Stokes semigroup (see [14]), we can find a constant λ > 0 such that

∥∥Ar0e−(t−τ)AA−r0P
(
nε(·, τ )∇φ

)∥∥
Lr(�)

≤ C2(t − τ)−r0e−λ(t−τ)
∥∥A−r0P

(
nε(·, τ )∇φ

)∥∥
Lr(�)

with some C2 > 0. The fact r0 > 3
2 ( 1

p
− 1

r
) enables us to apply Lemma 2.4 to obtain

‖A−r0P
(
nε(·, τ )∇φ

)‖Lr(�) ≤ C3‖nε(·, τ )∇φ‖Lp(�)

for some C3 > 0, which together with the regularity (2.15) of nε and the boundedness of ∇φ

gives that

‖A−r0P
(
nε(·, τ )∇φ

)‖Lr(�) ≤ C4

for some positive constant C4 and thus
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∥∥Ar0e−(t−τ)AA−r0P
(
nε(·, τ )∇φ

)∥∥
Lr(�)

≤ C2C4(t − τ)−r0e−λ(t−τ). (2.19)

When r = ∞, we first fix δ ∈ (0, 1 − r0) and then choose r1 > 3
δ

such that Wδ,r1(�) ↪→ L∞(�). 
Thus the Sobolev embedding together with the same way as r ∈ [1, ∞) yields that

∥∥Ar0e−(t−τ)AA−r0P
(
nε(·, τ )∇φ

)∥∥
L∞(�)

≤ ∥∥Ar0+δe−(t−τ)AA−r0P
(
nε(·, τ )∇φ

)∥∥
Lr1 (�)

≤ C5(t − τ)−r0−δe−λ(t−τ)
∥∥A−r0P

(
nε(·, τ )∇φ

)∥∥
Lr1 (�)

with some C5 > 0. Due to r0 > 3
2p

> 3
2 ( 1

p
− 1

r1
), Lemma 2.4 gives that

‖A−r0P
(
nε(·, τ )∇φ

)‖Lr1 (�) ≤ C6‖nε(·, τ )∇φ‖Lp(�)

for some C6 > 0, which together with the regularity (2.15) of nε and the boundedness of ∇φ

gives that

‖A−r0P
(
nε(·, τ )∇φ

)‖Lr1 (�) ≤ C7

for some positive constant C7 and thus

∥∥Ar0e−(t−τ)AA−r0P
(
nε(·, τ )∇φ

)∥∥
L∞(�)

≤ C5C7(t − τ)−r0−δe−λ(t−τ). (2.20)

Thereupon, substituting (2.18), (2.19) or (2.20) into (2.17), we conclude from 0 < r0 <

r0 + δ < 1 and λ > 0 that

‖uε(t)‖Lr(�) ≤ C1 + max
{
C2C4

t∫
0

(t − τ)−r0e−λ(t−τ)dτ, C5C7

t∫
0

(t − τ)−r0−δe−λ(t−τ)dτ
}

≤ C8 for all t ∈ (0, Tmax,ε)

with some C8 > 0 depending on p, r, K, u0 and φ. �
As the first application of Lemma 2.5, we can deduce some Lp bound for uε with p suitably 

large from the low integrability of nε.

Corollary 2.1. Suppose that (1.6)–(1.9) hold with α > 1
2 . Then there exist p1 > 3 and a positive 

constant C = C(p1, α, u0, φ) such that for all ε ∈ (0, 1) and t ∈ (0, Tmax,ε), we have

‖uε(·, t)‖Lp1 (�) ≤ C.

Proof. Setting p = 2α, we see that ‖nε(·, t)‖Lp(�) is bounded by Lemma 2.3. Notice that 
3p

> 3 if 1 < p ≤ 3 . Thus the desired conclusion can be directly derived from Lemma 2.5. �
3−2p 2
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To deduce the eventual Lp boundedness of uε for any p > 1, we need to derive further reg-
ularity properties of the solutions to (2.1), and in particular of nε by Lemma 2.5. Thus we now 
investigate a rudimentary time evolution outcome of 

∫
�

n
p
ε for all p > 1, which will also be used 

in next subsection.

Lemma 2.6. Let p > 1. Then for all ε ∈ (0, 1),

d

dt

∫
�

np
ε + 3(p − 1)

p

∫
�

|∇n
p
2
ε |2 ≤ p(p − 1)C2

S

∫
�

np−2α
ε |∇cε|2 for all t ∈ (0, Tmax,ε) (2.21)

with CS taken from (1.7).

Proof. Multiplying the first equation in (2.1) by np−1
ε , integrating by parts over � and using 

Young’s inequality and the upper estimate (1.7) for S , we obtain that

1

p

d

dt

∫
�

np
ε + (p − 1)

∫
�

np−2
ε |∇nε|2 = (p − 1)

∫
�

np−1
ε ∇nε · (S(x,nε, cε)∇cε

)

≤ (p − 1)

4

∫
�

np−2
ε |∇nε|2 + (p − 1)C2

S

∫
�

np−2α
ε |∇cε|2

for all t ∈ (0, Tmax,ε), which immediately yields

d

dt

∫
�

np
ε + 3(p − 1)

p

∫
�

|∇n
p
2
ε |2 ≤ p(p − 1)C2

S

∫
�

np−2α
ε |∇cε|2 (2.22)

for all t ∈ (0, Tmax,ε). �
From Lemma 2.6, it seems to be necessary to investigate the time evolution of 

∫
�

|∇cε|2, 
which motivates our consideration on the combinational functional of 

∫
�

n
p
ε and 

∫
�

|∇cε|2.

Lemma 2.7. Suppose that (1.6)–(1.9) hold with α > 1
2 . If max

{
4
3 , 2α + 1

3

}
< p < 8

3α + 1
3 , then 

there exists a positive constant C such that for all ε ∈ (0, 1), we have

∫
�

np
ε (·, t) +

∫
�

|∇cε(·, t)|2 ≤ C for all t ∈ (0, Tmax,ε).

Proof. We shall derive our conclusion by establishing an ODI for the combinational functional

∫
�

np
ε (·, t) +

∫
�

|∇cε(·, t)|2.

To this end, we first pay our attention to estimate the rightmost integral in (2.22). Using Hölder’s 
inequality we see
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∫
�

np−2α
ε |∇cε|2 ≤

⎛
⎝∫

�

n3(p−2α)
ε

⎞
⎠

1
3
⎛
⎝∫

�

|∇cε|3
⎞
⎠

2
3

for all t ∈ (0, Tmax,ε). (2.23)

For the first factor on the right hand side of (2.23), we invoke the Gagliardo–Nirenberg inequality 
to find C1 > 0 such that

⎛
⎝∫

�

n3(p−2α)
ε

⎞
⎠

1
3

= ‖n
p
2
ε ‖

2(p−2α)
p

L
6(p−2α)

p (�)

≤ C1

(
‖∇n

p
2
ε ‖b1

L2(�)
‖n

p
2
ε ‖1−b1

L
2
p (�)

+ ‖n
p
2
ε ‖

L
2
p (�)

) 2(p−2α)
p

for all t ∈ (0, Tmax,ε), where

b1 = 3p − p
p−2α

3p − 1
∈ (0,1)

due to p > 2α + 1
3 . Recalling the mass conservation (2.3), we can obtain that there exists C2 > 0

fulfilling

⎛
⎝∫

�

n3(p−2α)
ε

⎞
⎠

1
3

≤ C2

⎛
⎝∫

�

|∇n
p
2
ε |2

⎞
⎠

3(p−2α)−1
3p−1

+ C2 for all t ∈ (0, Tmax,ε). (2.24)

On the other hand, for the second factor on the right hand side of (2.23), we apply the Gagliardo–
Nirenberg inequality again to find C3 > 0 such that

⎛
⎝∫

�

|∇cε|3
⎞
⎠

2
3

= ‖∇cε‖2
L3(�)

≤ C3

(
‖�cε‖

3
4
L2(�)

‖cε‖
1
4
L2(�)

+ ‖cε‖L2(�)

)2

for all t ∈ (0, Tmax,ε), which together with (2.6) gives that

⎛
⎝∫

�

|∇cε|3
⎞
⎠

2
3

≤ C4

⎛
⎝∫

�

|�cε|2
⎞
⎠

3
4

+ C4 for all t ∈ (0, Tmax,ε) (2.25)

with some constant C4 > 0. Substituting (2.24) and (2.25) into (2.23), we obtain

∫
�

np−2α
ε |∇cε|2 ≤ C2C4

⎛
⎝∫

�

|∇n
p
2
ε |2

⎞
⎠

3(p−2α)−1
3p−1

⎛
⎝∫

�

|�cε|2
⎞
⎠

3
4

+ C2C4

⎛
⎝∫

�

|∇n
p
2
ε |2

⎞
⎠

3(p−2α)−1
3p−1

+ C2C4

⎛
⎝∫

|�cε|2
⎞
⎠

3
4

+ C2C4
�



JID:YJDEQ AID:8436 /FLA [m1+; v1.234; Prn:26/07/2016; 10:14] P.15 (1-30)

Y. Wang, Z. Xiang / J. Differential Equations ••• (••••) •••–••• 15
for all t ∈ (0, Tmax,ε). Then by using Young’s inequality, we see that there exists C5 > 0 such that

∫
�

np−2α
ε |∇cε|2 ≤ 1

p2C2
S

⎛
⎝∫

�

|∇n
p
2
ε |2

⎞
⎠ + C5

⎛
⎝∫

�

|�cε|2
⎞
⎠

3
4 · 3p−1

6α

+ C2C4

⎛
⎝∫

�

|�cε|2
⎞
⎠

3
4

+ C2C4(C5 + 1)

for all t ∈ (0, Tmax,ε). Since p < 8
3α + 1

3 implies that

3

4
· p − 1

3

2α
< 1,

Young’s inequality once more entails that there exists C6 > 0 such that

∫
�

np−2α
ε |∇cε|2 ≤ 1

p2C2
S

∫
�

|∇n
p
2
ε |2 + 1

4p(p − 1)C2
S

∫
�

|�cε|2 + C6 (2.26)

for all t ∈ (0, Tmax,ε). We can thereof infer from (2.22) and (2.26) that

d

dt

∫
�

np
ε + 2(p − 1)

p

∫
�

|∇n
p
2
ε |2 ≤ 1

4

∫
�

|�cε|2 + C7 for all t ∈ (0, Tmax,ε) (2.27)

with C7 = C6p(p − 1)C2
S .

To absorb the rightmost integral in (2.27) appropriately, we multiply the second equation 
by −�cε and integrate on � to obtain that

1

2

d

dt

∫
�

|∇cε|2 +
∫
�

|�cε|2 +
∫
�

|∇cε|2 = −
∫
�

�cε · nε −
∫
�

(uε · ∇cε)�cε (2.28)

for all t ∈ (0, Tmax,ε). For the second integral on the right-hand side of (2.28), we first use 
Hölder’s inequality to conclude that

∫
�

(uε · ∇cε)�cε ≤ ‖�cε‖L2(�) · ‖uε‖Lp1 (�) · ‖∇cε‖
L

2p1
p1−2 (�)

(2.29)

for all t ∈ (0, Tmax,ε), where p1 is taken from Corollary 2.1. By the Gagliardo–Nirenberg in-
equality, we have

‖∇cε‖
L

2p1
p1−2 (�)

≤ C8‖�cε‖a
L2(�)

· ‖cε‖1−a

L2(�)
+ C8‖cε‖L2(�) for all t ∈ (0, Tmax,ε), (2.30)

where a = 3( 5 − p1−2)
. Notice that the fact p1 > 3 implies p1−2

> 1 , which means a ∈ (0, 1). 
2 6 2p1 2p1 6
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Then (2.29) and (2.30) yield that∫
�

(uε · ∇cε)�cε ≤ C8‖�cε‖1+a

L2(�)
· ‖uε‖Lp1 (�) · ‖cε‖1−a

L2(�)

+ C8‖�cε‖L2(�) · ‖uε‖Lp1 (�) · ‖cε‖L2(�)

for all t ∈ (0, Tmax,ε). Thus the boundedness of ‖uε‖Lp1 (�) and ‖cε‖L2 obtained in Corollary 2.1
and Lemma 2.3 together with Young’s inequality implies that∫

�

(uε · ∇cε)�cε ≤ 1

4

∫
�

|�cε|2 + C9 for all t ∈ (0, Tmax,ε) (2.31)

with some C9 > 0. On the other hand, for the first integral on the right of (2.28), we have∫
�

�cε · nε ≤ 1

4
|�cε|2 +

∫
�

n2
ε for all t ∈ (0, Tmax,ε). (2.32)

Substituting (2.31) and (2.32) into (2.28), we obtain

d

dt

∫
�

|∇cε|2 +
∫
�

|�cε|2 + 2
∫
�

|∇cε|2 ≤ 2
∫
�

n2
ε + 2C9 for all t ∈ (0, Tmax,ε). (2.33)

By using Gagliardo–Nirenberg inequality again, we have

∫
�

n2
ε = ‖np

2 ‖
4
p

L
4
p (�)

≤ C10

(
‖∇n

p
2
ε ‖b2

L2(�)
‖n

p
2
ε ‖1−b2

L
2
p (�)

+ ‖n
p
2
ε ‖

L
2
p (�)

) 4
p

(2.34)

for all t ∈ (0, Tmax,ε) with some C10 > 0, where

b2 =
p
4

p
2 − 1

6

∈ (0,1).

Due to p > 4
3 , we have b2 · 4

p
< 2. Then similar to above reasoning, we deduce from (2.34) that 

there exists C11 > 0 fulfilling∫
�

n2
ε ≤ p − 1

2p

∫
�

|∇n
p
2
ε |2 + C11 for all t ∈ (0, Tmax,ε). (2.35)

Thereupon we can infer from (2.35) and (2.33) that

d

dt

∫
�

|∇cε|2 +
∫
�

|�cε|2 ≤ p − 1

p

∫
�

|∇n
p
2
ε |2 + C12 (2.36)

for all t ∈ (0, Tmax,ε) with some C12 > 0.
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Summing up (2.27) and (2.36), we have

d

dt

{∫
�

np
ε +

∫
�

|∇c|2
}

+ p − 1

p

∫
�

|∇n
p
2
ε |2 + 3

4

∫
�

|�cε|2 ≤ C13 (2.37)

holds for all t ∈ (0, Tmax,ε) with C13 = C7 + C12. To obtain the uniform bound of the functional, 
we notice that

∫
�

np
ε ≤ p − 1

p

∫
�

|∇n
p
2
ε |2 + C14 for all t ∈ (0, Tmax,ε)

with some C14 > 0, which follows from a similar procedure as (2.12), and that

∫
�

|∇cε|2 ≤ 3

4

∫
�

|�c|2 + C15 for all t ∈ (0, Tmax,ε)

for some positive constant C15. Inserting these two inequalities into (2.37), we conclude that 
there exists a positive constant C16 such that

d

dt

{∫
�

np
ε +

∫
�

|∇cε|2
}

+
{∫

�

np
ε +

∫
�

|∇cε|2
}

≤ C16

for all t ∈ (0, Tmax,ε), which immediately leads to

∫
�

np
ε (·, t) +

∫
�

|∇cε(·, t)|2 ≤ C

with some positive constant C for all t ∈ (0, Tmax,ε). �
It is clear that α > 1

2 is equivalent to 8
3α + 1

3 > 5
3 . Thus Lemma 2.7 implies that 

∫
�

n
5
3
ε (·, t)

is bounded for all t ∈ (0, Tmax). Thereupon, we can finally achieve the regularity for uε in arbi-
trary Lp space from Lemma 2.5 due to 5

3 > 3
2 .

Corollary 2.2. Suppose that (1.6)–(1.9) hold with α > 1
2 . Then for any p > 1, there exists a 

positive constant C = C(p, u0, n0, φ) such that for all ε ∈ (0, 1), we have

‖uε(·, t)‖Lp(�) ≤ C for all t ∈ (0, Tmax,ε).

2.4. Regularity of nε and ∇cε in arbitrary Lp spaces

By making use of the regularity information obtained so far, we now devote our attention to 
establish a coupled entropy estimate for nε and ∇cε , from which we can eventually deduce the 
integrability of nε and ∇cε in arbitrary Lp spaces.
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Lemma 2.8. Suppose that (1.6)–(1.9) hold with α > 1
2 . Then for any q > 1, it holds for all 

ε ∈ (0, 1) that

d

dt

∫
�

|∇cε|2q + q − 1

2q

∫
�

∣∣∇|∇cε|q
∣∣2

≤ (2q2 + q)

∫
�

n2
ε |∇cε|2q−2 + (4q2 + 2q)

∫
�

|∇cε|2q |uε|2 + C (2.38)

on (0, Tmax,ε) with some positive constant C = C(q).

Proof. Applying ∇ to equation (2.1)2 and then multiplying the resulting equation by
2q|∇cε|2(q−1)∇cε , we have

d

dt

∫
�

|∇cε|2q − 2q

∫
�

|∇cε|2(q−1)∇cε · �∇cε + 2q

∫
�

|∇cε|2q

= 2q

∫
�

|∇cε|2(q−1)∇cε · ∇nε − 2q

∫
�

|∇cε|2(q−1)∇cε · ∇(
u · ∇cε

)

for all t ∈ (0, Tmax,ε). Noticing the pointwise identity 2∇cε · ∇�cε = �|∇cε|2 − 2|D2cε|2 and 
using the integration by parts, we deduce

d

dt

∫
�

|∇cε|2q + q(q − 1)

∫
�

|∇cε|2(q−2)
∣∣∣∇|∇cε|2

∣∣∣2

+ 2q

∫
�

|∇cε|2(q−1)|D2cε|2dx + 2q

∫
�

|∇cε|2q

= 2q

∫
�

|∇cε|2(q−1)∇nε · ∇cεdx + 2q(q − 1)

∫
�

(uε · ∇cε)|∇cε|2(q−2)∇cε · ∇|∇cε|2

+ 2q

∫
�

(uε · ∇cε)|∇cε|2(q−1)�cε + q

∫
∂�

|∇cε|2(q−1) ∂|∇cε|2
∂ν

(2.39)

for all t ∈ (0, Tmax,ε).
We now estimate the right hand side of (2.39) one by one. For the first term, due to |�cε|2 ≤

3|D2cε|2, we can use the integration by parts and Young’s inequality to obtain

2q

∫
�

|∇cε|2(q−1)∇nε · ∇cε

= −2q

∫
|∇cε|2(q−1)nε�cε − 2q(q − 1)

∫
|∇cε|2(q−2)nε∇cε · ∇|∇cε|2
� �
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≤ 2
√

3q

∫
�

|∇cε|2(q−1)nε|D2cε| + 2q(q − 1)

∫
�

|∇cε|2q−3nε

∣∣∇|∇cε|2
∣∣

≤ q

∫
�

|∇cε|2(q−1)|D2cε|2 + q(q − 1)

2

∫
�

|∇cε|2(q−2)
∣∣∣∇|∇cε|2

∣∣∣2

+ (2q2 + q)

∫
�

n2
ε |∇cε|2(q−1) (2.40)

for all t ∈ (0, Tmax,ε).
Similarly, for the second and third terms on the right hand side of (2.39), we have

2q(q − 1)

∫
�

(uε · ∇cε)|∇cε|2(q−2)∇cε · ∇|∇cε|2

≤ q(q − 1)

4

∫
�

|∇cε|2(q−2)
∣∣∣∇|∇cε|2

∣∣∣2 + 4q(q − 1)

∫
�

|uε|2|∇cε|2q

(2.41)

and

2q

∫
�

(uε · ∇cε)|∇cε|2(q−1)�cε ≤ 2
√

3q

∫
�

|uε||∇cε|2q−1|D2cε|

≤ q

2

∫
�

|∇cε|2(q−1)|D2cε|2 + 6q

∫
�

|uε|2|∇cε|2q

(2.42)

for all t ∈ (0, Tmax,ε).
Finally, for the last term, we know from (3.7) and (3.8) of [16] that there exists C1 > 0 such 

that

∫
∂�

∂|∇cε|2
∂ν

|∇cε|2q−2 ≤ C1
∥∥|∇cε|q

∥∥2

W
3
4 ,2

(�)
.

On the other hand, the Gagliardo–Nirenberg inequality implies that

∥∥∇cε|q
∥∥

W
3
4 ,2

(�)
≤ C2

∥∥∇|∇cε|q
∥∥a

L2(�)
· ∥∥|∇cε|q

∥∥1−a

L
2
q (�)

+ C2
∥∥|∇cε|q

∥∥
L

2
q (�)

for all t ∈ (0, Tmax,ε)

with some C2 > 0 and a =
q
2 − 1

4
q
2 − 1

6
∈ (0, 1). Thereupon, the boundedness of ‖∇cε‖L2(�) obtained 

in Lemma 2.7 and Young’s inequality ensure the existence of a positive constant C3 satisfying

q

∫
|∇cε|2(q−1) ∂|∇cε|2

∂ν
≤ q − 1

2q

∫ ∣∣∇|∇cε|q
∣∣2 + C3 for all t ∈ (0, Tmax,ε) (2.43)
∂� �
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Substituting (2.40)–(2.43) into (2.39) and noticing the identity 1
4 |∇cε|2(q−2)

∣∣∇|∇cε|2
∣∣2 =

1
q2 |∇|∇cε|q |2, we obtain

d

dt

∫
�

|∇cε|2q + q − 1

2q

∫
�

∣∣∇|∇cε|q
∣∣2 + q

2

∫
�

|∇cε|2(q−1)|D2cε|2 + 2q

∫
�

|∇cε|2q

≤ (2q2 + q)

∫
�

n2
ε |∇cε|2(q−1)dx + (4q2 + 2q)

∫
�

|∇cε|2q |uε|2 + C3

for all t ∈ (0, Tmax,ε), which immediately leads to our conclusion. �
We can now establish the desired combined estimate of ‖nε(t)‖Lp(�) and ‖∇cε(t)‖L2q (�).

Lemma 2.9. Suppose that (1.6)–(1.9) hold with α > 1
2 . Let q ≥ 2 and p > 1 is such that

max

{
4

3
,

2α

q − 1
3

}
<

p − 1
3

q − 1
3

< 6α, (2.44)

then there exists a positive constant C = C(p, q, Cs, α, n0, c0) such that for all ε ∈ (0, 1)

‖nε(·, t)‖Lp(�) + ‖∇cε(·, t)‖L2q (�) ≤ C (2.45)

for all t ∈ (0, Tmax,ε).

Proof. Combining Lemma 2.6 and Lemma 2.8, we see that for all ε ∈ (0, 1)

d

dt

⎛
⎝∫

�

np
ε +

∫
�

|∇cε|2q

⎞
⎠ + 3(p − 1)

p

∫
�

|∇n
p
2
ε |2 + q − 1

2q

∫
�

∣∣∇|∇cε|q
∣∣2

≤ p(p − 1)C2
S

∫
�

np−2α
ε |∇cε|2 + (2q2 + q)

∫
�

n2
ε|∇cε|2q−2 + (4q2 + 2q)

∫
�

|∇cε|2q |uε|2 + C1

(2.46)

on (0, Tmax,ε) with some constant C1 > 0. We shall show that each term of the three integrals on 
the right hand of (2.46) can be controlled by the two integrals on the left hand of (2.46) provided 
(2.44) is fulfilled.

For the first one, we first use Hölder’s inequality to obtain

∫
�

np−2α
ε |∇cε|2 ≤

⎛
⎝∫

�

n3(p−2α)
ε

⎞
⎠

1
3

·
⎛
⎝∫

�

|∇cε|3
⎞
⎠

2
3

for all t ∈ (0, Tmax,ε). (2.47)

Noticing that p > 2α + 1 , we know from (2.24) that
3
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⎛
⎝∫

�

n3(p−2α)
ε

⎞
⎠

1
3

= ‖n
p
2
ε ‖

2(p−2α)
p

L
6(p−2α)

p (�)

≤ C2

⎛
⎝∫

�

|∇n
p
2
ε |2

⎞
⎠

p−2α− 1
3

p− 1
3

+ C2 for all t ∈ (0, Tmax,ε),

(2.48)

with some constant C2 > 0. On the other hand, the Gagliardo–Nirenberg inequality shows that

⎛
⎝∫

�

|∇cε|3
⎞
⎠

2
3

= ∥∥|∇cε|q
∥∥ 2

q

L
3
q (�)

≤ C3

(∥∥∇|∇cε|q
∥∥ q

3q−1

L2(�)
· ∥∥∇|cε|q

∥∥ 2q−1
3q−1

L
2
q (�)

+ ∥∥∇|cε|q
∥∥

L
2
q (�)

) 2
q

≤ C4

⎛
⎝∫

�

∣∣∇|∇cε|q
∣∣2

⎞
⎠

1
3q−1

+ C4 (2.49)

for all t ∈ (0, Tmax,ε) with some positive constants C3 and C4, where in last step we used the
boundedness of ‖∇cε‖L2(�). Submitting (2.48) and (2.49) into (2.47), we arrive at

∫
�

np−2α
ε |∇cε|2 ≤ C2C4

⎛
⎝∫

�

|∇n
p
2
ε |2

⎞
⎠

p−2α− 1
3

p− 1
3

·
⎛
⎝∫

�

∣∣∇|∇cε|q
∣∣2

⎞
⎠

1
3q−1

+ C2C4

⎛
⎝∫

�

|∇n
p
2
ε |2

⎞
⎠

p−2α− 1
3

p− 1
3

+ C2C4

⎛
⎝∫

�

∣∣∇|∇cε|q
∣∣2

⎞
⎠

1
3q−1

+ C2C4 (2.50)

for all t ∈ (0, Tmax,ε).
Since

p − 2α − 1
3

p − 1
3

+ 1

3q − 1
< 1

due to 
p− 1

3

q− 1
3

< 6α, Young’s inequality entails that for any ζ > 0,

∫
�

np−2α
ε |∇cε|2 ≤ ζ

⎛
⎝∫

�

|∇n
p
2
ε |2

⎞
⎠ + ζ

⎛
⎝∫

�

∣∣∇|∇cε|q
∣∣2

⎞
⎠ + C5 (2.51)

for all t ∈ (0, Tmax,ε) with some positive constant C5 = C(ζ ) > 0.
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Next, in quite a similar manner, we can estimate the second summands on the right of (2.46). 
Indeed, Hölder’s inequality shows that

∫
�

n2
ε |∇cε|2(q−1) ≤

⎛
⎝∫

�

n3

⎞
⎠

2
3

·
⎛
⎝∫

�

|∇cε|6(q−1)

⎞
⎠

1
3

for all t ∈ (0, Tmax,ε). (2.52)

Then we can make use of Young’s inequality to estimate 
(∫

�
n3

ε

) 2
3 and 

(∫
�

|∇cε|6(q−1)
) 1

3 as 
(2.48) and (2.49), respectively. This eventually leads to

∫
�

n2
ε |∇cε|2(q−1) ≤ C5

⎛
⎝∫

�

|∇n
p
2
ε |2

⎞
⎠

4
3

p− 1
3

·
⎛
⎝∫

�

∣∣∇|∇cε|q
∣∣2

⎞
⎠

q− 4
3

q− 1
3

+ C5

⎛
⎝∫

�

|∇n
p
2
ε |2

⎞
⎠

4
3

p− 1
3

+C5

⎛
⎝∫

�

∣∣∇|∇cε|q
∣∣2

⎞
⎠

q− 4
3

q− 1
3

+ C5 (2.53)

for all t ∈ (0, Tmax,ε).

Since 
p− 1

3

q− 1
3

> 4
3 from (2.44), we have

4
3

p − 1
3

+ q − 4
3

q − 1
3

< 1 and
4
3

p − 1
3

< 1.

Whereupon, Young’s inequality once more shows that for any γ > 0, there exists positive con-
stant C6 = C(γ ) > 0 such that

∫
�

n2
ε|∇cε|2(q−1) ≤ γ

⎛
⎝∫

�

|∇n
p
2
ε |2

⎞
⎠ + γ

⎛
⎝∫

�

∣∣∇|∇cε|q
∣∣2

⎞
⎠ + C6 (2.54)

for all t ∈ (0, Tmax,ε).
Finally, for the last term on the right of (2.46), we first take 1 < ρ < 3 and use Hölder’s 

inequality to obtain

∫
�

|∇cε|2q |uε|2 ≤ ‖u2
ε‖Lρ′

(�)
· ∥∥|∇cε|2q

∥∥
Lρ(�)

for all t ∈ (0, Tmax,ε), (2.55)

where ρ′ = ρ−1
ρ

. We then apply the interpolation inequality and Young’s inequality to obtain that 
for all t ∈ (0, Tmax,ε),
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∥∥|∇cε|2q
∥∥

Lρ(�)
= ∥∥|∇cε|q

∥∥2
L2ρ(�)

≤ C7
∥∥∇|∇cε|q

∥∥2· q− 1
ρ

q− 1
3

L2(�)
+ C7 ≤ ς

∫
�

∣∣∇|∇cε|q
∣∣2 + C8

(2.56)

for any ς > 0 and some positive constants C7 and C8 = C(ς), where we used Lemma 2.7 in the 
first inequality. For any σ > 0, we use Corollary 2.2 to find a constant C9 = C(σ) > 0 such that

∫
�

|∇cε|2q |uε|2 ≤ σ

∫
�

∣∣∇|∇cε|q
∣∣2 + C9 for all t ∈ (0, Tmax,ε) (2.57)

by (2.55) and (2.56).
Now choosing suitable ζ in (2.51), γ in (2.54), and σ in (2.57) satisfying

p(p − 1)C2
Sζ + (2q2 + q)γ + (4q2 + 2q)σ ≤ min

{2(p − 1)

p
,
q − 1

2q

}
,

and substituting these inequalities into (2.46), we can achieve

d

dt

⎛
⎝∫

�

np
ε +

∫
�

|∇cε|2q

⎞
⎠ + (p − 1)

p

∫
�

|∇n
p
2
ε |2 + q − 1

4q

∫
�

∣∣∇|∇cε|q
∣∣2 ≤ C10 (2.58)

on (0, Tmax,ε) with some constant C10 > 0. To establish the uniform estimates of the functional, 
we once more employ the Gagliardo–Nirenberg inequality to estimate

∫
�

np
ε = ‖n

p
2
ε ‖

4
p

L2(�)
≤ C11

⎛
⎝∥∥∇n

p
2
ε

∥∥ 2(p−1)

p− 1
3

L2(�)

∥∥n
p
2
ε

∥∥ 4
3p−1

L
2
p (�)

+ ∥∥n
p
2
ε

∥∥2

L
2
p (�)

⎞
⎠

for all t ∈ (0, Tmax,ε) with some constant C11 > 0. Then Young’s inequality and the mass conser-
vation (2.3) entail the existence of positive constant C12 such that

∫
�

np
ε ≤ (p − 1)

p

∫
�

|∇n
p
2
ε |2 + C12 for all t ∈ (0, Tmax,ε). (2.59)

Similarly, by applying the Gagliardo–Nirenberg inequality again, Young’s inequality and 
Lemma 2.7, we can find C13 > 0 such that

∫
�

|∇cε|2q ≤ q − 1

4q

∫
�

∣∣∇|∇cε|q
∣∣2 + C13 for all t ∈ (0, Tmax,ε). (2.60)

Thereupon, we infer from (2.58), (2.59) and (2.60) that
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d

dt

⎛
⎝∫

�

np
ε +

∫
�

|∇cε|2q

⎞
⎠ +

⎛
⎝∫

�

np
ε +

∫
�

|∇cε|2q

⎞
⎠ ≤ C14

for all t ∈ (0, Tmax,ε), where C14 = C10 +C12 +C13. Then an ODE comparison argument shows 
that

∫
�

np
ε +

∫
�

|∇cε|2q ≤ C15 := max

⎧⎨
⎩

⎛
⎝∫

�

n
p

0 +
∫
�

|∇c0|2q

⎞
⎠ ,C14

⎫⎬
⎭

for all t ∈ (0, Tmax,ε) and thus conclude (2.45). �
We now derive the regularity of nε and ∇cε in arbitrary Lp spaces.

Corollary 2.3. For any p > 1, q > 1, there exists some positive constant C such that for any 
ε ∈ (0, 1), ∫

�

np
ε (·, t) ≤ C and

∫
�

|∇cε(·, t)|q ≤ C for all t ∈ (0, Tmax,ε). (2.61)

Proof. For any fixed q ≥ 2, we can choose p satisfies (2.44), which entails∫
�

|∇cε|q ≤ C1

for all t ∈ (0, Tmax,ε) with some positive constant C1 from Lemma 2.9. Similarly, for any fixed 

p > 2α + 1
3 , we can take q such that 1

6α
<

q− 1
3

p− 1
3

< 3
4 , which implies (2.44) is valid. Thereupon, 

Lemma 2.9 asserts that 
∫
�

n
p
ε is bounded for such p for all t ∈ (0, Tmax,ε). �

2.5. Existence of global bounded classical solutions to the regularized system

With the above regularization properties of each component nε, cε , uε at hand, we are now 
in the position to make sure that all approximate problems (2.1) are in fact globally solvable. To 
this end, we need the following regularity features of Duε implied by the boundedness property 
of nε .

Lemma 2.10. Let p ∈ [1, ∞) and r ∈ [1, ∞] be such that

{
r <

3p
3−p

if p ≤ 3,

r ≤ ∞ if p > 3.
(2.62)

Then for all K > 0 there exists C = C(p, r, K, u0, φ) such that if for some ε ∈ (0, 1) and T > 0
we have

‖nε(·, t)‖Lp(�) ≤ K for all t ∈ (0, T ), (2.63)



JID:YJDEQ AID:8436 /FLA [m1+; v1.234; Prn:26/07/2016; 10:14] P.25 (1-30)

Y. Wang, Z. Xiang / J. Differential Equations ••• (••••) •••–••• 25
then

‖Duε(·, t)‖Lr(�) ≤ C for all t ∈ (0, T ).

Proof. This lemma can be exactly proved as Corollary 3.4 in [46]. �
Thus by Corollary 2.3 and Lemma 2.10, we immediately obtain the boundedness of Duε.

Corollary 2.4. Suppose that (1.6)–(1.9) hold with α > 1
2 . Then there exists a positive constant C

such that for all ε ∈ (0, 1)

‖Duε(·, t)‖Lr(�) ≤ C for all 1 ≤ r ≤ ∞. (2.64)

With all above preparations, we can now establish the existence of global bounded classical 
solutions to the regularized system (2.1).

Theorem 2.1. Suppose that (1.6)–(1.9) hold with α > 1
2 . Then system (2.1) admits a global clas-

sical solution (nε, cε, uε, Pε), which is uniformly bounded in the sense that for all ε ∈ (0, 1),

‖nε(·, t)‖L∞(�) + ‖cε(·, t)‖W 1,∞(�) + ‖uε(·, t)‖W 1,∞(�) ≤ C for all t ∈ (0,∞) (2.65)

with some positive constant C. This solution is unique, up to addition of constants to Pε.

Proof. To obtain the existence of global classical solution, by the extension criterion in 
Lemma 2.1, we only need to show that

‖nε(·, t)‖L∞(�) + ‖cε(·, t)‖W 1,∞(�) + ‖Aβuε(·, t)‖L2(�) ≤ C1 (2.66)

for all t ∈ (0, Tmax,ε) with some positive constant C1 independent of Tmax,ε . To this end, we first 
notice that Corollary 2.4 together with the interpolation inequality yields the existence of C2 > 0
satisfying

‖uε(·, t)‖W 1,∞(�) ≤ C2 (2.67)

for all t ∈ (0, Tmax,ε). Then by using of the Lp − Lq estimate for the Neumann heat semigroup 
and Stokes semigroup, the desired estimate (2.66) can be obtained in the same way as the proof of 
its two-dimensional version (see Theorem 2.1 in [38]). Here we give a sketch for completeness.

We first establish the boundedness of nε as follows. Fix two constants r and q such that 
r > q > 3. By the smoothing estimate for the Neumann heat semigroup in � (see e.g. [41]), we 
can invoke the variation-of-constants formula for nε to find that some positive constant C3 such 
that
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‖nε(·, t)‖L∞(�) ≤ ‖et�n0‖L∞(�) +
t∫

0

∥∥e(t−τ)�∇ · (nεS(x,nε, cε)∇cε + nεuε

)
(·, τ )

∥∥
L∞(�)

dτ

≤ ‖n0‖L∞(�) + C3

t∫
0

(t − τ)
− 1

2 − 3
2q e−λ1(t−τ)

∥∥(
nεS(x,nε, cε)∇cε + nεuε

)
(·, τ )

∥∥
Lq(�)

dτ

(2.68)

for all t ∈ (0, Tmax,ε). By Hölder’s inequality, (1.7), (2.67), Corollary 2.3 and Corollary 2.4, we 
see for any r > 1

∥∥(
nεS(x,nε, cε)∇cε

)
(·, τ )

∥∥
Lq(�)

≤ CS‖(nε∇cε)(·, τ )‖Lq(�)

≤ CS‖nε(·, τ )‖Lr ‖∇cε(·, τ )‖
L

rq
r−q

≤ C4

and

‖(nεuε)(·, τ )‖Lq(�) ≤ ‖uε(·, τ )‖L∞(�)‖nε(·, τ )‖Lq(�) ≤ C5

for all t ∈ (0, Tmax,ε) with some positive constants C4 and C5. Thus we can infer from (2.68) that

‖nε(·, t)‖L∞(�) ≤ ‖n0‖L∞(�) + C3(C4 + C5)

t∫
0

(t − τ)
− 1

2 − 3
2q e−λ1(t−τ)dτ ≤ C6 (2.69)

for all t ∈ (0, Tmax,ε) with some positive constant C6 since the integral 
∫ ∞

0 σ
− 1

2 − 3
2q e−λ1σ dσ is 

finite by q > 3 and λ1 > 0.
Similarly, for cε , we can apply Corollary 2.3 to the variation-of-constants formula

cε(·, t) = et(�−1)c0 +
t∫

0

e(t−τ)(�−1)
(
nε − uε · ∇cε

)
(·, τ )dτ

to assert that

‖cε(·, t)‖W 1,∞(�) ≤ C7 (2.70)

for all t ∈ (0, Tmax,ε) with some C7 > 0.
Finally, we turn to the estimate of uε. Let β ∈ ( 3

4 , 1) be the constant given by (1.8). Applying 
the fractional power Aβ to the variation-of-constants formula

uε(·, t) = e−tAu0 +
t∫

0

e−(t−τ)AP
(
nε∇φ

)
(·, τ )dτ, t ∈ (0, Tmax,ε),

we can obtain
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‖Aβuε(·, t)‖L2(�) ≤ ‖Aβe−tAu0‖L2(�) +
t∫

0

∥∥Aβe−(t−τ)AP
(
nε∇φ

)
(·, τ )

∥∥
L2(�)

dτ

for all t ∈ (0, Tmax,ε). Then by the decay estimate of Stokes semigroup (see e.g. [13]), the bound-
edness of ‖n(·, τ)‖L∞(�) and of ‖∇φ‖L2(�), and the initial condition (1.8), we can find three 
positive constants λ, C8 and C9 such that

‖Aβuε(·, t)‖L2(�) ≤ ‖Aβe−tAu0‖L2(�)

+ C8‖nε(·, τ )‖L∞(�)‖∇φ‖L2(�)

t∫
0

‖(t − τ)−βe−λ(t−τ)dτ ≤ C9 (2.71)

for all t ∈ (0, Tmax,ε). Thus combining (2.69), (2.70) and (2.71), we establish the desired esti-
mate (2.66). We therefore conclude that Tmax = ∞ and that (nε, cε, uε, Pε) is global in time.

The boundedness estimate (2.65) is a direct consequence of (2.67), (2.69) and (2.70). This 
completes the proof of Theorem 2.1. �
3. Passing to the limit. Proof of Theorem 1.1

In this section, we shall use an approximate procedure to construct the global bounded clas-
sical solution to system (1.1) with general tensor-valued sensitivity S , under the assumption 
of (1.6) and (1.7). For this purpose, we first recall that Theorem 2.1 shows that the regularized 
system (2.1) possesses a global classical solution (nε, cε, uε, Pε) for any ε ∈ (0, 1), which satis-
fies the uniform bound (2.65). Moreover, integrating (2.37) from 0 to T with p = 2, we can also 
conclude that there exists a positive constant M(T ) such that

T∫
0

∫
�

|∇nε|2 ≤ M(T ) for all T > 0. (3.1)

From lemmata in Section 2, we know that M(T ) and the uniform bound in (2.65) are both 
independent of ε.

Then our goal is to show the solutions of the regularized system (2.1) will approach to a 
classical solution of system (1.1) as ε → 0.

Proof of Theorem 1.1. The proof follows from a similar argument as its two-dimensional ver-
sion in [38]. Here we just mention the key steps for completeness.

First of all, it follows from the uniform bound (2.65) that

‖nεt (·, t)‖(
W

2,2
0 (�)

)∗ ≤ C1 for all t > 0 and ε ∈ (0,1),

and

‖nε(·, t) − nε(·, s)‖(
W

2,2
0 (�)

)∗ ≤ C1|t − s| for all t > 0, s ≥ 0 and ε ∈ (0,1)

with some C1 > 0.
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Similar to Lemma 3.18 and Lemma 3.19 in Winkler [46], we can also use the uniform 
bound (2.65) and the standard parabolic regularity theory to obtain the following uniform Hölder 
continuity for cε , ∇cε and uε: There exist σ ∈ (0, 1) and C2 > 0 such that

‖cε‖
C

σ, σ
2

(
�̄×[t,t+1]) ≤ C2 for all t > 0 and ε ∈ (0,1)

and

‖uε‖
C

σ, σ
2

(
�×[t,t+1]) ≤ C2 for all t > 0 and ε ∈ (0,1),

and that for each t0 > 0 we can find C3(t0) > 0 such that

‖∇cε‖
C

σ, σ
2

(
�̄×[t,t+1]) ≤ C3(t0) for all t > t0 and ε ∈ (0,1).

Then these estimates (i.e., the uniform bound (2.65), the spatial-time integrability (3.1) and 
the above Hölder continuity) together with some Arzelà–Ascoli theorem and the dominated con-
vergence theorem ensure that (nε, cε, uε, Pε) will converge to a weak solution (n, c, u, P) of 
system (1.1) as ε → 0.

Next the higher regularity of solution (n, c, u, P) can be established by the standard parabolic 
regularity theory (see Chapter IV in [21]) and regularity theories for Stokes operator (see 
Lemma 2.1 in [42]).

Finally, the stated boundedness of the classical solution comes from the uniform bound (2.65)
and the aforementioned convergence results of the solutions of the regularized system (2.1) to 
the weak solution of system (1.1). This completes the proof of Theorem 1.1. �
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