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Abstract

In this paper, we consider the large time behavior of global solutions to the initial value problem for the
compressible Navier—Stokes—Poisson system in the LP critical framework and in any dimension N > 3.
We obtain the time decay rates, not only for Lebesgue spaces, but also for a family of Besov norms with
negative or nonnegative regularity exponents, which improves the decay results in high Sobolev regularity.
The proof is mainly based on the Littlewood—Paley theory and refined time weighted inequalities in Fourier
space.
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1. Introduction

In this paper, we investigate the long-time behavior of global strong solutions for the following
compressible Navier—Stokes—Poisson equations (NSP) in RT x RN (N > 3):
0rp + div(pu) =0,
ot (pu) +div(pu @ u) — uAu — (u 4+ A)Vdivu+ VP(p) = pV D,
AP =p—p,

(1.1)

(0, w)(0) = (po, wo),

where p, u and @ represent the electron density, the electron velocity and the electrostatic po-
tential, respectively. The pressure P is a smooth function of p with P’(p) > 0 for p > 0, and the
viscosity coefficients wu, A are constants and satisfy u > 0 and v := A + 2u > 0. Such a condi-
tion ensures ellipticity for the operator uA + (A + @) Vdiv and is satisfied in the physical cases.
0 > 0 describes the background doping profile, and in this paper, for simplicity, we set p = 1 and
suppose that P’(1) = 1. The compressible NSP system could be used to model and simulate the
transportation of charged particles in semiconductor devices [26].

The main purpose of this paper is to investigate the time decay rates of strong solutions to
system (1.1) in the critical L? framework. Here we observe that system (1.1) is invariant by the
transformation

o =p?t,lx), w=Ila(l’t,lx)

up to a change of the pressure law P =12P. A critical space is a space in which the norm is
invariant under the scaling (e, f')(x) = (e(Ix), lf(Ix)).

As regarding the existence of solutions to the compressible NSP equations, there are many
important progresses. In terms of the local and global weak solutions, one can refer to [10-12,37]
and references therein. In [32], Tan and Wang considered the global existence of weak solutions
to the compressible magnetohydrodynamics with the Poisson term of Coulomb force in two
dimensions. The global existence of small strong solutions to the compressible NSP equations in
H" Sobolev spaces was shown by Li, Matsumura and Zhang [23] in R3, while global existence
of small solutions in the critical L2 type hybrid Besov spaces in RN (N > 3) was obtained in [ 14].
Later on, Zheng [38] extended the result of [14] to the critical L? framework (see Theorem 2.1
below).

One may wonder how the global solutions established in the critical L? framework behave for
large time. To make a clearer introduction to our result, we will recall some known convergence
results for the compressible Navier—Stokes and NSP equations, respectively.

For the compressible Navier—Stokes equations, the first achievement is due to Matsumura
and Nishida [27,28]. There, they proved the global existence of classical solutions for the initial
perturbation small in (L' N H 3)(R?) and established the following decay estimate:

1o — w2 <CA+0)73. (12)

This is the same as for the heat equation with data in L' (R?) and it turns out to be the optimal one
for the corresponding linearized system. As a consequence, it is often referred to as the optimal
time-decay rate.

Please cite this article in press as: Q. Bie et al., Optimal decay rate for the compressible Navier—Stokes—Poisson
system in the critical L? framework, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.08.041




YJDEQ:8972

Q. Bie et al. / J. Differential Equations eee (eeee) eee—see 3

Later on, for the small initial perturbation belonging to (H™ N W™ !)(RN) (N =2, 3) with
m > 4, Ponce [30] obtained the optimal L? decay rate

k —Na-Ly_&
IVio =L w@llr =C(A 1) 20 »7 2 (1.3)

for 2 < p < oo and 0 < k < 2. These results were extended to some situations where the fluid
domain is not RV : the exterior problem [21,22] or the half space problem [19,20]. In view of the
analysis of Green function, the optimal L? (1 < p < oco) decay rate was also derived for the small
initial perturbation to H™ N L' with m > 4 (see e.g. [17,18,25]). Let us note that, by introducing
the Sobolev space of negative order, Guo and Wang [13] developed a general energy method to
prove the optimal time-decay rates.

Recently, the asymptotic behavior on the compressible NSP equations was studied in [23,24,
33-35]. Li, Matsumura and Zhang [23] established the optimal decay estimates of global solu-
tions in R3. Wang and Wu [33] obtained the pointwise estimates of the solutions by a detailed
analysis of the Green’s function to the corresponding linearized equations. Their results imply
that the decay rate of the density p and the momentum m is (1 + t)’% and (1 + t)’#, respec-
tively. Wang [34] noted that the special structure of the NSP system and posed some stronger
conditions on the initial value in low frequency region and then obtained the time decay rates of
solutions to system (1.1) in R? on the small initial data (see also [24]). Very recently, Wang and
Wang [35] established the decay estimates of classical solutions in R¥ (N > 3) by an energy
method in the Fourier space.

Let us emphasize that all the decay results mentioned above are concerned about solutions
with high Sobolev regularity. Recently, Okati [29] performed low and high frequency decompo-
sitions and proved the time decay rate for strong solutions to the compressible Navier—Stokes
equations in the L? critical framework and in dimension N > 3. In the survey paper [8], Danchin
proposed another description of the time decay which allows to proceed with dimension N > 2
in the L? critical framework. Very recently, Danchin and Xu [9], developed the method of [8]
to obtain optimal time decay rate in the general L? type critical spaces and in any dimension
N >2.

Motivated by the papers of Danchin and Xu [9], Okati [29] and Haspot [15] on the Navier—
Stokes equations, and by the papers of Wang [34] and Li and Zhang [24] regarding the compress-
ible NSP equations, in the present paper, we will investigate the long-time behavior of solutions
for (1.1) in the framework of critical spaces and in any dimension N > 3. Here scaling invariance
will play an essential role. By the way, we will actually get an accurate description of the decay
rates, not only for Lebesgue spaces, but also for a fully family of Besov norms with negative or
nonnegative regularity indexes.

2. Main results

Before giving the main statement of this paper, we first introduce the homogeneous
Littlewood—Paley decomposition, which relies upon a dyadic partition of unit. Choose a ra-
dial function ¢ € S(RY) supported in C = {&e RN, 3 <&l < §} such that 3, 0(2778) =1
if § # 0. The homogeneous dyadic blocks A j and the homogeneous low frequency cut-off oper-
ators S; are defined below:

Ajudéftp(2_jD)u, .S"jungAku for jeZ.

k<j—1
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Let us denote the space J'(RY) by the quotient space of S'(R"Y)/P with the polynomials
space P. The formal equality u = Y ., Axu holds true for u € J'(RV) and is called the homo-
geneous Littlewood—Paley decomposition.

Fors e R, 1 < p,r < +o00, set the homogeneous Besov space

By, S F eV ®Y) 1 flg, <o),
with

def |

Ifllgs = 125N Ak fllze e

Next, we introduce the following Besov—Chemin-Lerner space L? (B ) (see [4]):

Lo, = {f € 0,+00) x V' ®Y): I fllp2 iy, < +oo},

where

def

I lze s

The index T will be omitted if 7 = +o00. Using Minkowski’s inequality implies that
LB )= Lh(By,) if r=p, and LY(BS,) < LL(BS,) if p=r.

In what follows, we define that for f € S'(RV),

FEEST A and fEN Ay

2/ <2J0 2J>2J0
for some large enough nonnegative integer jo. The corresponding semi-norms are defined by

def def

£, = Ife IIBa and [If|%, = f" IIBa-
pr p.r

At last, we agree that throughout the paper, C stands for a generic constant, and A < B means
A < CB. For a Banach space X, p € [1,+o0] and T > 0, the notation L”(0, T; X) or L[T7(X)
designates the set of measurable functions f : [0, 7] — X with t — || f(t)||x in L?(0,T), en-
dowed with the norm

1A Lr (x) < “”f”X”LP(O,T)'

The index T will be omitted if T = +oo.~The notati.on C([0, T]; X) denotes the set of con-
tinuous functions from [0, 7] to X, and C,([0, T']; B;’,,r) represents the subset of functions

of Z‘;O(Bf”) which are also continuous from [0, T'] to B;, It will be also understood that

def
I ) lx = 1 fllx + liglx forall f,g € X.
Now, let us recall the global existence result of system (1.1) in the critical L” framework

(see [38]).
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Theorem 2.1. (/38]) Let N > 3 and p satisfy

2<p<N and p<min{4,2N/(N —2)}. (2.1)

N N

e |
There exists a constant ¢ = c(p, N, A, i, P) such that lfbo = p() —1eB’ ug € B;l and if

p.1’
. .. g 7* g 7*1 N
in addition b0 € BZ,I , U € Bz’1 with

df
= 11boll’ y , + 1ol + lboll"  + lwoll” | <, 22)

l)
B 321 B, Bpl

then (1.1) has a global solution (p,u, ®) with p =b+1 and (p, u, ®) in the space X , defined by

~ LN . N ~
bfecb<R+;Bz 2>mL1<R+;B;1> ut e GyRys BN L R B2,
N N+1
b GCb(R+, 1)mL (R"rv Pl) u GCb(R+, )mL (R"rv )’
N

~ . N . N ~ N .42
d)’der(R+;B2?1)ﬂL1(R+;Bzf1+ ). q>hecb(R+;B;1 )le(JRaJr;Bpﬁ1 ).

Moreover, we have for some constant C = C(p, N, x, i, P),

X, <CX) 0, 2.3)
with
def
L L MNP I
L°°(B )NLY(B,2) LB 21 ALY (B2 ) LOO(BZI)OL] B4 )
' ' 2.4)
+ b + |lu + || P
1" gt Y " o

N -
ZDO(Bp’fl)le(Bp‘jl) L°°(B )le(B ) LOO(B )le(Bplle)

The main results of this paper are stated as follows.

Theorem 2.2. Let N > 3 and p satisfy condition (2.1). Let (pg, o) fulfill the assumptions of

Theorem 2.1, and denote by (,0, u, ®) the corresponding global solution of system (1.1). Set

def def
i N ( 2) anda =N 41 3¢ for some arbitrarily small € > 0. Then there exists a positive

constant c =c(p, N, A, u, P) such that if in addition

def
V.o = Mlboll g1 + ol <c, (2.5)
BZoo 200
we have for all t > 0,
Vo) SVpo+ II(Vboyuo)llh N (2.6)
B
p.1

where the norm Y, (t) is defined by
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Vo sup )T (A b Vo)

\ LB )
se(—s0, ¥+1]

2.7)

+ (D) (Vb u, VAD)||" i Hlrul” s
L°°(B ) L°°(B )

here (t) LN + 12

Remark 2.1. The value chosen for s is based on the fact that: in the standard case p = 2 and
for classical solutions, it is generally assumed that the initial data are in L', namely, L'-L? type
decay rates. By the definition of so, it is obvious that 5o = % when p = 2. Then by the critical

embedding, there holds L! < B Naturally, in our L? framework, i.e., L foLp type decay

rates would bring us to replace L1 by L2 7 Choosing sp as above corresponds exactly to the
critical embedding LT < Bz_ ;g

Remark 2.2. The first term of ), i.e., the decay rate for the low frequencies of the solution
is optimal since it corresponds to that of the linearized system for (1.1) about (1, 0) for general
datum (pp — 1, ug) belonging to B 0 U B YO . On the other hand, as pointed out in [38], the
compressible NSP system (1.1) and the NaV1er—Stokes system have the same behavior in the
high frequency regime. Therefore, excluding the electrostatic potential ®, the definitions of the
second and third terms in ), involving (b, u) in the high frequencies are same as those of the
compressible Navier—Stokes system [9].

As a direct consequence, we have the following corollary.
Corollary 2.1. The solution (p, ) constructed in Theorem 2.2, satisfies that if —so— 1 < s < %
then

1A% (p—1 (PN [ Ak
p=Dller =C(Vpo+ b w4, ) (1) . 28)
B

If—so<s§%—1,then

_N s
1A% = C(Vpo + (Voo wo) ")) 77 TR, 2.9)

.1

Andif—so<s<%+1,then

[ATV®|Lr < C(Vp.o+ (Vbo, uo)ll N (t) » : (2.10)

BY

Remark 2.3. Let p =2 and s = 0 in Corollary 2.1, then the standard optimal L'-L? decay rate
of (b, u, V®) is obtained. Notice however that our estimates also hold in the general L? critical
framework.
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Remark 2.4. The regularity index s can take both negative and nonnegative values, rather than
only nonnegative integers. Therefore, our results could be seen as complementary results of the
works [23,24,33-35] which considered in high Sobolev regularity.

We can also obtain the following decay rates for the integrability index 2 <r < oo.

Corollary 2.2. Let the assumptions of Theorem 2.2 be satisfied with p = 2. Then the correspond-
ing solution (p,u, V®) satisfies

1”0 = Dllr = C(V20+ (Voo wl y_ ()%~ 573 2.11)

BZ,I

forall2 <r < oo and m € R fulfilling —% —1l<m+ N(% - %) < % and (u, VO) satisfies

k h =55 2.12
A" (u, VO)|[r < C(V2,0+ I(Vbo, o) N (1) (2.12)
B

2,1

forall2 <r < coand k € R fulfilling — % <k+ NG -1 <% —1.

r

Scheme of the proof and structure of the paper.  Firstly, defining

def . def, P'(1+D) def b
= uA MVdiv, kb)=1— ———=, () = —, 2.13
A= pA+ (u+A)Vdiv, k(D) 5 (b) =5 (2.13)

we consider the following linearized system corresponding to system (1.1) at point (1, 0), i.e.,

orb + diva = f,
(2.14)
du—Au+Vb—-VA~lb=g,
with
def . def
f = —div(bu), g= —u-Vu+k()Vb—I(b)Au. (2.15)

Then, given the global existence result of Theorem 2.1, similar to [9], according to the definition
of Vp, we proceed in three steps. Roughly speaking, in the first step, we combine the low fre-
quency decay properties of the semi-group defined by the left hand side of (2.14), and Duhamel
principle to handle the terms in the right hand side of (2.14). In the second step, in order to ex-

hibit the decay of the high frequencies part of the solution, we resort to the effective velocity

w V(—A)~!(b — divu) introduced by [15,16]. In the last step, we establish gain of regularity

and decay altogether for the high frequencies of u.

However, compared with [9], here thanks to the appearance of the Poisson equation, we have
some new observations. More concretely, in the low frequencies, the authors in [9] considered
the following homogeneous linearized compressible Navier—Stokes equations about (1, 0),

b + diva =0,

(2.16)
8,ll—Au+Vb=0.
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Therefore, after spectral localization and from an explicit computation of the action of the semi-
group associated to (2.16) (see e.g. [3]), there exists a constant ¢ > 0 such that for all j € Z and

J =< Jo,
2
15112 + Il 2 S e (llbojll 2 + gl 12), (2.17)

here and in what follows, we set z; LA ;jz for any tempered distribution z and j € Z. In this pa-
per, we will consider the following homogeneous linear system corresponding to (2.14), namely,

b + diva =0,

(2.18)
gu—Au+Vb—VA~lp=0.

It should be noted that in the low frequencies, if we treat system (1.1) in the same way as that
in [9], the term VA~!5 would not be controlled. So here term VA~!5 is placed to the left hand
side. From the explicit expression of the Green matrix of (2.18) (see [38]),~we know that it has

smoothing effect in the low frequency regime. Concretely, assuming that (b, i) is a solution of
system (2.18), one has after spectral localization that for any jo € Z and j < jo (see [38]),

—ing ~ —22i —j
27BN 2+ gl 2 S e @ Nbojll 2 + lluoj 2. (2.19)

Here compared with (2.17), the appearance of the coefficient 27/ of b il g2 is due to the term
VA~ !b. Just because of this, different from the definition of Yp in [9], here we replace b with
A~ D,

This paper is organized as follows. In Section 3, we present some material concerning parad-
ifferential calculus, product and commutator estimates. Section 4 is devoted to the proofs of
Theorem 2.2 and Corollaries 2.1 and 2.2, respectively.

3. Littlewood—Paley decomposition and Besov spaces

The following proposition (referred to as Bernstein’s inequalities) describes the way deriva-
tives act on spectrally localized functions.

Proposition 3.1. (See [5].) Let C be an annulus and B a ball, 1 < p < g < 400. Assume that
f € LP(RN), then for any nonnegative integer k, there exists constant C independent of f, k
such that

~ def
suppf C AB = [|IDX fll Loy = sup 18% 1l pa @y < C*H1A
o=

k+N(L -1
TN fll Lo @y

suppf C A= C_k_l)\k”f”Lﬁ(RN) = ”Dkf”LP(RN) =< Ck+1)»k||f||Ll>(RN)~

Let us now recall some classical properties for the Besov spaces.
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Proposition 3.2. The following properties hold true:

1) Derivation: There exists a universal constant C such that

C M F Ny, SIVF g <CUF gy -

_N_ N
2) Sobolev embedding: If 1 < p1 < py <oocand1 < r1 <rpy <00, then Bm "< sz le r,

3) Real interpolation: ||f||3951+<179)s2 < ||f||0.5l ||f|| .32 .
p.r Bp,r Bp,r
4) Algebraic properties: for s > 0, B;,l N L is an algebra.
Next we state a few nonlinear estimates in Besov spaces which may be obtained by means of

paradifferential calculus. Firstly introduced by Bony in [2], the paraproduct between f and g is
defined by

ng = quflqug’
qeZ

and the remainder is given by

R(f, &)= ZAquqg

qE€Z
with

~ def
Agg = (Agoi+ Ay + Agin)g.

We have the following so-called Bony’s decomposition:
fe=Tef +Trg+ R(f. ). (3.1

The paraproduct T and the remainder R operators satisfy the following continuous properties
(seee.g. [1]).

Proposition 3.3. Suppose that s e R,0 >0, and 1 < p, p1, pa2,r,r1, 2 < 00. Then we have:

(1) The paraproduct T is a bilinear, continuous operator from L x BS to BS, ., and from

p.r
o s NS—0 > 1 dﬁf L
BOo Ty X Bp rp 10 B, with min{1, L = rz}’
(2) The remainder R is bilinear continuous from By, ;, x B)} ,, to Bf,‘fsz with 51 + s3 > 0,
1 def def 1 def 1
» |+P2—’andr_ +r2—1' .
(3) The remainder R is bilinear continuous from By, . x By, ,, to Bp o With 51 + 52 =0,
1def 1

p_p1+p251and 5 >1

From (3.1) and Proposition 3.3, we have the following more accurate product estimates:
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Corollary 3.1. ([7]) If u € B;ll yand v € B;zz | with 1 < p1 < py <00, 51 < %, so < % and

.S]+S2—ﬁ
s1+ 82 >0, thenuv € sz |

and p», such that

and there exists a constant C, depending only on N, s1, s2, p1

uv| < C|lu]| 5 v 552 . 3.2
ol gy = Cllullgn Ilge (3.2)

P21

Corollary 3.2. (/9]) For exponents o > 0 and 1 < p1, p2, q < 00 satisfying

N N . (N N 1 1 1 o
—+ ——-N<o<min|—,— ) and —=—+ —— —,
rr P2

we have
p—0 < po N—0 .
178055, SN Mg Nslgor
We also need the following composition result (see [6,31]).

Proposition 3.4. Let s >0, p € [1,00] and u € B; (NL>®. Let F € WI[OSCHQ’OO(RN) such that
F(©0)=0. Then F(u) € B;,l and there exists a constant C = C(s, p, N, F, |\u|| L) such that

IFG)l s < Cllulls -
Next, we list the following commutator estimate which was proved in [9].

Proposition 3.5. Let 1 < p, p1 < o0 and

. [N N . [N N
—mm{—,—/ <O'§l+mll’l{—,— . 3.3)
pr p P D1
There exists a constant C > 0 depending only on o such that forall j € Z andi € {1,---, N},
we have
Ilv-V.8:Alallr < Ce;27 77DVl v (1Vall ot (34)
3 Pl P,

r1,1

where the commutator [-, -] is defined by [ f, g1 = fg — gf, and (c;) jez, denotes a sequence such
that || (cj)lgr <1 and % + % =1.

Finally, we give the optimal regularity estimates for the heat equation (see e.g. [1]).
Proposition 3.6. Let 0 € R, (p,r) € [1,00]> and 1 < py < p1 < 00. Let u satisfy

oru — uAu = f, 3.5)
uli=0 = uo. '
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Then for all T > 0, the following a priori estimate is satisfied:

1 1
L L
p ez Slwollgg, F a2 ALz (3.6)
Ly (Bp,r') ' L7 (Bp,r )
Remark 3.1. The solutions to the following Lamé system
oru — wAu — (A + p)Vdivu = f,
(3.7)

uli=0 = uo,

where A and p are constant coefficients such that u > 0 and A + 2u > 0, also satisfy (3.6).

4. The proof of main results

In this section, with the global existence result in Theorem 2.1 at hand, we prove Theorem 2.2

and Corollaries 2.1 and 2.2. In what follows, we will apply repeatedly that for 0 < y; < y» with
y2 > 1, it holds that

t

/(t — ) ") dTr < (1) 4.1)

0

Step 1: Bounds for the low frequencies. This step is devoted to the estimates of the first term of

Yp(1).
Proposition 4.1. Under the assumptions of Theorem 2.2, we have
0" (A", v, VYD), < Vpo+ Xy (1) + V50
forall t > 0, provided that —sy < s < % +1.
Proof. We first deal with the homogeneous linear system (2.18). As mentioned at the end of

sot+s .
Section 2, it is clear that multiplying by 77 2J% in two sides of (2.19) and summing up on
Jj < Jjo, we write

so+s . ~ .
Y (27O e + 272
Ji<Jjo
4.2)
¢ ¢ Jysots ,—e(v/127)?
S <||b0|| i ol Bzg) S iyt :

J<Jjo
Thanks to the following fact (see e.g. [1]): for any § > 0, there exists a constant Cg so that

58 o2
supE 1220 =02t < g
120 7
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then (4.2) implies that for sop +s > 0,

A B W ONE . < IballE ¢
supz= 2 |[( ,ll)(t)lll_;;;I S 0ol -1 + 100l s -

t>0 g 2,00 2,00

Moreover, it is obvious that for s + sg > 0,

-17 = < 14 ¢ Jjlsot+s) < 4 ¢
IA™'5, DO, N(nbon 10 T ol B) 2 PO b0l 1ony 180N

2,00 J <jo 2,00
As a consequence, we obtain

s gz o
sup(r) 2 [I(A™ B, Oz, S Mboll—1-sy + 1901 - 4.3)

>0 . 2,00 2,00

Given the above result, we now return to system (2.14). Let (b, u) be a solution of (2.14). Then
by Duhamel’s formula, we need to bound the following term:

t
_Sots ¢ ¢
(t—0)" "7\ IO -1, + 118D ) dT. 4.4)
Bz,oc BZ,oo
0
In the following we will prove that if p satisfies (2.1), then we have for all # > 0,
t
st ¢ ¢ < 1= 2 2
(t—1)" 2 IIf(f)IIJ_L}_l_.;0 sl -G e dt S ()77 (Y, (1) + X, (1), 4.5)
2,00 2,00
0

where X, and ), have been defined in (2.4) and (2.7), respectively.
Let us begin with the estimate of the term with f. Thanks to the embedding L?/? < B, 2%
and the definition of f in (2.15), it follows that

t t
-~k ¢ _sofs ¢
=0 TN e S [ =0T T IGw @I e
0 2,00 0 2,00
. . 4.6)
_Sots ¢ _Sots
< [u=n T ew@I ydr S [ =07 Ib@ .
0 0
‘We claim that
Sy N N
@l <0 2Ty, @7
and
6@l < (1) T T2y, 4.8)
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Indeed, by virtue of Minkowski’s inequality and embedding, we getfor2 <p < N,

14 h 4 h
lallr < o llze + (e Shall” y _y +lul® y
P Bpl
p

B.2

N

which together with the definitions of « and of ), (¢) gives (4.7). Similarly, one obtains

16@ e < 1B @lLr + 16" @llr SIBEI y o +16@I" x|

Bz.zl Bpl,)l
_:0+%*%+1 S()Jr%*%Jrl _ _
SR — O 7 IATBON y v, @O @O
32,21 r B,fl
S@ TR TITIY, 0,
4.9)
which yields (4.8). Thus (4.6) could be written as
t t
50+ sg+s N N 1
/(t —) T ||f(r)||271ﬂ,0dr SV /(; e aa it s P (4.10)
0 2o 0
Dueto2 < p < N and sg = % — %,Wegetthatforall —sp <58 < %+1,
S0 n s - N n 1
2 27 p 2
It is obvious that % + % > 1, then inequality (4.1) guarantees
t
/(r—r)—v‘)zﬂ (1) g <
0
Consequently, it follows from (4.10) that
t
_Sots ¢ _S0Fs o
(=) T IfON -1 dT ST Y. (4.11)
2,00

0

Next, we turn to estimate the term with g in (4.5). By the definition of g in (2.15), we start with
u - Vu as follows.
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t

t
/(z—r) - Vu)(r)||ho,v/<z—r> - Vu)(r)nﬁ dr
0

2,00

t 0 (4.12)
_sobs
5/<I—T> @) lze V(@) llzrde.
0

Following the procedure leading to (4.8), we also can obtain

S04 N_N_ 1
IVa(@)llLr S(T) 2727 3 2Y,(7), (4.13)

this together with (4.7) and inequality (4.1) gives
'
_sots ¢ _Sots o
(=072 - Vo @l - dt S {0777 Y, (0. (4.14)
2,00

0

In what follows, let us proceed with the second term of g, i.e., k(b)Vb. Similar to (4.6), one
writes

t 1

=0 F 109 < [ -0 F e o o
2,00 2
0 0 (4.15)

t

5/0 — ) B e VB (D) odT.

0

Now, we observe that

IVb@)llr < VB (©D)llr + VB (Dllr < 1VB@)] y

v F V@) N,
B P P

B

»
~

0,1

SIA™ 1b(r>||@N . ,HIVE@OI"

Ny
21 Bp.l

730+%—E,+2 qﬁ—%—ﬂ 2 _
S ((r) ST L )@ (@l )
le B,

(4.16)
Combining this with (4.8), we infer that (4.15) becomes
t t
so+s so+s N, N _ 3
/ (=) NKOVHOI ydr <V20) / (- e @)
2,00
0 0
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Thus inequality (4.1) ensures that
1
s+ so+s
/ (t =7 1BV ydT S 072 Vi), (.18)
2,00

0

On the last term I (b).Au of g, we split it into two terms I (b).Au’ and I (b).Au". Firstly, one
has that

t t
[0 F Aol adr s [ -0 1o A, i
0 0

t 4.19)
sQ+s
s/u — 1) bl VP’ Lod.
0
It is clear that
s+ Y -Ba2
IV @ller STa@I y v, SE7 7 Vp(0).
BZ,ZI i
Along the same line to the derivation of (4.18), we write
t
_Sots ¢
(t—7)" 2 [[({(b)Au )(T)IIB;odT
J :
(4.20)

To bound the term involving I (b).Au”, we distinguish two cases t > 2 and r < 2. If r > 2, we
have

t

1
/g_f>—¥||<1(b),4uh)(f)||32_x0df= f+/ (-t €1 + L.

0

t

Keeping the definitions of X, (#) and YV, (¢) in mind, we derive that
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(=07 U B A (0] o dT

sot+s
(t =) b)) e IV2U (0) || LrdT

0<r<l

<07 (Csup b)) / 1920 @)llrdr S 07T Yy (1.
0

For I, we notlce that (‘C) ~ t when t > 1. Applying Corollary 3.2, Proposition 3.4 and the
N

embedding B pr > B ,wegetthatif2<p <N,
[ee)

PN

||1(b)Au”|| <||1(b)Auh|| e

2. h
Shol v IVt w.
P P

By By By
PN’
Note that
¢ h -5-9
IIb(T)II v S (T)II v+ b (T)II N ST M),
pl 21 p,l

and that if % < p < N, then setting 0 &y %, we have by interpolation that

IV @Iy S I @1° L@ S ) 0,0,

N_| ~
B
p.l pl Bp,l

where the last step comes from the definition of ), (¢). Then thanks to (4.1), one gets if % <
p<N,

t

b= [t =07 1A ) ode
1 “4.21)

t
sy,%m/a — o) ()T g < )T )2 ),
0

While in the case of 2 < p < 2 , we get just by embedding that

V" @)y Sl y | < ()7 Vp(2),
Bplp B[),l -

which yields if 2 < p < %
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t

_sos h
12=/(l—f) 7l (D) Au VOl gdT
1

. (4.22)
s0+s 1 s0+s
syia)f(r — )T () T S ()T V2.
0
Therefore, for t > 2, we conclude that
t
— %0t h < — s 2
(t—1)" "7 [ (D) Au )(T)IIB;vodf ST (XY (1) + YV, (1)). (4.23)
J .
The caset <2iseasyas (t)~land (t —t)~ 1forO0 <t <t <2,and
t 13
/ 17 @) AW (@) 5-s0dT S f I ) A (@) pdr
2,00 (4.24)
0 0
Sl wny IV 1 1 oy S Vp (X (0.
Collecting the estimates (4.14), (4.18), (4.20), (4.23) and (4.24) together, we have
t
— ks ¢ < -0 a0 2
{t =) 2 gl dT S (1) 7 (V) + X, (1) (4.25)
2,00

0

From which and (4.11), we complete the proof of (4.5).
Thus (4.5) together with (4.3) for the bound of the term pertaining to the data, we conclude
that

O 1A b wO1, S Vpo+ X210 +Y20)

for all t+ > 0, provided that —sg < s < % + 1.
On the other hand, it follows from the Poisson equation in (1.1) that

sts sofs
1) TNV ST IAT bl S Vpot+ X0+ V0

for all t+ > 0, provided that —sg < s < % + 1. This completes the proof of Proposition 4.1. O
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Step 2: Bounds for the high frequencies. In this step we focus on the decay for the high fre-
quencies of (Vb,u, VA®). In this case, we can treat the term VA~ 'bin (2.1 4), as source term
because of its smallness of suitable norm in the high frequency regime. Thus, system (2.14) could
be written as

b + diva = f,
. (4.26)
du—Au+Vb=g+VA~'pEg.

Proposition 4.2. Under the assumptions of Theorem 2.2, we have for all t > 0,

I(z)*(Vb,u, VAD)|" ¥ SIVboup) " 4+ X7 (1) + Vi) + 2770V, (1).
B

UK 2

Proof. Denote R’j [u V, 0; A j1b (i =1,---,N), where the commutator [, -] is defined by
[f.g]l= fg — gf. According to [9 the estimate (3.47)], it follows that

(D) (Vb " Ny S 1(Vbo, up)||* N
L°°(B ) Bp”1
i i (4.27)
+ Z sup ((z)"‘/e*CU(’*’)ZJ(?_I)Sj(t)dr),
jzjo0=1=T 0

with S; defsl +-+ 53 and

df
A w52 g1l

def | : . def .
SIEVA;(bdiv e, SR le. STE divall < ]| VbjllLr. (4.28)
To proceed with the sum, we first consider the case for 0 <t < 2.

t

2
.. N . N
3 sup (m“/e*"0<’*f)2”7‘”sj(r)dr) 5/ Y 2GS (0. (4.29)
Jzjo 051=2 2 o Jzo
It follows from Corollary 3.1 and Proposition 3.5 that

2 2
2 G Vs .dr < [ (Ib v b 430
Z P j(Ddt S ||bul)” Ny + gl v R u|| N|| | ~ )dz. (4.30)

. BP
0 J=Jo 0 Bp 1 B, 1 lxl pl

For the last term, we write

||Vll|| N||b|| Ndf<||ll|| v Bl v SX2Q).
LB o (R P p

p.1 ) Ll‘ (Bp,l
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Due to inequality (3.2), one arrives at

LiBl ) LIB) LB

Il SIBL L x ul oy, SXRQ).
)

p.l

Next, combining Corollary 3.1 and Proposition 3.4, recalling the definition of g in (2.15), we
derive

lgall vy Slall vy fall o vy +20 v el vy,
‘) P LA T F G KRR A K
ol o Bl 27
Ltoo(Bp.l) Ll‘ (Bp,l) Ll‘ (Bp,l)
Then we conclude that
t
. N .
sup ((t)“/e—fo(’—”zf(?‘”sj(z)dr) SX2Q) +2720x,(2). (4.31)
. 0<r<2
jzjo == 0

Now, assuming that 7 > 2, we turn to bound the supremum for 2 <¢ < T in the r.h.s. of
(4.27). To this end, we split the integral on [0, 7] into integrals on [0, 1] and [1, ¢]. The integral
on [0, 1] is not difficult to handle. Indeed, as e 00~ < ¢=¢0!/2 for t € [2, T] and 7 € [0, 1], one
can write that

2<t<T

1
N
sup (<t>a/e—CO(t—T)zJ(;_l)Sj(T)dT)
jzjo 2= 0

. . <<
J=Jo 2=i=T

Jj=Jjo

1 1
| . N - N
<Y sup ((r)“eﬁ“’/2f<?*1>s,-(r)dr)5/ 2V s()dr.
0 0

Along the same line of the estimate for (4.29), we conclude that

2<t<T

1
. N .
sup (<t>“/e—m(’—”zf(r”sj(r)dr) S A1) +2720x, (D). (4.32)
Jj=Jjo 0
In order to bound the [1, ¢] part of the integral for 2 <t < T, we observe that

t

.. N . N
sup ((t)“fe_CO(’_T)Z"(F_l)Sj(r)dr) <SS VG sup 15500 (4.33)
jzjo 2=5t=T iZjo I=t=T

Next, we are going to bound the terms in the r.h.s. of (4.33) one by one. Firstly, we claim that

lzvall_ 5 SYp(). (4.34)
)
p,1

L®(B
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Indeed, as regards the high-frequencies |l Vu|” n » it holds true from the definition of
ZtOO(Bp],)l)
Yp(t). And for the low-frequencies, applying Bernstein’s inequalities yields

¢ ¢ ¢
||'L'Vll||~ N S, ||‘L'll||~ Ny S ||'L'll|| N0
e IR@) LGy )

NN 1 .
STy <Y0.
LIOO(BZI

To bound the terms with Sjl. and sz. in (4.33), we use the fact that

(N _
32797 sup (Sh) + S3@) S I bu.gnll”
o I<t<T LPBYL

pl )
For the term with r*bu, we use that r*bu = r*bu” + r*b"u’ + *b*u’. By the product laws
adapted to tilde spaces (see (3.2)), it follows that

h h
leoul . xop SHOI. v %l xS Ap(T)Yp(T),
o] p L p L?-O Bppl

T (Bp.l T p,1

b bl SR el SYp(MX(T).

P
LEBr LEBr) L¥ B},

Using Bernstein’s inequality combined with embedding and product law (3.2) yields

€0 €e
26" v Sy

&1 )
" oy SUEATBO oy ety
L%O(Bp’f] ) L7 (By

L®(B2) L (B,%)

From the definitions of tilde norms and ), we deduce that

I3 A" uh_ oy St x L < V(). (4.35)
L?o 2 L® 32

) 7 (By))

Thus, we conclude that

IIIO‘(bU)IIIi v, SYp(DYp(T) + Xp(T)).
LC;O(B;1 )
To bound the term with u - Vu in g1, we note that

h P
L;O(Bp{’l ) LPB, ) LF(B,,)

h 1
- VI v SH Tl v Vel

On one hand, it is clear that ||z* u]” N,

~n . < Yp(T). On the other hand, we have for small
z?"Q(Bppl )

enough ¢:
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—1..11¢ 1.4
Tl STl S YD)

LOQ(B ) L”O(B

— % —e=3+ % — % — &. As a consequence, it follows from (4.34) that

It - vl SYAT).

Lpmr )

To bound the term with k(b)Vb, using inequality (3.2) again along with Proposition 3.4, we
deduce

ItV vy SHbI_ v le°b)" y =X MYp(T), (4.36)
LE@Br LPB,)) LEB)r)
I (k(b)Vb‘f)n v Se3pl w3y <V, (4.37)
(Bpl ) L (pl) LOO(BZI)

where we have used the fact that according to (4.35), there hold

2ot Sleza~p)f y =V,
L""(B2 l) L°°(B2 1)
and then
2ol oy SIZblt y + bty S YD) (4.38)
Ly (Bp D L°°(Bz ) L°°(Bp D

To bound the term with I (b).Au, we have that

1@ Aul_ oy S1eVul o [Tl el
Ir@d) Iea) ) IpB2) Ira))

The first term on the right-hand side has been estimated in (4.34), and it is obvious that the
last term can also be bounded by ), (T). To proceed with the second one, we have for small
enough &:

11 “1a—lp e
124~ bll v SHETATRIT N

s S V(D) (4.39)
B2 rpd

1 S0 N 1 .
—2—857+Z+§—8.Thus,weamveat
1B Al x, SVAD).
LB’
T p.1

For the last term VA~!b of g1, we have

leevattolt S22y,

IE@) ) IE@))
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As regarding the term S ]3, we have

12V (b diva)]|” N Sl edivwl” oy Sl x [Vl N

LE@Br ) LEm)) LPMB)) L°°<B”1)

Consequently, applying (4.34) along with (4.39) yields that

T SN/
L°°(B )

As for the term S?, one notes that a small modification of Proposition 3.5 (i.e., just treat the time
variables as a parameter) gives rise to

. N
> 275D sup IR0 1Le < N1tV x 112~ 1Vb| iy (4.40)

1<t<T LT (B

JEZL p.1 Ly Bp,l

Then from (4.34) and (4.39) again, we deduce that

(N _
Y 275D sup R (0)lLe S VA(T).
jeL 1=e<T

The term with SIS is obviously bounded by the r.h.s. of (4.40). Collecting all the above estimates
together, we conclude that

ST 20T qup 48;(1) S XUT) + VAT + 2720, (1), (441)

J=Jjo l=t=T
Substituting (4.41) into (4.33), and recalling (4.27), (4.31) and (4.32), we derive that for all > 0,

1@ (Vo WISV, wo)l" |+ X0 + V50 + 2720, (0).

0K BY

At last, it follows from the Poisson equation that for all # > 0,

Koevae|" S vb|"

~ . -1
LrB) ) LB}

)

*a\z

S 1(Vbo, wo)||" oyt X2 + Vi) +2770Y, (1),

B

which completes the proof of Proposition 4.2. 0O
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Step 3: Decay estimates with gain of regularity for the high frequencies of u. The following
result gives the decay estimates with gain of regularity for the high frequencies of u.

Proposition 4.3. Under the assumptions of Theorem 2.2, we have for all t > 0,

lrull” N SXpo+ X7 + Vo (1) + 2720, ().
LOC(BPI )

Proof. Note that
du—Au=GE —u.Vu+ (k(b) = )Vb — I(b)Au+ VA~ 'b.
This implies that
0; (t Au) — A(t Au) = Au + 1t AG.
It thus follows from Proposition 3.6 and Remark 3.1 that

IeV2ul? oy SHA IR AGH
L,OO(BP’ ) L(Bppl ) L°°(B

\*»\2

3

)

Therefore, using the bounds given by Theorem 2.1, one has

(4.42)

~

h h h h
el S Gy S0+ TG
) LIB) RIS LB

N_ -
pl

)

Next, we focus on the estimate of the last term. Firstly, product and composition estimates
adapted to tilde spaces give

k() VD" Ny <||f2b|I N - (4.43)
L@l ) L))

In view of the fact that ||r%b||h x =< JYp(t) and that for small enough &,

L))
1oe La—1.,¢
o261t Shezblt y SHEEATBIY L <D0,
IeBr) Le(By) L{*(By)
then (4.43) becomes
ITk®)VBI" x| SV,
L°°(B )
Similarly,
Iru- Vu|" Ny < llall vy lzvVall v S A0V
LB ) LB, ) LB}
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and

e Aul® o <UBI o TV v S X0V,

-1 ~
L?O(Bpw ) L°°(Bp1) L (Bp,l

where in the last inequality, we have used the estimate (4.34). By Proposition 4.2 and the fact
that o > 1, we have

lzvp|" y, Sl vb|" ¥ S 1(Vbo, up) |1 Ly T A O+ V0 +270Yp 1),

L°°(B ) L°°(B ) pl

Finally, for the term VA~1p, it follows that

VAT S2T@EVBIT =270,
LXB) ) LBt

Thus, reverting to (4.42), we complete the proof of Proposition 4.3. 0O
Proof of Theorem 2.2. Propositions 4.1, 4.2 and 4.3 together imply that

Vo(T) S Xpo+ Vpo+ Xp(T) + Vo (T) + 2720V (T).
Since the fact that

6ol y 2Nllboll . —so—1> lluo ¢ y 1,\,lllloll 50
le Baoo 321 Broo

and that Theorem 2.1 guarantees X, < X, o < 1, we conclude thatif ), o and ||(Vbo, ug) K N,
B P
are small enough, and jy is large enough, then (2.6) is fulfilled for all time. This ends the proof
of Theorem 2.2. O
Finally, we are devoted to the proof of Corollary 2.1 and Corollary 2.2, respectively.

Proof of Corollary 2.1. From the embedding, there holds

O T Al ST AT b +lln ™
tes[g,pT] 32,1 ~ LOO(BYH LOO(BP 1
Thanks to (2.6) and the definition of ), we see that
0+v+1 1 N
10T A Dl ) S Vp0+ (Vb0 o) i —s9 =1 <5< 5

Bl

and that, because o > SotsHL gorall 5 < ﬂ,
2 P

v0+r+l

N
bITorns S + |(Vbp, u if s <—,
ll<r) ||L @) S Yo+ 1(Vbo, ug) " N »

-1
,1

ﬁ
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which implies (2.8).
To bound the velocity u, similar to the above, one infers

sup (0 IIAAUIIBo <I|<) Ea “ullf
tel0,T]

P [ Wl

Here,

SO . N
I(e) ™2 u||m35 ) SYpo+ IV u)l" | if —so<s =2 +1,

B,y

=

and that, because o > SO; S forall s < % -1,

_s+ ) N
lI(£) - u”Loo(Bs )Nyp0+||(Vbo,uo)|| % if sg;—l,

-1
pl

which yield (2.9).
For the estimate of V&, we also have

Sup() IIA°V<I>||BO <I|<t) V<D||
t€l0,T]

T (D V<I>||LOQ(BS K

As above, one has

)2

. N
Ly ) SYp0H (Vb0 w0y i —sp <5 <541,

B 1

=

and that as o > % forall s < % + 1, it follows that

N
IO Vel yp0+||(Vb0auO)”hN 11fs<;+1

p,l

Loo(Bs ) ~

This yields (2.10) and so far we complete the proof of Corollary 2.1. O

Proof of Corollary 2.2. We first recall the following Gagliardo—Nirenberg type inequality (see
e.g., [1] and [36]):

IAY Fllr SUAP £ 1A 19,
where 0 <6 <1,1 <g<r<ooand
1 1
a+N|———-)=p1-06)+y6.
q r

We take p =2 in Corollary 2.1. Then, it follows from the above Gagliardo—Nirenberg inequality
with ¢ =2 and « = m that

Please cite this article in press as: Q. Bie et al., Optimal decay rate for the compressible Navier—Stokes—Poisson
system in the critical LP framework, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.08.041




YJDEQ:8972

26 Q. Bie et al. / J. Differential Equations eee (eeee) eee—eee

18" Bl S 1AL AT IS, € (V20 + (Vo0 w0l )
By

BZI
A N_N_m_1
= (V20 + 1Vb0, )" ) ()53 75,
B2
2,1
here we used that
1 1
m—i—N(E——):,B(l—@)—H/@. (4.44)
r

By Corollary 2.1 again, 8 and y should satisfy —% —-1<8,y< % This combined with 0 <
6 <1 and (4.44) yields that

which gives (2.11). Similarly, we could prove (2.12) and the proof of Corollary 2.2 is fin-
ished. O
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