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Abstract

This paper is devoted to the stability analysis of the plane Couette flow for the 3D compressible Navier–
Stokes equations with Navier-slip boundary condition at the bottom boundary. It is shown that the plane 
Couette flow is asymptotically stable for small perturbation provided that the slip length, Reynolds and 
Mach numbers satisfy 3(1+ν̃)α

γ 2(ν+α)γ0
≤ 1 and 2α

ν(ν+α)
≤ 1 for some constant γ0 > 0. In particular, the Reynolds 

number ν−1 can be large if the slip length α is suitably small. This means that the constraint required in [11]
on the Reynolds number to guarantee the stability of the plane Couette flow can be relaxed and improved 
so long as the slip effect at the boundary is involved.
© 2017 Published by Elsevier Inc.
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1. Introduction

This paper is concerned with the existence and asymptotic stability of the barotropic com-
pressible Navier–Stokes equations

✩ This research of Li was supported partially by the National Natural Science Foundation of China (No. 11231006 
and 11225102, NSFC-RGC Grant 11461161007 and 11671384), and the Importation and Development of High Caliber 
Talents Project of Beijing Municipal Institutions (No. CIT&TCD20140323).

E-mail addresses: hailiang.li.math@gmail.com (H.-L. Li), xingweizhang2014@163.com (X. Zhang).
http://dx.doi.org/10.1016/j.jde.2017.03.009
0022-0396/© 2017 Published by Elsevier Inc.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jde.2017.03.009
http://www.elsevier.com/locate/jde
mailto:hailiang.li.math@gmail.com
mailto:xingweizhang2014@163.com
http://dx.doi.org/10.1016/j.jde.2017.03.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2017.03.009&domain=pdf


H.-L. Li, X. Zhang / J. Differential Equations 263 (2017) 1160–1187 1161
{
∂tρ + div(ρv) = 0,

ρ∂tv + ρv · ∇v + ∇P(ρ) = ν�v + (ν + ν)∇divv,
(1.1)

in a three-dimensional infinite layer � = R2 × (0, 1), where we denote the density and veloc-
ity by ρ = ρ(x, t) and v = (v1(x, t), v2(x, t), v3(x, t))⊥ respectively with ·⊥ standing for the 
transposition. Assume that the pressure P(ρ) is a smooth function of ρ satisfying

P ′(ρ∗) > 0,

for a given constant ρ∗ > 0, ν and ν are the viscosity coefficients satisfying

ν > 0,
2

3
ν + ν ≥ 0.

The corresponding Reynolds number Re, the second Reynolds number Re and the Mach number 
Ma are given by

Re = ν−1, Re = ν−1, Ma = 1√
P ′(1)

.

We are interested in the stability of the plane Couette flow for compressible Navier–Stokes 
equations (1.1) with the Navier-slip boundary condition imposed on the bottom boundary, and 
expect that the boundary effect may play an important role in analyzing the global existence 
and asymptotical behaviors of solutions near the plane Couette flow. To this end, we assume for 
simplicity that the flow is driven by the top plate moving along x1-direction with constant speed 
v0 = (1, 0, 0)⊥ and that the boundary 	 ∪ 	b is not permeable, namely,

v · n = 0, on 	 ∪ 	b, (1.2)

where n is the outward unit vector normal to the boundary, 	 =: {x3 = 1} denotes the top bound-
ary of �, and 	b =: {x3 = 0} the bottom boundary. Moreover, we set the non-slip boundary 
condition at the top boundary

v = v0, on 	; (1.3)

and the Navier-slip boundary condition at the bottom boundary

Sn · τ + αv · τ = 0, on 	b, (1.4)

where S = 2νD(v) + (νdivv − P)I3 is the stress tensor, I3 is an identity matrix of order 3, 
D(v) is the velocity deformation tensor with elements Dij = 1

2 (
∂vi

∂xj
+ ∂vj

∂xi
), τ is any tangent 

vector orthogonal to n, and α > 0 is a constant of slip length or friction coefficient. It should 
be mentioned that the conditions (1.2) and (1.4) are proposed by Navier [16] and imply that 
the component of the fluid velocity tangent to the surface is proportional to the rate of strain 
on the surface. Some recent experiments, generally with typical dimensions microns or smaller, 
have demonstrated that the phenomenon of slip actually occurs (refer to [4,6] and the references 
therein).
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As in [5,7], we can show that the system (1.1)–(1.4) has a stationary solution us = (ρs, vs)
⊥

satisfying

ρs = 1, vs = v1
s e1 = (A0x3 + B0)e1, (1.5)

with e1 = (1, 0, 0)⊥, A0 = α
ν+α

and B0 = ν
ν+α

, which is the so-called plane Couette flow. We 
are interested in the stability of the plane Couette flow solution (1.5) and justify the influence of 
the slip length, Reynolds and Mach numbers on the motion of the flow. As well known, the field 
of hydrodynamic stability is concerned with the stability of various flows as subjected to various 
disturbances. This is an important issue since a stationary unstable flow in general can not exist 
in reality. The type of stability that a flow may exhibit typically depends on the Reynolds number 
Re. Therefore, to analyze how the stability depends on the Reynolds number for different flows 
is of importance and an interesting issue in hydrodynamic stability. There are recently important 
progress on the stability analysis of plane Couette flow for viscous flow with non-slip boundary 
condition [1–3,8–11,15,17]. In particular, as for the incompressible Navier–Stokes equations, 
Romanov [17] first proved that the plane Couette flow nonlinear stable for any Reynolds number 
Re > 0 under sufficiently small perturbations. Inspired by the important work of Mouhot and 
Villani [15], Bedrossian and Masmoudi [3] have proven the nonlinear inviscid damping effect of 
the Couette flow in an infinite periodic channel for small Gevrey perturbation. Then, Bedrossian, 
Germain and Masmoudi [1,2] obtained the interesting threshold of stability of the periodic plane 
Couette flow in Gevrey-a class with a ∈ (1, 2) at high Reynolds number. On the other hand, 
Kagei [11] made the breakthrough on the stability of the plane Couette flow with respect to small 
Reynolds and Mach numbers for compressible Navier–Stokes equations under small perturba-
tion, and showed that the solution behaved in large time as that of an n − 1 dimensional linear 
heat equation in parallel with the motion of the plane Couette flow.

The main purpose of the present paper is to study the stability of the plane Couette flow for 
compressible Navier–Stokes equations with the Navier-slip boundary condition imposed at the 
bottom boundary. Our main results show that the plane Couette flow solution (1.5) is asymptot-
ically stable for small perturbation provided that the slip length, Reynolds and Mach numbers 
satisfy 3(1+ν̃)α

γ 2(ν+α)γ0
≤ 1 and 2α

ν(ν+α)
≤ 1 for some constant γ0 > 0. In particular, the Reynolds num-

ber ν−1 and the Mach number γ −1 can be large enough so long as the slip length α is suitably 
small. This implies that the constraint required in [11] on the Reynolds and Mach numbers to 
guarantee the stability of the plane Couette flow can be relaxed and improved in the present 
paper as the slip effect is involved.

The rest part of the paper is arranged as follows. In section 2, we present the reformulations 
of the system and the main results. In section 3, we derive the Stokes estimate with Navier-slip 
boundary which will be needed to obtain the global existence of the perturbed equation. Section 4
is devoted to the linearized problem. Finally, the main results are proved in section 5.

Notations. We introduce some notations that will be used throughout this paper. For a domain D, 
we use the same notation for both scalar functions and vector fields in the Lp-space and Sobolev 
spaces Wk,p(D) (Hk(D) if p = 2). For u = (φ, ω) with φ ∈ Wk,p(D) and ω = (ω1, ω2, ω3)

⊥ ∈
Wl,q(D), we define

‖u‖Wk,p(D)×Wl,q (D) = ‖φ‖Wk,p(D) + ‖ω‖Wl,q (D).

We simply write ‖u‖Wk,p(D)×Wk,p(D) = ‖u‖Wk,p(D) for k = l and p = q .
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In the case D = �, we abbreviate Lp(�) as Lp (resp. Wk,p , Hk). In particular, the norm 
‖ · ‖Lp(�) = ‖ · ‖Lp is denoted by ‖ · ‖p . In the case D = (0, 1), we denote the norm of Lp(0, 1)

by | · |p , and the norms of Wk,p(0, 1) and Hk(0, 1) by | · |Wk,p and | · |Hk respectively. The inner 
product of L2(0, 1) is denoted by

(f, g) =
1∫

0

f (x3)g(x3)dx3, f, g ∈ L2(0,1).

And H 2∗ (0, 1) consists of all elements of ω ∈ H 2(0, 1) that satisfy the following boundary con-
ditions

ω|x3=1 = 0, ω3|x3=0 = 0, ν∂x3ωj − αwj |x3=0 = 0, j = 1,2.

It is easy to see that H 2∗ (0, 1) is complete.
Furthermore, for f ∈ L1(0, 1), we denote the mean value of f in (0, 1) by 〈f 〉:

〈f 〉 = (f,1) =
1∫

0

f (x3)dx3.

We often write x ∈ � as x = (x′, x3) with x′ = (x1, x2) ∈ R2. Partial derivatives of a function 
u in x, x′, x3 and t are denoted by ∂xu, ∂x′u, ∂x3u and ∂tu, respectively.

We denote the k × k identity matrix by Ik . Q0 and Q̃ denote the 4 × 4 diagonal matrices:

Q0 = diag(1,0,0,0), Q̃ = diag(0,1,1,1).

For a function f = f (x′) (x′ ∈ R2), we denote its Fourier transform by f̂ or (Ff )(ξ):

f̂ = (Ff )(ξ) =
∫
R2

e−ix′·ξ f (x′)dx′,

with ξ = (ξ1, ξ2)
⊥. The inverse Fourier transform is denoted by F−1:

(F−1f )(x′) =
∫
R2

eix′·ξ f (ξ)dξ.

We denote the resolvent set of a closed operator A by 
(A) and the spectrum of A by σ(A). 
For � ∈R and θ ∈ (π

2 , π), we denote the set {λ ∈ C; | arg(λ − �)| ≤ θ} by 	(�, θ)

	(�, θ) = {λ ∈ C; | arg(λ − �)| ≤ θ}.
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2. Reformulation and main results

In this section, we reformulate the original problem (1.1)–(1.4) near the Couette flow solution 
(1.5) to obtain the corresponding one for the perturbations and state the main results. Define

u = (φ,ω)⊥ = (γ 2(ρ − ρs), v − vs)
⊥, γ = M−1

a . (2.1)

Substituting (2.1) into (1.1), we obtain the following initial boundary value problem

∂tφ + v1
s ∂x1φ + γ 2divω = f0, (2.2)

∂tω − ν�ω − ν′∇divω + ∇φ + v1
s ∂x1ω + A0ω3e1 = g, (2.3)

ω|	 = 0, ω3|	b
= 0, (2.4)

ν∂x3ωj − αwj |	b
= 0, j = 1,2, (2.5)

(φ,ω)|t=0 = (φ0,ω0), (2.6)

where ν′ = ν + ν, f0 and g denote the nonlinearities

f0 = −div(φω), (2.7)

g = −ω · ∇ω − φ

γ 2 + φ
{ν�ω + ν′∇divω + (P2(γ,φ) − 1)∇φ}, (2.8)

with

P2(γ,φ) = 1

γ 2

1∫
0

P ′′(1 + γ 2φθ)dθ.

Let us consider the linearized problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂tu + Lu = 0,

ω|	 = 0, ω3|	b
= 0,

ν∂x3ωj − αwj |	b
= 0, j = 1,2,

(φ,ω)|t=0 = (φ0,ω0),

(2.9)

where

L =
(

v1
s ∂x1 γ 2div

∇ −ν�I3 − ν′∇div

)
+
(

0 0
0 v1

s ∂x1I3 + A0e1e
⊥
3

)
,

and denote the solution operator of (2.9) by S(t).
We have the following results on the global existence and large time behavior of linearized 

problem (2.9).
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Theorem 2.1. Let ̃ν = ν + ν′. Suppose that u0 = (φ0, ω0)
⊥ ∈ H 1 ×L2 and ∂x′ω0 ∈ L2. Then the 

initial value problem (2.9) has a unique solution u(t) = S(t)u0 and satisfies the estimates

‖∂l
xS(t)u0‖2 ≤ C

{
t−

l
2 ‖u0‖H 1×L2 + ‖∂x′ω0‖2

}
, l = 0,1, (2.10)

for 0 < t ≤ 1.
Moreover, there exists a positive constant γ0, such that if 3(1+ν̃)α

γ 2(ν+α)γ0
≤ 1 and 2α

ν(ν+α)
≤ 1, then 

the following estimates hold uniformly in t ≥ 1, u0 = (φ0, ω0)
⊥ ∈ H 1 × L2 with ∂x′ω0 ∈ L2 and 

u0 ∈ L1,

‖∂l
xS(t)u0‖2 ≤ C

{
t−

1
2 − l

2 ‖u0‖1 + e−δt‖u0‖H 1

}
, l = 0,1, (2.11)

‖S(t)u0 − Gt∗x′�(0)u0‖2 ≤ C
{
t−1‖u0‖1 + e−δt‖u0‖H 1

}
, (2.12)

with some constant δ > 0, where

Gt∗x′�(0)u0 = F−1
[
e−((

A0
2 +B0)iξ1+κ1ξ

2
1 +κ2ξ

2
2 )t �̂0û0

]

with �̂0û0 = 〈Q0û0〉, where κ1 and κ2 are some positive constants that will be given in Section 4.

Remark 2.1. It is not difficult to show that

‖Gt∗x′�0u0‖2 ≤ t−
1
2 ‖u0‖1.

And Gt∗x′�0u0 can be written in the form Gt∗x′�0u0 = (φ(0)(x′, t), 0) with φ(0)(x′, t) satisfy-
ing

∂tφ
(0) − κ1∂

2
x1

φ(0) − κ2∂
2
x2

φ(0) + (
A0

2
+ B0)∂x1φ

(0) = 0,

φ(0)|t=0 =
1∫

0

φ(0)(x′, x3)dx3.

With the help of Theorem 2.1, we can establish the following result on the stability of the 
plane Couette flow of compressible Navier–Stokes equations.

Theorem 2.2.

(i) Let s be an integer satisfying s ≥ 2. There exist constants ε0 > 0 and γ0 > 0 such that 
if 3(1+ν̃)α

γ 2(ν+α)γ0
≤ 1 and 2α

ν(ν+α)
≤ 1, then for any u0 = (φ0, ω0)

⊥ ∈ Hs satisfying the ap-

propriate compatibility condition with ‖u0‖Hs ≤ ε0, there exists a unique global solution 
u(t) = (φ(t), ω(t))⊥ ∈ C([0, ∞); Hs) of (2.2)–(2.6), which satisfies
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‖(φ,ω)(t)‖2
Hs +

t∫
0

‖∂xφ‖2
Hs−1 + ‖∂xω‖2

Hs dτ ≤ C‖u0‖2
Hs , (2.13)

and

‖(φ,ω)(t)‖∞ → 0, as t → ∞.

(ii) Furthermore, let s ≥ 3 and assume that 3(1+ν̃)α

γ 2(ν+α)γ0
≤ 1 and 2α

ν(ν+α)
≤ 1. Assume also that 

u0 = (φ0, ω0)
⊥ ∈ Hs ∩L1 and satisfies the appropriate compatibility condition. There exists

a constant ε1 ∈ (0, ε0] such that if ‖u0‖Hs∩L1 ≤ ε1, then the solution u(t) = (φ(t), ω(t))⊥
satisfies

‖∂l
x(φ(t),ω(t))‖2 =O(t−

1
2 − l

2 ), as t → ∞, (2.14)

for l = 0, 1, 2 and

‖u(t) − Gt∗x′�0u0‖2 =O(t−1), as t → ∞. (2.15)

Remark 2.2. As in the paper [11], the disturbance behaves the same time convergence rates in 
L2 norm as the solution of a two dimensional linear heat equation with a convective term.

3. Stokes estimate with Navier-slip boundary

To prove Theorem 2.1–2.2, we need to deal with the Stokes problem with Navier-slip bound-
ary condition and establish the estimates for the linearized problem. Consider the following 
Stokes problem with Navier-slip boundary condition at the bottom boundary and Dirichlet 
boundary condition at the top boundary,⎧⎪⎪⎪⎨⎪⎪⎪⎩

−ν�ω + ∇q = �F, ∇ · ω = F0,

ν
∂ωj

∂x3
− αωj

∣∣
	b

= 0, j = 1,2,

ω3
∣∣
	b

= 0, ω
∣∣
	

= 0.

(3.1)

We have the existence and uniqueness of solution to (3.1) below.

Theorem 3.1. Let � =R2 × (0, 1). Suppose

�F ∈ Hn−2(�),F0 ∈ Hn−1(�),

∫
�

F0dx = 0, n ≥ 2,

then the problem (3.1) has a unique solution (w, q) such that

‖ω‖2
Hn(�) + ‖∇q‖2

Hn−2(�)
≤ C(‖ �F‖2

Hn−2(�)
+ ‖F0‖2

Hn−1(�)
), (3.2)

where the constant C is proportional to ν2 + 1
.

ν2
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To prove Theorem 3.1, we reformulate Stokes problem (3.1) as follows⎧⎪⎪⎨⎪⎪⎩
−ν�ω + ∇q = 0, ∇ · ω = 0,

ν
∂ωj

∂x3
− αωj

∣∣
	b

= bj , j = 1,2,

ω3
∣∣
	b∪	

= 0, ωj

∣∣
	

= bj+2, j = 1,2.

(3.3)

Applying the Fourier transform to (3.3) with respect to x′ = (x1, x2), we have the following 
system of ordinary differential equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ν(|ξ |2 − d2

dx2
3
)ω̂j + iξj q̂ = 0, (j = 1,2),

ν(|ξ |2 − d2

dx2
3
)ω̂3 + dq̂

dx3
= 0,

iξ1ω̂1 + iξ2ω̂2 + dω̂3
dx3

= 0,

(3.4)

with the boundary conditions⎧⎨⎩ ν
∂ω̂j

∂x3
− αω̂j

∣∣
	b

= b̂j , j = 1,2,

ω̂3
∣∣
	b∩	

= 0, ω̂j

∣∣
	

= b̂j+2, j = 1,2.
(3.5)

The solution to (3.4)–(3.5) has the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ω̂1 = C5e
|ξ |x3 + C6e

−|ξ |x3 + iξ1C1x3e
|ξ |x3 − iξ1C2x3e

−|ξ |x3 ,

ω̂2 = C7e
|ξ |x3 + C8e

−|ξ |x3 + iξ2C1x3e
|ξ |x3 − iξ2C2x3e

−|ξ |x3 ,

ω̂3 = C3e
|ξ |x3 + C4e

−|ξ |x3 + C1|ξ |x3e
|ξ |x3 + C2|ξ |x3e

−|ξ |x3 ,

q̂ = 2νC1|ξ |e|ξ |x3 + 2νC2|ξ |e−|ξ |x3 ,

(3.6)

with the coefficient Cj , j = 1, · · · , 8 to be determined below. Substituting (3.6) into (3.5) and 
(3.4)3, we obtain the following equations

C5e
|ξ | + C6e

−|ξ | + iξ1C1e
|ξ | − iξ1C2e

−|ξ | = b̂3, (3.7)

ν(C5|ξ | − C6|ξ | + iξ1C1 − iξ1C2) − α′(C5 + C6) = b̂1, (3.8)

C7e
|ξ | + C8e

−|ξ | + iξ2C1e
|ξ | − iξ2C2e

−|ξ | = b̂4, (3.9)

ν(C7|ξ | − C8|ξ | + iξ2C1 − iξ2C2) − α′(C7 + C8) = b̂2, (3.10)

C3e
|ξ | + C4e

−|ξ | + C1|ξ |e|ξ | + C2|ξ |e−|ξ | = 0, (3.11)

iξ1C5 + iξ2C7 + C3|ξ | + C1|ξ | = 0, (3.12)

iξ1C6 + iξ2C8 − C4|ξ | + C2|ξ | = 0, (3.13)

C3 + C4 = 0. (3.14)

By (3.7)–(3.10), we can obtain after a tedious computation
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C5 = 1
A

{
iξ1(ν|ξ | + α)(C2e

−|ξ | − C1e
|ξ |) + (ν|ξ | + α)b̂3 + (b̂1 + iξ1ν(C2 − C1))e

−|ξ |
}
,

C6 = 1
A

{
iξ1(ν|ξ | − α)(C2e

−|ξ | − C1e
|ξ |) + (ν|ξ | − α)b̂3 − (b̂1 + iξ1ν(C2 − C1))e

|ξ |
}
,

C7 = 1
A

{
iξ2(ν|ξ | + α)(C2e

−|ξ | − C1e
|ξ |) + (ν|ξ | + α)b̂4 + (b̂2 + iξ2ν(C2 − C1))e

−|ξ |
}
,

C8 = 1
A

{
iξ2(ν|ξ | − α)(C2e

−|ξ | − C1e
|ξ |) + (ν|ξ | − α)b̂4 − (b̂2 + iξ2ν(C2 − C1))e

|ξ |
}
,

(3.15)

with

A = (ν|ξ | + α)e|ξ | + (ν|ξ | − α)e−|ξ | > 0, (|ξ | > 0).

Substituting (3.15) into (3.11)–(3.14), we have by a complicated computation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 = −e−2|ξ |C2 − |ξ |−1(1 − e−2|ξ |)C3,

C2 = 1
B

{
(ν|ξ | + α)e2|ξ | − 2(ν|ξ |2 + α|ξ | + α′) − (ν|ξ | − α)(1 + 2|ξ |)e−2|ξ |}(iξ1b̂1 + iξ2b̂2)

+ 1
B

{−(ν|ξ | + α)(2ν|ξ | + 2α|ξ | − α)e|ξ | + (−2αν|ξ |2 + 4αν|ξ | + 2α2|ξ | − 2α2)e−|ξ |

+ (2ν|ξ | − α)(ν|ξ | − α)e−3|ξ |}(iξ1b̂3 + iξ2b̂4),

C3 = −2|ξ |2
B

{
ν|ξ | + α + (ν|ξ | − α)e−2|ξ |}(iξ1b̂1 + iξ2b̂2) + 1

B
{|ξ |(ν|ξ | + α)(2ν|ξ | + α)e|ξ |

+ (4ν2|ξ |3 − 2αν|ξ |)e−|ξ | + |ξ |(2ν|ξ | − α)(ν|ξ | − α)e−3|ξ |}(iξ1b̂3 + iξ2b̂4),

C4 = −C3,
(3.16)

with

B = α2|ξ |(1 − e−2|ξ |)(e2|ξ | + e−2|ξ | − 2 − 4|ξ |2) + αν|ξ |2{2(1 − e−2|ξ |)(e2|ξ | − e−2|ξ | − 4|ξ |)
+ e2|ξ | + e−4|ξ | − e−2|ξ | − 1 − 4|ξ |2 − 4|ξ |2e−2|ξ |} + 2ν2|ξ |3(1 + e−2|ξ |)(e2|ξ | − e−2|ξ | − 4|ξ |)
> 0, for |ξ | > 0.

It is not difficult to conclude that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B > 16ν2

3 |ξ |6, as |ξ | > 0; B ∼ (ν|ξ | + α)(2ν|ξ | + α)|ξ |e2|ξ | as |ξ | > 1,

B ∼ 8
3 (4ν + α)(ν + α)|ξ |6, as |ξ | → 0,

C1 ∼ 4
B

(ν + α)|ξ |3(iξ1b̂1 + iξ2b̂2) − 4
B

(ν + α)(2ν + α)|ξ |3(iξ1b̂3 + iξ2b̂4), as |ξ | → 0,

C2 ∼ 4
B

(ν + α)|ξ |3(iξ1b̂1 + iξ2b̂2) − 4
B

(ν + α)(2ν + α)|ξ |3(iξ1b̂3 + iξ2b̂4), as |ξ | → 0,

C3 ∼ − 4
B

(ν + α)|ξ |3(iξ1b̂1 + iξ2b̂2) + 4
B

(ν + α)(2ν + α)|ξ |3(iξ1b̂3 + iξ2b̂4), as |ξ | → 0,

C2 − C1 ∼ − 16
3B

(ν + α)|ξ |4(iξ1b̂1 + iξ2b̂2) + 8
3B

α(ν + α)|ξ |4(iξ1b̂3 + iξ2b̂4), as |ξ | → 0,

C2e
−|ξ | − C1e

|ξ | ∼ 8
3B

(ν + α)|ξ |4(iξ1b̂1 + iξ2b̂2) − 16
3B

α(ν + α)|ξ |4(iξ1b̂3 + iξ2b̂4), as |ξ | → 0.

(3.17)

As for the functions e|ξ |x3 , e−|ξ |x3 , x3e
|ξ |x3 and x3e

−|ξ |x3 , we have the following estimates.
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Lemma 3.1. Let k = 0, 1, 2, then we have

1∫
0

∣∣∣∣∣
(

d

dx3

)k

e|ξ |x3

∣∣∣∣∣
2

dx3 ≤ C|ξ |2k−1(e2|ξ | − 1),

1∫
0

∣∣∣∣∣
(

d

dx3

)k

e−|ξ |x3

∣∣∣∣∣
2

dx3 ≤ C|ξ |2k−1(1 − e−2|ξ |),

1∫
0

∣∣∣∣∣
(

d

dx3

)k

(x3e
|ξ |x3)

∣∣∣∣∣
2

dx3 ≤ C|ξ |(k−1)+e2|ξ |(|ξ | + 2)k,

1∫
0

∣∣∣∣∣
(

d

dx3

)k

(x3e
−|ξ |x3)

∣∣∣∣∣
2

dx3 ≤ C|ξ |(k−1)+ ,

where (k − 1)+ = max{0, k − 1}.

For any nonnegative integer l ≥ 1, we introduce the norm

‖ω‖2
l,� =

l∑
k=1

∫
R2

∥∥∥∥∥
(

d

dx3

)k

ω̂(ξ, ·)
∥∥∥∥∥

2

L2(0,1)

|ξ |2(l−k)dξ,

‖ω‖Ḣ l(�) =
l∑

k=1

‖∂k
xω‖2

L2

It is easy to verify that the norm 
l∑

k=1
‖ω‖k,� is equivalent to ‖ω‖Ḣ l(�) due to Parseval’s equality.

By (3.6), (3.15)–(3.17) and Lemma 3.1, we can obtain the following lemma.

Lemma 3.2. Suppose �b = (b1, b2) ∈ Hn− 3
2 (	b), �d = (b3, b4) ∈ Hn− 1

2 (	), n ≥ 2, then the solu-
tion (3.6) to the problem (3.3) satisfies

‖ω‖2
Ḣ n(�)

+ ‖∇q‖2
Hn−2(�)

≤ C

(
‖�b‖2

H
n− 3

2 (	b)
+ ‖�d‖2

H
n− 1

2 (	)

)
.

Furthermore, by Poincaré inequality, we have

‖ω‖2
Hn(�) + ‖∇q‖2

Hn−2(�)
≤ C

(
‖�b‖2

H
n− 3

2 (	b)
+ ‖�d‖2

H
n− 1

2 (	)

)
.

Proof of Theorem 3.1. We construct the solution to (3.1) in the form

(ω, q) = (ω(1) + ω(2) + ω(3), νF ′ + q(3)), (3.18)
0
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where ω(1) is a solution of the Dirichlet problem

−ν�ω(1) = �F in �, ω(1) = 0 on 	b ∪ 	, (3.19)

ω(2) = ∇ϕ with ϕ being a solution of the Neumann problem

�ϕ = F0 − ∇ · ω(1) = F ′
0 in �,

∂ϕ

∂x3

∣∣∣
	b∪	

= 0, (3.20)

and (ω(3), q(3)) is a solution of problem (3.3) with �b = (b1, b2) and �d = (b3, b4) defined by

bj = −ν
∂

∂x3

(
ω

(1)
j + ω

(2)
j

)
+ α

(
ω

(1)
j + ω

(2)
j

)∣∣∣
	b

, bj+1 = −ω
(1)
j − ω

(2)
j

∣∣∣
	

, j = 1,2.

By the standard elliptic estimates of equations (3.19) and (3.20) together with Lemma 3.2, we 
can obtain (3.2). �
4. The linearized problem

In this section, we consider the linearized problem (2.9) and prove Theorem 2.1.

Theorem 4.1. There exists a constant γ0 such that if 3(1+ν̃)α

γ 2(ν+α)γ0
≤ 1 and 2α

ν(ν+α)
≤ 1, then for any 

u0 = (φ0, ω0)
⊥ ∈ (H 1 × L2) ∩ L1 with ∂x′ω0 ∈ L2, the solution u(t) = S(t)u0 of the problem 

(2.9) can be decomposed as

S(t)u0 = S(0)(t)u0 + S(∞)(t)u0.

Moreover, it holds that

(i) The function S(0)(t)u0 satisfies the following estimates uniformly for t ≥ 1,

‖∂l
xS

(0)(t)u0‖2 ≤ Ct−
1
2 − l

2 ‖u0‖1, l = 0,1, (4.1)

‖S(0)(t)u0 − Gt∗x′�(0)u0‖2 ≤ Ct−1‖u0‖1, (4.2)

and

‖∂l
xS

(0)(t)[Q̃u0]‖2 ≤ Ct−1− l
2 ‖Q̃u0‖1, l = 0,1. (4.3)

(ii) There exists a constant δ > 0 such that S(∞)(t)u0 satisfies

‖∂l
xS

(∞)(t)u0‖2 ≤ Ce−δt‖u0‖H 1, l = 0,1, (4.4)

for all t ≥ 1.
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To prove Theorem 4.1, we decompose S(t)u0 as follows. Let R0 > 0, define χ(0)(ξ) and 
χ(∞)(ξ) by

χ(0)(ξ) = 1, if |ξ | ≤ R0; χ(0)(ξ) = 0, if |ξ | > R0; and χ(∞)(ξ) = 1 − χ(0)(ξ).

We decompose S(t)u0 as

S(t)u0 = U0(t)u0 + U∞(t)u0,

where

Uj (t)u0 = F−1[χ(j)(ξ)e−tL̂ξ û0], j = 1,∞. (4.5)

Here L̂ξ is the operator and has the form

L̂ξ =
⎛⎝ iv1

s ξ1 iγ 2ξ⊥ γ 2∂x3

iξ {ν(|ξ |2 − ∂2
x3

) + iv1
s ξ1}I2 + ν′ξξ⊥ −iν′ξ∂x3 + A0e

′
1

∂x3 −iν′ξ⊥∂x3 ν(|ξ |2 − ∂2
x3

) − ν′∂2
x3

+ iv1
s ξ1

⎞⎠ ,

which is a closed operator on H 1(0, 1) × L2(0, 1) with the domain of definition D(L̂ξ ) =
H 1(0, 1) × H 2∗ (0, 1).

Proposition 4.1. There is a constant r0 > 0 such that if R0 ≤ r0, then U0(t)u0 defined by (4.5)
can be written as

U0(t)u0 = S(0)(t)u0 + R(0)(t)u0,

where S(0)(t)u0 has the properties (i) of Theorem 4.1 and R(0)(t)u0 satisfies the estimate (ii) of 
Theorem 4.1 with S(∞)(t)u0 replaced by R(0)(t)u0.

Proposition 4.2. There exists a positive constant γ0 depending only on R0 such that if 
3(1+ν̃)α

γ 2(ν+α)γ0
≤ 1 and 2α

ν(ν+α)
≤ 1, then the following estimate holds for any fixed R0 > 0 uniformly 

in t ≥ 1,

‖U∞(t)u0‖H 1 ≤ Ce−δt‖u0‖H 1, (4.6)

where δ = δ(R0) > 0.

Proof of Theorem 2.1. The proof of (2.11)–(2.12) in Theorem 2.1 follows from Proposition 4.1
and 4.2 by setting R0 = r0 and S(∞)u0 = R(0)(t)u0 + U∞(t)u0. And the proof of (2.10) in 
Theorem 2.1 follows from Proposition 4.4. �
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4.1. Proof of Proposition 4.1

In this subsection, we prove Proposition 4.1. To this end, we take the Fourier transform of 
(2.9) with respect to x′ ∈ R2 and obtain the following initial boundary value problem for the 
functions û = (φ̂(x3, t), ω̂(x3, t)⊥, x3 ∈ (0, 1), t ≥ 0:

d

dt
û + L̂ξ û = 0, û|t=0 = û0 =: (φ̂0(x3), ω̂0(x3))

⊥. (4.7)

We decompose L̂ξ in the following form:

L̂ξ = L̂0 +
2∑

j=1

ξj L̂
(1)
j +

2∑
j,k=1

ξj ξkL̂
(2)
jk ,

where

L̂0 =
⎛⎝ 0 0 γ 2∂x3

0 −ν∂2
x3

I2 A0e
′
1

∂x3 0 −ν̃∂2
x3

⎞⎠ , ν̃ = ν + ν′,

L̂
(1)
j =

⎛⎜⎝ iv1
s δ1j iγ 2e′

j
⊥ 0

ie′
j iv1

s δ1j I2 −iν′e′
j ∂x3

0 −iν′e′
j
⊥∂x3 iv1

s δ1j

⎞⎟⎠ ,

L̂
(2)
jk =

⎛⎝ 0 0 0
0 νδjkI2 + ν′e′

j e
′
k
⊥ 0

0 0 νδjk

⎞⎠ ,

with e′
j denoting the unit vector in ξj -direction of R2.

We consider

λû + L̂ξ û = f, (4.8)

where λ ∈ C is the resolvent parameter, û = (φ̂(x3), ω̂′, ω̂3)
⊥ and f = (f0, f ′, f3)

⊥. We treat 
the operator L̂ξ as a perturbation of L̂0 and then we start with the resolvent problem (4.8) for 
ξ = 0 as

λû + L̂0û = f. (4.9)

For k = 1, 2, · · ·, we define λ±,k and λ1,k by

λ±,k = − ν̃

2
(kπ)2 ± 1

2

√
ν̃2(kπ)4 − 4γ 2(kπ)2,

and

λ1,k = −νak,
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where (2k−1)π
2 < ak < kπ is the solution of the function

α tanx + νx = 0, x > 0.

It is easy to see that λ±,k are two roots of the equations λ2 + ν̃(kπ)2λ + γ 2(kπ)2 = 0 satisfying 
λ−,k = λ+,k for |kπ | < 2γ

ν̃
and λ±,k ∈ R for kπ ≥ 2γ

ν̃
, and it holds

λ+,k = −γ 2

ν̃
+ O(k−2), λ−,k = −ν̃(kπ)2 + O(1), as k → ∞.

We have the following lemma on the resolvent estimate of the operator −L̂0.

Lemma 4.1.

(i) It holds that

σ(−L̂0) = {0} ∪ {λ1,k}∞k=1 ∪ {λ±,k}∞k=1 ∪ {−γ 2

ν̃
}.

In particular, λ = 0 is a simple eigenvalue of −L̂0 with eigenprojection

�̂0û = 〈φ̂〉u(0), for û = (φ̂, ω̂)⊥,

where u(0) = (1, 0, 0, 0)⊥.
(ii) There exist positive numbers η0 and θ0 with θ0 ∈ (π

2 , π) such that the following estimates 
hold uniformly for λ ∈ 
(−L̂0) ∩ 	(−η0, θ0):∣∣∣(λ + L̂0)

−1f

∣∣∣
Hl×L2

≤ C

|λ| |f |Hl×L2, l = 0,1,∣∣∣∂l
x3

Q̃(λ + L̂0)
−1f

∣∣∣
2
≤ C

(|λ| + 1)1− l
2

|f |Hl−1×L2 , l = 1,2,

∣∣∣∂2
x3

Q0(λ + L̂0)
−1f

∣∣∣
2
≤ C

(|λ| + 1)
1
2

|f |H 2×H 1 .

Proof. The proof of Lemma 4.1 can be made by similar arguments as used in [8]. Here we 
only show the difference due to the different boundary condition. Let us consider the eigenvalue 
problem

⎧⎪⎪⎨⎪⎪⎩
λφ̂ + γ 2∂x3 ω̂3 = f0,

∂x3 φ̂ + λω̂3 − ν̃∂2
x3

ω̂3 = f3,

ω̂3
∣∣
	∪	b

= 0,

(4.10)

and
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{
λω̂′ − ν∂2

x3
ω̂′ = f ′ − A0ω̂3e

′
1,

ν∂x3 ω̂
′ − αω̂′∣∣

	b
= 0, ω̂′∣∣

	
= 0.

(4.11)

We first consider the eigenvalue problem for (4.10). The spectrum analysis and the resolvent 
estimates of (4.10) can be made by applying the same way with some modification as in [8], so 
we omit the details. Indeed, we can show that there exist positive numbers η0 and θ0 ∈ (π

2 , π) so 
that it holds for λ with | arg(λ + η0)| ≤ θ0 that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{0} ∪ {λ±,k}∞k=1 ∪ {− γ 2

ν̃
} ⊂ σ(−L̂0),

|φ̂|2 ≤ C|f |2
|λ| ,

|∂l+1
x3

φ̂|2 ≤ C|f |Hl+1×Hl

(|λ| + 1)1− l
2

, for l = 0,1,

|∂l
x3

ω̂3|2 ≤ C|f |H(l−1)+×L2

(|λ| + 1)1− l
2

, for l = 0,1,2.

(4.12)

Then we turn to investigate eigenvalue the problem (4.11) for λ �= 0, λ �= λ±,k and λ �= − γ 2

ν1
. 

Since there exists a unique solution (φ̂, ω̂3) to the problem (4.10) for any given f0 and f3, by 
using Fourier series expansion, it is easy to conclude that (4.11) has a unique solution ω̂′ ∈
H 2∗ (0, 1) for any given f ′ − A0ω̂3e

′
1 ∈ L2(0, 1) if and only if λ �= λ1,k for any k = 1, 2, · · ·. 

Furthermore, one can establish the estimates

|∂l
x3

ω̂′|2 ≤ C

(|λ| + 1)1− l
2

|f |2, l = 0,1,2. (4.13)

The fact that λ = 0 is an simple eigenvalue of −L̂0 with eigenprojection �̂0û = 〈φ̂〉u(0) can be 
proved in the same way as in [8], we omit the detail here. This completes the proof. �

We next give some estimates for (λ + L̂ξ )
−1. Based on Lemma 4.1 and then by a similar way 

as Theorem 3.2 in [8] and Theorem 5.2 in [11], we have the following lemma for |ξ | ≤ r̃0.

Lemma 4.2. Let η0 and θ0 be the numbers given in Lemma 4.1. Then, there exists a positive num-
ber ̃r0 = r̃0(η0, θ0) such that the set 	(−η0, θ0) ∩ {λ; |λ| ≥ η0

2 } ⊂ 
(−L̂ξ ) for |ξ | ≤ r̃0. Further-
more, the following estimates hold for any multi-index β uniformly in 	(−η0, θ0) ∩{λ; |λ| ≥ η0

2 }
and ξ with |ξ | ≤ r̃0∣∣∣∂β

ξ (λ + L̂ξ )
−1f

∣∣∣
Hl×L2

≤ Cβ

|λ| |f |Hl×L2 , l = 0,1,∣∣∣∂β
ξ ∂l

x3
Q̃(λ + L̂ξ )

−1f

∣∣∣
2
≤ Cβ

(|λ| + 1)1− l
2

|f |Hl−1×L2, l = 1,2,

∣∣∣∂β
ξ ∂2

x3
Q0(λ + L̂ξ )

−1f

∣∣∣
2
≤ Cβ

(|λ| + 1)
1
2

|f |H 2×H 1 .
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In case |ξ | ≥ r̃0
2 , we have the following result.

Lemma 4.3. Let ̃r0 be the given number in Lemma 4.2.

(i) There exist positive numbers ̃η and ̃θ with ̃θ ∈ (π
2 , π) such that the set 	(−η̃, ̃θ) ⊂ 
(−L̂ξ )

for |ξ | ≥ r̃0
2 .

(ii) The following estimates hold uniformly in λ ∈ 	(−η̃, ̃θ) for |ξ | ≥ r̃0
2 .

∣∣∣(λ + L̂ξ )
−1f

∣∣∣
Hl×L2

≤ C

|λ| |f |Hl×L2 , l = 0,1.

Lemma 4.3 can be proved in a similar manner to the proof of Theorem 2.5 in [9]. So we omit 
the proof.

As for the spectrum of −L̂ξ near λ = 0 in the case that |ξ | is sufficiently small, we have the 
following result.

Lemma 4.4. Let η0 and r̃0 be the numbers given in Lemma 4.2. Then, there exists a positive 
number r0 with r0 ≤ r̃0 such that for each ξ with |ξ | ≤ r0 it holds

σ(−L̂ξ ) ∩ {λ; |λ| ≤ η0} = {λ0(ξ)},

where λ0(ξ) is a simple eigenvalue of −L̂ξ that has the form

λ0(ξ) = −(
A0

2
+ B0)iξ1 − κ1|ξ1|2 − κ2|ξ2|2 + O(|ξ |3)

as |ξ | → 0, and κ1 and κ2 are positive numbers given by

κ1 = A2
0ν̃

12γ 2
+ γ 2

ν

(
1

3
− 1

4
A0 + 7

240

A2
0

γ 2
− 1

48

A3
0

γ 2

)
, κ2 = γ 2

ν
(
1

3
− A0

4
).

Remark 4.1. In the case α → ∞, i.e. A0 → 1, B0 → 0, then we have

λ0(ξ) = − i

2
ξ1 − κ1|ξ1|2 − κ2|ξ2|2 + O(|ξ |3)

with

κ1 = 1

12

{
(

ν̃

γ 2
+ 1

10ν
) + γ 2

ν

}
, κ2 = γ 2

12ν
,

which is the same as Theorem 5.3 in [11].

Proof. We first observe that∣∣∣L̂(1)
j û

∣∣∣ ≤ C{|Q0û|Hl + |Q̃û|H(l−1)++1} (4.14)

Hl×H(l−1)+
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and ∣∣∣L̂(2)
jk û

∣∣∣
Hl×H(l−1)+ ≤ C|Q̃û|H(l−1)+ , (4.15)

where l = 0, 1, 2 and λ ∈ 	(−η0, θ0) ∩ {λ; |λ| ≥ η0
2 }. By Lemma 4.1, (4.14) and (4.15), we 

conclude that if |λ| = η0, then λ ∈ 
(−L̂ξ ) for |ξ | ≤ r̃0. In particular,

�̂(ξ)û = 1

2πi

∫
|λ|=η0

(λ + L̂ξ )
−1ûdλ

is the eigenprojection for the eigenvalues of −L̂ξ lying inside the circle |λ| = η0. The continuity 
of (λ + L̂ξ )

−1 in (λ, ξ) implies that dim �̂(ξ) = dim �̂0 = 1 (see Chap. 1, Lemma 4.10 and 
Chap. 4, Theorem 3.16 in [12]). Based on Lemma 4.1 and (4.14), (4.15), we can apply the 
analytic perturbation theory (see Chap. 2, Sect. 2.2 and Chap. 7, Remark 2.10 in [12]) to obtain 
that if ξ is sufficiently small, then

σ(−L̂ξ ) ∩ {λ; |λ| ≤ η0} = λ0(ξ),

where λ0(ξ) is a simple eigenvalue. Furthermore, we can decompose λ0(ξ) and �̂(ξ) as

λ0(ξ) = λ0 +
2∑

j=1

ξjλ
(1)
j +

2∑
j,k=1

ξj ξkλ
(2)
jk + O(|ξ |3),

�̂(ξ) = �̂0 +
2∑

j=1

ξj �̂
(1)
j + O(|ξ |2),

with λ0 = 0, λ(2)
jk = λ

(2)
kj and

λ
(1)
j = −(L̂

(1)
j u(0), u(0)),

λ
(2)
jk = −

(
1

2
(L̂

(2)
jk + L̂

(2)
kj )u(0), u(0)

)
+
(

1

2
(L̂

(1)
j ŜL̂

(1)
k + L̂

(1)
k ŜL̂

(1)
j )u(0), u(0)

)
,

�̂
(1)
j = −�̂0L̂

(1)
j Ŝ − ŜL̂

(1)
j �̂0,

where Ŝ = {
(I − �̂0)L̂0(I − �̂0)

}−1
.

We have

L̂
(1)
j u(0) = i

⎛⎝ v1
s δ1j

e′
j

0

⎞⎠ ,

from which it follows
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λ
(1)
j = −(

A0

2
+ B0)iδ1j .

It is easy to see that L̂(2)
jk u(0) = 0. Let us compute L̂(1)

j ŜL̂
(1)
1 u(0) and L̂(1)

j ŜL̂
(1)
2 u(0) one by 

one. Set f = (I − �̂0))L̂
(1)
1 u(0). Then ̂SL̂

(1)
1 u(0) is a unique solution û = (φ̂, ω̂) to the following 

problem

L̂0û = f, 〈φ̂〉 = 0,

ω̂
∣∣
	

= 0, ω̂3
∣∣
	b

= 0,

ν∂x3 ω̂j − αω̂j

∣∣
	b

= 0, j = 1,2

By a direct computation, we have

ŜL̂
(1)
1 u(0) =

⎛⎜⎜⎝
iA0ν̃

γ 2 (x3 − 1
2 )

i
ν
{ 1−x2

3
2 + A2

0
2γ 2 (

1−x3
3

6 − 1−x4
3

12 ) − (
A0
2 + A3

0
24γ 2 )(1 − x3)}e′

1
iA0
2γ 2 (x2

3 − x3)

⎞⎟⎟⎠ .

It follows that

λ
(2)
11 = − A2

0ν̃

12γ 2
− γ 2

ν

(
1

3
− 1

4
A0 + 7

240

A2
0

γ 2
− 1

48

A3
0

γ 2

)
.

Similarly, we have

ŜL̂
(1)
2 u(0) =

⎛⎜⎝ 0
i
ν
{ 1−x2

3
2 − A0

2 )(1 − x3)}e′
2

0

⎞⎟⎠ ,

and

λ
(2)
22 = −γ 2

ν
(
1

3
− A0

4
), λ

(2)
12 = 0.

This completes the proof. �
As for the eigenprojection �̂(ξ) associated with λ0(ξ), we have the following result by a 

similar argument as Theorem 3.3 in [8].

Lemma 4.5. Let �̂(ξ) be the eigenprojection associated with λ0(ξ). Then there exists a positive 
number r0 such that for any ξ with |ξ | ≤ r0 the projection �̂(ξ) can be written in the form

�̂(ξ)û =
1∫
�̂(ξ, x3, y3)û(y3)dy3
0
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with

�̂(ξ, x3, y3) = �̂0 +
2∑

j=1

ξj �̂
(1)
j (x3, y3) + �̂(2)(ξ, x3, y3),

where �̂0 = Q0, �̂(1)
j (x3, y3) and �̂(2)(ξ, x3, y3) satisfy∣∣∣∂k

x3
∂l
y3

�̂
(1)
j (·, ·)

∣∣∣
L∞((0,1)×(0,1))

≤ C,∣∣∣∂k
x3

∂l
y3

∂
β
ξ �̂(2)(ξ, ·, ·)

∣∣∣
L∞((0,1)×(0,1))

≤ Cβ |ξ |2−|β|,

uniformly in ξ with |ξ | ≤ r0 for 0 ≤ k, l ≤ 1 and multi-index β .

Proof of Proposition 4.1. By Lemma 4.2 and 4.3, we can obtain that the operator −L̂ξ generates 
an analytic semigroup e−tL̂ξ on H 1(0, 1) × L2(0, 1) for each fixed ξ = (ξ1, ξ2) ∈ R2. Then, by 
Lemma 4.2, U0(t)u0 can be expressed as

U0(t)u0 = F−1

⎡⎣ 1

2πi

∫
�

eλtχ(0)(ξ)(λ + L̂ξ )
−1û0dλ

⎤⎦,

where � = {λ = η + se±iθ } with some η > 0 and θ ∈ (π
2 , π).

By Lemma 4.2 and 4.4, we can deform the contour � into �0 ∪ �̃ and a suitable circle around 
origin point 0 with �0 and ̃� defined by

�0 = {λ = −η0 + is; |s| ≤ s0}, �̃ = {λ = η + se±iθ ; |s| ≥ s̃0},

where the positive numbers s0 and ̃s0 are chosen such that �0 connects with � at the end points 
of �0. It then follows from Lemma 4.4–4.5 and the residue theorem that U0(t)u0 can be decom-
posed as

U0(t)u0 = S(0)(t)u0 + R(0)(t)u0,

with

S(0)(t)u0 = F−1
[
χ(0)(ξ)eλ0(ξ)t �̂(ξ)û0

]
and

R(0)(t)u0 = F−1

⎡⎢⎣ 1

2πi

∫
�0∪�̃

eλtχ(0)(ξ)(λ + L̂ξ )
−1û0dλ

⎤⎥⎦.

By Lemma 4.2, one can see that R(0)(t)u0 has the desired estimate (4.6) in Proposition 4.2.
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Let us consider S(0)(t)u0. We rewrite it as

S(0)(t)u0 = Gt∗x′�̂0u0 + S
(0)
1 (t)u0 + S

(0)
2 (t)u0 + S

(0)
3 (t)u0 + S

(0)
4 (t)u0,

where

Gt∗x′�̂0u0 = F−1
[
e−((

A0
2 +B0)iξ1+κ1ξ

2
1 +κ2ξ

2
2 )t �̂0û0

]
,

S
(0)
1 (t)u0 = F−1

[
(χ(0)(ξ) − 1)e−((

A0
2 +B0)iξ1+κ1ξ

2
1 +κ2ξ

2
2 )t �̂0û0

]
,

S
(0)
2 (t)u0 = F−1

[
χ(0)(ξ)e−((

A0
2 +B0)iξ1+κ1ξ

2
1 +κ2ξ

2
2 )t �̂(1)(ξ)û0

]
,

S
(0)
3 (t)u0 = F−1

[
χ(0)(ξ)e−((

A0
2 +B0)iξ1+κ1ξ

2
1 +κ2ξ

2
2 )t �̂(2)(ξ)û0

]
,

S
(0)
4 (t)u0 = F−1

[
χ(0)(ξ)(eλ0(ξ)t − e−((

A0
2 +B0)iξ1+κ1ξ

2
1 +κ2ξ

2
2 )t )�̂(ξ)û0

]
,

with

�̂(1)(ξ) =
2∑

j=1

ξj �̂
(1)
j .

Then, the expected estimates for S(0)(t)u0 follow from Lemma 4.4 and 4.5. �
4.2. Proof of Proposition 4.2

As mentioned before, for each fixed ξ ∈ R2, the operator −L̂ξ generates an analytic semi-

group e−tL̂ξ on H 1(0, 1) × L2(0, 1). This implies that û(t) = e−tL̂ξ û0 = (φ̂(t), ω̂(t))⊥ is a 
unique solution of (4.7), and we have

1

γ 2
∂t φ̂ + 1

γ 2
iξ1v

1
s φ̂ + iξ · ω̂′ + ∂x3 ω̂3 = 0, (4.16)

∂t ω̂
′ + ν(|ξ |2 − ∂2

x3
)ω̂′ − iν′ξ(iξ · ω̂′ + ∂x3 ω̂3) + iξ φ̂ + iξ1v

1
s ω̂

′ + A0ω̂3e
′
1 = 0, (4.17)

∂t ω̂3 + ν(|ξ |2 − ∂2
x3

)ω̂3 − ν′∂x3(iξ · ω̂′ + ∂x3 ω̂3) + ∂x3 φ̂ + iξ1v
1
s ω̂3 = 0, (4.18)

ω̂

∣∣∣
	

= 0, ω̂3

∣∣∣
	b

= 0, ν∂x3 ω̂
′ − αω̂′

∣∣∣
	b

= 0, (4.19)

û|t=0 = û0 = (φ̂0, ω̂0)
⊥, (4.20)

for t > 0.
We denote the material derivative ∂t φ̂ + iξ1v

1
s φ̂ by φ̇, i.e.,

φ̇ = ∂t φ̂ + iξ1v
1
s φ̂.

In what follows û(t) = (φ̂(t), ω̂(t))⊥ will denote the unique solution of problem (4.16)–(4.20).
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Proposition 4.3. Let û(t) = (φ̂(t), ω̂(t))⊥ denote the unique solution of problem (4.16)–(4.20). 
There exist constants γ0 depending only on R0 such that if 3(1+ν̃)α

γ 2(ν+α)γ0
≤ 1 and 2α

ν(ν+α)
≤ 1, then 

for any R0 > 0 there exists a constant δ = δ(R0) > 0 such that the estimate

|û|22 + |∇̂u|22 ≤ Ce−δ(t−1)(|û|22 + |∇̂u|22)(1) (4.21)

holds uniformly for t ≥ 1, provided that |ξ | ≥ R0.

Proposition 4.4. Let û(t) = (φ̂(t), ω̂(t))⊥ denote the unique solution of problem (4.16)–(4.20). 
For 0 < t ≤ 1 and ξ ∈R2, we have the following estimate

|û|22 + |∇̂u|22 ≤ C{(1 + |ξ |2)|û0|22 + |∂x3 φ̂0|22 + t−1|ω̂0|22}. (4.22)

Remark 4.2. The proof of Proposition 4.4 can be proved in a similar way as in [11] (Proposi-
tion 6.11), we omit the details here.

The proof of Proposition 4.3 consists of following Lemmas 4.6–4.9.

Lemma 4.6. Let û(t) = (φ̂(t), ω̂(t))⊥ denote the unique solution of problem (4.16)–(4.20). If 
2α

ν(ν+α)
≤ 1, then the following estimate holds

d

dt
(

1

γ 2
|φ̂|22 + |ω̂|22) + ν|∇̂ω|22 + ν′|d̂ivω|22 + ν̃

12γ 4
|φ̇|22 ≤ 0. (4.23)

Proof. Taking the inner product of (4.16), (4.17) and (4.18) with φ̂, ω̂′ and ω̂3, respectively, and 
integrating the resulted by parts, we have

1

γ 2
(∂t φ̂, φ̂) + 1

γ 2
iξ1(v

1
s φ̂, φ̂) + (iξ · ω̂′ + ∂x3 ω̂3, φ̂) = 0, (4.24)

(∂t ω̂
′, ω̂′) + νD0[ω̂′] − iν′ξ(iξ · ω̂′ + ∂x3 ω̂3, ω̂

′)

+ (iξ φ̂, ω̂′) + iξ1v
1
s ω̂

′, ω̂′) + A0(ω̂3, ω̂1) + αν|ω̂′|2∣∣
	b

= 0, (4.25)

(∂t ω̂3, ω̂3) + νD0[ω̂3] − ν′(∂x3(iξ · ω̂′ + ∂x3 ω̂3), ω̂3)

+ (∂x3 φ̂, ω̂3) + iξ1(v
1
s ω̂3, ω̂3) + αν|ω̂3|2

∣∣
	b

= 0. (4.26)

Summing (4.24)–(4.26) together and taking the real part of the resulting identity, one obtains

1

2

d

dt
(

1

γ 2
|φ̂|22 + |ω̂|22) + ν|∇̂ω|22 + ν′|d̂ivω|22 + A0Re(ω̂3, ω̂1) ≤ 0, A0 = α

ν + α
. (4.27)

By the Poincaré inequality, we have

|(ω̂3, ω̂1)| ≤ 1

2
|∂x3 ω̂|22.

It then follows from (4.27) that
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1

2

d

dt
(

1

γ 2
|φ̂|22 + |ω̂|22) + 3ν

4
|∇̂ω|22 + ν′|d̂ivω|22 ≤ 0, (4.28)

provided that

2α

ν(ν + α)
≤ 1.

Furthermore, by (4.16), we have

ν̃|φ̇|22 ≤ 3γ 4(ν|∇̂ω|22 + ν′|d̂ivω|22).

This together with (4.28) gives rise to the desired estimate (4.23). This completes the proof of 
Lemma 4.6. �
Lemma 4.7. Let û(t) = (φ̂(t), ω̂(t))⊥ denote the unique solution of problem (4.16)–(4.20). If 

2α
ν(ν+α)

≤ 1, then the following estimate holds for any η > 0

d

dt
E1(t) + (1 + |ξ |2)(ν|∇̂ω|22 + ν′|d̂ivω|22) + ν̃

6γ 4
(1 + |ξ |2)|φ̇|22 + |∂t ω̂|22

≤ η

ν̃
|ξ |2|φ̂|22 + 3

η
(ν|∇̂ω|22 + ν′|d̂ivω|22), (4.29)

where

E1(t) = 2(1 + 2 + 6γ 2

ν
)(1 + |ξ |2)( 1

γ 2
|φ̂|22 + |ω̂|22) + αν|ω̂|2∣∣

	b

+ (ν|∇̂ω|22 + ν′|d̂ivω|22) − 2Re(φ̂, iξ · ω̂′ + ∂x3 ω̂3).

Proof. Taking the inner product of (4.17) and (4.18) with ∂t ω̂
′ and ∂t ω̂3, respectively, one has

after taking the real part,

|∂t ω̂|22 + 1

2

d

dt
(ν|∇̂ω|22 + ν′|d̂ivω|22 + αν|ω̂|2∣∣

	b
) (4.30)

= Re{(φ̂, ∂t (iξ · ω̂′ + ∂x3 ω̂3)) + iξ1(v
1
s ω̂, ∂t ω̂) − A0(ω̂3, ∂t ω̂1)}.

The first term on the right-hand side of (4.30) can be estimated as follows

(φ̂, ∂t (iξ · ω̂′ + ∂x3 ω̂3)) = d

dt
(φ̂, iξ · ω̂′ + ∂x3 ω̂3) − (∂t φ̂, iξ · ω̂′ + ∂x3 ω̂3)

= d

dt
(φ̂, iξ · ω̂′ + ∂x3 ω̂3) + iξ1

(
v1
s φ̂, iξ · ω̂′ + ∂x3 ω̂3

)
+ γ 2|iξ · ω̂′ + ∂x3 ω̂3|22. (4.31)

By (4.30)–(4.31), we have
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d

dt

{
1

2
(ν|∇̂ω|22 + ν′|d̂ivω|22 + αν|ω̂|2∣∣

	b
) − Re(φ̂, iξ · ω̂′ + ∂x3 ω̂3)

}
+ |∂t ω̂|22

≤ 1

2
|∂t ω̂|22 + |∇̂ω|22 + (|ξ ||φ̂|2 + γ 2|iξ · ω̂′ + ∂x3 ω̂3|2)|iξ · ω̂′ + ∂x3 ω̂3|2.

Since |iξ · ω̂′ + ∂x3 ω̂3|22 ≤ 3

ν̃
(ν|∇̂ω|22 + ν′|d̂ivω|22), we obtain

d

dt

{
(ν|∇̂ω|22 + ν′|d̂ivω|22 + αν|ω̂|2∣∣

	b
) − 2Re(φ̂, iξ · ω̂′ + ∂x3 ω̂3)

}
+ |∂t ω̂|22

≤ 2|∇̂ω|22 + η

ν̃
|ξ |2|φ̂|22 + 3(

2γ 2

ν̃
+ 1

η
)(ν|∇̂ω|22 + ν′|d̂ivω|22). (4.32)

Summing 2(1 + 2+6γ 2

ν
)(1 + |ξ |2) × (4.23) and (4.32) together, we obtain (4.29). �

Lemma 4.8. Let û(t) = (φ̂(t), ω̂(t))⊥ denote the unique solution of problem (4.16)–(4.20). If 
2α

ν(ν+α)
≤ 1, then the following estimate holds for any η > 0,

d

dt
E2(t) + 1

ν̃
|∂x3 φ̂|22 + (1 + 1

ν̃ν
)(1 + |ξ |2)(ν|∇̂ω|22 + ν′|d̂ivω|22)

+ (1 + 1

ν̃ν
)|∂t ω̂|22 + 2̃ν

3γ 4
(1 + |ξ |2)|φ̇|22 + ν̃

4γ 4
|∂x3 [φ̂]t |22

≤
(

2̃νA2
0

γ 4
+ 4η

ν̃
(1 + 1

ν̃ν
)

)
|ξ |2|φ̂|22 + 12

η
(1 + 1

ν̃ν
)(ν|∇̂ω|22 + ν′|d̂ivω|22), (4.33)

where

E2(t) = 4(1 + 1

ν̃ν
)E1[u] + 1

γ 2
|∂x3 φ̂|22.

Proof. Differentiating (4.16) in x3, we have

1

γ 2
∂t ∂x3 φ̂ + 1

γ 2
iξ1v

1
s ∂x3 φ̂ + A0

γ 2
iξ1φ̂ + iξ · ∂x3 ω̂

′ + ∂2
x3

ω̂3 = 0. (4.34)

We rewrite (4.18) as

∂x3 φ̂ − ν̃∂2
x3

ω̂3 = −{∂t ω̂3 + ν|ξ |2ω̂3 − iν′ξ · ∂x3 ω̂
′ + iξ1v

1
s ω̂3} (4.35)

It then follows from (4.34) and 1
ν̃

× (4.35) that

1

γ 2
∂t ∂x3 φ̂ + 1

γ 2
iξ1v

1
s ∂x3 φ̂ + 1

ν̃
∂x3 φ̂ + A0

γ 2
iξ1φ̂

= −1 {∂t ω̂3 + ν|ξ |2ω̂3 − iνξ · ∂x3 ω̂
′ + iξ1v

1
s ω̂3}. (4.36)
ν̃
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Taking the inner product of (4.36) with ∂x3 φ̂ and then taking the real part of the resulted equation, 
we have

1

2γ 2

d

dt
|∂x3 φ̂|22 + 1

ν̃
|∂x3 φ̂|22

≤ 1

4̃ν
|∂x3 φ̂|22 + ν̃A2

0

γ 4
|ξ |2|φ̂|22 + 1

ν̃
|∂t ω̂|22 + 1 + ν2

ν̃
(1 + |ξ |2)|∇̂ω|22. (4.37)

We thus obtain

1

γ 2

d

dt
|∂x3 φ̂|22 + 3

2̃ν
|∂x3 φ̂|22

≤ 2̃νA2
0

γ 4
|ξ |2|φ̂|22 + 2

ν̃
|∂t ω̂|22 + 2

1 + ν2

ν̃ν
(1 + |ξ |2)(ν|∇̂ω|22 + ν′|d̂ivω|22). (4.38)

The combination of 4(1 + 1
ν̃ν

) × (4.29) and (4.38) shows that

d

dt
E2(t) + 3

2̃ν
|∂x3 φ̂|22 + 2(1 + 1

ν̃ν
)(1 + |ξ |2)(ν|∇̂ω|22 + ν′|d̂ivω|22)

+ 2(1 + 1

ν̃ν
)|∂t ω̂|22 + 2̃ν

3γ 4
(1 + |ξ |2)|φ̇|22

≤
(

2̃νA2
0

γ 4
+ 4η

ν̃
(1 + 1

ν̃ν
)

)
|ξ |2|φ̂|22 + 12

η
(1 + 1

ν̃ν
)(ν|∇̂ω|22 + ν′|d̂ivω|22). (4.39)

We next rewrite (4.36) as

∂x3 φ̇ + γ 2

ν̃
∂x3 φ̂ = −γ 2

ν̃
{∂t ω̂3 + ν|ξ |2ω̂3 − iνξ · ∂x3 ω̂

′ + iξ1v
1
s ω̂3}.

This gives

|∂x3 φ̇|22 ≤ γ 4

ν̃2

{
|∂x3 φ̂|22 + |∂t ω̂3|22 + (1 + ν2)(1 + |ξ |2)|∇̂ω|22

}
. (4.40)

The combination of (4.39) and ν̃

4γ 4 × (4.40) gives the desire estimates (4.33). �
To control |ξ |2|φ̂|22, we make use of the estimates for the Stokes system under the Fourier 

transform. We rewrite (4.16)–(4.19) as

⎧⎪⎪⎨⎪⎪⎩
iξ1ω̂1 + iξ2ω̂2 + ∂x3 ω̂3 = F̂0,

ν(|ξ |2 − ∂2
x3

)ω̂′ + iξj φ̂ = F̂ ′,

ν(|ξ |2 − ∂2 )ω̂ + ∂ φ̂ = F̂ ,

(4.41)
x3 3 x3 3
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{
ν∂x3 ω̂j − αω̂j

∣∣
	b

= 0, j = 1,2,

ω̂3
∣∣
	b

= 0, ω̂
∣∣
	

= 0,
(4.42)

with

F̂0 = − 1

γ 2
φ̇,

F̂ ′ = −∂t ω̂
′ − v1

s iξ1ω̂
′ − A0ω̂3e

′
1 − ν′

γ 2
iξ φ̇,

F̂3 = −∂t ω̂3 − iξ1v
1
s ω̂3 − ν′

γ 2
∂x3 φ̇.

Lemma 4.9. Let û(t) = (φ̂(t), ω̂(t))⊥ denote the unique solution of problem (4.16)–(4.20). For 
any constant R0 > 0, if |ξ | ≥ R0, then the following estimate holds for the solution (φ̂, ω̂) of 
(4.41)–(4.42),

|φ̂|22 + |∇̂φ|22 ≤ C0

{
|∂t ω̂|22 + |∇̂ω|22 + 1 + ν̃2

γ 4
(|ξ |2|φ̇|22 + |∂x3 φ̇|22) + 1

γ 4
|φ̇|22

}
, (4.43)

where the constant C0 depends only on R0 and ν2 + 1

ν2
.

Proof. By (3.18), one can see that

(ω̂, φ̂) = (ω̂(1) + ω̂(2) + ω̂(3), νF̂ ′
0 + q̂(3)),

is a unique solution to the system (4.41)–(4.42). By (3.6), (3.15)–(3.17), we have

|q̂(3)|22 + |ξ |2|q̂(3)|22 + |∂x3 q̂
(3)|22 ≤ C(| �̂b|2 + | �̂d|2), (4.44)

where �̂b = (b̂1, b̂2) and �̂d = (b̂3, b̂4) defined by

b̂j = −ν
∂

∂x3

(
ω̂

(1)
j + ω̂

(2)
j

)
+ α

(
ω̂

(1)
j + ω̂

(2)
j

)∣∣∣
	b

, bj+1 = −ω̂
(1)
j − ω̂

(2)
j

∣∣∣
	

, j = 1,2.

Then we apply the Fourier transform to (3.19), and obtain

ν(|ξ |2 − ∂2
x3

)ω̂(1) = �̂F in R2
ξ × (0,1), ω̂(1) = 0 on R2

ξ × {0,1}. (4.45)

Taking the inner product of (4.45) with ω̂(1), one can obtain

|ξ |2|ω̂(1)|22 + |∂x3 ω̂
(1)|22 ≤ 1

ν

1∫
�̂Fω̂(1)dx3 ≤ 1

2
|ξ |2|ω̂(1)|22 + 1

2ν2
|ξ |−2| �̂F |22,
0
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so we have

|ξ |2|ω̂(1)|22 + |∂x3 ω̂
(1)|22 ≤ 1

ν2|ξ |2 | �̂F |22. (4.46)

And by (4.45), it holds

|∂2
x3

ω̂(1)|22 ≤ |ξ |4|ω̂(1)|22 + 1

ν2
| �̂F |22 ≤ 2

ν2
| �̂F |22. (4.47)

Similar result is also valid for ω̂(2),⎧⎪⎨⎪⎩
|ξ |2|ω̂(2)|22 + |∂x3 ω̂

(2)|22 ≤ |F̂0|22 + 1
ν2|ξ |2 | �̂F |22,

|∂2
x3

ω̂(2)|22 ≤ |ξ |2|F̂0|22 + |∂x3 F̂0|22 + 1
ν2 | �̂F |22.

(4.48)

Combining the inequality (4.46)–(4.48) with (4.44) and using the trace theorem, the desired 
estimate (4.43) holds by a direct computation. �
Proof of Proposition 4.2. Set C1 = 1

8C0
and η = C1ν̃

3ν

16(1 + ν̃ν)(1 + ν̃2)
. The combination of 

12

η
(1 + 1

ν̃ν
) × (4.23), (4.33) and 

C1ν̃

1 + ν̃2
× (4.43) shows that

d

dt
E3(t) + 1

ν̃
|∂x3 φ̂|22 + 1

2
(1 + 1

ν̃ν
)(1 + |ξ |2)(ν|∇̂ω|22 + ν′|d̂ivω|22) + 1

2
(1 + 1

ν̃ν
)|∂t ω̂|22

+ ν̃

3γ 4
(1 + |ξ |2)|φ̇|22 + ν̃

8γ 4
|∂x3 φ̇|22 + C1ν̃

2(1 + ν̃2)
(|φ̂|22 + |∇̂φ|22)

≤ 2̃νA2
0

γ 4
|ξ |2|φ̂|22, (4.49)

where

E3(t) = E2(t) + 12

η
(1 + 1

ν̃ν
)(

1

γ 2
|φ̂|22 + |ω̂|22).

Therefore, if 3(1+ν̃)α

γ 2(ν+α)
≤ √

C1, we have

d

dt
E3(t) + 1

ν̃
|∂x3 φ̂|22 + 1

2
(1 + 1

ν̃
)(1 + |ξ |2)D̃0[ω̂] + 1

2
(1 + 1

ν̃
)|∂t ω̂|22

+ ν̃

3γ 4
(1 + |ξ |2)|φ̇|22 + ν̃

8γ 4
|∂x3 φ̇|22 + C1ν̃

4(1 + ν̃2)
(|φ̂|22 + |∇̂φ|22) ≤ 0,

which leads to the desired estimate (4.21) together with γ0(ν) = √
C1 and the fact that E3(t) is 

equivalent to |û|22 + |∇̂u|22. �
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5. The nonlinear problem

In this section, we prove Theorem 2.2. Inspired by [11], the proof of our stability result is 
based on the energy method and the spectral analysis of the linearized operator. The argument is 
similar to those in [10,11,13,14], so we only give an outline of proof here.

With the help of the Stokes estimates (under Navier-slip boundary condition) in Theorem 3.1, 
the global existence result (i) of Theorem 2.2 can be proved by the energy method by Matsumura 
and Nishida [14], which also implies the Hs-energy estimates.

‖u(t)‖2
Hs +

t∫
0

‖∂xφ‖2
Hs−1 + ‖∂xω‖2

Hs dτ ≤ C‖u0‖2
Hs , (5.1)

uniformly for t ≥ 0 with s ≥ 2. We omit the details here.
The proof of (ii) of Theorem 2.2 is based on the Hs -energy estimates (5.1) and the decay 

estimates for the solutions of the linearized problem Theorem 4.1. Indeed, by Duhamel principle, 
the solution of inhomogeneous equation (2.2)–(2.6) has the following form

u(t) = S(t)u0 +
t∫

0

S(t − τ)f (τ)dτ, (5.2)

where f = (γ 2f0, g) with f0 and g defined in (2.7) and (2.8), namely,

f0 = −div(φω),

g = −ω · ∇ω − φ

γ 2 + φ
{ν�ω + ν′∇divω + (P2(γ,φ) − 1)∇φ}.

There exists a constant ε1 > 0 such that if ‖u0‖Hs∩L1 ≤ ε1, one can obtain by Theorem 2.1, 
Theorem 4.1 and (5.1) the following decay estimate after a tedious computation

‖u(t) − S(t)u0‖H 1 ≤ C(1 + t)−1, t ≥ 0. (5.3)

The decay estimate (5.3) together with Theorem 2.1 yields the decay estimates (2.14) and (2.14)
of Theorem 2.2. The proof is completed. �
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