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Abstract

In this paper, we study an elliptic equation arising from the self-dual Maxwell gauged O(3) sigma model 
coupled with gravity. When the parameter τ equals 1 and there is only one singular source, we consider 
radially symmetric solutions. There appear three important constants: a positive parameter a representing a 
scaled gravitational constant, a nonnegative integer N1 representing the total string number, and a nonneg-
ative integer N2 representing the total anti-string number. The values of the products aN1, aN2 ∈ [0, ∞)

play a crucial role in classifying radial solutions. By using the decay rates of solutions at infinity, we pro-
vide a complete classification of solutions for all possible values of aN1 and aN2. This improves previously 
known results.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are interested in the following elliptic equation in R2:

�v − ρτ (x)fτ (v, a, ε) = 4π

d1∑
j=1

nj,1δpj,1 − 4π

d2∑
j=1

nj,2δpj,2 , (1.1)
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where

ρτ (x) =
⎡
⎣ d1∏

j=1

|x − pj,1|(1−τ)nj,1

d2∏
j=1

|x − pj,2|(1+τ)nj,2

⎤
⎦

−a

,

fτ (v, a, ε) =
2e

(1−τ )
2 av

[
(1 + τ)ev − (1 − τ)

]
ε2(1 + ev)1+a

.

Here, pj,1’s and pj,2’s are disjoint points and called the strings and the antistrings, respectively. 
The unknown is

v :R2\{pj,k : j = 1, · · · , dk, k = 1,2} → R.

Furthermore, a is a nonnegative real number, τ ∈ [−1, 1] is a real number, δp denotes the Dirac 
measure concentrated at the point p, and nj,k’s are positive integers representing the multiplicity 
of the strings and the antistrings pj,k . We define the total string and anti-string numbers as

N1 = n1,1 + · · · + nd1,1, N2 = n1,2 + · · · + nd2,2.

It is not difficult to check that v is a solution of (1.1) for τ if and only if −v is a solution of (1.1)
for −τ with the change of roles of {(pj,1, nj,1) : 1 ≤ j ≤ d1} and {(pj,2, nj,2) : 1 ≤ j ≤ d2}. So, 
hereafter we assume that 0 ≤ τ ≤ 1.

The equation (1.1) arises from a self-dual gauge field model coupled with Einstein Equations. 
By taking into account a gravity in classical self-dual gauge field models, we need to solve the 
self-dual equations of models together with Einstein Equations. Recently, mathematical studies 
on these equations have grown up as interesting problems in various gauge filed theories [1–3,5,
9,14–16,19,20,23,25]. In particular, the equation (1.1) describes the Maxwell gauged O(3) sigma 
model in the Bogomol’nyi regime on a space–time manifold. This model was introduced as an 
extension of Schroers’ U(1) Maxwell gauged harmonic map model [17,18] to a general relativity 
frame. The constant a stands for a scaled gravitational constant and the classical Schroers’ model 
corresponds to the equation (1.1) with a = 0. For the detail background and derivation of (1.1), 
one may refer to [12,23–25].

From the physical motivation, it is natural to find solutions which gives the finite integration 
of the nonlinear term, that is ρτ (x)fτ (v, a, ε) ∈ L1(R2). Then, the integrability condition yields 
three kinds of boundary conditions:

⎧⎪⎪⎨
⎪⎪⎩

topological condition: v(x) → σ ∈ R as |x| → ∞,

nontopological condition of type I: v(x) → −∞ as |x| → ∞,

nontopological condition of type II: v(x) → ∞ as |x| → ∞.

(1.2)

Solutions for each boundary condition are called topological solutions and nontopological so-
lutions of type I and II, respectively. We often say a type I (resp. type II) solution simply for a 
nontopological solution of type I (resp. type II). The nature of solutions of (1.1) varies drastically 
according to the value τ ∈ [0, 1]. In particular, we have different features of solutions according 



JID:YJDEQ AID:9146 /FLA [m1+; v1.276; Prn:4/01/2018; 10:10] P.3 (1-45)

N. Choi, J. Han / J. Differential Equations ••• (••••) •••–••• 3
to τ = 1 or 0 ≤ τ < 1. The purpose of this paper is to classify all possible solutions of (1.1) for 
the case τ = 1.

One way to classify of solutions of (1.1) is to investigate the decay rates of solutions at infinity. 
Here, we mean by the decay rate the leading term of solutions at infinity which determines the 
asymptotics of solutions at infinity. By an elementary potential analysis, one can derive that if v
is a solution of (1.1), then

v(x) = (2N1 − 2N2 + β) ln |x| + o(ln |x|) as |x| → ∞, (1.3)

where (2N1 − 2N2 + β) is the decay rate of v and

β = 1

2π

ˆ

R2

ρτ (x)fτ

(
v(x), a, ε

)
dx.

By examining ρτ (x)fτ

(
v(x), a, ε

)
at infinity, we obtain necessary conditions on the range of β . 

Indeed, if v is a solution of (1.1) satisfying (1.3), then it comes from the condition ρτfτ ∈ L1

that β ∈ J ⊂R where J is given by the following Tables 1.1 and 1.2 [12]:

Table 1.1
The set J for a = 0.

Topological Type I Type II

0 ≤ τ < 1 {2N2 − 2N1} ∅ ∅
τ = 1 ∅ (0,2N2 − 2N1 − 2] ∅

Table 1.2
The set J for a > 0.

Topological Type I Type II

0 ≤ τ < 1 {2N2 − 2N1} (− ∞,
4aN2−4
(1−τ)a

] [ 4−4aN1
a(1+τ)

,∞)
τ = 1 {2N2 − 2N1} (0,2aN2 + 2N2 − 2N1 − 2] [ 2−2aN1

a ,∞)

A natural question is whether the above necessary conditions are also sufficient or not. In 
other words, given β ∈ J , are there any topological, type I or type II solutions realizing (1.3)? 
If any, how many solutions exist? Can we identify J exactly for topological, type I or type II 
solutions if a and τ are fixed? Classification of solutions by their decay rate β at infinity is one 
of important tools in various self-dual gauge model equations [2–16]. Regarding our problems, 
there are several known results in this direction. We briefly introduce them and state the main 
result of this paper and see how it improves the previous results.

First, let us consider the case a = 0 which corresponds to the situation of no gravity in the 
physics literature. If 0 < τ < 1, then we have only topological solutions and it was shown in 
[22] that (1.1) possesses a unique topological solution. When τ = 1, only type I solutions are in 
consideration and it was proved in [13,21] that for each β ∈ (0, 2N2 − 2N1 − 2) (1.1) has a type I 
solution satisfying

v(x) = (2N1 − 2N2 + β) ln |x| + O(1) as |x| → ∞. (1.4)
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It is not yet completely known for the borderline case β = 2N2 − 2N1 − 2 in Table 1.1 whether 
there is a solution or not. In this case, v(x) = −2 ln |x| + o(ln |x|) as |x| → ∞. If N1 = 0 and 
N2 ≥ 2, then a partial answer was given in [13] such that (1.1) allows a type I solution satisfying 
that

v(x) = −2 ln |x| − 2 ln ln |x| + O(1) as |x| → ∞. (1.5)

Next, we turn to the case a > 0. There have been several works on the existence and properties 
of solutions of (1.1) for the cases τ = 0 and τ = 1. First, we consider the case τ = 0. In [15,25], 
the authors proved that if

0 < a(N1 + N2) < 1, (1.6)

there exists a topological solution of (1.1)τ=0 with σ = 0 for any ε > 0. In [12], the authors 
constructed nontopological multi-string solutions. Up to now the existence of solutions of (1.1)
is proved under the condition (1.6), and the other cases are not solved yet.

On the other hand, for more efficient approach on the existence of solutions without the re-
striction (1.6), one may consider the simplest case d2 = 0 and p1,1 = · · · = pd1,1 = 0 and study 
radially symmetric solutions v(r, s) of

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′′ + 1

r
v′ = r−aN1f0(v, a, ε), r = |x| > 0,

v(r, s) = 2N1 ln r + s + o(1) near r = 0,

v(x) = (2N1 + β) ln r + O(1) as |x| → ∞.

(1.7)

Then, for any possible values of aN1 ≥ 0 which is not restricted to (1.6), the authors in [9,
14] completely classified the range of β for which (1.7) allows topological, type I and type II 
solutions. See [14] more details. When τ = 0, another simple case is that d1 = 0 and p1,2 =
· · · = pd2,2 = 0 and we have the following radial equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′′ + 1

r
v′ = r−aN2f0(v, a, ε), r = |x| > 0,

v(r, s) = −2N2 ln r + s + o(1) near r = 0,

v(x) = (−2N2 + β) ln r + O(1) as |x| → ∞.

(1.8)

This equation can be studied by the symmetry property of f0. Indeed, since f0(−v) = −f0(v), 
if v is a solution of (1.7) with the replacement of N1 by N2, then −v is a solution of (1.8). 
If 0 < τ < 1, such a symmetry is broken and we have to consider (1.7) and (1.8) separately. 
Furthermore, there might happen some difficulty in analyzing for the case 0 < τ < 1 which is 
distinguished from the case τ = 0. We will report this aspect elsewhere later.

Next, we consider the case τ = 1 which is the main interest of this article. In this case, the 
situation is quite different from that for τ = 0. For the full equation (1.1), we have the following 
known result.
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Theorem A ([6,19]). If N2 ≥ N1 + 2, then for each

β ∈ (0, 2N2 − 2N1 − 2), (1.9)

there exists a0 ∈ (0, 1/N2) such that for all 0 < a < a0, (1.1) possesses a type I solution such 
that

v(x) = (−2N2 + β) ln |x| + O(1) as |x| → ∞ (1.10)

Theorem A provides the existence of only type I solutions under some restrictions on a: 
smallness of a and the condition

0 < aN2 < 1. (1.11)

Moreover, by comparing (1.9) and Table 1.2, we cannot be sure whether the range (1.9) of β
is sufficient and necessary for the existence of type I solutions. To enhance such conditions and 
identify the better range of β , one may the simplest cases that there exists only one string or 
antistring point: either d1 = 0 and p1,2 = · · · = pd2,2 = 0, or d2 = 0 and p1,1 = · · · = pd1,1 = 0. 
The former case corresponds to

⎧⎨
⎩v′′ + 1

r
v′ = r−2aN2f1(v, a, ε), r = |x| > 0,

v(r) = −2N2 ln r + s + o(1) near r = 0,

(1.12)

and the latter case is ⎧⎨
⎩v′′ + 1

r
v′ = f1(v, a, ε), r > 0,

v(r) = 2N1 ln r + s + o(1) near r = 0,

(1.13)

where

f1(v, a, ε) = 4ev

ε2(1 + ev)1+a
.

Regarding the radial equations, we have the following known result about type II solutions.

Theorem B ([23]). If N2 ≥ 1 and (1.11) is valid, there exists one parameter family of type II 
solutions v of (1.12) satisfying (1.10) for some β > 2N2. If 0 < a < 1, then β satisfies

β > 4N2 + 4(1 − aN2). (1.14)

The result of Theorem B also has the restriction (1.11) and the range (1.14) of β may not be 
completely identified in view of Table 1.2. In this point of view, even for the radial cases (1.12)
and (1.13), only few results are known for the case τ = 1. The value aN2 is very important in the 
classification of solutions. In particular, Theorem A and Theorem B provides some ranges of β
only for the case 0 < aN2 < 1. The aim of this article is to identify the sufficient and necessary 
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conditions of β for the existence of radial type I and type II solutions of (1.12) and (1.13) without 
any restriction on aN2 and thus classify all possible solutions.

To state the main results of this paper, we set up some notations. First, regarding the equation 
(1.12), if we set u(r) = v(r) + 2N2 ln r , then

⎧⎪⎨
⎪⎩

u′′ + 1

r
u′ = 4r2aN2eu

ε2(r2N2 + eu)1+a
=: g1(u, a, ε), r = |x| > 0,

u(r) = s + o(1) near r = 0.

(1.15)

We note that if u is a solution of (1.15) if and only if

u(r) = s +
rˆ

0

1

t

tˆ

0

yg1
(
u(y), a, ε

)
dydt.

Then, by applying the standard Picard iteration, one can see that (1.15) possesses a unique global 
solution for any values of a, N2 > 0 and s ∈ R. We denote by u(r, s, a, N2) the unique global 
solution of (1.15) and write v(r, s, a, N2) = −2N2 + u(r, s, a, N2). As mentioned earlier, we are 
interested in the solution satisfying that

β(s) = β(s, a,N2) =
∞̂

0

r1−2aN2f1
(
v(r, s, a,N2), a, ε

)
dr (1.16)

is finite. Indeed, it is shown later that given a > 0 and N2 ≥ 0, β(s, a, N2) < ∞ for any s ∈ R. 
By a standard argument, one can see that

v(r, s, a,N2) = [− 2N2 + β(s, a,N2)
]

ln r + o(ln r) as r → ∞. (1.17)

In the following, we will write β(s), v(r, s) or v(r) for simplicity as long as there is no confusion. 
The first main result of this paper is the following theorem providing a complete classification 
of solutions of (1.12) without any restrictions on the value aN2 and identifying the exact range 
of β .

Theorem 1.1. Let a be a positive real number, N2 be a positive integer, and v(r, s) be a solution 
of (1.12).

(i) If 0 < aN2 < 1, then there exists a unique s∗ = s∗(a, N2) such that the following hold.
(i-a) If s > s∗, then v(r, s) is a type II solution satisfying

v(r, s) = [−2N2 + β(s)] ln r + I + O(r2−aβ) (1.18)

for some constant I = I (a, N2, s) as r → ∞. The function β : (s∗, ∞) → (4/a, ∞) is 
continuous, bijective, and strictly decreasing.
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(i-b) If s ≤ s∗, then v(r, s) is a type I solution. The function β : (−∞, s∗] → (0, 2aN2 +
2N2 − 2] is continuous, bijective, and strictly increasing. For s < s∗, we have

v(r, s) = [−2N2 + β(s)] ln r + I + O(r2−2aN2−2N2+β) (1.19)

for some constant I = I (a, N2, s) as r → ∞. If s = s∗, then

v(r, s) = [2aN2 − 2] ln r − 2 ln ln r + O(1) (1.20)

as r → ∞.
(ii) Suppose that aN2 = 1.

(ii-a) If 0 < N2 < 2ε−2, then for any s ∈ R, v(r, s) is a type II solution such that β(s) =
4N2. Moreover,

v(r, s) = 2N2 ln r + I + O(r−2)

for some constant I = I (a, N2, s) as r → ∞.
(ii-b) If N2 ≥ 2ε−2, then for any s ∈ R, v(r, s) is a type I solution of (1.12) such that 

β(s) = 2N2 − 2
√

N2(N2 − 2ε−2). Moreover, if N2 > 2ε−2, then as r → ∞,

v(r, s) = −2
√

N2(N2 − 2ε−2) ln r + I + O
(
r−2

√
N2(N2−2ε−2)

)
for some constant I = I (a, N2, s). If N2 = 2ε−2, then

v(r, s) = −2 ln ln r + O(1) as r → ∞.

(iii) If 1 < aN2 < 2, then there exists a unique s∗ = s∗(a, N2) such that the following hold.
(iii-a) For s < s∗, v(r, s) is a type II solution of (1.12) and satisfies (1.18) The function 

β : (∞, s∗) → (2N2, 4/a) is continuous, bijective and strictly decreasing.
(iii-b) For s > s∗, v(r, s) is a type I solution of (1.12) and satisfies (1.19) The function 

β : (s∗, ∞) → (0, 2N2) is continuous, bijective and strictly decreasing.
(iii-c) For s = s∗, v(r, s∗) is a topological solution of (1.12) and satisfies that

v(r, s∗) = I∗ + O(r2−2aN2) for some I∗ as r → ∞.

In particular, β(s∗) = 2N2.
(iv) If aN2 ≥ 2, then v(r, s) is a type I solution of (1.12) for every s ∈ R and satisfies (1.19). The 

function β : R → (0, 4/a) is continuous, bijective and strictly decreasing.

Now, let us turn to the second problem (1.13). As for the equation (1.12), we have a global 
unique solution v(r, s) = v(r, s, a, N1) for any s ∈R. With the same notation

β(s) = β(s, a,N1) =
∞̂

0

rf1
(
v(r, s, a,N1), a, ε

)
dr,

if v(r, s) is a solution of (1.13), then
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v(r, s) = [2N1 + β(s)
]

ln r + O(1) as r → ∞. (1.21)

The second main result of this paper is the following.

Theorem 1.2. Let a be positive real number, N1 be a nonnegative integer, and v(r, s) be a solu-
tion of (1.13). Then, v(r, s) is a type II solution for any s ∈ R. The function

β : (−∞,∞) →
(

max
{

0,
4(1 − aN1)

a

}
, ∞

)
is bijective and strictly decreasing. Furthermore,

v(r, s) = [2N1 + β(s)] ln r + I + O(r2+2aN1−aβ)

for some constant I = I (a, N1, s) as r → ∞.

The proof of Theorem 1.1 is given in Section 2 and Section 3. The proof of Theorem 1.2 is 
given in Section 4.

We point out some important features of Theorem 1.1 and Theorem 1.2. First, Theorem 1.1
provides the possible range of antistring number N2 in terms of a for the existence of type I 
and type II solutions. We give a complete description of radial solutions by classifying all the 
possible solutions. Second, Theorem 1.1 improves previous results on the range of β . The state-
ment (i-a) says that if 0 < aN2 < 1, the optimal lower bound of β is 4/a for type II solutions, 
which improves (1.14) since 4/a > 4N2 + 4(1 − aN2) for 0 < a < 1. Moreover, statement (i-a) 
tells us that if 0 < aN2 < 1, for each β ∈ (0, 2aN2 + 2N2 − 2] we have type II solutions sat-
isfying (1.17). This enhances the range of β in (1.9). Third, Theorem 1.1 also provides us the 
existence and nonexistence of type I and type II solutions for the case aN ≥ 1. There have been 
known no results on the existence of solutions of (1.12) for the case aN2 ≥ 1 as far as we know. 
Thus, Theorem 1.1 exhibits a new result about the radial solutions in this case and may give 
an insight for the possible values of β for multi-string solutions of (1.1). In particular, we see 
that if 1 < aN2 < 2, then (1.12) possesses a topological solution which cannot be observed if 
a = 0. So, this gives us another difference between the case a = 0 and a > 0. In the physical 
literature, a represents Newton’s gravitational constant and thus the existence of topological so-
lutions manifests the effect of gravity in the underlying space–time manifold where the Maxwell 
gauged O(3) sigma model is considered. Fourth, Theorem 1.2 gives a new result about the radial 
case when N1 ≥ 0 and N2 = 0. Finally, it is an interesting open question to find type I and II 
multi-string solutions of (1.1) which satisfies the behaviors (1.4) and the decay rate β assumes 
the ranges in Theorem 1.1 and Theorem 1.2.

Here, we give outline of this paper and explain ideas for proof. In section 2, we consider the 
case 0 < aN2 < 1 and focus on the proof of Theorem 1.1 (i). We classify all possible solutions 
by using the decay rate β . Main tools for proof are standard shooting methods, Pohozaev identi-
ties, and Sturm–Liouville type comparison arguments. In particular, we deal with a generalized 
version of the equation (1.12) by allowing N2 to be a positive real number. This setup will be 
very useful in constructing radial solutions of (1.12) when 1 < aN2 < 2. In section 3, we prove 
the other parts of Theorem 1.1, namely study (1.12) for the case aN2 ≥ 1. One of the main diffi-
culty for this case is that r1−2aN2 is not integrable near r = 0. So, in estimating an integral of the 
nonlinear term r1−2aN2f1(v, a) on a bounded interval including r = 0, we cannot extract the non-
linear term f1 by bounding it by its sup norm. Moreover, in integrating by parts by multiplying 
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(1.12) by rv′, which is a very standard idea, it is inevitable to face the term (2 − 2aN2). Various 
arguments in Section 2 for the case 0 < aN2 < 1 depends on the positiveness of (2 − 2aN2) and 
thus are no longer valid for the case aN2 ≥ 1. To overcome such difficulties, we consider the 
transformation v̂(r, ̂s) = v(r−1, s). Then, v(r, s) is a solution of (1.12) with 1 < aN2 < 2 if and 
only if v̂(r, ̂s) is a solution of

v̂′′ + 1

r
v̂′ = r−2âN̂2f1(v̂, a), r > 0,

v̂(r, ŝ) = ŝ + o(1), near r = 0,

with 0 < âN̂2 < 1. Here, ŝ, â, N̂2 are suitably chosen. Then, from the result of Section 2, we 
can obtain the existence and properties of solutions v̂(r, ̂s) of the transformed equation and then 
interpret them for v(r, s). For aN2 > 2, we use a similar argument by using a modified version of 
(1.13) as a transformed equation. Finally, in section 4, we prove Theorem 1.2. We get results for 
a generalized version the equation (1.13) which are used in Section 3 as transformed equations 
in several different places.

2. The case 0 < aN2 < 1 and N1 = 0

In this section we prove Theorem 1.1 when a is a positive real number, N2 is a positive integer, 
and 0 < aN2 < 1. In other words, we prove Theorem 1.1 (i). For later use, it deserves to introduce 
a generalized version of (1.12) as follows. Given real numbers a, b, N satisfying that

a, b > 0, N > 0, 0 < aN < 1, (2.1)

we consider the following equation

⎧⎨
⎩v′′ + 1

r
v′ = r−2aNf1(v, b, ε), r > 0,

v(r) = −2N ln r + s + o(1) near r = 0.

(2.2)

This generalized version will be used in the proof for the case 1 < aN2 < 2 in the next section. 
By Picard’s iteration argument, it is not difficult to see that (2.2) allows a unique global solution 
for each s ∈R. We denote by v(r, s, a, N, b) the unique global solution of (2.2). We also define

β(s, a,N,b) =
∞̂

0

r1−2aNf1
(
v(r, s, a,N,b), b, ε

)
dr > 0.

We want to find solutions such that β(s, a, N, b) < ∞. In fact, for every s ∈ R, β is finite. See 
Lemma 2.2 below. Then, by a standard argument, it holds that

v(r, s, a,N,b) = [− 2N + β(s, a,N,b)
]

ln r + o(ln r) as r → ∞. (2.3)

If there is no confusion, we will often write v(r, s), β(s) and f (v, b) instead of v(r, s, a, N, b), 
β(s, a, N, b), f (v, b, ε) and so on. One can easily check that v is a solution of (2.2) if and only 
if
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v(r, s) = −2N ln r + s +
rˆ

0

1

t

tˆ

0

y1−2aNf1
(
v(y, s), b

)
dydt. (2.4)

We will often use this formula. In this section, we want to classify all solutions according to the 
shooting parameter s and the asymptotic decay rate β(s) at infinity. Proposition 2.1 gives us the 
answer for this question.

Proposition 2.1. Let a, b, N be positive real numbers such that 0 < aN < 1.

(i) If 0 < aN ≤ 1 − N , then v(r, s) is a type II solution for all s ∈ R. The function β :
(−∞, ∞) → (β̄a,N,b, ∞) is continuous, onto, and strictly decreasing, where

β̄a,N,b = 4(1 + bN − aN)

b
.

In addition,

v(r, s) = [−2N + β(s)] ln r + I + O(r2−2aN+2bN−bβ) (2.5)

for some constant I = I (a, N, b, s) as r → ∞.
(ii) If 1 − N < aN < 1, then there exists a unique number s∗ = s∗(a, N) such that the following 

hold.
(ii-a) If s > s∗, then v(r, s) is a type II solution satisfying (2.5). The function β : (s∗, ∞) →

(β̄a,N,b, ∞) is continuous, onto, and strictly decreasing.
(ii-b) If s ≤ s∗, then v(r, s) is a type I solution. The function β : (−∞, s∗] → (0, 2aN +

2N − 2] is continuous, onto, and strictly increasing. For s < s∗, we have

v(r, s) = [−2N + β(s)] ln r + I + O(r2−2aN−2N+β) (2.6)

for some constant I = I (a, N, s) as r → ∞. If s = s∗, then

v(r, s) = [2aN − 2] ln r − 2 ln ln r + O(1) (2.7)

as r → ∞.

We note that if N is a positive integer with 0 < aN < 1, then we are led to the case (ii) in 
Proposition 2.1. Thus, letting b = a, we have the result of Theorem 1.1 (i). The basic strategy of 
the proof of Proposition 2.1 is the standard argument of shooting methods and Sturm–Liouville 
type comparison arguments as in [7,10,11,14]. The verification of each statement of Proposi-
tion 2.1 is carried out by a series of Lemmas below.

According to the shooting parameter s ∈ R, we obtain two different kinds of solutions of 
(1.12) as follows. Let us define

A+ = {s ∈R | v′(r0, s) = 0 for some r0 > 0
}
,

A− = {s ∈R | v′(r, s) < 0 for all r > 0
}
.
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Since rv′ is increases with respect to r > 0, for each s ∈A+ there exists a unique point z(s) such 
that v′(z(s), s) = 0. Since v′′(z(s), s) > 0, it comes from the Implicit Function Theorem that z(s)
is C1 and A+ is open. Thus, A− = R \ A+ is closed. We also denote by m(s) the minimum of 
v(r, s) for s ∈A+, namely,

m(s) = v(z(s), s) = min
r>0

v(r, s) for s ∈A+.

We note that v(r, s) is a type II (type I, resp.) solution of (1.12) for s ∈A+(s ∈ A−, resp.). In-
deed, suppose that s ∈ A+. Since v(r, s) is increasing for r > z(s), there exists limr→∞ v(r, s) =
λ ∈ (−∞, ∞]. Suppose λ < ∞. Then, there exists r0 > 0 such that λ − 1 < v(r, s) < λ for all 
r > r0. Thus, (rv′)′ ≥ c0r

1−2aN for some constant c0 > 0. Integrating this inequality twice on 
[r0, r], we obtain

v(r, s) ≥ v(r0, s) +
{
r0v

′(r0, s) − c0r
2−2aN
0

2 − 2aN

}
ln
( r

r0

)
+

c0

(2 − 2aN)2 (r2−2aN − r2−2aN
0 ).

(2.8)

Letting r → ∞, we see that v(r, s) → ∞, a contradiction. Hence, v(r, s) → ∞ as r → ∞, which 
implies that v(r, s) is a type II solution. Similarly, if s ∈ A−, then v(r, s) → α ∈ [−∞, ∞) as 
r → ∞. If α > −∞, then f1(v, a) is bounded below by a positive constant at infinity such that 
(2.8) is still valid for a different value of c0. Hence, v(r, s) → ∞ as r → ∞, a contradiction. So, 
for all s ∈A−, v(r, s) → −∞ as r → ∞.

We remark that the above argument may not hold for the case aN ≥ 1 since the right-hand
side of (2.8) might not blow up to ∞. In other words, for s ∈ A+ (resp. s ∈A−), it might happen 
that v(r, s) ↗ σ (resp. v(r, s) ↘ σ ) for some number σ ∈ R. In this case, v(r, s) corresponds to 
a topological solution. This indeed happens for the case 1 < aN < 2. See the next section.

Let ϕ(r, s, a, N, b) = ∂v(r, s, a, N, b)/∂s be the unique solution of

⎧⎨
⎩ϕ′′ + 1

r
ϕ′ = r−2aNf ′

1

(
v(r, s), b

)
ϕ,

ϕ(0, s) = 1, ϕ′(0, s) = 0,

(2.9)

where

f ′
1(v, b) = 4ev(1 − bev)

ε2(1 + ev)2+b
.

We denote ϕ(r, s) = ϕ(r, s, a, N, b) for simplicity if there is no risk of confusion. We also define 
wc(r, s) = rv′(r, s) + c for c ∈R. Then, wc satisfies

⎧⎨
⎩w′′

c + 1

r
w′

c = r−2aNf ′
1

(
v(r, s), b

)
wc + r−2aN�c(r, s),

wc(0, s) = −2N + c, w′
c(0, s) = 0,

(2.10)

where
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�c(r, s) = (2 − 2aN)f1
(
v(r, s), b

)− cf ′
1

(
v(r, s), b

)
= 4ev(r,s)

{[
(2 − 2aN) + cb

]
ev(r,s) + [(2 − 2aN) − c

]}
ε2(1 + ev(r,s))2+b

.
(2.11)

We note that

if v′(r, s) ≤ 0, then ϕ(r, s) > 0. (2.12)

Otherwise, let r0 be the first zero of ϕ such that v′(r0, s) ≤ 0. Then, comparing ϕ and w0, we 
obtain

0 ≥ −r0w0(r0, s)ϕ
′(r0, s) =

r0ˆ

0

(2 − 2aN)r1−2aNf1(v, b)ϕ > 0,

which leads to a contradiction. A simple consequence of (2.12) is the following:

if s ∈A+, then m(s) is increasing. (2.13)

Indeed, we have

m′(s) = v′(z(s), s)z′(s) + ϕ
(
z(s), s

)= ϕ
(
z(s), s

)≥ 0.

Lemma 2.2. For all s ∈R, β(s) is finite and continuous on A+ and A−. Moreover,

{
β(s) ≥ [2 + 2(b − a)N]/b for s ∈A+,

0 < β(s) ≤ 2aN + 2N − 2 for s ∈A−.
(2.14)

In particular, if 0 < aN ≤ 1 − N , then A+ =R.

Proof. Since rv′(r, s) is monotone, there exists

−∞ < cs := lim
r→∞ rv′(r, s) = −2N +

∞̂

0

r1−2aNf1(v(r, s), b)dr = −2N + β(s)

for all s ∈ R. If cs = ∞, then r1−2aNf1(v(r, s), b) is integrable on R. So β(s) is finite which 
implies that cs < ∞, a contradiction. Hence, |cs | < ∞. Moreover, by the integrability condition, 
1 − 2aN + 2bN − bβ ≤ −1 for any s ∈ A+. Thus we have β(s) ≥ [2 + 2(b − a)N]/b for 
s ∈ A+. Similarly, if s ∈ A−, then 0 < β(s) ≤ 2aN + 2N − 2 which implies that aN > 1 − N . 
In particular, if 0 < aN ≤ 1 − N , then A− = ∅. The continuity of β is a simple consequence of 
the Lebesgue Convergence Theorem. �
Remark 2.3. In the proof of Lemma 2.2, to show the finiteness of β(s), we only used the inte-
grability condition in the contradiction argument. So, the range (2.14) hold true for any values of 
a, b, N > 0, and s ∈ R.
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Lemma 2.4. Suppose that 1 − N < aN < 1. Then, there exists a number s∗ = s∗(a, N, b) ∈ R

such that A− = (−∞, s∗] and A+ = (s∗, ∞).

Proof. First, we claim that s ∈ A+ for s 
 1. Otherwise, there exists a sequence sn → ∞ such 
that sn ∈A−. Let rn, Rn be unique numbers such that v(rn, sn) = 1 and v(Rn, sn) = 0. Obviously, 
rn < Rn. Since 1 ≥ −2N ln rn + sn by (2.4), rn → ∞ as sn → ∞. Since

rv′(r, s) ≥ −2N for all r > 0, (2.15)

integrating this inequality on [rn, Rn], we obtain that (rn/Rn) ≤ exp(−1/2N). Then it follows 
that

2N ≥ Rnv
′(Rn, sn) − rnv

′(rn, sn) =
Rnˆ

rn

r1−2aNf1
(
v(r, sn), b

)
dr

≥ R2−2aN
n

2 − 2aN
·
[
1 −

(
rn

Rn

)2−2aN ]
·
(

inf
0≤v≤1

f1(v, b)
)

≥ R2−2aN
n

2 − 2aN
·
(

1 − e− 2−2aN
2N

)
·
(

inf
0≤v≤1

f1(v, b)
)

→ ∞

as sn → ∞, which yields a contradiction.
Next, we claim that s ∈ A− for s � −1. Assume the contrary. Then, there exists a sequence 

sn → −∞ such that sn ∈ A+. Since

v(1, sn) = sn +
1ˆ

0

1

r

rˆ

0

y1−2aNf1
(
v(y, sn), b

)
dydr = sn + O(1),

we have that v(1, sn) → −∞ as sn → −∞. Let tn < 1 be the first point such that v(tn, sn) =
v(1, sn)/2. Then, integrating (2.15) on [tn, 1], we see that v(1, sn)/2 ≥ 2N ln tn, which implies 
that tn → 0. Moreover, it holds that

v′(1, sn) + 2N =
1ˆ

0

r1−2aNf1(v, a)dr =
tnˆ

0

+
1ˆ

tn

≤ t2−2aN
n ‖f1‖∞

2 − 2aN
+ 4ev(1,sn)/2(1 − t2−2aN

n )

ε2(2 − 2aN)
→ 0,

which tells us that v′(1, sn) → −2N as sn → −∞. In particular, z(sn) > 1 for all large n. 
Since 1 − N < aN < 1, we can choose δ ∈ (2 − 2aN − N, N) and Tn ∈ (1, z(sn)) such that 
Tnv

′(Tn, sn) = −(N + δ). Since rv′(r, sn) < −(N + δ) for r ∈ (1, Tn), we have ev(r,sn) <

ev(1,sn)r−(N+δ) for r ∈ (1, Tn). Then it follows that
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0 < N − δ + o(1) = Tnv
′(Tn, sn) − v′(1, sn) =

Tnˆ

1

r1−2aNf1(v, a)dr

≤ 4

ε2

Tnˆ

1

r1−2aNev(r,sn)dr ≤ 4ev(1,sn)

ε2

∞̂

1

r1−(2a+1)N−δdr → 0

as sn → −∞, a contradiction.
Finally, we show that both A+ and A− are infinite intervals. It suffices to show that if 

(s1, s2) ⊂ A+ is a finite interval, then s2 ∈ A+. Fix a number s0 ∈ (s1, s2). Then, by (2.13), 
m(s) ≥ m(s0) for all s ≥ s0. So, v(r, s) ≥ m(s0) for all r > 0 and s ≥ s0. Since v(r, s) → v(r, s2)

locally uniformly on R, we conclude that infr>0 v(r, s2) ≥ m(s0) and thus s2 ∈ A+. Now we 
finish the proof by letting s∗ = inf{s : s ∈A+}. �
Lemma 2.5. We have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

lim
s→∞m(s) = ∞, for 0 < aN < 1,

lim
s↘s∗

m(s) = −∞, for 1 − N < aN < 1,

lim
s→−∞m(s) = −∞, for 0 < aN ≤ 1 − N.

Proof. For the first limit, by (2.13) it suffices to show that sups∈A+ m(s) = ∞. Assume to the 
contrary such that ξ = sups∈A+ m(s) < ∞. Choose an increasing sequence sn → ∞ and let 
zn = z(sn). By (2.4),

ξ ≥ m(sn) = v(zn, sn) ≥ −2N ln zn + sn.

Hence, zn → ∞. Let rn ∈ (0, zn) be the unique number such that v(rn, sn) = m(sn) +1. As in the 
proof of Lemma 2.4, we have (rn/zn) ≤ exp(−1/2N). Since ξ − 1 ≤ m(sn) ≤ v(r, sn) ≤ ξ + 1
for rn < r < zn and large n, it follows that

2N ≥
znˆ

rn

r1−2aNf1
(
v(r, sn), b

)
dr

≥ z2−2aN
n

2 − 2aN
· (1 − e− 2−2aN

2N
) · ( inf

ξ−1≤v≤ξ+1
f1(v, b)

)
→ ∞

as n → ∞. This gives us a contradiction.
The second limit comes from the continuous dependence of solutions on the shooting param-

eter s. Indeed, by a standard argument one can show that v(r, s) → v(r, s∗) locally uniformly 
on (0, ∞) as s ↘ s∗. Since v(r, s∗) → −∞ as r → ∞, the result follows. The third limit comes 
from the observation that by (2.4), v(1, s) = s + O(1) → −∞ as s → −∞. �
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We introduce two functions:

⎧⎪⎪⎨
⎪⎪⎩

G(v,b) = − 4

bε2(1 + ev)b
,

H(v, b) = G(v,b) + 4

bε2 = 4

bε2

{
1 − 1

(1 + ev)b

}
.

(2.16)

Then, ∂G/∂v = ∂H/∂v = f1(v, b), and

G(v,b) = −1

b
f1(v, b) − 4

bε2(1 + ev)1+b
,

H(v, b) = −1

b
f1(v, b) + 4

bε2

{
1 − 1

(1 + ev)1+b

}
.

Multiplying (2.2) by rv′(r, s), we obtain the following identities: for s ∈ A+,

E(r, s) := 1

2

(
rv′)2 − 2N2 − r2−2aNG(v(r, s), b

)

= −(2 − 2aN)

rˆ

0

t1−2aNG
(
v(t, s), b

)
dt,

(2.17)

and for s ∈A−,

F(r, s) := 1

2

(
rv′)2 − 2N2 − r2−2aNH(v(r, s), b

)

= −(2 − 2aN)

rˆ

0

t1−2aNH
(
v(t, s), b

)
dt.

(2.18)

Using (2.17) and (2.18), we get the following Pohozaev type identities.

Lemma 2.6. If s ∈A+ and 0 < aN < 1, then

β(β − 4N) = −(4 − 4aN)

∞̂

0

r1−2aNG
(
v(r, s), b

)
dr, (2.19)

β
(
β − β̄a,N,b

)= 16 − 16aN

bε2

∞̂

0

r1−2aN

(1 + ev)1+b
dr, (2.20)

where β̄a,N,b = 4(1 + bN − aN)/b. If s ∈ A− and 1 − N < aN < 1, then
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β(β − 4N) = −(4 − 4aN)

∞̂

0

r1−2aNH
(
v(r, s), b

)
dr, (2.21)

β
(
β − β̄a,N,b

)= −16 − 16aN

bε2

∞̂

0

[
1 − 1

(1 + ev)1+b

]
r1−2aNdr. (2.22)

In particular,

{
if s ∈ A+ and 0 < aN < 1, then β(s) > β̄a,N,b > 4N,

if s ∈ A− and 1 − N < aN < 1, then 0 < β(s) ≤ 2aN + 2N − 2 < 2N .
(2.23)

Proof. First, suppose that s ∈ A+. Since by Lemma 2.2

lim
r→∞ r2−2aNG

(
v(r, s), b

)= 0,

we deduce from (2.17) that

1

2
[−2N + β(s)]2 − 2N2 = −(2 − 2aN)

∞̂

0

r1−2aNG
(
v(r, s), b

)
dr

= (2 − 2aN)

b

⎧⎨
⎩β(s) + 4

ε2

∞̂

0

r1−2aN

(1 + ev)1+b
dr

⎫⎬
⎭ ,

which implies (2.19) and (2.20).
Next, we assume that s ∈ A−. By Lemma 2.2,

lim
r→∞ r2−2aNH

(
v(r, s), b

)= 0.

So, (2.18) implies that

1

2
[−2N + β(s)]2 − 2N2

= −(2 − 2aN)

∞̂

0

r1−2aNH
(
v(r, s), b

)
dr

= − (2 − 2aN)

b

⎧⎨
⎩−β(s) + 4

ε2

∞̂

0

[
1 − 1

(1 + ev)1+b

]
r1−2aNdr

⎫⎬
⎭ .

Thus, (2.21) and (2.22) follows.
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Finally, in view of Lemma 2.2 and (2.19)–(2.20), we deduce that

{
s ∈A+ ⇒ β(s) > max{4N, β̄a,N,b} = β̄a,N,b,

s ∈A− ⇒ 0 < β(s) ≤ min{2aN + 2N − 2, β̄a,N,b} = 2aN + 2N − 2,
(2.24)

which proves (2.23). �
In the following four lemmas, we identify the exact ranges of β(s) for s ∈ A+ or s ∈ A−, 

and prove that β is monotone on both A+ and A−. This means that we can classify solutions of 
(1.12) by their decay rates. We begin with the set A+.

Lemma 2.7. If 0 < aN ≤ 1 − N , then

lim
s→∞β(s) = β̄a,N,b, lim

s→−∞β(s) = ∞. (2.25)

Hence, β : (−∞, ∞) → (β̄a,N,b, ∞) is onto.

Proof. We recall that s ∈A+ for all s ∈R. If follows from (2.20) that

β
(
β − β̄a,N,b

)= 4 − 4aN

b

∞̂

0

r1−2aNe−vf1(v, a)dr ≤ 4 − 4aN

b
e−m(s)β.

Letting s → ∞, we obtain the first limit of (2.25) by Lemma 2.5.
For the second part of (2.25), we claim that z(s) → ∞ as s → −∞. To see this, we recall 

from Lemma 2.5 that m(s) → −∞ as s → −∞. Since f1(v, b) is uniformly bounded for all 
v ∈ R, we can choose small δ > 0, which is independent of s, such that

δv′(δ, s) = −2N +
δˆ

0

r1−2aNf1(v(r, s), b) dr < −N.

Given any R > δ, it follows from (2.4) that v(r, s) = s+O(1) → −∞ uniformly for all r ∈ [δ, R]
as s → −∞. Here, O(1) is a quantity independent of r ∈ [δ, R]. Now, for s � −1,

Rv′(R, s) = δv′(δ, s) +
R̂

δ

r1−2aNf1(v(r, s), b)dr < −N + o(1) < 0.

Thus, R < z(s) for all s � −1 and the claim follows.
Suppose that the second part of (2.25) is not true. Then, there exists a sequence sn → −∞

such that β(sn) ≤ c for some constant c > 0. Then

0 < v′(r, sn) ≤ (c − 2N)/r for all r > zn = z(sn). (2.26)
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Since m(sn) → −∞, we can choose rn, Rn ∈ (zn, ∞) such that v(rn, sn) = 0 and v(Rn, sn) = 1. 
We note that rn < Rn and Rn → ∞ as sn → −∞. By (2.26),

1 =
Rnˆ

rn

v′(r, sn)dr ≤ (c − 2N) ln

(
Rn

rn

)
.

Then, we deduce that

c ≥ β(sn) ≥
[

inf
0≤v≤1

f1(v, b)

] Rnˆ

rn

r1−2aNdr

≥
[

inf
0≤v≤1

f1(v, b)

]
· R2−2aN

n

(2 − 2aN)
·
(

1 − e− 2−2aN
c−2N

)
→ ∞,

a contradiction. �
Lemma 2.8. If 1 − N < aN < 1 and s < s∗, then β(s) is strictly increasing.

Proof. For s < s∗, let

λ(s) = (4 − 4aN)

∞̂

0

r1−2aNH
(
v(r, s), b

)
dr

= 16 − 16aN

bε2

∞̂

0

r1−2aN

{
1 − 1

(1 + ev(r, s))b

}
dr.

We note from (2.12) that λ(s) is a strictly increasing function. Let us rewrite (2.21) as

β(s)
[
β(s) − 4N

]= −λ(s).

So, we have

β(s) = 2N ±
√

4N2 − λ(s) =: β±(s).

If β = β+, then 2N < β ≤ 2aN +2N −2 by (2.23) and thus aN > 1, a contradiction. Therefore, 
β = β− and β− is an increasing function of s. This gives us the desired result. �
Lemma 2.9. If 1 − N < aN < 1, then

lim
s→∞β(s) = β̄a,N,b, lim

s↘s∗
β(s) = ∞, (2.27)

and
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lim
s→−∞β(s) = 0, β(s∗) = 2aN + 2N − 2. (2.28)

In particular, β : (s∗, ∞) → (β̄a,N,b, ∞) is onto and β : (−∞, s∗] → (0, 2aN +2N −2] is onto.

Proof. The first part of (2.27) is the same as the proof of the first part of (2.25). Since 
v(r, s) → v(r, s∗) locally uniformly as s ↘ s∗, it holds that z(s) → ∞ and m(s) → −∞ as 
s ↘ s∗. Then, the second part of (2.27) follows from the same argument for the proof of the 
second part of (2.25).

Now we turn to the proof of (2.28). By (2.23) and Lemma 2.8,

lim sup
s→−∞

β(s) < 2aN + 2N − 2. (2.29)

We note from (2.4) that v(1, s) = s + O(1) → −∞ as s → −∞. Hence, there exists a unique 
rs < 1 such that v(rs, s) = s/2 as s → −∞. Moreover, rs → 0 as s → −∞. Since v(r, s) � −1
for r > rs , it comes from the Taylor expansion that as s → −∞,

∞̂

rs

[
1 − 1

(1 + ev)1+b

]
r1−2aNdr

≤
∞̂

rs

(1 + b)evr1−2aNdr

≤ (1 + b)ev(rs ,s)

1ˆ

rs

r1−2aNdr + (1 + b)ev(1,s)

∞̂

1

r1−2aN−2N+βdr = o(1).

Here, we used the fact that rv′ < −2N + β for all r > 0 such that v(r, s) < v(1, s) +
(−2N + β) ln r for r > 1. We also utilized (2.29) to see the last integral is finite. Then, by (2.22), 
it holds that

β
(
β − β̄a,N,b

)= −16 − 16aN

bε2

∞̂

0

[
1 − 1

(1 + ev)1+b

]
r1−2aNdr

= −16 − 16aN

bε2

( rsˆ

0

+
∞̂

rs

)
= o(1)

as s → −∞. Now, keeping (2.23) in mind, we conclude that β(s) → 0 as s → −∞.
It remains to show the second part of (2.28). We recall that 0 < β(s) ≤ 2aN + 2N − 2 for 

any s ∈ (−∞, s∗]. Suppose that β(s∗) < 2aN + 2N − 2. Choose a constant ξ ∈ (0, 2−2aN
4 ) such 

that β(s∗) < 2aN + 2N − 2 − 4ξ . Let r0 > 0 be the unique zero of v(r, s∗) such that v(r, s∗) > 0
for r < r0 and v(r, s∗) < 0 for r > r0. For k = 1, 2, let hk : (0, ∞) → R be a smooth function 
such that hk(r) = −1 + (2aN − 2 − kξ) ln(r/r0) for r ≥ r0 and hk(r) < 0 for r < r0. Thus, 
hk(r) < v(r, s∗) for r < r0. By comparing the decay rates of hk(r) and v(r, s∗) at ∞, we notice 
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that hk(r) and v(r, s∗) must intersect. If rk is the first intersection point of hk(r) and v(r, s∗), 
then there are no more intersection points. In fact, if r̄k is the second intersection point of hk(r)

and v(r, s∗), then

−2N + β(s∗) > r̄v′(r̄, s∗) ≥ r̄h′
k(r̄) = 2aN + 2 − kξ,

which contradict to the choice of ξ . Thus, h1(r) and v(r, s∗) intersect exactly once at r1.
Now, let sn ∈ A+ be a sequence such that sn ↘ s∗. Then, for all sn sufficiently close to s∗, 

the graphs of hk(r) and vn(r) = v(r, sn) meet at least twice. Let tn,k and Tn,k be the first two 
intersection points of hk and vn with rk < tn,k < Tn,k . Since rv′

n is increasing, if r > Tn,k , then

rv′
n(r) > Tn,kv

′
n(Tn,k) > Tn,kh

′
k(Tn,k) = rh′

k(r).

This implies that vn(r) > hk(r) for r > Tn,k , namely, the graphs of hk and vn meet exactly twice 
at tn,k and Tn,k . We also note that tn,1 < tn,2 < Tn,2 < Tn,1.

Since hk(r) and vn coincide at tn,k and Tn,k , by Rolles’ Theorem there exists ηn,k ∈ (tn,k, Tn,k)

such that

v′
n(ηn,k) = h′

k(ηn,k) = 2aN − 2 − kξ

ηn,k

< 0. (2.30)

Obviously, tn,k < ηn,k < zn = z(sn). Moreover, from the continuous dependence of solutions 
on s, it follows that ηn,k → ∞ and vn(ηn,k) → −∞ as sn ↘ s∗. Since the graph of hk lies 
above the graph of vn on (ηn,k, Tn,k), we deduce from the Taylor expansion of H that for r ∈
(ηn,k, Tn,k),

r1−2aNH
(
vn(r)

)≤ 4

ε2 r1−2aNevn(r) ≤ Cr1−2aNehk(r) ≤ Cr−1−kξ . (2.31)

We have two choices: either tn,1 < zn < Tn,1 or Tn,1 ≤ zn. If tn,1 < zn < Tn,1, then it comes 
from (2.17) and (2.31) that

E(zn, sn) − E(ηn,1, sn) = −(2 − 2aN)

znˆ

ηn,1

r1−2aNH
(
vn(r), b

)
dr = o(1)

as sn ↘ s∗. However, a direct computation yields from (2.17) and (2.30) that

E(zn, sn) − E(ηn,1, sn)

= −z2−2aN
n H

(
v(zn), b

)+ η2−2aN
n,1 H

(
v(ηn,1), b

)− 1

2
(2aN − 2 − ξ)2

→ −1

2
(2aN − 2 − ξ)2

as sn ↘ s∗, a contradiction. Similarly, if Tn,1 ≤ zn, then we also have a contradiction:
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o(1) = − (2 − 2aN)

Tn,1ˆ

ηn,2

r1−2aNH
(
v(r, sn), b

)
dr

= E(Tn,1, sn) − E(ηn,2, sn)

= 1

2

[
Tn,1v

′
n(Tn,1)

]2 − 1

2

[
ηn,2v

′
n(ηn,2)

]2 + o(1)

<
1

2

[
Tn,1h

′
1(Tn,1)

]2 − 1

2

[
ηn,2v

′
n(ηn,2)

]2 + o(1)

= 1

2
(2aN − 2 − ξ)2 − 1

2
(2aN − 2 − 2ξ)2 + o(1)

→ 1

2
ξ(4aN − 4 − 3ξ) < 0.

This completes the proof of Lemma 2.9. �
Lemma 2.10. For 0 < aN < 1 and s ∈ A+, ϕ has exactly one zero and β(s) is strictly decreas-
ing.

Proof. For s ∈ A+, by the Lebesgue Dominated Convergence Theorem, one can check that the 
limit

β ′(s) =
∞̂

0

r1−2aNf ′
1

(
v(r, s), b

)
ϕ′(r, s) dr = lim

r→∞ rϕ′(r, s) (2.32)

is finite. We will show that β ′(s) never vanishes for s �= s∗. Then, due to the limit (2.27), it 
follows that β ′(s) < 0 and the proof is complete.

For simplicity, let us write v(r), ϕ(r), f (v) instead of v(r, s), ϕ(r, s), f (v, b) and so on. We 
note that for all large r

rw′
0(r) = r2−2aNf1(v(r)) = O(r2−2aN+2bN−bβ) = O(r−bβ̄/2).

Suppose that ϕ does not have a zero. Then, it is necessary that ϕ > 0 for all r . Moreover, since 
f ′

1(v(r)) < 0 for all large r , it follows that (rϕ′)′ < 0 for all large r and limr→∞ rϕ′(r) ≥ 0. In 
particular, |ϕ(r)| ≤ C ln r for some constant C > 0 and for all large r . So, we have

0 > −(2 − 2aN)

∞̂

0

f1
(
v(r)

)
r1−2aNϕdr = lim

r→∞[rϕ′(r)w0(r) − rw′
0(r)ϕ(r)] ≥ 0,

a contradiction.
Let us denote by r1 = r1(s) the first zero of ϕ. By (2.12), r1 > z = z(s). Suppose that ϕ has 

the second zero at r2. Set R be the minimum point of ϕ/w0 on (r1, r2). Then,
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0 =
( ϕ

w0

)′
(R) =

( rϕ′w0 − rw′
0ϕ

rw2
0

)
(R) = −(2 − 2aN)

Rw2
0(R)

R̂

0

r1−2aNf1
(
v(r)

)
ϕdr. (2.33)

In particular, since w0(R) > 0 for R > z, we deduce that ϕ′(R) < 0. We note that

(f ′
1

f1

)′
(v) = −

(
1 + b

)
ev

(1 + ev)2 < 0. (2.34)

Let μ = f ′
1

(
v(r1)

)
/f1
(
(r1)
)
. Then, f ′

1

(
v(r)

) − μf1
(
v(r)

)
> 0 on (0, r1) and f ′

1

(
v(r)

) −
μf1
(
v(r)

)
< 0 on (r1, ∞). So, [f ′

1

(
v(r)

)− μf1
(
v(r)

)]ϕ(r) > 0 on (0, R). By (2.9) and (2.33), it 
follows that

0 <

R̂

0

r1−2aN [f ′
1(v) − μf1(v)]ϕdr =

R̂

0

r1−2aNf ′
1(v)ϕdr = Rϕ′(R) < 0,

which is a contradiction. In the sequel, ϕ has exactly one zero at r1.
We note from (2.9) that (rϕ′(r))′ > 0 for all large r . Hence, there exists limr→∞ rϕ′(r) = δ. 

If δ �= 0, then β ′(s) �= 0 by (2.32). This implies by Lemma 2.9 that β is strictly decreasing and 
the proof is complete. Now, let us assume to the contrary that δ = 0. If c0 = −(2 − 2aN)/b < 0, 
then �c0(r) > 0 for all r > 0. Hence,

0 > −
r1ˆ

0

r1−2aN�c0(r)ϕ(r)dr = r1ϕ
′(r1)wc0(r1).

So, wc0(r1) > 0 such that c1 = −r1v
′(r1) < c0. Then �c1(r) has a zero before r1. Otherwise, we 

have �c1(r) < 0 for all r < r1 such that

0 < −
r1ˆ

0

r1−2aN�c1ϕdr = (rϕ′wc1 − rw′
c1

ϕ
)
(r1) = 0,

a contradiction. We note that �c1(r) ↗ 0 as r → 0 or r → ∞. Hence �c1(r) have exactly two 
zeros y1 and y2 with y1 < z < y2 such that �c1 > 0 on (y1, y2) and �c1 < 0 on (0, y1) ∪ (y2, ∞). 
We have two possibilities: either y2 ≤ r1 or y1 < r1 < y2. First, if y2 ≤ r1, then

0 <

∞̂

r1

r1−2aN�c1(r)ϕ(r)dr = lim
r→∞

(
rw′

c1
ϕ − rϕ′wc1

)= 0,

a contradiction.
Next, suppose that y1 < r1 < y2. One may refer to the Fig. 1 for this situation. Since

lim
(
rϕ′w0 − rw′

0ϕ
)= lim

(
rϕ′w0 − rw′

0ϕ
)= 0
r→0 r→∞
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Fig. 1. Graph of w0, ϕ, and �c1 in the proof of Lemma 2.10.

and

[rϕ′w0 − rw′
0ϕ]′ = −(2 − 2aN)r1−2aNf1(v(r))ϕ(r) =

{
<0 on (0, r1),

>0 on (r1,∞),

it holds that rϕ′w0 − rw′
0ϕ < 0 for all r . This implies

(w0

ϕ

)′
(r) = −(rϕ′w0 − rw′

0ϕ)

rϕ2 > 0, for all r ∈ (0, r1) ∪ (r1,∞).

Thus, if we set λ1 = (w0/ϕ)(y1) < 0, then w0 − λ1ϕ < 0 for 0 < r < y1 and w0 − λ1ϕ > 0 for 
y1 < r < z. Moreover, (w0 − λ1ϕ)�c1 > 0 and �c1(r)(r

2−2aN − y2−2aN
1 ) > 0 on (0, z). As a 

consequence,

0 < λ1

zˆ

0

r1−2aN�c1ϕ dr <

zˆ

0

r2−2aN�c1v
′ dr

< y2−2aN
1

zˆ

0

�c1v
′ dr = −y2−2aN

1 Qc1

(
v(z)

)
.

Here, we define

Qc1(v) =
∞̂

v

Kc1(t)dt,

where �c(r) = Kc(v(r)) and Kc is given by

Kc(t) = 4et
{[(2 − 2aN) + cb]et + [(2 − 2aN) − c]}

(1 + et )2+b
.
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On the other hand, if we set λ2 = (w0/ϕ)(y2) < 0, then w0 − λ2ϕ > 0 for r1 < r < y2 and 
w0 − λ2ϕ < 0 for r > y2. Hence, (w0 − λ2ϕ)�c1 > 0 and �c1(r)(r

2−2aN − y2−2aN
2 ) < 0 on 

(r1, ∞). Since δ = 0, we obtain

0 = λ2

∞̂

r1

r1−2aN�c1ϕ dr <

∞̂

r1

r2−2aN�c1v
′ dr

< y2−2aN
2

∞̂

r1

�c1v
′ dr = y2−2aN

2 Qc1

(
v(r1)

)
.

In the sequel, we get Qc1

(
v(z)

)
< 0 < Qc1

(
v(r1)

)
. However, since 

[
Qc1

(
v(r)

)]′ =
−�c1(r)v

′(r) < 0 on (z, y2), Qc1

(
v(r)

)
is decreasing on (z, y2) and this inequality yields a 

contradiction. �
Lemma 2.11. Suppose that 0 < aN < 1.

(i) If s ∈ A+, then v(r, s) = [−2N + β(s)] ln r + I + O(r2−2aN+2bN−bβ) for some constant 
I = I (a, N, b, s) as r → ∞.

(ii) If 1 − N < aN < 1 and s < s∗, then v(r, s) = [−2N + β(s)] ln r + I + O(r2−2aN−2N+β)

for some constant I = I (a, N, b, s) as r → ∞.
(iii) If 1 − N < aN < 1 and s = s∗, then v(r, s∗) = [2aN − 2] ln r − 2 ln ln r + O(1) as r → ∞.

Proof. Let u(r, s) = v(r, s) − (−2N + β) ln r such that u(r, s) = o(ln r) and ru′(r, s) = o(1) as 
r → ∞. We will estimate u to prove each statement of this lemma.

(i) Suppose that s ∈ A+. Since β > β̄ = β̄a,N,b , given any small 0 < η < β − β̄/2, we can 
choose a large number r0 > 0 such that for all r ≥ r0, |u(r, s)| ≤ η ln r . So,

r1−2aNf1(v(r, s), b) = O(r1−2aNe−bv) = O(r1−2aN+2bN−bβ+bη)

= O
(
r−1+b(

β̄
2 −β+η)

)
.

Integrating (ru′)′ = r1−2aNf1(v) on (r, ∞), we obtain that for r > r0

ru′(r) = −
∞̂

r

t1−2aNf1(v(t, s), b)dt,

and thus

u(r, s) = u(r0, s) −
rˆ

r0

1

t

∞̂

t

y1−2aNf1(v(y, s), b)dydt.

Since
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∞̂

r0

1

t

∞̂

t

y1−2aNf1(v(y, s), b)dydt ≤ Cr0
b(

β̄
2 −β+η),

we conclude that u(r, s) = O(1) as r → ∞. In the sequel,

u(r, s) = I +
∞̂

r

1

t

∞̂

t

y1−2aNf1(v(y, s), b)dydt,

where

I = I (a,N,b, s) = u(r0, s) −
∞̂

r0

1

t

∞̂

t

y1−2aNf1(v(y, s), b)dydt.

Since u(r, s) = O(1) as r → ∞, we deduce that

∞̂

r

1

t

∞̂

t

y1−2aNf1(v(y, s), b)dydt ≤ C

∞̂

r

1

t

∞̂

t

y1−2aN+2bN−bβdydt

≤ Cr2−2aN+2bN−bβ,

which yields the desired estimate.
(ii) Assume that 1 − N < aN < 1 and s < s∗. We fix a number η such that 0 < η < 2aN +

2N − 2 − β and select a large number r0 > 0 such that for all r ≥ r0, |u(r, s)| ≤ η ln r . We note 
that for r > r0

r1−2aNf1(v(r, s), b) = O
(
r1−2aNev

)= O
(
r−1+(2−2aN−2N+β+η)

)
.

Now, proceeding as in (i), we can obtain the desired result. We omit the detail.
(iii) Assume that 1 − N < aN < 1 and s = s∗. We note that

−2N + β(s∗) = −2N + (2aN + 2N − 2) = 2aN − 2,

and u(r, s∗) satisfies

(ru′)′ = 4r−1eu

ε2
(
1 + r2aN−2eu

)1+b
. (2.35)

We also notice that

2aN + 2N − 2 = β(s∗) =
∞̂

4r−1eu

ε2
(
1 + r2aN−2eu

)1+b
dr. (2.36)
0
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Since (ru′)′ > 0, it holds that ru′ < 0 for all r > 0. Indeed, if u′(r0, s∗) > 0 for some r0 > 0, then 
it holds that

u(r, s∗) ≥ u(r0, s∗) + r0u
′(r0, s∗) ln

r

r0
∀ r > r0,

a contradiction. Moreover, the finiteness of β(s∗) implies by (2.36) that u(r, s∗) → −∞ as 
r → ∞.

Let r1 be the unique number such that v(r1, s∗) = 0. Then, it comes from (2.35) that for all 
r ≥ r1

21−br−1eu(r,s∗) ≤ ε2(ru′(r, s∗)
)′ ≤ 4r−1eu(r,s∗)

Multiplying this inequality by ru′ and integrating on [r, ∞] with r > r1, we have

22−beu(r,s∗) ≤ ε2[ru′(r, s∗)
]2 ≤ 8eu(r,s∗),

namely,

−
√

2

r
≤ εu′e− u

2

2
≤ −2−b/2

r
.

Integrating this inequality on [r1, r], we see that for all r > r1

−2 ln
(√

2

ε
ln

r

r1
+ e− u(r1,s∗)

2

)
≤ u(r, s∗) ≤ −2 ln

(2−b/2

ε
ln

r

r1
+ e− u(r1,s∗)

2

)
.

Consequently, u(r, s∗) = −2 ln ln r + O(1) as r → ∞. �
Now, by gathering the above Lemmas, we establish Proposition 2.1.

3. The case aN2 ≥ 1 and N1 = 0

This section deals with (1.12) under the condition aN2 ≥ 1 and Theorem 1.1 (ii)–(iv) are 
proved by Proposition 3.1, Proposition 3.3, and Proposition 3.6.

If aN2 ≥ 1, then we need more careful approach. For instance, in the previous section, there 
appears the term 1 − aN2 in many places and its sign was very important in deriving appropriate 
conclusion. Since we have reverse sign for the case aN2 ≥ 1, it is not possible to draw some 
desired results in estimates or contradiction argument through the same manner. Moreover, if 
aN2 < 1, then r1−2aN2 is integrable near r = 0 such that

rˆ

0

r1−2aN2f1(v(r, s), a)dt ≤ ‖f1‖∞
rˆ

0

r1−2aN2dr = O(1)

for any fixed r > 0, where O(1) denote a quantity independent of s ∈R. Thus, if r is fixed, then 
we get
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v(r, s) = −2N2 ln r + s + O(1) for any s ∈R. (3.1)

We used this type estimates in many places in the previous section. However, if aN2 ≥ 1, then 
r1−2aN2 is no more integrable near r = 0 and we cannot obtain simple estimate like (3.1). To 
analyze the case aN2 ≥ 1, we take the approach of [14] by using the result for the generalized 
version (2.2). We employ the same notations A±

a,N,b as before. Then, by the Implicit Function 
Theorem, A+

a,N2,a
is open and thus A−

a,N2,a
is closed. In this section, we will often write A±

a,N2,a

as A± if there is no risk of confusion. As in the previous section, z(s) and m(s) will stand for 
the minimum point and minimum value of v(r, s) for each s ∈ A+. We also recall the solution 
formula: v(r, s) is a solution of (1.12) if and only if

v(r, s) = −2N2 ln r + s +
rˆ

0

1

t

tˆ

0

y1−2aN2f1
(
v(y, s), a

)
dydt. (3.2)

Here, we start with the case aN2 = 1.

Proposition 3.1. Suppose that N2 is a positive integer and aN2 = 1.

(i) If 0 < N2 < 2ε−2, then for any s ∈ R, v(r, s) is a type II solution of (1.12) such that β(s) =
4N2. Moreover, as r → ∞,

v(r, s) = 2N2 ln r + I + O(r−2)

for some constant I = I (a, N2, s).
(ii) If N2 ≥ 2ε−2, then for any s ∈ R, v(r, s) is a type I solution of (1.12) such that β(s) =

2N2 − 2
√

N2(N2 − 2ε−2). Moreover, if N2 > 2ε−2, then as r → ∞,

v(r, s) = −2
√

N2(N2 − 2ε−2) ln r + I + O
(
r−2

√
N2(N2−2ε−2)

)
for some constant I = I (a, N2, s). If N2 = 2ε−2, then

v(r, s) = −2 ln ln r + O(1) as r → ∞.

Proof. Let us rewrite (1.12) as

(rv′)′ = 4r−1ev

ε2(1 + ev)1+a
. (3.3)

First, we claim that for any s ∈ R, either v(r, s) → ∞ or v(r, s) → −∞, that is, v(r, s) is a type I 
solution for s ∈A− and a type II solution for A+. To see this, let us assume that v(r, s) → σ for 
some σ ∈R. Then, there exists c0, r0 > 0 such that (rv′)′ ≥ c0r

−1 for all r > r0. Integrating this 
inequality twice on [r0, r], we obtain

v(r, s) ≥ v(r0, s) + [r0v
′(r0, s) − c0 ln r0

]
ln
( r )+ c0 [

(ln r)2 − (ln r0)
2] → ∞
r0 2
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as r → ∞, a contradiction. Multiplying (3.3) by rv′ and integrating it on (0, r), we obtain that

1

2

(
rv′(r, s)

)2 − 2N2
2 = − 4

ε2a(1 + ev(r,s))a
. (3.4)

If s ∈A+, then by letting r → ∞, we obtain (β − 2N2)
2 = 4N2

2 , that is, β(s) = 4N2. Moreover, 
if s ∈ A+, then by letting r = z(s) in (3.4), we get

N2 = 2

ε2(1 + ev(z,s))a
<

2

ε2 . (3.5)

Hence, if N2 ≥ 2ε−2, then A+ = ∅ and A− =R.
On the other hand, if s ∈ A−, by letting r → ∞ in (3.4), we deduce that

0 ≤ (β − 2N2)
2 = 4N2

2 − 8

ε2a
= 4N2

(
N2 − 2

ε2

)
. (3.6)

Hence, β(s) = 2N2 − 2
√

N2(N2 − 2ε−2). Moreover, if N2 < 2ε−2, then A− = ∅ and A+ =R.
Now, we turn to the asymptotic behavior of solutions. If N2 < 2ε−2, then s ∈ A+ for all s ∈R

such that as r → ∞,

r1−2aN2f1(v(r, s), a) = O(r1−2aN2e−av) = O(r1−4aN2) = O(r−3).

Then, following the argument of the proof of Lemma 2.11, we deduce that

v(r, s) = 2N2 ln r + I + O(r−2) for some constant I = I (a,N2, s) as r → ∞.

Similarly, if N2 > 2ε−2, then s ∈ A− for all s ∈ R such that as r → ∞,

r1−2aN2f1(v(r, s), a) = O(r1−2aN2ev) = O(r−1−2
√

N2(N2−2ε−2)),

and hence

v(r, s) = −2
√

N2(N2 − 2ε−2) ln r + I + O
(
r−2

√
N2(N2−2ε−2)

)
as r → ∞.

Finally, suppose that N2 = 2ε−2. Then, for any s ∈ R, v(r, s) = o(ln r) and rv′(r, s) = o(1) as 
r → ∞. Then, employing the same argument to (3.3) as in the proof of Lemma 2.11 (iii), we 
conclude that v(r, s) = −2 ln ln r + O(1) as r → ∞. This completes the proof. �

We now proceed with the case aN2 > 1.

Lemma 3.2. Suppose that N2 is a positive integer such that aN2 > 1.
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(i) If 1 < aN2 < 2, then

⎧⎪⎨
⎪⎩

2N2 < β(s) <
4

a
for s ∈A+

a,N2,a
,

0 < β(s) ≤ 2N2 for s ∈A−
a,N2,a

.

(ii) If aN2 ≥ 2, then A+
a,N2,a

= ∅ and A−
a,N2,a

=R such that

0 < β(s) <
4

a
for s ∈ R.

Proof. Let us assume that aN2 > 1. By proceeding as in the proof of Lemma 2.2, one can check 
that β(s) is finite for any values of a and N2 with aN2 > 1. We note that the function G(v, a), 
defined by (2.16), is bounded in v. So, if aN2 > 1, then for any s ∈R, we have

lim
r→∞ r2−2aN2G

(
v(r, s), a

)= 0.

Therefore, the Pohozaev identities (2.19) and (2.20) are still valid such that

β(β − 4N2) < 0, β
(
β − β̄a,N,a

)
< 0, ∀ s ∈R.

However, it is worthwhile to mention that the identities (2.21) and (2.22) are no more true since 
r1−2aN2H

(
v(r, s), a

)
is not integrable near r = 0. Since β̄a,N2,a = 4/a, we obtain that

0 < β(s) < min
{

4N2,
4

a

}
= 4

a
, ∀ s ∈R.

Suppose that s ∈ A+. Then, we recall from Remark 2.3 that (2.14) is true and so β(s) ≥ 2/a. 
Since −2N2 + β(s) ≥ 0 for s ∈A+, we conclude that

2N2 = max
{

2N2,
2

a

}
≤ β <

4

a
.

In particular, A+ = ∅ if aN2 ≥ 2. We also note that 2N2 /∈ Range β . Indeed, if 2N2 = β(s1) for 
some s1 ∈A+, then rv′(r, s1) → 0 as r → ∞. Hence,

0 =
∞̂

z(s1)

(rv′)′(r, s1)dr =
∞̂

z(s1)

r1−2aN2f1
(
v(r, s1), a

)
dr > 0,

a contradiction.
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On the other hand, if s ∈ A−, then −2N2 + β(s) < 0 such that

aN2 < 2 ⇒ 0 < β ≤ min
{

2N2,
4

a

}
= 2N2,

aN2 ≥ 2 ⇒ 0 < β < min
{

2N2,
4

a

}
= 4

a
.

This gives us the desired result. �
As the second subject of this section, we deal with the case 1 < aN2 < 2 in the following 

proposition.

Proposition 3.3. Suppose that N2 is a positive integer such that 1 < aN2 < 2. Then, there exists 
a number s∗ ∈R such that we have the following.

(i) For s < s∗, v(r, s) is a type II solution of (1.12) and satisfies that

v(r, s) = [−2N2 + β(s)] ln r + I + O(r2−aβ) as r → ∞, (3.7)

where I = I (a, N2, s) is a constant. The function β : (−∞, s∗) → (2N2, 4/a) is bijective 
and strictly decreasing.

(ii) For s > s∗, v(r, s) is a type I solution of (1.12) and satisfies that

v(r, s) = [−2N2 + β(s)] ln r + I + O(r2−2aN2−2N2+β) as r → ∞, (3.8)

where I = I (a, N2, s) is a constant. The function β : (s∗, ∞) → (0, 2N2) is bijective and 
strictly decreasing.

(iii) For s = s∗, v(r, s∗) is a topological solution of (1.12) and satisfies that

v(r, s∗) = I∗ + O(r2−2aN2) for some I∗ ∈R as r → ∞. (3.9)

Moreover, β(s∗) = 2N2.

The proof of Proposition 3.3 follows from Lemma 3.4 and Lemma 3.5 below.

Lemma 3.4. If N2 is a positive integer and 1 < aN2 < 2, then one of the following alternatives 
holds:

(i) A+
a,N2,a

=R. β : A+
a,N2,a

→ (2N2, 4/a) is continuous and bijective.

(ii) A+
a,N2,a

= (−∞, s∗) for some s∗ ∈ R. β : A+
a,N2,a

→ (2N2, 4/a) is continuous, bijective, 
and strictly decreasing.

(iii) A+
a,N2,a

= (s∗, ∞) for some s∗ ∈ R. β : A+
a,N2,a

→ (2N2, 4/a) is continuous, bijective, and 
strictly increasing.

Moreover, the asymptotic behavior (3.7) holds true for s ∈A+
a,N2,a

.
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Proof. We divide the proof into four steps.

Step 1. A+
a,N2,a

�= ∅.

Put N0 = (2 −aN2)/a. Given N̂2 ∈ (0, N0), set â = (2 −aN2)/N̂2 and consider the following 
initial value problem:

⎧⎪⎨
⎪⎩

v̂′′ + 1

r
v̂′ = r−2âN̂2f1(v̂, a), r > 0,

v̂(r, ŝ) = −2N̂2 ln r + ŝ + o(1), near r = 0.

(3.10)

We notice that 0 < âN̂2 < 1. Hence, by Proposition 2.1, there exists a number ŝ∗ ∈ [−∞, ∞)

such that A−
â,N̂2,a

= (−∞, ̂s∗] and A+
â,N̂2,a

= (ŝ∗, ∞) associated with (3.10). We also note that 

ŝ∗ > −∞ if 1 − N̂2 < âN̂2 < 1, whereas ŝ∗ = −∞ and hence A−
â,N̂2,a

= ∅ if 0 < âN̂2 ≤ 1 − N̂2. 

Moreover, for each ŝ > ŝ∗,

v̂(r, ŝ) =
[
−2N̂2 + β̂(ŝ)

]
ln r + Î + o(1) as r → ∞, (3.11)

where Î is a constant and

β̂(ŝ) =
∞̂

0

r1−2âN̂2f1(v̂(r, ŝ), a)dr > β̄
â,N̂2,a

= 4

a
(1 + aN̂2 − âN̂2). (3.12)

It follows from the choice of N̂2 that

2N2 + 2N̂2 − β̄
â,N̂2,a

= 2

a
(2 − aN2 − aN̂2) >

2

a
(2 − aN2 − aN0) = 0. (3.13)

Since β̂ : (ŝ∗, ∞) → (β̄
â,N̂2,a

, ∞) is bijective by Proposition 2.1, there exists ŝ0 = ŝ0(N̂2) ∈
A+

â,N̂2,a
such that

β̂(ŝ0) = 2N2 + 2N̂2 (3.14)

and thus by (3.11)

v̂(r, ŝ0) = 2N2 ln r + Î0 + o(1) for some Î0 = Î0(N̂2) as r → ∞. (3.15)

If we set v(r, Î0) = v̂(r−1, ̂s0), then v(r, Î0) satisfies
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′′ + 1

r
v′ = r−2aN2f1(v, a), r > 0,

v(r, Î0) = −2N2 ln r + Î0 + o(1), near r = 0,

v(r, Î0) = 2N̂2 ln r + ŝ0 + o(1), as r → ∞,

(3.16)

which implies that Î0 ∈A+
a,N2,a

. In other words, v(r, Î0) is a type II solution of (1.12).

We write the third line of (3.16) as

v(r, Î0) = [−2N2 + β(Î0)] ln r + ŝ0 + o(1) as r → ∞,

where β(Î0) = β̂(ŝ0) = 2N2 + 2N̂2. It follows from Lemma 3.2 that β(Î0) ∈ (2N2, 4/a). More-
over, β is continuous by the Lebesgue Dominated Convergence Theorem.

Step 2. Let m̂(N̂2) = minr>0 v̂(r, ̂s0) = minr>0 v(r, Î0) = m(Î0). Then,

lim
N̂2↗N0

m̂(N̂2) = ∞. (3.17)

Let ẑ = ẑ(N̂2) be the unique minimum point of v̂(r, ̂s0) and let r1 = r1(N̂2) < ẑ be the unique 
point such that v̂(r1, ̂s0) = m̂(N̂2) + 1. Since rv̂′(r, ̂s0) ≥ −2N̂2 for all r > 0, we obtain that 
r1/ẑ ≤ e−1/2N̂2 . Suppose that sup

N̂2↗N0
m̂(N̂2) ≤ ξ̂ for some ξ̂ > 0. Then, the integral represen-

tation (2.4) implies that ∞ > ξ̂ ≥ m̂(N̂2) ≥ −2N̂2 ln ẑ + ŝ0 and hence ẑ ≥ e(ŝ0−ξ̂ )/2N0 . We note 
from (3.13) that β̂(ŝ0) − β̄

â,N̂2,a
→ 0 as N̂2 ↗ N0. Thus, by the Pohozaev identity (2.20), as 

N̂2 ↗ N0,

o(1) = β̂(ŝ0)
(
β̂(ŝ0) − β̄

â,N̂2,a

)
>

16(1 − âN̂2)

aε2

ẑˆ

r1

r1−2âN̂2

(1 + ev̂(r,ŝ0))1+a
dr

≥ 8e−(1+a)(ξ̂+1)

aε2 · ẑ2−2âN̂2

[
1 − e

− (1−âN̂2)

N̂2

]

≥ 8e−(1+a)(ξ̂+1)

aε2 · e
(ŝ0−ξ̂ )(aN2−1)

N0

[
1 − e

− (aN2−1)

N0

]
> 0,

which is a contradiction.

Step 3. Proof of alternatives.

By (3.14),

lim
ˆ

β(Î0) = 2N2 and lim
ˆ

β(Î0) = 2N2 + 2N0 = 4

a
. (3.18)
N2↘0 N2↗N0
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Hence, β : A+ → (2N2, a/4) is onto. To see the injectivity of β , let us suppose that β0 = β(s1) =
β(s2) ∈ (2N2, 4/a) for some s1, s2 ∈A+. Then, for each sj , we have

v(r, sj ) = −2N2 ln r + sj + o(1) as r → 0,

v(r, sj ) = (−2N2 + β0) ln r + Ij + o(1) as r → ∞.

Let N̂2 = (β0 − 2N2)/2 ∈ (0, N0) and â = (2 − aN2)/N̂2. Then, v̂(r, ̂sj ) satisfies (3.10) and 
(3.11) with ŝj = Ij , Îj = sj and β̂(ŝj ) = β0. Since β̂ is a bijective map on Â+

â,N̂2,a
by Propo-

sition 2.1, it follows that ŝ1 = ŝ2. Hence, v̂(r, ̂s1) = v̂(r, ̂s2) such that s1 = s2. As a conse-
quence, β : A+

a,N2,a
→ (2N2, 4/a) is a homeomorphism. There are four alternatives: (a) A+ =R, 

(b) A+ = (μ1, μ2) for some μi ∈ R, (c) A+ = (−∞, s∗) for some s∗ ∈ R, or (d) A+ = (s∗, ∞)

for some s∗ ∈R.
Let M̂k ↗ N0 be any sequence and set sk = Î0(M̂k). Then, by Step 2, m(sk) → ∞ as M̂k ↗

N0. If sk is bounded such that sk → s̄ ∈ A+ up to a subsequence, then

∞ = lim
M̂k↗N0

m̂(M̂k) = lim
sk→s̄

m(sk) = m(s̄) < ∞,

a contradiction. If s̄ = μi for the alternative (b) or s̄ = s∗ for (c) and (d), then μi, s∗ ∈ A− such 
that

∞ = lim
M̂k↗N0

m̂(M̂k) = lim
sk→s̄

m(sk) = −∞,

a contradiction. In the sequel, the alternative (b) is excluded. Moreover, if M̂k ↗ N0, then sk =
Î0(M̂k) → −∞ for (c) and sk = Î0(M̂k) → ∞ for (d). Since β(sk) → 4/a by (3.18), β is strictly 
decreasing for (c) and strictly increasing for (d).

Step 4. Proof of (3.7).

Let u(r, s) = v(r, s) − (−2N2 + β) ln r such that u(r, s) = o(ln r) and ru′(r, s) = o(1) as 
r → ∞. Since 1 < aN2 < 2 and 2N2 < β < 4/a, we have 2 < aβ < 4. Given a positive number 
η < (aβ − 2)/a, there exists a number r0 such that |u(r, s)| ≤ η ln r for all r ≥ r0. Hence, δ =
aβ − aη − 2 > 0 and

r1−2aN2f1
(
v(r, s), a

)= O
(
r1−2aN2e−av

)= O
(
r1−aβ+aη

)= O
(
r−1−δ

)
. (3.19)

Integrating (ru′)′ = r1−2aN2f1(v, a) on (r, ∞), we obtain by (3.19) that for r > r0

u(r, s) = u(r0, s) −
rˆ

r0

1

t

∞̂

t

y1−2aN2f1(v(y, s), a)dydt = O(1)

as r → ∞. Hence, we can rewrite (3.19) as r1−2aN2f1
(
v(r, s), a

)= O
(
r1−aβ

)
. Consequently,
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u(r, s) = I +
∞̂

r

1

t

∞̂

t

y1−2aN2f1(v(y, s), a)dydt = I + O
(
r2−aβ

)
,

where

I = u(r0, s) −
∞̂

r0

1

t

∞̂

t

y1−2aN2f1(v(y, s), a)dydt.

This completes the proof. �
Lemma 3.5. If N2 is a positive integer and 1 < aN2 < 2, then there exists a number s∗ ∈R such 
that A+ = (−∞, s∗) and A− = [s∗, ∞). Consequently, the dichotomy (ii) holds in Lemma 3.4. 
The function β : A− → (0, 2N2] is continuous, bijective and strictly decreasing. Moreover, we 
have (3.8) for s > s∗ and (3.9) for s = s∗.

Proof. The proof is split into five parts.

Step 1. Either A− = [s∗, ∞) or A− = (−∞, s∗] for some s∗ ∈ R.

Given a number N̂2 ∈ (0, N2), set â = (2 − aN2)/N̂2 such that 0 < âN̂2 < 1. Let us consider 
the following problem: ⎧⎪⎨

⎪⎩
v̂′′ + 1

r
v̂′ = r−2âN̂2f1(v̂, a), r > 0,

v̂(r, ŝ) = 2N̂2 ln r + ŝ + o(1), near r = 0.

(3.20)

This equation is a kind of the equation (4.1) with the hypothesis (A1) which will be studied in 
detail in the next section. Then, by Proposition 4.1 in the next section, it follows that

v̂(r, ŝ) = [2N̂2 + β̂(ŝ)
]

ln r + Î + o(1), as r → ∞ (3.21)

where

β̂(ŝ) =
∞̂

0

r1−2âN̂2f1
(
v̂(r, ŝ), a

)
dr.

In addition, β̂ : (−∞, ∞) → (
max

{
β̃

â,N̂2,a,N̂2
, 0
}
, ∞) is bijective, where

β̃
â,N̂2,a,N̂2

= 4 − 4(âN̂2 + aN̂2)

a
.

We note that 2N2 − 2N̂2 > 0 and

2N2 − 2N̂2 − 4 − 4(âN̂2 + aN̂2) = 4 − 2aN2 + 2aN̂2
> 0.
a a
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Hence, there exists ŝ0 = ŝ0(N̂2) ∈ R such that

{
β̂(ŝ0) = 2N2 − 2N̂2,

v̂(r, ŝ0) = 2N2 ln r + Î0 + o(1) for some Î0 = Î0(N̂2) as r → ∞.
(3.22)

If we set v(r, Î0) = v̂(r−1, ̂s0), then v(r, Î0) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′′ + 1

r
v′ = r−2aN2f1(v, a), r > 0,

v(r, Î0) = −2N2 ln r + Î0 + o(1), near r = 0,

v(r, Î0) = −2N̂2 ln r + ŝ0 + o(1), as r → ∞,

(3.23)

which implies that Î0 ∈ A−
a,N2,a

. So, v(r, Î0) is a type I solution of (1.12). Furthermore, 
Lemma 3.4 tells us that either A−

a,N2,a
= [s∗, ∞) or A−

a,N2,a
= (−∞, s∗] for some s∗ ∈R.

We write the third line of (3.23) as

v(r, Î0) = [−2N2 + β(Î0)] ln r + ŝ0 + o(1), as r → ∞,

where β(Î0) = β̂(ŝ0) = 2N2 − 2N̂2.

Step 2. β : Å−
a,N2,a

→ (0, 2N2) is continuous and bijective where Å−
a,N2,a

is the interior of 
A−

a,N2,a
.

It follows from Lemma 3.2 that β : A−
a,N2,a

→ (0, 2N2]. If β(s1) = β(s2) ∈ (0, 2N2] for some 
s1, s2 ∈ A−

a,N2,a
, then by proceeding as in the proof of Lemma 3.4, we deduce that s1 = s2. 

This implies that β cannot attain the value 2N2 on Å−
a,N2,a

and it is injective on Å−
a,N2,a

. The 

continuity on Å−
a,N2,a

is a consequence of the Lebesgue Convergence Theorem. Moreover, by 
(3.22),

lim
N̂2↘0

β(Î0) = 2N2 and lim
N̂2↗N2

β(Î0) = 2N2 − 2N̂2 = 0. (3.24)

Hence, β is onto on Å−
a,N2,a

. So, β : Å−
a,N2,a

→ (0, 2N2) is a homeomorphism.

Step 3. Î0(N̂2) → ∞ as N̂2 ↗ N2. So, A− = [s∗, ∞) and β : Å−
a,N2,a

→ (0, 2N2) is strictly 
decreasing. Moreover, the dichotomy (ii) holds in Lemma 3.4.

For a solution v̂(r, ̂s0) of (3.20) satisfying (3.22), let û(r, ̂s0) = v̂(r, ̂s0) − (2N̂2 + β̂) ln r such 
that rû′(r, ̂s0) = o(1) as r → ∞. Since

(rû′)′ = r1−2âN̂2f1(v̂, a) > 0, (3.25)

(rû′)(·, ̂s0) is increasing. Moreover, since rû′ = rv̂′ − (2N̂2 + β̂) < 0, û(·, ̂s0) is decreasing.
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Claim 1. If R̂1 = R̂1(N̂2) is a unique number such that v̂(R̂1, ̂s0) = 0, then R̂1 → 0 as N̂2 ↗
N2.

To see the Claim, let R̂2 = R̂2(N̂2) be a unique number such that v̂(R̂2, ̂s0) = 1. Since rv̂′ <
2N̂2 + β̂ = 2N2, we have R̂1/R̂2 < e−1/(2N2). Then, by (3.24), as N̂2 ↗ N2,

0 ← β̂ >

R̂2ˆ

R̂1

r1−2âN̂2f1
(
v̂(r, ŝ0), a

)
dr

≥
(

inf
0≤v≤1

f1(v, a)
)

· R̂
2−2âN̂2
2

(
1 − e

− 1−âN̂2
N2
)

2 − 2âN̂2
> 0.

Hence, R̂2 → 0.

Claim 2. Given t̂ > 0, û(t̂ , ̂s0) → ∞ as N̂2 ↗ N2.
Otherwise, suppose that û(t̂ , ̂s0) ≤ c0 as N̂2 ↗ N2. By Claim 1, v̂(t̂ , ̂s0) > 0 as N̂2 ↗ N2. 

Since rv̂′ < 2N2 for all r > 0, we have by (3.22)

v̂(2t̂ , ŝ0) < û(t̂ , ŝ0) + (2N̂2 + β̂) ln t̂ + 2N2 ln 2 ≤ c0 + 2N2(ln t̂ + ln 2) =: c1.

Hence, as N̂2 ↗ N2,

0 ← β̂ >
(

inf
0≤v≤c1

f1(v, a)
)

· (2t̂ )2−2âN̂2 − t̂2−2âN̂2

2 − 2âN̂2
> 0,

a contradiction.

Given a number δ ∈ (0, 1/(3a)
)
, let hk(r) ∈ C∞(0, ∞) such that hk(r) = −kδ ln r for r > 1

and hk(r) is bounded for 0 < r < 1.

Claim 3. û(r, ̂s0) > h2(r) for all r > 0 if N̂2 is sufficiently close to N2.
Otherwise, since rû′(r, ̂s0) = o(1) as r → ∞, there exist the first and the second num-

bers r̂1, ̂r2 ∈ (1, ∞) such that r̂1 < r̂2 and û(r̂i , ̂s0) = h1(r̂i ), i = 1, 2. By Claim 2, r̂1 =
r̂1(N̂2) → ∞ as N̂2 ↗ N2. Similarly, there exist the first and the second numbers r̂3 < r̂4
such that û(r̂i , ̂s0) = h2(r̂i ), i = 3, 4. Obviously, r̂1 < r̂3 < r̂4 < r̂2 and û′(r̂1, ̂s0) < h′

1(r̂1), 
û′(r̂3, ̂s0) < h′

2(r̂3), û′(r̂4, ̂s0) > h′
2(r̂4), and û′(r̂2, ̂s0) > h′

1(r̂2). Hence, we can find two num-
bers t̂1 ∈ (r̂3, ̂r4) and t̂2 ∈ (r̂1, ̂r2) with t̂1 < t̂2 such that t̂1û′(t̂1, ̂s0) = −2δ and t̂2û′(t̂2, ̂s0) = −δ. 
Since rû′ = rv̂′ − (2N2 + β̂) > −β̂ , we have by Claim 2

û(r, ŝ0) > u(1, ŝ0) − β̂ ln r > −β̂ ln r for all r > 1 as N̂2 ↗ N2.

Hence, as N̂2 ↗ N2, for r > 1,

r2−2âN̂2G
(
v̂(r, ŝ0), a

)= O
(
r−2+2aN2e−aû−a(2N̂2+β̂) ln r

)
= O

(
r−2+2a(N2−N̂2)

)= O
(
r−2+o(1)

)
,

(3.26)
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where G is defined by (2.16). Now, multiplying (3.20) by r2v̂′ and reminding that t̂1 → ∞, we 
infer from (3.26) that as N̂2 ↗ N2,

1

2

[
t̂2v̂

′(t̂2, ŝ0)
]2 − 1

2

[
t̂1v̂

′(t̂1, ŝ0)
]2

=
[
r2−2âN̂2G

(
v̂(r, ŝ0), a

)]t̂2
r=t̂1

− (2 − 2âN̂2)

t̂2ˆ

t̂1

r1−2âN̂2G
(
v̂(r, ŝ0), a

)
dr = o(1).

However, as N̂2 ↗ N2, we also get

1

2

[
t̂2v̂

′(t̂2, ŝ0)
]2 − 1

2

[
t̂1v̂

′(t̂1, ŝ0)
]2 = 1

2

[− δ + (2N̂2 + β̂)
]2 − 1

2

[− 2δ + (2N̂2 + β̂)
]2

= δ

2
(2N2 − 3δ) + o(1),

a contradiction and the claim follows.

Now, integrating (3.25) on (1, r), we obtain that for r > 1

û(r, ŝ0) = û(1, ŝ0) −
rˆ

1

1

t

∞̂

t

y1−2âN̂2f1(v̂(y, ŝ0), a)dydt.

We note by Claim 3 that for r > 1

r1−2âN̂2f1(v̂(r, ŝ0), a) ≤ Cr1−2âN̂2−a(2N̂2+β̂)e−aû ≤ Cr−3+2a(N2−N̂2)−aβ̂+2aδ

≤ C(r−3+3aδ)

as N̂2 ↗ N2. Here, C is independent of N̂2. Hence, û(r, ̂s0) = û(1, ̂s0) + O(1) for r > 1 as 
N̂2 ↗ N2. This implies by Claim 2 that û(r, ̂s0) → ∞. Comparing this with (3.21), we deduce 
that Î0 → ∞ and β(Î0) = β̂(ŝ0) → 0 as N̂2 ↗ N2. Eventually, we conclude that A− = [s∗, ∞)

and β : Å−
a,N2,a

→ (0, 2N2) is strictly decreasing by (3.24). As a consequence, A+ = (−∞, s∗)
and the dichotomy (ii) holds in Lemma 3.4.

Step 4. v(r, s∗) is a topological solution and β(s∗) = 2N2.

Given a number N̂2 ∈ (0, N2), set â = (2 − aN2)/N̂2 and consider the following problem:

⎧⎨
⎩ v̂′′ + 1

r
v̂′ = r−2âN̂2f1(v̂, a), r > 0,

v̂(r, ŝ) = ŝ + o(1), near r = 0.

(3.27)

This equation is a kind of the equation (4.1) with the hypothesis (A1) in the next section. We 
note that the equation (3.27) depends only on the product âN̂2 = 2 − aN2. By Proposition 4.1, it 
follows that
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v̂(r, ŝ) = β̂(ŝ) ln r + Î + o(1), as r → ∞ (3.28)

where

β̂(ŝ) =
∞̂

0

r1−2âN̂2f1
(
v̂(r, ŝ), a

)
dr.

Moreover, β̂ : (−∞, ∞) → (β̃
â,0,a,N̂2

, ∞) is bijective, where

β̃
â,0,a,N̂2

= 4 − 4âN̂2

a
= 4aN2 − 4

a
> 0

is defined by (4.6) in the next section. Since 2N2 > β̃
â,0,a,N̂2

, by Proposition 4.1 there exists 

ŝ∗ ∈R such that β̂(ŝ∗) = 2N2 and

v̂(r, ŝ∗) = 2N2 ln r + Î∗ + o(1) for some Î∗ as r → ∞.

If we set v(r, Î∗) = v̂(r−1, ̂s∗), then v(r, Î∗) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′′ + 1

r
v′ = r−2aN2f1(v, a), r > 0,

v(r, Î∗) = −2N2 ln r + Î∗ + o(1), near r = 0,

v(r, Î∗) = ŝ∗ + o(1), as r → ∞.

(3.29)

Since v̂(·, ̂s∗) is strictly increasing, v(·, Î∗) is strictly decreasing, which implies that Î∗ ∈ A−
a,N2,a

and β(Î∗) = 2N2. Since β : Å−
a,N2,a

= (s∗, ∞) → (0, 2N2) is continuous, bijective, and strictly 

decreasing, we deduce that Î∗ = s∗. In the sequel, we conclude that β : [s∗, ∞) → (0, 2N2] is 
continuous, bijective and strictly decreasing. Moreover, (3.29) tells us that v(r, s∗) is a topologi-
cal solution.

Step 5. Proof of (3.8) and (3.9).

For s > s∗, let u(r, s) = v(r, s) − (−2N2 + β) ln r such that u(r, s) = o(ln r) and ru′(r, s) =
o(1) as r → ∞. Since r1−2N2 is integrable near ∞, by integrating (ru′)′ = r1−2aN2f1(v, a), we 
deduce that for r > 1,

u(r, s) = u(1, s) −
rˆ

1

1

t

∞̂

t

y1−2aN2f1(v(y, s), a)dydt = O(1).

So, r1−2aN2f1
(
v(r, s), a

)= O
(
r1−2aN2−2N2+β

)
for all large r such that
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u(r, s) = I +
∞̂

r

1

t

∞̂

t

y1−2aN2f1(v(y, s), a)dydt = I + O
(
r2−2aN2−2N2+β

)
,

where

I = u(1, s) −
∞̂

1

1

t

∞̂

t

y1−2aN2f1(v(y, s), a)dydt.

On the other hand, by letting s∗ = Î∗ and I∗ = ŝ∗, we deduce from (3.29) that 
[
rv′(r, s∗)

]′ →
r1−2aN2f (I∗, a) as r → ∞. Hence, a similar argument as above implies that as r → ∞,

v(r, s∗) = I∗ +
∞̂

r

1

t

∞̂

y

y1−2aN2f1(v(y, s∗), a)dydt = I∗ + O(r2−2aN2),

where I∗ is explicitly given by

I∗ = v(1, s∗) −
∞̂

1

1

t

∞̂

y

y1−2aN2f1(v(y, s∗), a)dydt.

This completes the proof of Lemma 3.5. �
The following proposition is the final topic of this section, the case aN2 ≥ 2.

Proposition 3.6. If aN2 ≥ 2, v(r, s) is a type I solution of (1.12) for every s ∈ R. The function 
β : R → (0, 4/a) is continuous, bijective and strictly decreasing. Moreover, we have (1.19) for 
the asymptotic behavior of solutions.

Proof. We know from Lemma 3.2 that v(r, s) is a type I solution of (1.12) for every s ∈ R and 
β : R → (0, 4/a). Let â be any positive number and M̂ = (2 − aN2)/â ≤ 0. Given a number 
N̂ ∈ (N∗, N2) with N∗ = (aN2 − 2)/a ≥ 0, consider the following equation:

⎧⎪⎨
⎪⎩

v̂′′ + 1

r
v̂′ = r−2âM̂f1(v̂, a), r > 0,

v̂(r, ŝ) = 2N̂ ln r + ŝ + o(1), near r = 0.

(3.30)

This equation is a kind of the equation (4.1) with the hypothesis (A2) in the next section. By 
Proposition 4.1 in the next section, it follows that

v̂(r, ŝ) = [2N̂ + β̂(ŝ)
]

ln r + Î + o(1) as r → ∞,

where
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β̂(ŝ) =
∞̂

0

r1−2âM̂f1
(
v̂(r, ŝ), a

)
dr : (−∞,∞) → (

max
{
β̃

â,N̂,a,M̂
,0
}
,∞)

is a bijective function with

β̃
â,N̂,a,M̂

= 4 − 4(âM̂ + aN̂)

a
= 4(aN2 − aN̂ − 1)

a
.

We note that 2N2 − 2N̂ > 0 and

2N2 − 2N̂ − β̃
â,N̂,a,M̂

= 4 − 2aN2 + 2aN̂

a
>

4 − 2aN2 + 2aN∗
a

= 0.

So, there exists ŝ0 = ŝ0(N̂2) ∈ R such that β̂(ŝ0) = 2N2 − 2N̂ and

v̂(r, ŝ0) = 2N2 ln r + Î0 + o(1) for some Î0 = Î0(N̂) as r → ∞.

If we set v(r, Î0) = v̂(r−1, ̂s0), then v(r, Î0) satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v′′ + 1

r
v′ = r−2aN2f1(v, a) for r > 0,

v(r, Î0) = −2N2 ln r + Î0 + o(1) near r = 0,

v(r, Î0) = [− 2N2 + β̂(ŝ0)
]

ln r + ŝ0 + o(1) as r → ∞.

(3.31)

Hence, v(r, Î0) is a solution of (1.12). We write the third line of (3.31) as follows:

v(r, Î0) = [−2N2 + β(Î0)] ln r + ŝ0 + o(1) as r → ∞,

where β(Î0) = β̂(ŝ0) = 2N2 − 2N̂ .
Since

lim
N̂↗N2

β(Î0) = 0, lim
N̂↘N∗

β(Î0) = 4

a
,

β is onto. In addition, arguing as in Step 3 of the proof of Lemma 3.4, one can see that β is 
one-to-one. Finally, following exactly the same argument of Step 3 in Lemma 3.5, we deduce 
that Î0 → ∞ as N̂ ↗ N2 and thus β(s) = β̂(ŝ0) → 0 as Î0 → ∞. As a consequence, β is strictly 
decreasing and bijective. The asymptotic behavior of v(r, s) as r → ∞ follows from the similar 
argument as Step 5 in the proof of Lemma 3.5. �
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4. A generalized version for the case N1 ≥ 0 and N2 = 0

In this section, we study the equation (1.13) and prove Theorem 1.2. In particular, we will 
treat a generalized version of (1.13):

⎧⎨
⎩v′′ + 1

r
v′ = r−2aMf1(v, b), r > 0,

v(r) = 2N ln r + s + o(1) near r = 0.

(4.1)

Here, we assume one of the following:

(A1) N and M are nonnegative real numbers, and a and b are positive real numbers such that 
0 ≤ aM < 1,

(A2) N, a, b are a positive real numbers and M is a nonpositive real number.

Regarding the hypothesis (A1), we have three examples in this paper as follows. First, if N > 0, 
a = b, and M = 0, (4.1) corresponds to (1.13). Second, if N = M > 0, then (4.1) leads to the 
equation (3.20) in the proof of Lemma 3.5. Third, if M > 0 and N = 0, (4.1) represents the 
equation (3.27) in the proof of Lemma 3.5. On the other hand, the hypothesis (A2) was used in 
the equation (3.30) so that N > 0 and M ≤ 0.

Let us denote the solution of (4.1) by v(r, s, a, N, b, M), or simply v(r, s). Since (rv′)′ > 0, 
v is strictly increasing. For any fixed r0 > 0, integrating (rv′)′ > 0 twice on [r0, r], we get

v(r, s) > v(r0, s) + r0v
′(r0, s) ln

r

r0
, ∀r > r0.

As a consequence, limr→∞ v(r, s) = ∞ for any s ∈R. Hence, v(r, s) is a type II solution for any 
s ∈R. We note that v(r, s) is a solution of (1.13) if and only if

v(r, s) = 2N ln r + s +
rˆ

0

1

t

tˆ

0

y1−2aMf1
(
v(y, s), b

)
dydt, r > 0. (4.2)

As before, we define

β(s) =
∞̂

0

r1−2aMf1
(
v(r, s), b

)
dr > 0. (4.3)

As in Section 2, one can see that β(s) is always finite for each s and

v(r, s) = [2N + β(s)
]

ln r + O(1)

as r → ∞. Since β(s) < ∞, we see that

β(s) ≥ max

{
2 − 2(aM + bN)

,0

}
.

b
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On the other hand, we obtain the Pohozaev type identities:

β(β + 4N) = −(4 − 4aM)

∞̂

0

r1−2aMG
(
v(r, s), b

)
dr, (4.4)

β
(
β − β̃a,N,b,M

)= 16 − 16aM

bε2

∞̂

0

r1−2aM

(1 + ev)1+b
dr, (4.5)

where

β̃ = β̃a,N,b,M = 4 − 4(aM + bN)

b
. (4.6)

As a consequence, we obtain a more accurate range of β(s) such that β(s) > max{β̃, 0}. Now, 
the main result of this section is the following.

Proposition 4.1. Assume the hypothesis (A1) or (A2). Then,

β : (−∞,∞) → (
max{β̃a,N,b,M,0},∞)

is bijective and strictly decreasing. Furthermore,

v(r, s) = [2N + β] ln r + I + O(r2−2(aM+bN)−bβ) as r → ∞,

where I = I (a, N, b, M, s) is a constant.

Proof. For the surjectivity of γ , we prove that

lim
s→∞β(s) = max{β̃,0}, lim

s→−∞β(s) = ∞. (4.7)

To see this, let λ > 0 be given. Let rs be a unique number such that λ = v(rs, s) ≥ 2N ln rs + s. 
Hence, rs → 0 as s → ∞ and

0 < β(β − β̃) =
( rsˆ

0

+
∞̂

rs

) (16 − 16aM)r1−aM

bε2
(
1 + ev(r,s)

)1+b
dr ≤ o(1) + 4e−λ(1 − aM)

b
β

as s → ∞. So,

lim sup
s→∞

[
β(s)

(
β(s) − β̃ − 4e−λ(1 − aM)

b

)]
≤ 0.

Letting λ → ∞, we obtain the first limit of (4.7).
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On the other hand, let sn → −∞ and assume that β(sn) ≤ B for some B > 0. Let Rn and Tn be 
unique numbers such that v(Rn, sn) = 0 and v(Tn, sn) = 1. Then, we infer from the solution for-
mula (4.2) that Rn → ∞ as sn → −∞. Since rv′(r, s) ≤ (2N +B), we have Tn/Rn ≥ e1/(2N+B). 
Then, as sn → −∞,

B > β(sn) ≥
Tnˆ

Rn

r1−2aMf1
(
v(r, s), b

)
dr

≥
(

inf
0≤v≤1

f1(v, b)
)

· R2
n

2 − 2aM
· (e 2−2aM

2N1+B − 1
) → ∞,

a contradiction. Thus, the second limit of (4.7) follows.
To see the injectivity of β , let ϕ(r, s) = ∂v(r, s)/∂s be the unique solution of the linearized 

equation

⎧⎨
⎩ϕ′′ + 1

r
ϕ′ = r−2aMf ′

1

(
v(r, s), b

)
ϕ,

ϕ(0, s) = 1, ϕ′(0, s) = 0.

(4.8)

Due to the Lebesgue Dominated Convergence Theorem, it holds that

β ′(s) =
∞̂

0

r1−2aMf ′
1(v(r, s), b)ϕ(r, s)dr = lim

r→∞ rϕ′(r, s).

Set wc(r, s) = rv′(r, s) + c for c ∈ R. Then, wc satisfies

⎧⎨
⎩w′′

c + 1

r
w′

c = r−2aMf ′
1

(
v(r, s), b

)
wc + r−2aM�c(r, s),

wc(0, s) = 2N + c, w′
c(0, s) = 0,

(4.9)

where

�c(r, s) = (2 − 2aM)f1
(
v(r, s), b

)− cf ′
1

(
v(r, s), b

)

=
4ev(r,s)

{[
(2 − 2aM) + cb

]
ev(r,s) + [(2 − 2aM) − c

]}
ε2(1 + ev(r,s))2+b

.

By proceeding in the same way as in the proof of Lemma 2.10, we can deduce that ϕ(·, s) has a 
unique zero r1.

We will show that limr→∞ rϕ′(r) = δ �= 0. Then, β is strictly decreasing in view of (4.7). To 
the contrary, let us assume that δ = 0. In the following, we write v(r) = v(r, s) and so on. Let 
c0 = −(2 − 2aM)/b < 0. Then, it follows that

0 > −
r1ˆ

r1−2aM�c0(r)ϕ(r)dr = r1ϕ
′(r1)wc0(r1),
0
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which implies that wc0(r1) > 0. Thus, c1 = −r1v
′(r1) < c0 such that (2 − 2aM) + bc1 < 0. 

Since v(r) is an increasing function and �c1(r) ↗ 0 as r → ∞, either �c1(r) has a unique 
zero or �c1(r) < 0 for all r > 0. We note that the latter case happens only when N = 0 and 
(2 + c1b)es + (2 − c1) < 0. If �c1(r) has unique zero at r0, then r0 ≤ r1. Otherwise, we have 
�c1(r) > 0 for all r < r1 such that

0 > −
r1ˆ

0

r�c1(r)ϕ(r)dr = [rϕ′wc1 − rw′
c1

ϕ](r1) = 0,

a contradiction. As a consequence, �c1(r) < 0 on (r1, ∞). Therefore, since δ = 0,

0 > −
∞̂

r1

r�c1(r)ϕ(r)dr = lim
r→∞[rϕ′(r)wc1(r) − rw′

c1
(r)ϕ(r)] = 0,

which leads to a contradiction.
The asymptotic behavior in the limit r → ∞ can be proved by a similar argument for the 

proof of Lemma 2.11. This finishes the proof. �
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