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Abstract

In this paper, we consider the global (in time) well-posedness for the focusing cubic nonlinear 
Schrödinger equation (NLS) on 4-dimensional tori –either rational or irrational– and with initial data in 
H 1. We prove that if a maximal-lifespan solution of the focusing cubic NLS u : I × T4 → C satisfies 
supt∈I ‖u(t)‖Ḣ 1(T 4) < ‖W‖Ḣ 1(R4), then it is a global solution. W denotes the ground state on Euclidean 
space, which is a stationary solution of the corresponding focusing equation in R4. As a consequence, we 
also construct the global solution with some threshold conditions related to the modified energy of the ini-
tial data which is the energy modified by the mass of the initial data and the best constants of Sobolev 
embedding on T4.
© 2021 Published by Elsevier Inc.
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1. Introduction

In this paper, we consider the cubic nonlinear Schrödinger equation (NLS) in the periodic 
setting x ∈T 4

λ

(i∂t + �)u = μu|u|2, (1.1)
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where μ = ±1 (−1: the focusing case, +1: the defocusing case). And u : R × T 4
λ → C is a 

complex-valued function of time space R and spatial space T 4
λ , a general rectangular tori, i.e.

T 4
λ := R4/(

4∏
i=1

λiZ), λ = (λ1, λ2, λ3, λ4),

where λi ∈ (0, ∞) for i = 1, 2, 3, 4. Specifically, if the ratio of arbitrary two λ′
i s in {λ1, λ2,

λ3, λ4} is an irrational number, then T 4
λ is called an irrational torus, otherwise T 4

λ is called a 
rational torus. Since our proof does not change no matter either rational or irrational tori. For the 
convenience, we use T 4 := T 4

λ hence-forth in the paper.
Solutions of (1.1) conserve in both the mass of u:

M(u)(t) :=
∫
T 4

|u(t)|2 dx (1.2)

and the energy of u:

E(u)(t) := 1

2

∫
T 4

|∇u(t)|2 dx + 1

4
μ

∫
T 4

|u(t)|4 dx. (1.3)

On Rd , the scaling symmetry plays an important role in the well-posedness (existence, 
uniqueness and continuous dependence of the data to solution map) problem of initial value 
problem (IVP) for NLS: {

i∂tu + �u = ±|u|p−1u, p > 1

u(0, x) = u0(x) ∈ Ḣ s(Rd).
(1.4)

The IVP (1.4) is scale invariant in the Sobolev norm Ḣ sc , where sc := d
2 − 2

p−1 is called the 
scaling critical regularity.

For Hs data with s > sc (sub-critical regime), the local well-posedness of the IVP (1.4) in sub-
critical regime was proven by Cazenave-Weissler [13]. For Hs data with s = sc (critical regime), 
Bourgain [4] first proved the large data global well-posedness and scattering for the defocusing 
energy-critical (sc = 1) NLS in R3 with the radially symmetric initial data in Ḣ 1 by introducing 
an induction method on the size of energy and a refined Morawetz inequality. A different proof 
of the same result was given by Grillakis in [33]. Then a breakthrough was made by Colliander-
Keel-Staffilani-Takaoka-Tao [14]. Their work extended the results of Bourgain [4] and Grillakis 
[33]. They proved global well-posedness and scattering of the energy-critical problem in R3 for 
general large data in Ḣ 1. Then similar results were proven by Ryckman-Vişan [56] and Vişan 
[58] on the higher dimension Rd spaces. Furthermore, Dodson proved mass-critical (sc = 0) 
global well-posedness results for Rd in his series of papers [19,21,22].

For the corresponding problems on the tori, the Strichartz estimates on rational tori T d (see 
[32,59,46] for the Strichartz estimates in the Euclidean spaces Rd ), which prove the local well-
posedness of the periodic NLS, was initially developed by Bourgain [3]. In [3], the number 
theoretical related lattice counting arguments were used, hence this method worked better in 
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the rational tori than irrational tori. Recently Bourgain-Demeter’s work [7] proved the optimal 
Strichartz estimates on both rational and irrational tori via a totally different approach which 
doesn’t depend on the lattice counting lattice. Also there are other important references [5,15,
12,6,34,51,16,18,28] on the Strichartz estimates on the tori and global existence of solution of 
the Cauchy problem in sub-critical regime. On the general compact manifolds, Burq-Gerard-
Tzvetkov derived the Strichartz type estimates and applied these estimates to the global well-
posedness of NLS on compact manifolds in a series of their papers [8,9,11,10]. We also refer to
[62,31,36,37] and references therein for the other results of global existence sub-critical NLS on 
compact manifolds.

In the critical regime, Herr-Tataru-Tzvetkov [40] studied the global existence of the energy-
critical NLS on T 3 and first proved the global well-posedness with small initial data in H 1. They 
used a crucial trilinear Strichartz type estimates in the context of the critical atomic spaces Up

and V p , which were originally developed in unpublished work on wave maps by Tararu. These 
atomic spaces were systematically formalized by Hadac-Herr-Koch [35] (see also [52][41]) and 
now the atomic spaces Up and V p are widely used in the field of the critical well-posedness 
theory of nonlinear dispersive equations. The large data global well-posedness result of the 
energy-critical NLS on rational T 3 was proven by Ionescu-Pausader [43], which is the first 
large data critical global well-posedness result of NLS on a compact manifold. In a series of 
papers, Ionescu-Pausader [43][44] and Ionescu-Pausader-Staffilani [45] developed a method to 
obtain energy-critical large data global well-posedness in more general manifolds (T 3, T 3 ×R, 
and H3) based on the corresponding results on the Euclidean spaces in the same dimension. So 
far, their method has been successfully applied to other manifolds in several following papers 
[55,57,60,61].

In this paper, we prove the global well-posedness result of focusing energy-critical NLS below 
the ground state1 on the both rational and irrational tori in the 4-dimension. To the best of the 
author’s knowledge, this is the first result establishing global well-posedness for the focusing 
energy-critical NLS below the ground state on a compact domain.

1.1. The main result

In the focusing case (μ = −1), we prove global well-posedness (GWP) when we have kinetic 
energy of the solution is a priori all time bounded by the kinetic energy of the ground state W in 
R4. Moreover,

W(x) = W(x, t) = 1

1 + |x|2
8

in Ḣ 1(R4) (1.5)

which is a stationary solution of the focusing case of (1.1) and also solves the elliptic equation 
in R4

�W + |W |2W = 0. (1.6)

Then we define a constant C4 by using the stationary solution W . And also C4 is the best constant 
in Sobolev embedding (see Remark 2.2).

1 Here we say ‘below the ground state’ in the sense of (1.10) in Theorem 1.1.
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‖W‖2
Ḣ 1(R4)

= ‖W‖4
L4(R4)

:= 1

C4
4

and then ER4(W) = 1

4C4
4

, (1.7)

where ER4(W) is the energy of W in the Euclidean space R4:

ER4(W) := 1

2

∫
R4

|∇W(x)|2 dx − 1

4

∫
R4

|W(x)|4 dx. (1.8)

Theorem 1.1 (GWP of the focusing NLS). Assume u0 ∈ H 1(T 4). Suppose that a maximal-
lifespan solution u : I ×T 4 →C to the initial value problem

(i∂t + �)u = −u|u|2, u(0) = u0 (1.9)

obeys

sup
t∈I

‖u(t)‖Ḣ 1(T 4) < ‖W‖Ḣ 1(R4). (1.10)

Then for any T ∈ [0, +∞), u is a solution in C([−T , T ] : H 1(T 4)).

In the above theorem, in particular, the solution space we used in the proof is X1([−T , T ]) ⊂
C([−T , T ] : H 1(T 4)). It is an adapted atomic space (see Definition 3.5).

Remark 1.2. It is worth mentioning that the proof of Theorem 1.1 is general for both rational 
and irrational tori. The only two places in the whole proof, which may be effected by the ratio-
nality/irrationality of tori, are the Strichartz estimates (Lemma 3.18) and the extinction lemma 
(Lemma 5.4). The Strichartz estimates2 (Lemma 3.18) are proved by the breakthrough work of 
Bourgain-Demeter [7] for both rational and irrational tori. The whole construction of the lo-
cal well-posedness and stability theory (in particular, the bilinear estimate (Lemma 4.2) and the 
refined nonlinear estimate (Proposition 4.4)) essentially relies on the Strichartz estimates and 
hence it is general for both rational and irrational tori. Also the proof of the extinction lemma 
(Lemma 5.4) does not depend on the rationality/irrationality of tori.

In fact, Deng-Germain-Guth proved Strichartz estimates over larger time scales for the 
Schrödinger equation on generic3 irrational tori than the Strichartz estimates in Lemma 3.18. 
Based on these Strichartz estimates over larger time scales, Deng [17] established the polyno-
mial growth of Sobolev norms for the energy-critical NLS on generic irrational tori in three 
dimensions.

Remark 1.3. The analog result of Theorem 1.1 for the energy-critical NLS on 3-dimensional tori 
T 3 can also be expected providing the corresponding GWP for the focusing energy-critical NLS 
in R3. However, the GWP for the focusing energy-critical NLS in R3 with the non-radial data 
below the ground state is still an open problem.

2 Note that the scale invariant version of Strichartz estimates (see [51] for references) is used in our paper.
3 The generic irrational tori means that {λ1, λ2, λ3, λ4} works outside of a certain null set.
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For some technical reason4 in the focusing case, we shall introduce two modified energies 
of u:

E∗(u)(t) := 1

2
(‖u(t)‖2

Ḣ 1(T 4)
+ c∗‖u(t)‖2

L2(T 4)
) − 1

4
‖u(t)‖4

L4(T 4)
, (1.11)

and

E∗∗(u)(t) := 1

2
(‖u(t)‖2

Ḣ 1(T 4)
+c∗‖u(t)‖2

L2(T 4)
)− 1

4
‖u(t)‖4

L4(T 4)
+ c2∗C4

4

4
‖u(t)‖4

L2(T 4)
, (1.12)

where c∗ is a fixed constant determined by the Sobolev embedding on T 4 in Lemma 2.1. By the 
definitions (1.11)(1.12), E∗(u)(t) and E∗∗(u)(t) are conserved in time.

We also introduce ‖u‖H 1∗ (T 4) as a modified inhomogeneous Sobolev norm:

‖u‖2
H 1∗ (T 4)

= ‖u‖2
Ḣ 1(T 4)

+ c∗‖u‖2
L2(T 4)

(1.13)

Obviously, H 1∗ (T 4)-norm and H 1(T 4)-norm are two comparable norms (‖u‖H 1∗ (T 4) 

‖u‖H 1(T 4)). Using the above modified energies and modified Sobolev norm, we can prove the 
following corollary about GWP of the focusing NLS under some conditions of initial data.

Corollary 1.4. Assume that u0 ∈ H 1(T 4) satisfying

‖u0‖H 1∗ (T 4) < ‖W‖Ḣ 1(R4), E∗(u0) < ER4(W); (1.14)

or

‖u0‖Ḣ 1(T 4) < ‖W‖Ḣ 1(R4), E∗∗(u0) < ER4(W), (1.15)

where E∗(u0) and E∗∗(u0) are two modified Energies defined in (1.11) and (1.12), and ER4(W)

is the Energy in the Euclidean space defined in (1.8). Then for any T ∈ [0, ∞), there exists 
a unique global solution u ∈ X1([−T , T ]) of the initial value problem (1.9). In addition, the 
mapping u0 → u extends to a continuous mapping from H 1(T 4) to X1([−T , T ]) for any T ∈
[0, ∞).

Remark 1.5. In the defocusing case (μ = +1), we could also achieve the similar global well-
posedness result for (1.1) as Theorem 1.1 but with arbitrary large initial data in H 1(T 4) by a 
similar proof. In particular, in the defocusing case the local theory (Section 4), Euclidean profiles 
(Section 5) and profile decomposition (Section 6) are the same as in the focusing case, however, 
we should run an induction on the energy and mass of u instead of ‖u‖L∞

t Ḣ 1 in Section 7.

The main parts in the proof of Theorem 1.1 will follow the concentration-compactness frame-
work of Kenig-Merle [47], which is a deep and broad road map to deal with critical problems 
(see also in [48][49]). Our first step is to obtain the critical local well-posedness theory and the 
stability theory of (1.1) in T 4. For that purpose, we follow Herr-Tataru-Tzvetkov’s idea [40][41]

4 See Section 2 for details.
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and introduce the adapted critical spaces Xs and Y s , which are frequency localized modification 
of atomic spaces Up and V p , as our solution spaces and nonlinear spaces. Applied Lemma 3.18
to the atomic spaces with strip decomposition technique in time-space frequency space, we ob-
tain a crucial bilinear estimate and then the local well-posedness of (1.1). Then we measure the 
solution in a weaker critical space-time norm Z, which plays a similar role as L10

x,t norm in 
[14]. On one hand, equipped with Z-norm, we obtain the refined bilinear estimate (Lemma 4.2) 
and hence it is proven that the solution stays regular as long as Z-norm stays finite (i.e. global 
well-posedness with a priori Z-norm bound).

On the other hand, we show that concentration of a large amount of the Z-norm in finite time is 
self-defeating. The reason is as follows. Concentration of a large amount the Z-norm in finite time 
can only happen around a space-time point, which can be considered as a Euclidean-like solution. 
To implement this, by a contradiction argument, we construct a sequence of initial data which 
implies a sequence of solutions and leads the Z-norm towards infinity. Then following the profile 
decomposition idea (firstly by Gerard [30] in Sobolev embedding and Merle-Vega [54] in the 
Schrödinger equation), we perform a linear profile decomposition of the sequence of initial data 
with one Scale-1-profile and a series of Euclidean profiles that concentrate at space-time points. 
We get nonlinear profiles by running the linear profiles along the nonlinear Schrödinger flow 
as initial data. By the contradiction condition, the scattering properties of nonlinear Euclidean 
profiles and the defect of interaction between different profiles show that there is actually at most 
one profile which is the Euclidean profile. And the corresponding nonlinear Euclidean profile 
is just the Euclidean-like solution we want. Euclidean-like solution can be interpreted in some 
sense as solutions in the Euclidean space R4, however, this kind of concentration as a Euclidean-
like solution is prevented by the global well-posedness and scattering theory on the Euclidean 
space R4 in Dodson’s work [20].

Comparing with the defocusing case, to achieve the above concentration-compactness pro-
cess in the focusing case under the ground state (as in Theorem 1.1), we need to introduce a 
new ingredient which is the almost orthogonality of nonlinear profiles (Lemma 6.6). In Sec-
tion 7, we rely on Lemma 6.6 heavily to make sure the induction process on the norm ‖u‖L∞

t Ḣ 1

runs properly. Note that in the defocusing case, one should run the induction on the energy and 
mass of u which are conserved, so this almost orthogonality of nonlinear profiles is not neces-
sary.

In the focusing case, the global well-posedness result for arbitrary initial data in H 1 is usually 
not excepted. A natural question that arises is what initial conditions ensure the global solution of 
the focusing NLS on tori. In order to answer this, we need one more new ingredient: the energy 
trapping lemma on tori (see Section 2). Recall that in the energy-critical focusing NLS on Rd , 
Kenig-Merle [47] first proved the global well-posedness and scattering with initial data below a 
ground state threshold (ERd (u0) < ERd (W) and ‖u0‖Ḣ 1 < ‖W‖Ḣ 1 ) in the radial case (d ≥ 3). 
And then the corresponding results without the radial conditions were proven by Killp-Vişan [50]
(d ≥ 5) and Dodson [20] (d = 4). We also refer to [25,42,29,26,53,23,24] for more focusing NLS 
results. As is known that the conditions in Rd are ERd (u0) < ERd (W) and ‖u0‖Ḣ 1 < ‖W‖Ḣ 1

which is tightly related to the Sobolev embedding with the best constant in Rd , however the sharp 
version of Sobolev embedding (Lemma 2.1) is quite different. So compared to the conditions for 
initial data in Euclidean space Rd , the conditions in Corollary 1.4 are also modified on tori. On 
T d , we modify the energy and Sobolev norm with some L2 norm based on the best constants of 
Sobolev embedding (Lemma 2.1) in T d , so that the modified conditions together with Sobolev 
embedding derive the energy trapping property which controls the Sobolev norm globally in time. 
Note that similar modified energies are also introduced in the focusing NLS on the hyperbolic 
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space (see [2][27]). In Section 2, we will discuss the Sobolev embedding and the energy trapping 
lemma in detail.

1.2. Outline of the following paper

The rest of the paper is organized as follows. In Section 2, we prove the energy trapping prop-
erty for the focusing NLS on tori. In Section 3, we introduce the adapted atomic spaces Xs , Y s

and Z norm and provide some corresponding embedding properties of the spaces. In Section 4, 
we use Herr-Tataru-Tzvetkov’s method and Bourgain-Demeter’s sharp Strichartz estimate to de-
velop a large-data local well-posedness and stability theory for (1.1). In Section 5, we study the 
behavior of Euclidean-like solutions to the linear and nonlinear equation concentrating to a point 
in space and time. In Section 6, we introduce a profile decomposition to measure the defects of 
compactness in the Strichartz inequality and in particular we also prove the almost orthogonality 
of nonlinear profiles. In Section 7, we prove the main theorem (Theorem 1.1) except for a lemma. 
In Section 8, we prove the remaining lemma about approximate solutions.

Acknowledgments

The author is greatly indebted to his advisor, Andrea R. Nahmod, for suggesting this prob-
lem and her patient guidance and warm encouragement over the past years. The author would 
like to thank Benoît Pausader for prompting the author to study the focusing case. The author 
also would like to thank Chenjie Fan for his helpful discussions on the focusing case of this pa-
per. The author acknowledges support from the National Science Foundation through Andrea R. 
Nahmod’s grants NSF-DMS 1201443 and NSF-DMS 1463714.

2. Energy trapping for the focusing NLS

Before proceeding to the proof of main theorem (Theorem 1.1), we explain how Theorem 1.1
implies Corollary 1.4 in the focusing case by using the energy trapping argument. In this sec-
tion, we prove the energy trapping argument in T 4 which is different from the energy trapping 
argument in the Euclidean spaces.

Lemma 2.1 (Sobolev embedding with best constants by [1][39][38]). Let f ∈ H 1(T 4), then 
there exists a positive constant c∗, such that

‖f ‖2
L4(T 4)

≤ C2
4(‖f ‖2

Ḣ 1(T 4)
+ c∗‖f ‖2

L2(T 4)
), (2.1)

where C4 is the best constant of this inequality.

Remark 2.2. C4 is the same constant as expressed in (1.7), because C4 is also the best constant in 
Sobolev embedding in R4, ‖f ‖2

L4(R4)
≤ C2

4‖f ‖2
Ḣ 1(R4)

, and the function W(x) holds the Sobolev 

embedding with the best constant C4 in R4.

Remark 2.3. Since ‖u‖2
H 1∗ (T 4)

= ‖u‖2
Ḣ 1(T 4)

+ c∗‖u‖2
L2(T 4)

, the Sobolev embedding (Lemma 
2.1) can be also written in the form:
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‖f ‖2
L4(T 4)

≤ C2
4‖f ‖2

H 1∗ (T 4)
.

Suppose copt := inf{c∗ : c∗ holds (2.1)}. By taking f = 1, it’s easy to check that copt ≥
C−2

4 (volume of T 4)−1/2.

Lemma 2.4. (i) Suppose f ∈ H 1(T 4) and δ0 > 0 satisfying

‖f ‖H 1∗ (T 4) < ‖W‖Ḣ 1(R4) and E∗(f ) < (1 − δ0)ER4(W), (2.2)

then there exists δ̄ = δ̄(δ0) > 0 such that

‖f ‖2
H 1∗ (T 4)

< (1 − δ̄)‖W‖2
Ḣ 1(R4)

(2.3)

‖f ‖2
H 1∗ (T 4)

− ‖f ‖4
L4(T 4)

≥ δ̄‖f ‖2
H 1∗ (T 4)

, (2.4)

and in particular

E∗(f ) ≥ 1

4
(1 + δ̄)‖f ‖2

H 1∗ (T 4)
. (2.5)

(ii) Suppose f ∈ H 1(T 4) and δ0 > 0 satisfying

‖f ‖Ḣ 1(T 4) < ‖W‖Ḣ 1(R4) and E∗∗(f ) < (1 − δ0)ER4(W), (2.6)

then there exists δ̄ = δ̄(δ0) > 0 such that

‖f ‖2
Ḣ 1(T 4)

< (1 − δ̄)‖W‖2
Ḣ 1(R4)

(2.7)

‖f ‖2
Ḣ 1(T 4)

− ‖f ‖4
L4(T 4)

+ 2c∗‖f ‖L2(T 4) + c2∗C4
4‖f ‖4

L2(T 4)
≥ δ̄‖f ‖2

Ḣ 1(T 4)
, (2.8)

and in particular

E∗∗(f ) ≥ 1

4
(1 + δ̄)‖f ‖2

Ḣ 1(T 4)
. (2.9)

Proof. In the proof of part (i), we almost identically follow the proof of Lemma 3.4 in Kenig-
Merle’s paper [47], but use H 1∗ (T 4)-norm instead of Ḣ 1(T 4)-norm. Consider a quadratic func-

tion g1 = 1
2y − C4

4
4 y2, and plug in ‖f ‖2

H 1∗ (T 4)
, by Sobolev embedding (Lemma 2.1) and the 

assumption (2.2), we have that

g1(‖f ‖2
H 1∗

) = 1

2
‖f ‖2

H 1∗
− C4

4

4
‖f ‖4

H 1∗

≤ 1

2
‖f ‖2

H 1∗
− 1

4
‖f ‖4

L4 = E∗(f )

< (1 − δ0)E 4(W) = (1 − δ0)g1(‖W‖2
1 4 ).

(2.10)
R Ḣ (R )
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It is easy to know ‖f ‖2
H 1∗ (T 4)

< (1 − δ̄)‖W‖2
Ḣ 1(R4)

, from (2.10) and the property of quadratic 

function g1, where δ̄ ∼ δ
1
2
0 .

Then choose g2(y) = y − C4
4y2, if plug in ‖f ‖2

H 1∗ (T 4)
, by Sobolev embedding (Lemma 2.1), 

we have that

g2(‖f ‖2
H 1∗ (T 4)

) = ‖f ‖2
H 1∗ (T 4)

− C4
4‖f ‖4

H 1∗ (T 4)
≤ ‖f ‖2

H 1∗ (T 4)
− ‖f ‖4

L4(T 4)
. (2.11)

Since g2(0) = 0, g′′
2 (y) = −2C4

4 < 0 and ‖f ‖2
H 1∗ (T 4)

< (1 − δ̄)‖W‖2
Ḣ 1(R4)

, by Jensen’s in-

equality and (1.7),

g2(‖f ‖2
H 1∗ (T 4)

) > g2((1 − δ̄)‖W‖2
Ḣ 1(R4)

)
‖f ‖2

H 1∗ (T 4)

(1 − δ̄)‖W‖2
Ḣ 1(R4)

= δ̄‖f ‖2
H 1∗ (T 4)

. (2.12)

Together (2.11) and (2.12), we get (2.4).
By (2.4), we get (2.5)

E∗(f ) = 1

4
‖f ‖2

H 1∗ (T 4)
+ 1

4
(‖f ‖2

H 1∗ (T 4)
− ‖f ‖4

L4(T 4)
) ≥ 1

4
(1 + δ̄)‖f ‖2

H 1∗ (T 4)
.

The proof of part (ii) would be similar with part (i). Under the assumptions (2.6) of part (ii), 
by squaring Sobolev embedding (Lemma 2.1), we have that

C4
4‖f ‖4

Ḣ 1(T 4)
≥ ‖f ‖4

L4 − 2c∗‖f ‖2
L2(T 4)

− c2∗C4
4‖f ‖4

L2(T 4)
(2.13)

Plugging ‖f ‖2
Ḣ 1(T 4)

into g1, by (2.13), we hold that

g1(‖f ‖2
Ḣ 1) = 1

2
‖f ‖2

Ḣ 1 − C4
4

4
‖f ‖4

Ḣ 1

≤ 1

2
‖f ‖2

Ḣ 1 − 1

4
‖f ‖4

L4 + c∗
2

‖f ‖2
L2(T 4)

+ c2∗C4
4

4
‖f ‖4

L2(T 4)
= E∗∗(f )

< (1 − δ0)ER4(W) = (1 − δ0)g1(‖W‖2
Ḣ 1(R4)

).

(2.14)

It is easy to know ‖f ‖2
Ḣ 1(T 4)

< (1 − δ̄)‖W‖2
Ḣ 1(R4)

, from (2.14) and the property of quadratic 

function g1, where δ̄ ∼ δ
1
2
0 . Similarly, we can also hold (2.8)(2.9) under the assumption (2.6). �

Theorem 2.5 (Energy trapping). (i) Let u be a solution of IVP (1.9), such that for δ0 > 0

‖u0‖H 1∗ (T 4) < ‖W‖Ḣ 1(R4), E∗(u0) < (1 − δ0)ER4(W); (2.15)

Let I � 0 be the maximal interval of existence, then there exists δ̄ = δ̄(δ0) > 0 such that for all 
t ∈ I
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‖u(t)‖2
H 1∗ (T 4)

< (1 − δ̄)‖W‖Ḣ 1(R4), (2.16)

‖u(t)‖2
H 1∗ (T 4)

− ‖u(t)‖4
L4(T 4)

≥ δ̄‖u(t)‖2
H 1∗ (T 4)

, (2.17)

and in particular

E∗(u)(t) ≥ 1

4
(1 + δ̄)‖u(t)‖2

H 1∗ (T 4)
. (2.18)

(ii) Let u be a solution of IVP (1.9), such that for δ0 > 0

‖u0‖Ḣ 1(T 4) < ‖W‖Ḣ 1(R4), E∗∗(u0) < (1 − δ0)ER4(W); (2.19)

Let I � 0 be the maximal interval of existence, then there exists δ̄ = δ̄(δ0) > 0 such that for all 
t ∈ I

‖u(t)‖2
Ḣ 1(T 4)

< (1 − δ̄)‖W‖Ḣ 1(R4), (2.20)

‖u(t)‖2
Ḣ 1(T 4)

− ‖u(t)‖4
L4(T 4)

+ 2c∗‖u(t)‖2
L2(T 4)

+ c2∗C4
4‖u(t)‖4

L2(T 4)
≥ δ̄‖u(t)‖2

Ḣ 1(T 4)
,

(2.21)

and in particular

E∗∗(u)(t) ≥ 1

4
(1 + δ̄)‖u(t)‖2

Ḣ 1(T 4)
. (2.22)

Proof. By the conservation of energy and mass, this theorem directly from Lemma 2.4 by the 
continuity argument. �
Remark 2.6. The energy trapping lemma (Theorem 2.5) shows that if the initial data satisfies the 
condition (1.14) or (1.15) then the solution u(t) satisfies ‖u(t)‖Ḣ 1(T 4) < ‖W‖Ḣ 1(R4) for all t in 
the lifespan of the solution. So Theorem 1.1 implies Corollary 1.4. In particular, we also obtain 
that E∗(u)(t) 
 ‖u(t)‖2

H 1∗ (T 4)
under the assumption (2.15) and E∗∗(u)(t) 
 ‖u(t)‖2

Ḣ 1(T 4)
under 

the assumption (2.19) by Theorem 2.5.

3. Adapted function spaces

In this section, we introduce Xs and Y s spaces which are based on the atomic space Up and 
V p which were firstly applied to PDEs in [35][40][41], while we’ll use the Xs and Y s spaces 
in the proof of global well-posedness. H is a separable Hilbert space on C, and Z denotes the 
set of finite partitions −∞ = t0 < t1 < ... < tK = ∞ of the real line, with the convention that 
v(∞) := 0 for any function v : R → H.

Definition 3.1 (Definition 2.1 in [40]). Let 1 ≤ p < ∞. For {tk}Kk=0 ∈ Z and {φk}K−1
k=0 ⊂ H with ∑K ‖φk‖p = 1 and φ0 = 0. A Up-atom is a piecewise defined function a : R →H of the form
k=0 H
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a =
K∑

k=1

1[tk−1,tk)φk−1.

The atomic Banach space Up(R, H) is then defined to be the set of all functions u :R → H such 
that

u =
∞∑

j=1

λjaj , for Up-atoms aj , {λj }j ∈ �1,

with the norm

‖u‖Up := inf{
∞∑

j=1

|λj | : u =
∞∑

j=1

λjaj , λj ∈ C and aj an Up atom}.

Here 1I denotes the indicator function over the time interval I .

Definition 3.2 (Definition 2.2 in [40]). Let 1 ≤ p < ∞. The Banach space V p(R, H) is defined 
to be the set of all functions v : R → H with v(∞) := 0 and v(−∞) := limt→−∞ v(t) exists, 
such that

‖v‖V p := sup
{tk}Kk=0∈Z

(

K∑
k=1

‖v(tk) − v(tk−1)‖p

H)
1
p is finite.

Likewise, let V p
− denote the closed subspace of all v ∈ V p with limt→−∞ v(t) = 0. V p

−,rc means 
all right-continuous V p

− functions.

Remark 3.3 (Some embedding properties). Note that for 1 ≤ p ≤ q < ∞,

Up(R,H) ↪→ Uq(R,H) ↪→ L∞(R,H), (3.1)

and functions in Up(R, H) are right continuous, and limt→−∞ u(t) = 0 for each u ∈ Up(R, H). 
Also note that,

Up(R,H) ↪→ V
p
−,rc(R,H) ↪→ Uq(R,H). (3.2)

Definition 3.4 (Definition 2.5 in [40]). For s ∈ R, we let Up
�Hs , respectively V p

�Hs , be the 
space of all functions u : R → Hs(T d) such that t �→ e−it�u(t) is in Up(R, Hs), respectively 
in V p(R, Hs) with norm

‖u‖Up(R,H s) := ‖e−it�u(t)‖Up(R,H s), ‖u‖V p(R,H s) := ‖e−it�u(t)‖V p(R,H s).

Definition 3.5 (Definition 2.6 in [40]). For s ∈ R, we define Xs as the space of all functions 
u : R → Hs(T d) such that for every n ∈Zd , the map t �→ eit |n|2 û(t)(n) is in U2(R, C), and with 
the norm
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‖u‖Xs := (
∑
n∈Zd

〈n〉2s‖eit |n|2 û(t)(n)‖2
U2

t
)

1
2 is finite. (3.3)

Definition 3.6 (Definition 2.7 in [40]). For s ∈ R, we define Y s as the space of all functions 
u : R → Hs(T d) such that for every n ∈ Zd , the map t �→ eit |n|2 û(t)(n) is in V 2

rc(R, C), and 
with the norm

‖u‖Y s := (
∑
n∈Zd

〈n〉2s‖eit |n|2 û(t)(n)‖2
V 2

t
)

1
2 is finite. (3.4)

Note that

U2
�Hs ↪→ Xs ↪→ Y s ↪→ V 2

�Hs. (3.5)

Proposition 3.7 (Proposition 2.10 in [35]). Suppose u := eit�φ which is a free Schrödinger 
solution, then we obtain that

‖u‖Xs([0,δ]) ≤ ‖φ‖Hs .

Proof. Since u := eit�φ, then ‖u‖Xs = (
∑

n∈Zd 〈n〉2s‖φ̂(n)‖2
U2

t

)
1
2 ≤ ‖φ‖Hs . �

Remark 3.8. Compared with Bourgain’s Xs,b first introduced in Bourgain,

‖v‖Xs,b = ‖e−it�v‖Hb
t Hs

x
,

‖v‖U
p
�Hs = ‖e−it�v‖U

p
t Hs

x
,

‖v‖V
p
�Hs = ‖e−it�v‖V

p
t Hs

x
.

And also later we will see the atomic spaces enjoy the similar duality and transfer principle 
properties with Xs,b.

Remark 3.9. Follow the definitions, it’s easy to check the following embedding properties:

U2
�Hs ↪→ Xs ↪→ Y s ↪→ V 2

�Hs ↪→ L∞(R,H s). (3.6)

Definition 3.10 (Xs and Y s restricted to a time interval I ). For intervals I ⊂ R, we define Xs(I)

and Y s(I ) as following

Xs(I) := {v ∈ C(I : Hs) : ‖v‖Xs(I) := sup
J⊂I, |J |≤1

inf
ṽ|J =v

‖ṽ‖Xs < ∞},

and

Y s(I ) := {v ∈ C(I : Hs) : ‖v‖Y s(I ) := sup inf
ṽ| =v

‖ṽ‖Y s < ∞}.

J⊂I, |J |≤1 J
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We will consider our solution in X1(I ) spaces, and then let’s introduce nonlinear norm N(I).

Definition 3.11 (Nonlinear norm N(I)). Let I = [0, T ], then

‖f ‖N(I) :=
∥∥∥∥∥∥

t∫
0

ei(t−t ′)�f (t ′)dt ′
∥∥∥∥∥∥

X1(I )

Proposition 3.12 (Proposition 2.11 in [41]). Let s > 0. For f ∈ L1(I, H 1(T 4)) we have

‖f ‖N(I) ≤ sup
v∈Y−1(I )

∣∣∣∣∣∣∣
∫
I

∫
T 4

f (t, x)v(t, x)dxdt

∣∣∣∣∣∣∣ . (3.7)

Now, we will need a weaker norm Z, which plays a similar role as L10
t,x norm in [14].

Definition 3.13.

‖v‖Z(I) := sup
J⊂I, |J |≤1

⎛⎝ ∑
N∈2Z

N2‖PNv‖4
L4(T 4×J )

⎞⎠
1
4

.

Remark 3.14. ‖v‖Z(I) actually can be considered as

∑
p∈{p1,p2,··· ,pk}

sup
J⊂I, |J |≤1

⎛⎝ ∑
N∈2Z

N6−p‖PNv‖p

Lp(T 4×J )

⎞⎠
1
p

,

and {p1, p2, · · · , pk} should be the Lp estimates that we need to use in the proof of nonlinear 
estimate. In our case, we only need ‖PNu‖L4(T 4×I ) � ‖PNu‖Z(I) in the proof of the nonlinear 
estimates, so we choose {p1, p2, · · · , pk} = {4}.

The following property shows us that Z(I) is a weaker norm than X1(I ).

Proposition 3.15.

‖v‖Z(I) � ‖v‖X1(I ).

Proof. By the definition of Z(I) and the following Strichartz type estimates Proposition 3.19, 
we obtain that

sup
J⊂I, |J |≤1

⎛⎝ ∑
N dyadic number

N2‖PNv‖4
L4(T 4×J )

⎞⎠
1
4

� sup
J⊂I, |J |≤1

⎛⎝ ∑
N dyadic number

N4‖PNv‖4
X0(J )

⎞⎠
1
4

� ‖v‖X1(I ). �
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Proposition 3.16 (Proposition 2.10 in [35]). Suppose u := eit�φ which is a free Schrödinger 
solution, then we obtain that

‖u‖Xs([0,T )) ≤ ‖φ‖Hs .

Proof. Since u := eit�φ, then ‖u‖Xs = (
∑

n∈Zd 〈n〉2s‖φ̂(n)‖2
U2

t

)
1
2 ≤ ‖φ‖Hs . �

Finally we state a ‘transfer principle’ proposition about the atomic space Up
� which is firstly 

introduced and proved in [35].

Proposition 3.17 (Proposition 2.19 in [35]). Let T0 : L2 ×· · ·×L2 → L1
loc be m-linear operator. 

Assume that for some 1 ≤ p, q ≤ ∞

‖T0(e
it�φ1, · · · , eit�φm)‖Lp(R,L

q
x (T d )) �

m∏
i=1

‖φi‖L2(T d ). (3.8)

Then, there exists an extension T : Up
� × · · · × U

p
� → Lp(R, Lq(T d)) satisfying

‖T (u1, · · · , um)‖Lp(R,Lq(T d )) �
m∏

i=1

‖ui‖U
p
�
; (3.9)

and such that T (u1, · · · , um)(t, ·) = T0(u1(t), · · · , um(t))(·), a.e.

Lemma 3.18 (Strichartz type estimates [3][7]). If p > 3, then

‖PNeit�f ‖L
p
t,x ([−1,1]×T 4) �p N

2− 6
p ‖f ‖L2

x

and

‖PCeit�f ‖L
p
t,x ([−1,1]×T 4) �p N

2− 6
p ‖f ‖L2

x

where C is a cube of side length N.

By the ‘transfer principle’ proposition (Proposition 3.17) and Strichartz type estimate 
Lemma 3.18, we obtain the following corollary:

Corollary 3.19. If p > 3, then

‖PNv‖Lp([−1,1]×T 4) �p N
2− 6

p ‖v‖U
p
�([−1,1]),

and

‖PCv‖Lp([−1,1]×T 4) �p N
2− 6

p ‖v‖U
p
�([−1,1]),

where C is a cube of side length N .
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4. Local well-posedness and stability theory

In this section, we present large-data local well-posedness, and stability results. Although 
Herr, Tataru, and Tzvetkov’s idea [41] together with Bourgain and Demeter’s result [7] gives the 
local well-posedness of (1.9), to obtain the stability results, we need a refined nonlinear estimate 
and the corresponding refined local well-posedness result.

Definition 4.1 (Definition of solutions). Given an interval I ⊆ R, we call u ∈ C(I : H 1(T 4)) a 
strong solution of (1.9) if u ∈ X1(I ) and u satisfies that for all t, s ∈ I ,

u(t) = eit�u0 + i

t∫
s

ei(t−t ′)�u(t ′)|u(t ′)|2dt ′.

First, we need to introduce

‖u‖Z′(I ) := ‖u‖
3
4
Z(I)‖u‖

1
4
X1(I )

. (4.1)

Lemma 4.2 (Bilinear estimates in [41]). Assuming |I | ≤ 1 and N1 ≥ N2, there holds that

‖PN1u1PN2u2‖L2
x,t (T 4×I ) � (

N2

N1
+ 1

N2
)κ‖PN1u1‖Y 0(I )‖PN2u2‖Y 1(I ) (4.2)

for some κ > 0.

Remark 4.3. This Bilinear estimate is Proposition 2.8 in [41]. The proof of Lemma 4.2 relies 
on Lp estimates in Lemma 3.18 (for some p < 4). In the proof not only we need the decoupling 
properties for spatial frequency, but also we need further trip partitions to apply the decoupling 
properties for time frequency.

Let’s introduce an refined nonlinear estimate.

Proposition 4.4 (Refined nonlinear estimate). For uk ∈ X1(I ), k = 1, 2, 3, |I | ≤ 1, we hold the 
estimate

‖
3∏

k=1

ũk‖N(I) �
∑

{i,j,k}={1,2,3}
‖ui‖X1(I )‖uj‖Z′(I )‖uk‖Z′(I ) (4.3)

where ũk = uk or ũk = uk for k = 1, 2, 3.
In particular, if there exist constants A, B > 0, such that u1 = P>Au1, u2 = P>Au2 and u3 =

P<Bu3, then we obtain that

‖
3∏

ũk‖N(I) � ‖u1‖X1(I )‖u2‖Z′(I )‖u3‖Z′(I ) + ‖u2‖X1(I )‖u1‖Z′(I )‖u3‖Z′(I ). (4.4)

k=1
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Proof. By the Proposition 3.12, and suppose N0, N1, N2, N3 are dyadic, and WLOG we assume 
N1 ≥ N2 ≥ N3.

‖
3∏

k=1

ũk‖N(I) � sup
‖u0‖Y−1

|
∫

T 4×I

u0

3∏
k=1

ũk dxdt |

≤ sup
‖u0‖Y−1

∑
N0,N1≥N2≥N3

|
∫

T 4×I

PN0u0

3∏
k=1

PNk
ũk dxdt |

Then we know N1 ∼ max(N2, N0) by the spatial frequency orthogonality. There are two 
cases:

1. N0 ∼ N1 ≥ N2 ≥ N3;
2. N0 ≤ N2 ∼ N1 ≥ N3.

Case 1: N0 ∼ N1 ≥ N2 ≥ N3
By Cauchy-Schwartz inequality and Lemma 4.2, we have that

|
∫

PN0u0PN1 ũ1PN2 ũ2PN3 ũ3 dxdt | ≤ ‖PN0u0PN2u2‖L2
x,t

‖PN1u1PN3u3‖L2
x,t

�(
N3

N1
+ 1

N3
)κ (

N2

N0
+ 1

N2
)κ‖PN0u0‖Y 0(I )‖PN1u1‖Y 0(I )‖PN2u2‖X1(I )‖PN3u3‖X1(I )

(4.5)

Assume {Cj } is a cube partition of size N2, and {Ck} is a cube partition of size N3. By 
{PCj

PN0u0PN2u2}j and {PCk
PN1u1PN3u3}k are both almost orthogonality, Corollary 3.19 and 

definition of Z norm, we obtain that

|
∫

PN0u0PN1 ũ1PN2 ũ2PN3 ũ3 dxdt | ≤ ‖PN0u0PN2u2‖L2
x,t

‖PN1u1PN3u3‖L2
x,t

�(
∑
Cj

‖PCj
PN0u0PN2u2‖2

L2
x,t

)
1
2 (

∑
Ck

‖PCk
PN1u1PN3u3‖2)

1
2

�(
∑
Cj

‖PCj
PN0u0‖2

L4
x,t

‖PN2u2‖2
L4

x,t
)

1
2 (

∑
Ck

‖PCk
PN1u1‖2

L4
x,t

‖PN3u3‖2
L4

x,t
)

1
2 (4.6)

�(
∑
Cj

‖PCj
PN0u0‖2

Y 0(I )
(N

1
2

2 ‖PN2u2‖L4
x,t

)2)
1
2 (

∑
Ck

‖PCk
PN1u1‖2

Y 0(I )
(N

1
2

3 ‖PN3u3‖L4
x,t

)2)
1
2

�‖PN0u0‖Y 0(I )‖PN1u1‖Y 0(I )‖PN2u2‖Z(I)‖PN2u2‖Z(I).

Interpolating (4.5) with (4.6) we obtain that

|
∫

PN0u0PN1 ũ1PN2 ũ2PN3 ũ3 dxdt |

�(
N3 + 1

)κ1(
N2 + 1

)κ1‖PN0u0‖Y−1(I )‖PN1u1‖X1(I )‖PN2u2‖Z′(I )‖PN2u2‖Z′(I ).

(4.7)
N1 N3 N0 N2
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Sum (4.7) over all N0 ∼ N1 ≥ N2 ≥ N3,

∑
N0∼N1≥N2≥N3

(
N3

N1
+ 1

N3
)κ1(

N2

N0
+ 1

N2
)κ1‖PN0u0‖Y−1(I )‖PN1u1‖X1(I )‖PN2u2‖Z′(I )‖PN2u2‖Z′(I )

� ‖u0‖Y−1(I )‖u1‖X1I‖u2‖Z′(I )‖u3‖Z′(I ).

Case 2: N0 ≤ N2 ∼ N1 ≥ N3

Similarly we have that

|
∫

PN0u0PN1 ũ1PN2 ũ2PN3 ũ3 dxdt |

�(
N3

N1
+ 1

N3
)κ (

N0

N2
+ 1

N0
)κ‖PN0u0‖Y 0(I )‖PN1u1‖Y 0(I )‖PN2u2‖X1(I )‖PN3u3‖X1(I ).

(4.8)

Similar with (4.6), we obtain that:

|
∫

PN0u0PN1 ũ1PN2 ũ2PN3 ũ3 dxdt |
�‖PN0u0‖Y 0(I )‖PN1u1‖Y 0(I )‖PN2u2‖Z(I)‖PN3u3‖Z(I).

(4.9)

We interpolate (4.8) with (4.9) and sum over N0 ≤ N2 ∼ N1 ≥ N3. Then we have that

∑
N0≤N2∼N1≥N3

|
∫

PN0u0PN1 ũ1PN2 ũ2PN3 ũ3 dxdt |

�‖PN0u0‖Y−1(I )‖PN1u1‖X1(I )‖PN2u2‖Z′(I )‖PN3u3‖Z′(I ).

Next we summarize these two cases and similarly consider N1 ≥ N3 ≥ N2, N2 ≥ N1 ≥ N3, 
N2 ≥ N3 ≥ N1, N3 ≥ N1 ≥ N2, and N3 ≥ N2 ≥ N1, we can get the desired estimate (4.3).

In particular, if there exist constants A, B > 0, such that u1 = P>Au1, u2 = P>Au2 and u3 =
P<Bu3, then we only consider the sum when N1 ≥ N2 � N3 and N2 ≥ N1 � N3. So we get the 
estimate (4.4). �
Proposition 4.5 (Local well-posedness). Assume that E > 0 is fixed. There exists δ0 = δ0(E)

such that if

‖eit�u0‖Z′(I ) < δ

for some δ ≤ δ0, some interval 0 ∈ I with |I | ≤ 1 and some function u0 ∈ H 1(T 4) satisfying 
‖u0‖H 1 ≤ E, then there exists a unique strong solution to (1.1) u ∈ X1(I ) such that u(0) = u0. 
Besides

‖u − eit�u0‖X1(I ) ≤ δ
5
3 . (4.10)
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Proof. Consider the set

S = {u ∈ X1(I ) : ‖u‖X1(I ) ≤ 2E, ‖u‖Z′(I ) ≤ a},

the mapping


(v) = eit�u0 − iμ

t∫
0

ei(t−s)�v(s)|v(s)|2 ds.

For u, v ∈ S, by Proposition 4.4, there exists a constant C > 0, we have that

‖
(u) − 
(v)‖X1(I )

≤C
(‖u‖X1(I ) + ‖v‖X1(I )

) (‖u‖Z′(I ) + ‖v‖Z′(I )

)‖u − v‖X1(I )

≤CEa‖u − v‖X1(I )

Similarly, using Proposition 3.16 and nonlinear estimate Proposition 4.4, we also obtain that

‖
(u)‖X1(I ) ≤ ‖
(0)‖X1(I ) + ‖
(u) − 
(0)‖X1(I )

≤ ‖u0‖H 1 + CEa2

and

‖
(u)‖Z′(I ) ≤ ‖
(0)‖Z′(I ) + ‖
(u) − 
(0)‖Z′(I )

≤ δ + CEa2.

Now, we choose a = 2δ and we let δ0 = δ0(E) be small enough. We see that 
 is a contraction 
on S, so we have a fixed point u. And it’s easy to check (4.10) and uniqueness in X1(I ). �

As a consequence, we also get a global well-posedness result with small initial data which 
will be used in Section 7. Note that the proof of the following proposition is analogous to the 
proof in Herr-Tataru-Tzvetkov [40], hence I will skip the proof of the following proposition.

Proposition 4.6 (Small data global well-posedness). If ‖φ‖H 1(T 4) = δ ≤ δ0, then the unique 
strong solution with initial data φ is global and satisfies

‖u‖X1([−2,2]) ≤ 2δ

and moreover

‖u − eit�φ‖X1([−2,2]) � δ2.

Lemma 4.7 (Z-norm controls the global existence). Assume that I ⊆ R is a bounded open inter-
val.
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1. If E is a nonnegative finite number, that u is a strong solution of (1.1) and

‖u‖L∞
t (I,H 1) ≤ E.

Then, if

‖u‖Z(I) < +∞
there exists an open interval J with Ī ⊂ J such that u can be extended to a strong solution of 
(1.1) on J , besides

‖u‖X1(I ) ≤ C(E,‖u‖Z(I)).

2. (GWP with a priori bound) Assume C is some positive finite number and we have a priori 
bound ‖u‖Z(I) < C, for any solution u of (1.1) in the interval I , then this IVP (1.9) is well-
posedness on I . (In particular, if u blows up in finite time, then u blows up in the Z-norm.)

Proof. Suppose I = (0, T ). For any ε > 0, there exists T1 < T such that ‖u‖Z(T1,T ) ≤ ε.
By the continuity arguments of h(s) = ‖ei(t−T1)�u(T1)‖Z′(T1,T1+s) where T1 ≥ T − 1 such 

that ‖u‖Z(T1,T ) ≤ ε. Then combined the part (1) and Proposition 4.5, it’s clear to show the part 
(2). �
Proposition 4.8 (Stability). Assume I is an open bounded interval, μ ∈ [−1, 1], and ũ ∈ X1(I )

satisfies the approximate Schrödinger equation

(i∂t + �)ũ = μũ|ũ|2 + e, on T 4 × I. (4.11)

Assume in addition that

‖ũ‖Z(I) + ‖ũ‖L∞
t (I,H 1(T 4) ≤ M, (4.12)

for some M ∈ [1, ∞]. Assume t0 ∈ I and u0 ∈ H 1(T 4) is such that the smallness condition:

‖u0 − ũ(0)‖H 1(T 4) + ‖e‖N(I) ≤ ε (4.13)

holds for some 0 < ε < ε1, where ε1 ≤ 1. ε1 = ε1(M) > 0 is a small constant.
Then there exists a strong solution u ∈ X1(I ) of the NLS

(i∂t + �)u = μu|u|2,
such that u(t0) = u0 and

‖u‖X1(I ) + ‖ũ‖X1(I ) ≤ C(M),

‖u − ũ‖X1(I ) ≤ C(M)ε.
(4.14)

Proof. First, we need to show the short time Stability, which follows a similar proof as the proof 
of Proposition 4.5. Then, by using Lemma 4.7, we extend to the entire time interval. �
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5. Euclidean profiles

In this section, we introduce the Euclidean profiles which is linear and nonlinear solutions on 
T 4 concentrated at a point. The Euclidean profiles perform similar with the solutions in the Eu-
clidean space R4 and hence Euclidean profiles hold some similar well-posedness and scattering 
properties by using the theory for NLS in Euclidean space R4 as a black box and Dodson [20].

We fix a spherically symmetric function η ∈ C∞
0 (R4) supported in the ball of radius 2 and 

equal to 1 in the ball of radius 1. Given φ ∈ Ḣ 1(R4) and a real number N ≥ 1 we define

QNφ ∈ H 1(R4), (QNφ)(x) = η(x/N
1
2 )φ(x),

φN ∈ H 1(R4), φN(x) = N(QNφ)(Nx),

fN ∈ H 1(T 4), fN(y) = φN(
−1(y)),

(5.1)

where 
 : {x ∈ R4 : |x| < 1} → O0 ⊆ T 4, 
(x) = x.
The cutoff function η( x

N1/2 ) is useful to concentrate our focus on the range of a point, and the 
choice of the order 1/2 actually can be chosen any number between 1/2 and 1.

Thus QNφ is a compactly supported modification of profile φ. φN is a Ḣ 1-invariant rescaling 
of QNφ, and fN is the function obtained by transferring φN to a neighborhood of 0 in T 4.

Theorem 5.1 (GWP of the focusing cubic NLS in R4 [20]). Assume φ ∈ Ḣ 1(R4), under the 
assumption that

sup
t∈lifespan of v

‖v(t)‖Ḣ 1(R4) < ‖W‖Ḣ 1(R4),

then there is a unique global solution v ∈ C(R : Ḣ 1(R4)) of the initial-value problem

(i∂t + �)v = −v|v|2, v(0) = φ, (5.2)

and

‖∇R4v‖(L∞
t L2

x∩L2
t L

4
x)(R×R4) ≤ C(‖φ‖Ḣ 1(R4),ER4(φ)) < +∞. (5.3)

Moreover, this solution scatters in the sense that there exists φ±∞ ∈ Ḣ 1(R4), such that

‖v(t) − eit�φ±∞‖Ḣ 1(R4) → 0, as t → ±∞. (5.4)

Besides, if φ ∈ H 5(R4) then v ∈ C(R : H 5(R4)) and

sup
t∈R

‖v(t)‖H 5(R4) �‖φ‖
H5(R4)

1. (5.5)

Remark 5.2 (Persistence of regularity). Consider φ ∈ H 5(R4), and v ∈ C(R : Ḣ 1(R4)) is a 
solution of (1.1) with v(0) = φ and satisfying

‖∇R4v‖ ∞ 2 2 4 4 < +∞.
(Lt Lx∩Lt Lx)(R×R )
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So we can have a finite partition {Ik}Kk=1 of R, (Ik = [tk−1, tk) and tK = ∞) s.t. ‖∇R4v‖
L4

t L
8/3
x

< 1
2 , for each k, we have that

‖v(t)‖L∞
t (Ik :H 5(R4)) ≤ ‖ei(t−tk−1)�v(tk−1)‖H 5 + ‖〈∇〉5|v(t)|2v(t)‖

L2
t L

4/3
x (Ik)

≤‖v(tk−1)‖H 5
x

+ ‖〈∇〉5v‖L∞
t L2

x(Ik)
‖v(t)‖2

L4
t L

8
x(Ik)

≤‖v(tk−1)‖H 5 + 1

4
‖v‖L∞

t (Ik :H 5(R4))

which implies ‖v(t)‖L∞
t (Ik :H 5(R4)) ≤ 4

3‖v(tk−1)‖H 5 for each 1 ≤ k ≤ K , so ‖v(t)‖L∞
t (R:H 5

x (R4))

< ∞.

Theorem 5.3. Assume T0 ∈ (0, ∞), and μ ∈ {−1, 0, 1} are given, and define fN as (5.1) above. 
Suppose that if v is a solution of (5.2) then v satisfies

sup
t∈lifespan of v

‖v(t)‖Ḣ 1(R4) < ‖W‖Ḣ 1(R4), when μ ∈ {−1}.

Then the following conclusions hold:

1. There is N0 = N0(φ, T0) sufficiently large such that for any N ≥ N0 there is a unique solution 
UN ∈ C((−T0N

−2, T0N
−2) : H 1(T 4)) of the initial value problem

(i∂t + �)UN = −UN |UN |2, UN(0) = fN . (5.6)

Moreover, for any N ≥ N0,

‖UN‖X1(−T0N
−2,T0N

−2) �ER4 (φ),‖φ‖
Ḣ1(R4)

1. (5.7)

2. Assume ε1 ∈ (0, 1] is sufficiently small (depending on only ER4φ), φ′ ∈ H 5(R4), and ‖φ −
φ′‖Ḣ 1(R4) ≤ ε1. Let v′ ∈ C(R : H 5(R4)) denote the solution of the initial value problem

(i∂t + �)v′ = −v′|v′|2, v′(0) = φ′. (5.8)

For R, N ≥ 1, we define

v′
R(x, t) = η(x/R)v′(x, t), (x, t) ∈ R4 × (−T0, T0)

v′
R,N(x, t) = Nv′

R(Nx,N2t), (x, t) ∈ R4 × (−T0N
−2, T0N

−2)

VR,N(y, t) = v′
R,N(
−1(y), t), (y, t) ∈ T 4 × (−T0N

−2, T0N
−2).

(5.9)

Then there exists R0 ≥ 1 (depending on T0, φ′ and ε1), for any R ≥ R0, we obtain that

lim sup‖UN − VR,N‖X1(−T0N
−2,T0N

−2) �ER4 (φ),‖φ‖
Ḣ1(R4)

ε1. (5.10)

N→∞
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VR,N can be considered as solve NLS firstly, then cutoff and scaling, while UN can be con-
sidered as cutoff and scaling firstly, then solve NLS.

Proof. We show Part (1) and Part (2) together, by Proposition 4.8 (stability).
Using Theorem 5.1, we know v′ globally exists and satisfying

‖∇R4v
′‖(L∞

t L2
x∩L2

t L
4
x)(R×R4) � 1,

and

sup
t∈R

‖v′(t)‖H 5(R4) �‖φ′‖
H5(R4)

1. (5.11)

Let’s consider v′
R(x, t) = η(x/R)v′(x, t).

(i∂t + �R4)v
′
R = (i∂t + �R4)(η(x/R)v′(x, t))

=η(x/R)(i∂t + �R4)v
′(x, t) + R−2v′(x, t)(�R4η)(x/R) + 2R−1

4∑
j=1

∂j v
′(x, t)∂j η(x/R),

which implies

(i∂t + �R4)v
′
R = λ|v′

R|2v′
R + eR(x, t),

where eR(x, t) = μ(η(x/R) − η3(x/R))v′|v′|2 + R−2v′(x, t)(�R4η)(x/R) +
2R−1 ∑4

j=1 ∂j v
′(x, t)∂j η(x/R). After scaling, we get

(i∂t + �R4)v
′
R,N = μ|v′

R,N |2v′
R + eR,N(x, t),

where eR,N(x, t) = N3eR(Nx, N2t). With VR,N(y, t) = v′
R,N(
−1(y), t) and taking N ≥ 10R, 

we obtain that

(i∂t + �R4)VR,N(y, t) = μ|VR,N |2VR,N + ER,N(y, t), (5.12)

where ER,N(y, t) = eR,N (
−1(y), t). By Proposition 4.8, we need following conditions:

1. ‖VR,N‖L∞
t ([−T0N

−2,T0N
−2]:H 1(T 4)) + ‖VR,N‖Z([−T0N

−2,T0N
−2]) ≤ M ;

2. ‖fN − VR,N(0)‖H 1(T 4) ≤ ε;
3. ‖ER,N‖N([−T0N

−2,T0N
−2]) ≤ ε.

We prove all 3 conditions as follows:
Case 1: ‖VR,N‖L∞

t ([−T0N
−2,T0N

−2]:H 1(T 4)) + ‖VR,N‖Z([−T0N
−2,T0N

−2]) ≤ M .
Since v′(x, t) globally exists, VR,N(y, t) also globally exists. Given T0 ∈ (0, ∞),
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sup
t∈[−T0N

−2,T0N
−2]

‖VR,N(t)‖H 1(T 4) ≤ sup
t∈[−T0N

−2,T0N
−2]

‖v′
R,N(t)‖H 1(R4)

= sup
t∈[−T0N

−2,T0N
−2]

1

N
‖v′

R(N2t)‖L2(R4) + ‖v′
R(N2t)‖Ḣ 1(R4)

≤ sup
t∈[−T0,T0]

‖v′
R‖H 1(R4) = sup

t∈[−T0,T0]
‖η(x/R)v′(x, t)‖H 1(R4)

�‖v′(x, t)‖H 1(R4) ≤ ‖φ′(t)‖H 5(R4).

By Littlewood-Paley theorem and Sobolev embedding, we obtain that

‖VR,N‖Z([−T0N
−2,T0N

−2]) = sup
J⊂[−T0N

−2,T0N
−2]

(
∑

M dyadic

M2‖PMVR,N‖4
L4(J×T 4)

)
1
4

≤ sup
J⊂[−T0N

−2,T0N
−2]

‖(
∑
M

(‖〈1 − �〉 1
4 PMVR,N)2)

1
2 ‖L4(J×T 4)

� sup
J⊂[−T0N

−2,T0N
−2]

‖〈1 − �〉 1
4 VR,N‖L4(J×T 4)

≤ sup
J⊂[−T0N

−2,T0N
−2]

‖〈1 − �〉 1
2 VR,N‖

L4
t (J )L

8
3
x (T 4)

�‖v′
R‖

L4
t L

8
3
x ([−T0,T0]×R4)

+ ‖∇R4v
′
R‖

L4
t L

8
3
x ([−T0,T0]×R4)

.

Since ‖v′
R‖

L4
t L

8
3
x ([−T0,T0]×R4)

+ ‖∇R4v′
R‖

L4
t L

8
3
x ([−T0,T0]×R4)

� supt ‖v′(t)‖H 5 , by (5.11) we 

obtain

‖VR,N‖Z([−T0N
−2,T0N

−2]) �‖φ′‖
H5(R4)

1.

Case 2: ‖fN − VR,N(0)‖H 1(T 4) ≤ ε.
By Hölder inequality, we have that

‖fN − VR,N(0)‖H 1(T 4) ≤ ‖φN(
−1(y)) − φ′
R,N(
−1(y))‖Ḣ 1(T 4)

≤ ‖QNφ − φ′
R‖Ḣ 1(R4)

≤ ‖η(
x

N
1
2

)φ(x) − φ(x)‖Ḣ 1(R4) + ‖φ − φ′‖Ḣ 1(R4)

+ ‖η(
x

N
1
2

)φ′(x) − φ′(x)‖Ḣ 1(R4).

With N ≥ 10R, and R > R0, R0 large enough, we have that

‖fN − VR,N(0)‖H 1(T 4) ≤ 2ε1.

Case 3: ‖ER,N‖N([−T0N
−2,T0N

−2]) ≤ ε.
Next, by Proposition 3.12 and scaling invariance, we obtain that
776



H. Yue Journal of Differential Equations 280 (2021) 754–804
‖ER,N‖N([−T0N
−2,T0N

−2]) =
∥∥∥∥∥∥

t∫
0

ei(t−s)�ER,N(s) ds

∥∥∥∥∥∥
X1([−T0N

−2,T0N
−2])

≤ sup
‖u0‖Y−1 =1

‖|∇|−1u0‖L∞
t L2

x
‖|∇|ER,N‖L1

t L
2
x

≤ sup
‖u0‖Y−1 =1

‖u0‖Y−1‖|∇|ER,N‖L1
t L

2
x([−T0N

−2,T0N
−2]×T 4)

= ‖∇R4 eR‖L1
t L

2
x([−T0,T0]×R4).

For the |∇R4 eR(x, t)|, we have the following estimate

|∇R4 eR(x, t)| = |∇R4(μ(η(x/R) − η3(x/R)))v′(x, t)|v′(x, t)|2

+ R−2v′(x, t)(�R4η)(
x

R
) + 2R−1(

4∑
j=1

∂j v
′(x, t)∂j η(x/R)|

≤ |∇R4(η(
x

R
) − η(

x

R
)3)v′(x, t)|v′(x, t)|2| + 3|(η(

x

R
) − η(

x

R
)3)∇R4v

′(x, t)|v′(x, t)|2|

+ R−3|v′(x, t)∇R4�R4η(
x

R
)| + R−2|∇R4v

′(x, t)(�R4η)(
x

R
)| + R−1|�R4v

′(x, t)∇R4η(
x

R
)|

�‖φ′‖
H5(R4)

1[R,2R](|x|) (|v′(x, t)| + |∇R4v
′(x, t)|) + 1

R

(
|〈∇R4〉2v′(x, t)|

)
.

Since ‖∇2
R4v

′(x, t)‖L∞
x

�‖φ′‖
H5 1, ‖∇R4v′(x, t)‖L∞

x
�‖φ′‖

H5 1, and ‖v′(x, t)‖L∞
x

�‖φ′‖
H5 1

(by Sobolev embedding), we obtain that

‖∇R4 eR‖L1
t L

2
x([−T0,T0]×R4) =

T0∫
−T0

(

∫
R4

|∇R4 eR|dx)
1
2 dt

≤
T0∫

−T0

⎛⎜⎝∫
R4

1[R,2R](|x|)(|v′(x, t)|2 + |∇R4v
′(x, t)|2) dx + 1

R2

∫
R4

|〈∇R4〉2v′(x, t)|2 dx

⎞⎟⎠
1
2

dt

�‖φ′‖
H5 2T0

⎛⎜⎝∫
R4

1[R,2R](|x|)〈∇R4〉2v′(x, t)|2 dx

⎞⎟⎠
1
2

+ 1

R
→ 0, as R → ∞.

So we can obtain that

‖∇ER,N‖L1
t L

2
x([−T0N

−2,T0N
−2]×T 4) < ε1,

where R > R0, and R0 large enough. By checking all three conditions above, we have the desired 
result. �
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Next, we prove an extinction lemma as Ionescu and Pausader [43] did in their paper about 
energy critical NLS on T 3. Here we prove the corresponding extinction lemma on T 4 which is 
one of the essential ingredients of the whole proof.

Lemma 5.4 (Extinction lemma). Let φ ∈ Ḣ 1(R4), and define fN as in (5.1). For any ε > 0, there 
exist T = T (φ, ε) and N0(φ, ε) such that for all N ≥ N0, there holds that

‖eit�fN‖Z([T N−2,T −1]) � ε.

Proof. For M ≥ 1, we define

KM(x, t) =
∑
ξ∈Z4

e−i[t |ξ |2+x·ξ ]η(ξ/M) = eit�P≤Mδ0.

We know from [Lemma 3.18, Bourgain [3]] that KM satisfies

|KM(x, t)| �
4∏

i=1

(
M

√
qi(1 + M|t/(λi) − ai/qi | 1

2 )

)
, (5.13)

if ai and qi satisfying t
λi

= ai

qi
+ βi , where qi ∈ {1, · · · , M}, ai ∈ Z, (ai, qi) = 1 and |βi | ≤

(Mqi)
−1 for all i = 1, 2, 3, 4.

From this, we conclude that for any 1 ≤ S ≤ M ,

‖KM(x, t)‖L∞
x,t (T 4×[SM−2,S−1]) � S−2M4. (5.14)

This follows directly from (5.13) and Dirichlet’s approximation lemma which is stated as 
follows: For any real number α, and any positive integer N , there exist integers p and q such 
1 ≤ q ≤ N and |qα − p| < 1

N
.

Assume that |t | ≤ 1
S

. For each i ∈ {1, 2, 3, 5}, t
λi

= ai

qi
+ βi and |βi | ≤ 1

Mqi
≤ 1

M
≤ 1

S
. So we 

obtain that ∣∣∣∣ai

qi

∣∣∣∣ ≤ 2

S
=⇒ qi ≥ ai

2
.

Therefore we have that either qi ≥ 1
2S (ai ≥ 1) or ai = 0 for each i. If qi ≥ 1

2S (ai ≥ 1), then

M
√

qi(1 + M|t/(λi) − ai/qi | 1
2 )

� M√
qi

� S− 1
2 M.

If ai = 0, then

M
√

qi(1 + M|t/(λi) − ai/qi | 1
2 )

� M√
qiM|t |1/2 � |t |− 1

2 ≤ S− 1
2 M.

So we have that |KM(x, t)| � S−2M4. By the definition as in (5.1), to prove the extinction 
lemma, we may assume that φ ∈ C∞(R4), we claim that
0
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‖fN‖L1(T 4) �φ N−3

‖PKfN‖L2(T 4) �φ

(
1 + K

N

)−10

N−1.
(5.15)

Let’s consider the bound of ‖fN‖L1(T 4):

‖fN‖L1(T 4) = ‖φN(x)‖L1(R4) ≤ 1

N3 ‖φ‖L1(R4).

Then we consider the bound of ‖PKfN‖L2(T 4):

‖PKfN‖L2(T 4) == 1

N
‖PK

N
(η(

x

N
1
2

)φ(x))‖L2(R4) ≤ 1

N

(
1 + K

N

)−10

‖φ‖H 10 .

By Lemma 3.18, for p > 3 we obtain that

‖eit�PKfN‖L
p
x,t (T 4×[−1,1]) ≤ K

2− 6
p

(
1 + K

N

)−10

N−1‖φ‖H 10 . (5.16)

Then let’s estimate ‖eit�fN‖Z([T N−2,T −1]). We know that

‖eit�fN‖Z([T N−2,T −1]) = sup
J⊂[T N−2,T −1]

(∑
K

K2‖PKeit�fN‖4
L4(J×T 4)

) 1
4

To estimate it, we decompose the sum above into three parts:⎛⎜⎝ ∑
K≤NT

− 1
100

+
∑

K≥NT
1

100

+
∑

NT
− 1

100 ≤K≤NT
1

100

⎞⎟⎠K2‖PKeit�fN‖4
L4([T N−2,T −1]×T 4)

.

Case 1: K ≤ NT − 1
100 :

By (5.16), we obtain that∑
K≤NT

− 1
100

K2‖PKeit�fN‖4
L4([T N−2,T −1]×T 4)

�φ(NT − 1
100 )4N−4 = T − 1

25 .

Case 2: K ≥ NT
1

100 :
By (5.16), we obtain that

∑
K≥NT

1
100

K2‖PKeit�fN‖4
L4([T N−2,T −1]×T 4)

≤
∑

K≥NT
1

100

K4
(

1 + K

N

)−40

N−4‖φ‖H 10

�φ T − 4
100 .
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Case 3: NT − 1
100 ≤ K ≤ NT

1
100 :

Let’s consider K ∈ [NT − 1
100 , NT

1
100 ] and set M ∼ max (K,N) and S ∼ T .

‖eit�PKfN‖L∞
x,t (T 4×[T N−2,T −1]) = ‖KM ∗ fN‖L∞

x,t (T 4×[T N−2,T −1])
≤ ‖KM‖L∞

x,t (T 4×[T N−2,T −1])‖fN‖
L1

x,t (T
4)

�φ T −2K4N−3 ≤ T −2+ 1
25 N.

(5.17)

‖eit�PNfN‖L3
x,t (T 4×[T N−2,T −1]) �φ Kε

(
1 + K

N

)−10

N−1

≤ N−1+εT − ε
100 .

(5.18)

By interpolating (5.17) with (5.18), we have that

‖eit�PKfN‖L4
x,t ([T N−2,T −1]) �φ

(
N−1+εT

ε
100

) 3
4
(
T −2+ 1

25 N
) 1

4 ≤ N− 1
4 T − 1

100 . (5.19)

Summing K2‖PKeit�fN‖4
L4([T N−2,T −1]×T 4)

over K , we obtain that

∑
NT

− 1
100 ≤K≤NT

1
100

K2‖PKeit�fN‖4
L4([T N−2,T −1]×T 4)

≤
∑

NT
− 1

100 ≤K≤NT
1

100

K2(N− 1
4 T − 1

100 )4

≤
∑

NT
− 1

100 ≤K≤NT
1

100

K2N−2T − 1
25

≤ T − 1
50 .

Summarizing all three cases by setting T large enough, we hold the estimate. �
Let’s now consider f ∈ L2(T 4), t0 ∈R and x0 ∈ T 4,

(πx0f )(x) := f (x − x0),

(�t0,x0)f (x) := (πx0e
−it0�f )(x).

As in (5.1), given φ ∈ Ḣ 1(R4) and N ≥ 1, we define

TNφ(x) := Nφ̃(N
−1(x)), where φ̃(y) := η(y/N
1
2 )φ(y)

and we have that TN : Ḣ 1(R4) → H 1(R4) is a linear operator with ‖TNφ‖H 1(T 4) � ‖φ‖Ḣ 1(R4).

Definition 5.5. Let F̃e denote the set of renormalized Euclidean frames

F̃e :={(Nk, tk, xk)k≥1 : Nk ∈ [1,∞), tk → 0, xk ∈T 4, Nk → ∞
and either tk = 0 for any k ≥ 1 or lim N2

k |tk| = ∞}.

k→∞
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Proposition 5.6 (Euclidean profiles). Assume that O = (Nk, tk, xk)k ∈ F̃e and φ ∈ Ḣ 1(R4). Sup-
pose that if v is a solution of (5.2) with v(0) = φ then v satisfies

sup
t∈lifespan of v

‖v(t)‖Ḣ 1(R4) < ‖W‖Ḣ 1(R4).

Then

1. there exists τ = τ(φ) such that for k large enough (depending only on φ and O) there is a 
nonlinear solution Uk ∈ X1(−τ, τ) of the initial value problem (1.9) with initial data Uk(0) =
�tk,0(TNk

φ) and

‖Uk‖X1(−τ,τ ) �ER4 (φ),‖φ‖
Ḣ1(R4)

1; (5.20)

2. there exists a Euclidean solution u ∈ C(R : Ḣ 1(R4)) of

(i∂t + �R4)u = −u|u|2

with scattering data φ±∞ defined as Theorem 5.1 such that the following holds, up to a 
subsequence: for any ε > 0, there exists T (φ, ε) such that for all T ≥ T (φ, ε), there exists 
R(φ, ε, T ) such that for all R ≥ R(φ, ε, T ), there holds that

‖Uk − ũk‖X1({|t−tk |≤T N−2
k }∩{|t |<T −1}) ≤ ε, (5.21)

for k large enough, where

(π−xk
ũk)(x, t) = Nkη(Nk


−1(x)/R)u(Nk

−1(x),N2

k (t − tk)). (5.22)

In addition, up to a subsequence,

‖Uk(t) − �tk−t,xk
TNk

φ±∞‖
X1({±(t−tk)≥±T N−2

k }∩{|t |<T −1}),≤ ε, (5.23)

for k large enough (depending on φ, ε, T , and R).

Proof. By the statement, it is equivalent to prove the case when xk = 0.
Part (1): First, for k large enough, we can make

‖φ − η(
x

N
1
2

)φ‖Ḣ 1(R4) ≤ ε1.

For each Nk , we choose T0,Nk
= τN2

k (T0,Nk
is the coefficient in Lemma 5.3). For each T0,Nk

, we 
make Rk large enough to make Theorem 5.3 work. (Note: in this case, Rk determined by T0,Nk

as in the proof of Theorem 5.3.)
Part (2): Let’s consider first case in Euclidean frame: tk = 0 for all k. (5.20) is directly from 
Theorem 5.3, by choosing k, R for any fixed T large enough.
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To prove (5.21), we need to choose T (φ, δ) large enough, to make sure

‖∇R4u‖L3
x,t (R4×{|t |>T (φ,δ)}) ≤ δ.

By Theorem 5.1, we obtain that

‖u(±T (φ, δ)) − e±iT (φ,δ)�φ±∞‖Ḣ 1(R4) ≤ δ,

which implies

‖UNk
(±T N−2

k ) − �−±T ,xk
TNk

φ±∞‖H 1(T 4) ≤ δ. (5.24)

By Proposition 3.15 and Proposition 3.16, we have

‖eit�
(
UNk

(±T N−2
k ) − �−±T ,xk

TNk
φ±∞)

‖X1(|t |<T −1) ≤ δ. (5.25)

By Proposition 4.5, we obtain that

‖UNk
− eit�UNk

(±T N−2
k )‖X1 ≤ δ, (5.26)

and combining (5.25) and (5.26), we have

‖UNk
− �−t,xk

TNk
φ±∞‖

X1({±t≥±T N−2
k }∩{|t |<T −1}) ≤ ε,

when we choose δ small enough.
The second case: N2

k |tk| → ∞.

Uk(0) = �tk,0(TNk
φ)

= e−itk�

(
N

1
2
k φ̃(Nk


−1(x))

)
= e−itk�

(
N

1
2
k η(N

1
2
k 
−1(x))φ(Nk


−1(x))

)
.

By existence of wave operator of NLS, we know the following initial value problem is global 
well-posed, so there exists v satisfying:{

(i∂t + �R4)v = μv|v|2,
limt→−∞ ‖v(t) − eit�φ‖Ḣ 1(R4) = 0.

(5.27)

We set

ṽk(t) = N
1
2
k η(Nk


−1(x)/R)v(Nk

−1(x),N2

k t),

so we have ṽk(−tk) = N
1
2 η(Nk


−1(x)/R)v(Nk

−1(x), −N2tk).
k k
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For k and R large enough,

‖ṽk(−tk) − e−itk�N
1
2
k η(N

1
2
k 
−1(x))φ(Nk


−1(x))‖Ḣ 1(T 4)

≤‖η(
x

N
1
2
k

)v(x,−N2
k tk) − eitkN

2
k �η(

x

N
1
2
k

)φ(x)‖Ḣ 1(R4)

≤ε.

So Vk(t) solves initial value problem (1.9) in T 4, with initial data Vk(0) = Ṽk(0), which 
implies Vk(t) exists in [−δ, δ], and ‖Vk(t) − Ṽk(t)‖X1([−δ,δ]) � ε.

By the stability property (Proposition 4.8), ‖Uk − Vk‖X1([−δ,δ]) → 0, as k → ∞. �
The following corollary (Corollary 5.7) decomposes the nonlinear Euclidean profiles Uk de-

fined in the Proposition 5.6. This corollary follows closely in a part of the proof of Lemma 6.2 
in [43]. I state it here as a corollary because the almost orthogonality of nonlinear profiles 
(Lemma 6.6) heavily relies on this decomposition lemma (Corollary 5.7).

Corollary 5.7 (Decomposition of the nonlinear Euclidean profiles Uk). Consider Uk is the non-
linear Euclidean profiles w.r.t. O = (Nk, tk, xk)k ∈ F̃e defined above. For any θ > 0, there exist 
T 0

θ sufficiently large such that for all Tθ ≥ T 0
θ and Rθ sufficiently large such that for all k large 

enough (depending on Rθ ) we can decompose Uk as following:

1
(−T −1

θ ,T −1
θ )

(t)Uk = ω
θ,−∞
k + ω

θ,+∞
k + ωθ

k + ρθ
k ,

and ωθ,±∞
k , ωθ

k , and ρθ
k satisfy the following conditions:

‖ωθ,±∞
k ‖

Z′(−T −1
θ ,T −1

θ )
+ ‖ρθ

k ‖
X1(−T −1

θ ,T −1
θ )

≤ θ,

‖ωθ,±∞
k ‖

X1(−T −1
θ ,T −1

θ )
+ ‖ωθ

k‖X1(−T −1
θ ,T −1

θ )
� 1,

ω
θ,±∞
k = P≤RθNk

ω
θ,±∞
k

|∇m
x ωθ

k | + (Nk)
−21Sθ

k
|∂t∇m

x ωθ
k | ≤ Rθ(Nk)

|m|+11Sθ
k
, 0 ≤ |m| ≤ 10,

(5.28)

where

Sθ
k := {(x, t) ∈ T 4 × (−Tθ , Tθ ) : |t − tk| < Tθ(Nk)

−2, |x − xk| ≤ Rθ(Nk)
−1}.

Proof. By Proposition 5.6, there exists T (φ, θ4 ), such that for all T ≥ T (φ, θ4 ), there exists 
R(φ, θ4 , T ) such that for all R ≥ R(φ, θ2 , T ), there holds that

‖Uk − ũk‖X1({|t−tk |≤T (Nk)
−2}∩{|t |<T −1}) ≤ θ

2
,

for k large enough, where
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(
π−xk

ũk

)
(x, t) = Nkη(Nk


−1(x)/R)u(Nk

−1(x),N2

k (t − tk)),

where u is a solution of (1.1) with scattering data φ±∞.
In addition, up to subsequence,

‖Uk − �tk−t,xk
TNk

φ±∞‖X1({±(t−tk)≥T (Nk)
−2}∩{|t |≤T −1}) ≤ θ

4
,

for k large enough (depending on φ, θ , T , and R).
Choose a sufficiently large Tθ > T (φ, θ4 ) based on the extinction lemma (Lemma 5.4), such 

that

‖eit��tk,xk
TNk

φ±∞‖
Z(Tθ (Nk)

−2,T −1
θ )

≤ θ

4

when k large enough.
And then we choose Rθ = R(φ, θ2 , Tθ ).
Denote:

1. ω
θ,±∞
k := 1{±(t−tk)≥Tθ (Nk)

−2,|t |≤T −1
θ }

(
�tk−t,xk

TNk
φθ,±∞)

,

where

‖φθ,±∞‖Ḣ 1(R4) � 1, φθ,±∞ = P≤Rθ (φ
θ,±∞),

which implies ωθ,±∞
k = P≤RθNθ ω

θ,±∞
k .

2. ωθ
k := ũk · 1Sθ

k
, where Sθ

k := {(x, t) ∈ T 4 × (−Tθ , Tθ ) : |t − tk| < Tθ(Nk)
−2, |x − xk| ≤

Rθ(Nk)
−1}.

By the stability property (Proposition 4.8) and Theorem 5.3, we can adjust ωθ
k and ωθ,±∞

k , 
with an acceptable error, to make

|∇m
x ωθ

k | + (Nk)
−2S

α,θ
k

|∂t∇m
x ωθ

k | ≤ Rθ(Nk)
|m|+11Sθ

k
, 0 ≤ |m| ≤ 10.

3. ρk := 1
(−T −1

θ ,T −1
θ )

(t)Uα
k − ωθ

k − ωθ,+∞ − ωθ,−∞.

By (5.21) and (5.23), we obtain that

‖ρθ
k ‖

X1({|t |<T −1
θ }) ≤ θ

2
,

and then we have

‖ωθ,±∞
k ‖

Z′(−T −1
θ ,T −1

θ )
+ ‖ρθ

k ‖
X1(−T −1

θ ,T −1
θ )

≤ θ,

‖ωθ,±∞‖ 1 −1 −1 + ‖ωθ
k‖ 1 −1 −1 � 1. �
k X (−Tθ ,Tθ ) X (−Tθ ,Tθ )
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6. Profile decomposition

In this section, we construct the profile decomposition on T 4 for linear Schrödinger equations. 
The arguments and propositions in this section are almost identical to those in the Section 5 of 
[44], except for one more lemma (Lemma 6.6) about almost orthogonality of nonlinear profiles 
which is useful in the focusing case.

As in the previous section, given f ∈ L2(R4), t0 ∈ R, and x0 ∈T 4, we define:

(�t0,x0)f (x) := (e−it0�f )(x − x0)

TNφ(x) := Nφ̃(N
−1(x)),

where φ̃(y) := η(
y

N
1
2
)φ(y).

Observe that TN : Ḣ 1(R4) → H 1(T 4) is a linear operator with ‖TNφ‖H 1(T 4) � ‖φ‖Ḣ 1(R4).

Definition 6.1 (Euclidean frames).

1. We define a Euclidean frame to be a sequence Fe = (Nk, tk, xk)k with Nk ≥ 1, Nk → +∞, 
tk ∈ R, tk → 0, xk ∈ T 4. We say that two frames, (Nk, tk, xk)k and (Mk, sk, yk)k are orthogo-
nal if

lim
k→+∞

(
ln

∣∣∣∣ Nk

Mk

∣∣∣∣ + N2
k |tk − sk| + Nk |xk − yk|

)
= ∞.

Two frames that are not orthogonal are called equivalent.
2. If O = (Nk, tk, xk)k is a Euclidean frame and if φ ∈ Ḣ 1(R4), we define the Euclidean profile 

associated to (φ, O) as the sequence φ̃Ok
:

φ̃Ok
:= �tk,xk

(TNk
φ).

Proposition 6.2 (Equivalence of frames [44]). (1) If O and O′ are equivalent Euclidean frames, 
then there exists an isometry T : Ḣ 1(R4) → Ḣ 1(R4) such that for any profile φ̃O′

k
, up to a 

subsequence there holds that

lim sup
k→∞

‖T̃ φOk
− φ̃O′

k
‖H 1(T 4) = 0.

(2) If O and O′ are orthogonal Euclidean frames and φ̃Ok
, φ̃O′

k
are corresponding profiles, 

then, up to a subsequence:

lim
k→∞〈φ̃Ok

, φ̃O′
k
〉H 1×H 1(T 4) = 0; (6.1)

lim
k→∞〈|̃φOk

|2, |φ̃O′
k
|2〉L2×L2(T 4) = 0. (6.2)

The following proposition is the main statement of this section. We omit the proof of this 
proposition because it is similar to [44, Proposition 5.5].
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Proposition 6.3 (Profile decompositions). Consider {fk}k a sequence of functions in H 1(T 4)

and 0 < A < ∞ satisfying

lim sup
k→+∞

‖fk‖H 1(T 4) ≤ A

and a sequence of intervals Ik = (−Tk, T k) such that |Ik| → 0 as k → ∞. Up to passing to a 
subsequence, assume that fk ⇀ g ∈ H 1(T 4). There exists J ∗ ∈ {0, 1, ...} ∪ {∞}, and a sequence 
of profile ψ̃α

k := ψ̃α
Oα

k
associated to pairwise orthogonal Euclidean frames Oα and ψα ∈ H 1(R4)

such that extracting a subsequence, for every 0 ≤ J ≤ J ∗, we have

fk = g +
∑

1≤α≤J

ψ̃α
k + RJ

k (6.3)

where RJ
k is small in the sense that

lim sup
J→J ∗

lim sup
k→∞

‖eit�RJ
k ‖Z(Ik) = 0. (6.4)

Besides, we also have the following orthogonality relations:

‖fk‖2
L2 = ‖g‖2

L2 + ‖RJ
k ‖2

L2 + ok(1).

‖∇fk‖2
L2 = ‖∇g‖2

L2 +
∑
α≤J

‖∇R4ψ
α‖2

L2(R4)
+ ‖∇RJ

k ‖2
L2 + ok(1).

lim
J→J ∗ lim sup

k→∞

∣∣∣∣∣∣‖fk‖4
L4 − ‖g‖4

L4 −
∑
α≤J

‖ψ̃α
k ‖4

L4

∣∣∣∣∣∣ = 0.

(6.5)

Remark 6.4. g and ψ̃α
k for all α are called profiles. In addition, we call g is Scale-1-profile, and 

ψ̃α
k are called Euclidean profiles.

Remark 6.5 (Almost orthogonality of the energy). By (5.1), we have that ‖ψ̃α
k ‖L2(T 4) ≤

1
Nk

‖ψα‖L2(R4) → 0 as k → ∞ and ‖ψ̃α
k ‖2

Ḣ 1(T 4)
= 1

N
‖∇η( ·

N
1
2
)ψα‖2

L2(R4)
+‖η( ·

N
1
2
)ψα‖2

Ḣ 1(R4)
. 

Then above and (6.5), we know that

lim
J→J ∗ lim

k→∞

⎛⎝ ∑
1≤α≤J

E(ψ̃α
k ) + E(RJ

k ) + E(g) − E(fk)

⎞⎠ = 0.

Lemma 6.6 (Almost orthogonality of nonlinear profiles). Define Uα
k , Uβ

k as the maximal life-

span Ik solutions of (1.1) with initial data Uα
k (0) = ψ̃α

Oα
k
, Uβ

k (0) = ψ̃
β

Oβ
k

, where Oα and Oβ are 

orthogonal. And define G to be the solution of the maximal lifespan I0 of (1.1) with initial data 
G(0) = g. And 0 ∈ Ik and limk→∞ |Ik| = 0. Then

lim
k→∞ sup 〈Uα

k (t),U
β
k (t)〉Ḣ 1×Ḣ 1 = 0, lim

k→∞ sup 〈Uα
k (t),G(t)〉Ḣ 1×Ḣ 1 = 0. (6.6)
t∈Ik t∈Ik∩I0
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Proof. Set U0
k (0) = g and U0

k = G for all k, such that U0
k can be considered as a nonlinear 

profile with a trivial frame O = (1, 0, 0)k .
For any θ > 0, by the decomposition of the nonlinear profiles Uα and Uβ (Corollary 5.7), 

there exist Tθ,α , Rθ,α , Tθ,β , Rθ,β sufficiently large

Uα
k = ω

α,θ,−∞
k + ω

α,θ,+∞
k + ω

α,θ
k + ρ

α,θ
k ,

U
β
k = ω

β,θ,−∞
k + ω

β,θ,+∞
k + ω

β,θ
k + ρ

β,θ
k .

For U0
k , set U0

k := ω
α,θ,−∞
k + ω

α,θ,+∞
k + ω

α,θ
k + ρ

α,θ
k where ρ0,θ

k = ω
0,θ
k = 0 and ω0,θ,+∞ =

ω0,θ,−∞ = 1
2G. And by taking Tθ,0 large, it is easy to make ‖G‖Z′(−Tθ,0,Tθ,0) ≤ θ . So 

〈Uα
k (t), G(t)〉Ḣ 1×Ḣ 1 can be considered as a special case of 〈Uα

k (t), Uβ
k (t)〉Ḣ 1×Ḣ 1 when β = 0.

Since ρα,θ
k , ρβ,θ

k are the small terms with the X1-norm less than θ , for any fixed t ∈ Ik , it will 
suffice to consider the following three terms:

1. 〈ωα,θ,±∞
k , ωβ,θ,±∞

k 〉Ḣ 1×Ḣ 1 ;

2. 〈ωα,θ,±∞
k , ωβ,θ

k 〉Ḣ 1×Ḣ 1 ;

3. 〈ωα,θ
k , ωβ,θ

k 〉Ḣ 1×Ḣ 1 .

Case (1): 〈ωα,θ,±∞
k , ωβ,θ,±∞

k 〉Ḣ 1×Ḣ 1 .

By the constructions of ωα,θ,±∞
k , ωβ,θ,±∞

k in the proof of Lemma 5.7, we obtain that

ω
α,θ,±∞
k := 1{±(t−tαk )≥Tα,θ (Nα

k )−2,|t |≤T −1
α,θ }

(
�tαk −t,xα

k
TNα

k
φα,θ,±∞)

, (6.7)

ω
α,θ,±∞
k := 1{±(t−t

β
k )≥Tβ,θ (N

β
k )−2,|t |≤T −1

β,θ }
(
�

t
β
k −t,x

β
k

T
N

β
k

φβ,θ,±∞)
. (6.8)

For any fixed t ∈ Ik , we obtain that

〈ωα,θ,±∞
k (t),ω

β,θ,±∞
k (t)〉Ḣ 1×Ḣ 1 = 〈φα,θ,±∞

Oα
k

, φ
β,θ,±∞
Oβ

k

〉Ḣ 1×Ḣ 1 .

By (6.1) of Proposition 6.2, we obtain that

lim
k→∞ sup

t
〈ωα,θ,±∞

k (t),ω
β,θ,±∞
k (t)〉Ḣ 1×Ḣ 1 = 0.

Case (2): 〈ωα,θ,±∞
k , ωβ,θ

k 〉Ḣ 1×Ḣ 1 .

By the constructions of ωα,θ,±∞
k , ωβ,θ,±∞

k in the proof of Lemma 5.7, we obtain that

ω
β,θ
k := ũk

β · 1
S

β,θ
k

,

where Sβ,θ
k := {(x, t) ∈ T 4 × (−Tβ,θ , Tβ,θ ) : |t − t

β
k | < Tβ,θ (N

β
k )−2, |x − x

β
k | ≤ Rβ,θ (N

β
k )−1}

and ũk
β is defined in (2). Following a similar proof of the Case 4 in the proof of (8.1) in 

Lemma 7.3, we have that limk→∞ supt 〈ωα,θ,±∞
, ωβ,θ 〉 ˙ 1 ˙ 1 = 0.
k k H ×H
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Case (3): 〈ωα,θ
k , ωβ,θ

k 〉Ḣ 1×Ḣ 1 .
For ε > 0 small.

If Nα
k /Nβk + N

β
k /Nα

k ≤ ε−1000 and k is large enough then Sα,θ
k ∩ S

β,θ
k = ∅. (By the defini-

tion of orthogonality of frames, Nα
k /N

β
k + N

β
k /Nα

k ≤ ε−1000 implies (Nα
k )2|tαk − t

β
k | → ∞ or 

Nα
k |xα

k − x
β
k | → ∞, so Sα,θ

k ∩ S
β,θ
k = ∅.) In this case, ωα,θ

k ω
β,θ
k ≡ 0.

If Nα
k /N

β
k ≥ ε−1000/2. Denote that

ω
α,θ
k ω

β,θ
k = ω

α,θ
k ω̃

β,θ
k := ω

α,θ
k · (ωβ,θ

k 1(tαk −Tα,θ (Nα
k )−2,tαk +Tα,θ (Nα

k )−2)(t)).

By ε10Nα
k >> ε−10N

β
k and the Claim † in the proof of Lemma 8.2, we obtain that

〈ωα,θ
k ,ω

β,θ
k 〉Ḣ 1×Ḣ 1 ≤ 〈P≤ε10Nα

k
ω

α,θ
k ,ω

β,θ
k 〉Ḣ 1×Ḣ 1 + 〈P>ε10Nα

k
ω

α,θ
k ,P

>ε−10N
β
k

ω
β,θ
k 〉Ḣ 1×Ḣ 1

+ 〈P>ε10Nα
k
ω

α,θ
k ,ω

β,θ
k 〉Ḣ 1×Ḣ 1

� ε. �
7. Proof of the main theorems

It suffices to prove the solutions remain bounded in Z-norm on intervals of length at most 1. 
To obtain this, we run the induction on ‖u‖L∞

t Ḣ 1 (in the focusing case μ = −1).

Definition 7.1. Define

�(L, τ) = sup
u is a solution

of (1.9)

{‖u‖Z(I) : sup
t∈I

‖u(t)‖2
Ḣ 1(T 4)

< L, |I | ≤ τ },

where u is any strong solution of (1.9) with initial data u0 in interval I of length |I | ≤ τ .

It is easy to see that � is an increasing function of both L and τ , and moreover, by the 
definition we have the sublinearity of � in τ : �(L, τ + σ) ≤ �(L, τ) + �(L, σ). Hence we 
define

�0(L) = lim
τ→0

�(L, τ),

and for all τ , we have that �(L, τ) < +∞ ⇔ �0(L) < +∞. Finally, we define

Emax = sup{L : �0(L) < +∞}.

Theorem 7.2. Consider Emax defined above. Emax ≥ ‖W‖2
Ḣ 1(R4)

.

Then it is easy to check that Theorem 1.1 is true by Theorem 7.2. Hence it will suffice to prove 
Theorem 7.2.
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Proof of Theorem 7.2. Suppose for the contradiction argument that Emax < ‖W‖Ḣ 1(R4). By 
the definition of Emax , there exists a sequence of solutions uk such that

sup
t∈[−Tk,T

k]
‖u(t)‖Ḣ 1(T 4) → Emax, ‖uk‖Z(−Tk,0), ‖uk‖Z(0,T k) → +∞, (7.1)

for some Tk, T k → 0 as k → +∞. For the simplicity of notations, set

L(φ) := sup
t∈[−Tk,T

k]
‖uφ(t)‖2

Ḣ 1(T 4)
,

where uφ(t) is the solution of (1.1) with initial data uφ(0) = φ. By the Proposition 6.3, after 
extracting a subsequence, (7.1) gives a sequence of profiles ψ̃α

k , where α, k = 1, 2, · · · , and a 
decomposition

uk(0) = g +
∑

1≤α≤J

ψ̃α
k + RJ

k ,

satisfying

lim sup
J→∞

lim sup
k→∞

‖eit�RJ
k ‖Z(Ik) = 0. (7.2)

And moreover the almost orthogonality in the Proposition 6.3 and the almost orthogonality of 
nonlinear profiles (Lemma 6.6), we obtain that

L(α) := lim
k→+∞L(ψ̃α

Oα
k
) ∈ [0,Emax],

lim
J→J ∗

⎛⎝ ∑
1≤α≤J

L(α) + lim
k→∞L(RJ

k )

⎞⎠ + L(g) = Emax.

(7.3)

Case 1: g �= 0 and no any Euclidean profiles.
There is no any Euclidean profiles, and by Remark 2.6, ‖g‖H 1(T 4) � L(g) ≤ Emax . Then, by 
Ik → 0 as k → ∞, there exist, η > 0, s.t. for k large enough

‖eit�uk(0)‖Z(−Tk,T
k) ≤ ‖eit�g‖Z(−η,η) + ε ≤ δ0

where δ0 is given by the local theory in Proposition 4.5. In this case, we conclude that 
‖uk‖Z(−Tk,T

k) � 2δ0 which contradicts (7.1).
Case 2: g = 0 and only one Euclidean profile ψ̃1

k such that L(1) = Emax .
By Remark 6.5 and (7.3), we obtain that L(ψ̃1

k ) ≤ Emax which implies ‖ψ‖Ḣ 1(R4) < ∞ (if 
μ = +1) or supt ‖uψ‖Ḣ 1(R4) < ‖W‖Ḣ 1(R4) (if μ = −1). Denote U1

k is the solution of (1.1) with 
U1

k (0) = ψ̃1
k . In this case, we use the part (1) of Proposition 5.6 and Remark 2.6. Given some 

ε > 0, for k large enough, we have that

‖U1‖X1(−T ,T k) ≤ ‖U1‖X1(−δ,δ) � 1, and ‖U1(0) − uk(0)‖H 1(T 4) ≤ ε. (7.4)
k k k k

789



H. Yue Journal of Differential Equations 280 (2021) 754–804
By (7.4) and Proposition 4.8, we obtain that

‖uk‖Z(Ik) � ‖uk‖X1(Ik)
� 1,

which contradicts (7.1).
Case 3: At least two of all profiles are nonzero.
By (7.3), L(g) < Emax and L(α) < Emax for any α = 1, 2, · · · . By almost orthogonality and 
relabeling the profiles, we can assume that for all α,

L(α) ≤ L(1) < Emax − η, L(g) < Emax − η, for some η > 0.

Define Uα
k as the maximal life-span solution of (1.1) with initial data Uα

k (0) = ψ̃α
k and G to 

be the maximal life-span solution of (1.1) with initial data G(0) = g.
By the definition of � and the hypothesis Emax < ∞ (if μ = +1) and Emax < EW (if μ =

−1), we have

‖G‖Z(−1,1) + lim
k→∞‖Uα

k ‖Z(−1,1) ≤ 2�(Emax − η/2,2) � 1.

By Proposition 4.7, it follows that for any α and any k > k0(α) sufficient large,

‖G‖X1(−1,1) + ‖Uα
k ‖X1(−1,1) � 1.

For J, k ≥ 1, we define

UJ
prof,k := G +

J∑
α=1

Uα
k =

J∑
α=0

Uα
k ,

where we set that U0
k := G.

Claim. There is a constant Q such that

‖UJ
prof,k‖2

X1(−1,1)
+

J∑
α=0

‖Uα
k ‖2

X1(−1,1)
≤ Q2, (7.5)

uniformly on J .

From (7.2) we know that there are only finite many profiles such that L(α) ≥ δ0
2 . We may 

assume that for all α ≥ A, L(α) ≤ δ0. Consider Uα
k for k ≥ A, by small data GWP result (Propo-

sition 4.6), we have that

‖UJ
prof,k‖X1(−1,1) = ‖

∑
0≤α≤J

Uα
k ‖X1(−1,1)

≤
∑

‖Uα
k ‖X1(−1,1) + ‖

∑
(Uα

k − eit�Uα
k (0))‖X1(−1,1) + ‖eit�

∑
Uα

k (0)‖X1(−1,1)
0≤α≤A A≤α≤J A≤α≤J
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�(A + 1) +
∑

A≤α≤J

‖Uα
k (0)‖2

H 1 + ‖
∑

A≤α≤J

Uα
k (0)‖H 1

�(A + 1) +
∑

A≤α≤J

L(α) + E
1
2
max

�1.

And also similarly, we have that

J∑
α=0

‖Uα
k ‖2

X1(−1,1)
=

A−1∑
α=0

‖Uα
k ‖2

X1(−1,1)
+

∑
A≤α≤J

‖Uα
k ‖2

X1(−1,1)

� A +
∑

A≤α≤J

L(α)

� 1.

We denote that

UJ
app,k =

∑
0≤α≤J

Uα
k + eit�RJ

k

is a solution of the approximation equation (4.11) with the error term:

e = (i∂t + �)UJ
app,k − F(UJ

app,k)

=
∑

0≤α≤J

F (Uα
k ) − F(

∑
0≤α≤J

Uα
k + eit�RJ

k ),

where F(u) = u|u|2.
From (7.5) we know ‖UJ

app,k‖X1(−1,1) ≤ Q.
By Lemma 7.3 (proven later), we obtain that

lim sup
k→∞

‖e‖N(Ik) ≤ ε/2, for J ≥ J0(ε).

We use the stability proposition (Proposition 4.8) to conclude that uk satisfies

‖uk‖X1(Ik)
� ‖UJ

app,k‖X1(Ik)
≤ ‖UJ

prof,k‖X1(−1,1)‖eit�RJ
k ‖X1(−1,1) � 1,

which contradicts (7.1). �
Lemma 7.3. With the same notation, we obtain that

lim sup
J→∞

lim sup
k→∞

‖
∑

F(Uα
k ) − F(

∑
Uα

k + eit�RJ
k )‖N(Ik) = 0. (7.6)
0≤α≤J 0≤α≤J
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8. Proof of Lemma 7.3

Consider

‖
∑

0≤α≤J

F (Uα
k ) − F(UJ

prof,k + eit�RJ
k )‖N(Ik)

≤‖F(UJ
prof,k + eit�RJ

k )) − F(UJ
prof,k)‖N(Ik) + ‖F(UJ

prof,k) −
∑

0≤α≤J

F (Uα
k )‖N(Ik).

It will suffice that we can prove

lim sup
J→∞

lim sup
k→∞

‖F(UJ
prof,k + eit�RJ

k )) − F(UJ
prof,k)‖N(Ik) = 0, (8.1)

and

lim sup
J→∞

lim sup
k→∞

‖F(UJ
prof,k) −

∑
0≤α≤J

F (Uα
k )‖N(Ik) = 0. (8.2)

Before proving (8.1) and (8.2), we need several lemmas.
Denote that Dp,q(a, b) stands for a p + q - linear expression with p factors consisting of 

either a or a and q factors consisting of either b or b.

Lemma 8.1 (a high-frequency linear solution does not interact significantly with a low-frequency 
profile). Assume that B, N ≥ 2, and dyadic numbers, and assume that ω : T 4 × (−1, 1) → C is 
a function satisfying

|∇jω| ≤ Nj+11|x|≤N−1,|t |≤N−2 , j = 0,1.

Then we hold that

‖D2,1(ω, eit�P>BNf )‖N(−1,1) � (B−1/200 + N−1/200)‖f ‖H 1(T 4).

Proof. We may assume that ‖f ‖H 1(T 4) = 1 and f = P>BNf . By Proposition 3.12, we obtain 
that

‖D2,1(ω, eit�P>BNf )‖N(I)

�‖D2,1(ω,∇eit�f )‖L1((−1,1),L2) + ‖eit�f ‖L∞
t L2

x
‖ω‖L2

t L
∞
x

‖|∇ω| + |ω|‖L2
t L

∞
x

�‖D2,1(ω,∇eit�f )‖L1((−1,1),L2) + B−1.

(It’s easy to check that ‖ω‖L2
t L

∞
x

≤
(∫ N−2

−N−2(N)2 dt
) 1

2
, ‖∇ω‖L2

t L
∞
x

≤
(∫ N−2

−N−2 N4 dt
) 1

2 = N , and 

‖P>BNf ‖L2 ≤ 1 ‖f ‖H 1 .)

BN
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Now we let G(x, t) := N4ηR4(N
−1(x))ηR(N2t),

‖D2,1(ω,∇eit�f )‖2
L1((−1,1),L2)

�
4∑

j=1

1∫
−1

〈∂jf, [
1∫

−1

e−it�Geit� dt]〉L2×L2 .

It remains to prove that

‖K‖L2(T 4)→L2(T 4) � N2(B− 1
100 + N− 1

100 ),

where K = P>BN

∫
R e−it�Geit�P>BN dt . We then compute the Fourier coefficients of K as 

follows:

cp,q = 〈eipx,Keiqx〉

=
∫
T 4

P>BNeipx

∫
R

e−it�Geit�P>BN dtdx

= (1 − ηR4)(p/BN)(1 − ηR4)(q/BN)

∫
T 4×[−1,1]

e−it |p|2+ipxG(t, x)e−it |q|2+iqx dxdt.

Hence, we obtain that

|cp,q | � N−2

(
1 +

∣∣|p|2 − |q|2∣∣
N2

)−10 (
1 + |p − q|

N

)−10

1{|p|≥BN}1{|q|≥BN}.

Using Schur’s lemma, we have that

‖K‖L2(T 4)→L2(T 4) � sup
p∈Z4

∑
q∈Z4

|cp,q | + sup
q∈Z4

∑
p∈Z4

|cp,q |.

It suffices to prove that

N−4 sup
|p|≥BN

∑
v∈Z4

(
1 +

∣∣|p|2 − |p + v|2∣∣
N2

)−10 (
1 + |v|

N

)−10

� B− 1
100 + N− 1

100 . (8.3)

We will separate (8.3) into the following 3 sums:∑
|v|≥NB

1
100

,
∑

|v|≤NB
1

100

|v·p|≥N2B
1
10

and
∑

|v|≤NB
1

100

|p·v|≤N2B
1
10

.

Then we discuss case by case.
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Case 1:

∑
|v|≥NB

1
100

(
1 +

∣∣|p|2 − |p + v|2∣∣
N2

)−10 (
1 + |v|

N

)−10

�
∑

|v|≥NB
1

100

(
1 + |v|

N

)−10

� B− 6
100 .

Case 2:

∑
|v|≤NB

1
100

|v·p|≥N2B
1
10

(
1 +

∣∣|p|2 − |p + v|2∣∣
N2

)−10 (
1 + |v|

N

)−10

�
∑

|v|≤NB
1

100

|v·p|≥N2B
1
10

(
1 + 2|v · p|

N2

)−10

� B− 6
10 .

Case 3:
Denote p̂ = p

|p|

N−4 sup
|p|≥BN

∑
|v|≤NB

1
100

|p·v|≤N2B
1
10

(
1 +

∣∣|p|2 − |p + v|2∣∣
N2

)−10 (
1 + |v|

N

)−10

≤N−4 sup
|p|≥BN

#{v : |v| ≤ NB
1

100 , |p̂ · v| ≤ NB− 9
10 }

=N−4(NB
1

100 )3NB− 9
10

≤B− 87
100 . �

Lemma 8.2. Assume that Oα = (Nk,α, tk,α, xk,α)k ∈ Fe, α ∈ {1, 2}, are two orthogonal frames, 
I ⊆ (−1, 1) is a fixed open interval, 0 ∈ I , and T1, T2, R ∈ [1, ∞) are fixed numbers, R ≥
T1 + T2. For k large enough, for α ∈ {1, 2}

|∇m
x ω

α,θ
k | + (Nk,α)−21

S
α,θ
k

|∂t∇m
x ω

α,θ
k | ≤ Rθ,α(Nα

k )|m|+11
S

α,θ
k

, 0 ≤ |m| ≤ 10,

where

S
α,θ
k := {(x, t) ∈T 4 × I : |t − tk,α| < Tα(Nk,α)−2, |x − xk,α| ≤ R(Nk,α)−1}.

And assume that (ωk,1, wk,2, fk)k are 3 sequences of functions with properties ‖fk‖X1(I ) ≤ 1 for 
all k large enough, then

lim sup‖ωk,1 ωk,2 fk‖N(I) = 0

k→∞
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Proof. For ε > 0 small. If Nk,1/Nk,2 + Nk,2/Nk,1 ≤ ε−1000 and k is large enough then 
Sk,1 ∩ Sk,2 = ∅. (By the definition of orthogonality of frames, Nk,1/Nk,2 + Nk,2/Nk,1 ≤ ε−1000

implies N2
k,1|tk,1 − tk,2| → ∞ or Nk,1|xk,1 − xk,2| → ∞, so Sk,1 ∩ Sk,2 = ∅.) In this case, 

ωk,1 ωk,2 fk ≡ 0.
If Nk,1/Nk,2 ≥ ε−1000/2. Denote that

ωk,1ωk,2 = ωk,1ω̃k,2 := ωk,1 · (wk,21(tk,1−T1N
−2
k,1 ,tk,1+T1N

−2
k,1 )

(t)).

Claim †. For k large enough,

1. ‖ω̃k,2‖X1(I ) �R 1;
2. ‖P>ε−10Nk,2

ω̃k,2‖X1(I ) �R ε;
3. ‖ω̃k,2‖Z(I) �R ε;
4. ‖ωk,1‖X1(I ) �R 1;
5. ‖P≤ε10ωk,1‖X1(I ) �R ε.

By this Claim †, Proposition 4.4, and ε10N1 >> ε−10N2 we obtain that

‖ωk,1ωk,2fk‖N(I) ≤‖(P≤ε10Nk,1
ωk,1)(ω̃k,2)fk‖N(I) + ‖(P>ε10Nk,1

ωk,1)(P>ε−10Nk,2
ω̃k,2)fk‖N(I)

+ ‖(P>ε10Nk,1
ωk,1)(P≤ε−10Nk,2

ω̃k,2)fk‖N(I)

�Rε.

More detail about the Claim †:
(1): We consider ω̃k,2wk,21(tk,1−T1N

−2
k,1 ,tk,1+T1N

−2
k,1 )

(t).

‖ω̃k,2‖X1(I ) �

⎛⎜⎜⎝ ∫
|x−xk,2|≤RN−1

k,2

|〈∇〉ω̃k,2(0)|2 dx

⎞⎟⎟⎠
1
2

+
⎛⎜⎝∑

N

⎛⎝∫
I

dt‖PN(∂t ω̃k,2)‖H 1 + ‖PN�ω̃k,2‖H 1

⎞⎠2
⎞⎟⎠

1
2

� (R2N4
k,2R

4N−4
k,2)

1
2 +

∫
I

(‖∂t ω̃α,k‖H 1 + ‖�ω̃k,2‖H 1) dt

� 1.

(2): We consider the high frequency part of ω̃k,2.

‖P>ε−10N ω̃k,2‖X1(I )
k,2
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≤

⎛⎜⎜⎝ ∫
|x−xk,2|≤RN−1

k,2

|P>ε−10Nk,2
〈∇〉ω̃k,2(0)|2 dx

⎞⎟⎟⎠
1
2

+
∫

‖P>ε−10Nk,2
(i∂t + �)ω̃k,2‖H 1 dt

≤

⎛⎜⎜⎝ ∫
|x−xk,2|≤RN−1

k,2

(
ε10

Nk,2

)2

|P>ε−10Nk,2
〈∇〉2ω̃k,2(0)|2 dx

⎞⎟⎟⎠
1
2

+
∫

|t−tk,2|<N−2
k,2R

ε10

Nk,2
‖(i∂t + �)ω̃k,2‖H 2 dt

≤ε10R3 + N−2
k,2R

ε10

Nk,2
(R4N−2

k,2R2N1
k,20)

1
2

�ε10R4.

(3): We consider the Z-norm of ω̃k,2.

‖ω̃k,2‖Z(I) ≤
(∑

N

N2‖PNω̃k,2‖4
L4(T 4×(tk,1−RN−2

k,1 ,tk,1+RN−2
k,1 ))

)1/4

�

∥∥∥∥∥∥
(∑

N

|∇1/2PNω̃k,2|2
)1/2

∥∥∥∥∥∥
L4

� ‖∇1/2ω̃k,2‖L4(T 4×(tk,1−RN−2
k,1 ,tk,1+RN−2

k,1 ))

� R
9
4

(
Nk,2

Nk,1

) 1
2 ≤ R

9
4 ε500.

(4): Similar with (1).
(5):

‖P≤ε10Nk,1
ωk,1‖X1(I )

�ε10Nk,1

(
‖P≤ε10Nk,1

ωk,1(0)‖L2 +
∫

‖P≤ε10Nk,1
(i∂t + �)ωk,1‖L2 dt

)
�ε10R4. �

(8.4)

Proof of (8.1).

F(UJ
prof,k + eit�RJ

k ) − F(UJ
prof,k)

=D2,1(U
J
prof,k, e

it�RJ
k ) +D1,2(U

J
prof,k, e

it�RJ
k ) + |eit�RJ

k |2eit�RJ
k
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First, by the nonlinear estimate (Proposition 4.4), we have

‖|eit�RJ
k |2eit�RJ

k ‖N(Ik)

�‖eit�RJ
k ‖2

Z′(Ik)
‖eit�RJ

k ‖X1(Ik)

Since ‖eit�RJ
k ‖Z′(Ik) → 0 as J, k → ∞, and ‖eit�RJ

k ‖X1(Ik)
� 1,

lim sup
J→∞

lim sup
k→∞

‖|eit�RJ
k |2eit�RJ

k ‖N(Ik) = 0.

Second, also by the nonlinear estimate Proposition 4.4 and Proposition 3.15,

‖D1,2(U
J
prof,k, e

it�RJ
k )‖N(Ik)

�‖UJ
prof,k‖X1(Ik)

‖eit�RJ
k ‖X1(Ik)

‖eit�RJ
k ‖Z′(Ik) → 0,

as k, J → ∞.
Third, consider

‖D2,1(U
J
prof,k, e

it�RJ
k )‖N(Ik),

assume ε > 0 is fixed, there exists A = A(ε) sufficiently large, such that for all J ≥ A and 
k ≥ k0(J )

‖UJ
prof,k − UA

prof,k‖X1(−1,1) ≤ ε.

Then

‖D2,1(U
J
prof,k, e

it�RJ
k )‖N(Ik)

≤‖D2,1(U
A
prof,k, e

it�RJ
k )‖N(Ik) + ‖D1,1,1(U

A
prof,k,U

J
prof,k − UA

prof,k, e
itDDRJ

k )‖N(Ik)

+ ‖D2,1(U
J
prof,k − UA

prof,k, e
it�RJ

k )‖N(Ik) → ‖D2,1(U
A
prof,k, e

it�RJ
k )‖N(Ik) + ε,

as k, J → ∞.
It remains to prove that

lim sup
J→∞

lim sup
k→∞

‖D2,1(U
A
prof,k, e

it�RJ
k )‖N(Ik) � ε.

By the definition of UA
prof,k , it suffices to prove that for any α1, α2 ∈ {0, 1, · · · , A}.

Fix θ = εA−2/10, apply the decomposition in Lemma 5.7 to all nonlinear profiles Uα
k , α =

1, 2, · · · , A. We assume that

Tθ,α = Tθ , and Rθ,α = Rθ,

for any α = 1, 2, · · · , A.
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lim sup
J→∞

lim sup
k→∞

‖D1,1,1(U
α1
k ,U

α2
k , eit�RJ

k )‖N(Ik) � εA−2. (8.5)

Case 1: α1 = 0 or α2 = 0.
Without loss of generality, suppose α2 = 0.

Since ‖U0
k ‖X1(−1,1) = ‖G‖X1(−1,1) � 1, for any k large enough such that ‖G‖Z′(Ik) � εA−2, 

and ‖G‖X1(Ik)
� 1.

By the nonlinear estimate Proposition 4.4 and Proposition 3.15,

‖D1,1,1(G,U
α2
k , eit�RJ

k )‖N(Ik)

�‖G‖Z′(Ik)‖Uα2
k ‖Z′(Ik)‖eit�RJ

k ‖X1(Ik)
+ ‖G‖Z′(Ik)‖Uα2

k ‖X1(Ik)
‖eit�RJ

k ‖Z′(Ik)

+ ‖G‖X1(Ik)
‖Uα2

k ‖Z′(Ik)‖eit�RJ
k ‖Z′(Ik)

�εA−2,

when taking k, J large enough.
Case 2: α1 �= 0, α2 �= 0 and α1 = α2.

Taking k large enough, we have Ik ⊂ (−T −1
θ , T −1

θ )

1Ik
(t)Uα

k = ω
α,θ,−∞
k + ω

α,θ,+∞
k + ω

α,θ
k + ρ

α,θ
k .

By the nonlinear estimate Proposition 4.4, (5.28) and Lemma 8.2 (since ‖eit�RJ
k ‖X1(Ik)

� 1
uniformly for both k and J ), we obtain that

‖D1,1,1(U
α1
k ,U

α2
k , eit�RJ

k )‖N(Ik) � 1

2
A−2ε + ‖D1,1,1(ω

α1,θ,+∞
k ,ω

α1,θ,−∞
k , eit�RJ

k )‖N(Ik)

� A−2ε,

when k large enough.
Case 3: α1 �= 0, α2 �= 0 and α1 �= α2.
Using Lemma 8.1, and set B sufficiently large and k sufficiently large, we obtain that,

‖D2,1(ω
α,θ
k ,P>BNk,α

eit�RJ
k )‖N(Ik) � (

1

B1/200 + 1

N
1/200
k,α

)‖RJ
k ‖H 1

� ε

4
A−2.

(8.6)

We may also assume that B is sufficiently large such that, for k large enough, by a similar 
estimate as (8.4), we obtain that

‖P≤B−1Nk,α
ω

α,θ
k ‖X1(Ik)

≤ ε

4
A−2. (8.7)

Using the modified nonlinear estimate (4.4) of Lemma 4.4 and bounds (8.6), (8.7), it remains 
to prove that

lim sup lim sup‖D2,1(P>B−1Nk,α
ω

α,θ
k ,P≤BNk,α

eit�RJ
k )‖N(Ik) = 0. �
J→∞ k→∞
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Proof of (8.2).

F(UJ
prof,k) −

∑
0≤α≤J

F (Uα
k ) =

∑
0≤α1,α2,α3≤J

α1 �=α2 or α1 �=α3 or α2 �=α3

D1,1,1(U
α1
k ,U

α2
k ,U

α3
k )

By (7.5), we choose A(θ) large enough, such that 
∑

A≤α≤J ‖Uα‖2
X1(−1,1)

≤ θ .
So we have

‖
∑

0≤α1,α2,α3≤J
α1 �=α2 or α1 �=α3 or α2 �=α3

D1,1,1(U
α1
k ,U

α2
k ,U

α3
k )‖N(Ik)

≤‖
∑

0≤α1,α2,α3≤A
α1 �=α2 or α1 �=α3 or α2 �=α3

D1,1,1(U
α1
k ,U

α2
k ,U

α3
k )‖N(Ik) + θ.

Using Lemma 5.7,

‖
∑

0≤α1,α2,α3≤A
α1 �=α2 or α1 �=α3 or α2 �=α3

D1,1,1(U
α1
k ,U

α2
k ,U

α3
k )‖N(Ik)

≤‖
∑
F

D1,1,1(W
1
k ,W 2

k ,W 3
k )‖N(Ik),

where

F :={(W 1
k ,W 2

k ,W 3
k ) : Wi

k ∈ {ωα,θ,+∞
k ,ω

α,θ,−∞
k ,ω

α,θ
k , ρ

α,θ
k },

for 0 ≤ α ≤ A, and each i, at least two different α}

and #F < A3.
Consider the following several cases:
Case 1: the terms containing one error component ρα,θ

k .
By the nonlinear estimate (Proposition 4.4),

‖D1,1,1(W
1
k ,W 2

k , ρ
α,θ
k )‖N(Ik) ≤ ‖ρα,θ

k ‖X1(Ik)
‖W 1

k ‖X1(Ik)
‖W 2

k ‖X1(Ik)
� θ,

for k large enough.
Case 2: the terms containing two scattering components ωα,θ,±∞

k and ωβ,θ,±∞
k (maybe α = β or 

not).

‖D1,1,1(ω
α,θ,±∞
k ,ω

β,θ,±∞
k ,W 3

k )‖N(Ik)

≤‖W 3
k ‖X1(Ik)

(‖ωα,θ,±∞
k ‖X1(Ik)

+ ‖ωβ,θ,±∞
k ‖X1(Ik)

)(‖ωα,θ,±∞
k ‖Z′(Ik) + ‖ωβ,θ,±∞

k ‖Z′(Ik))

�θ,

for k large enough.
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Case 3: the terms containing two different cores ωα,θ
k and ωβ,θ

k with α �= β .
By Lemma 8.2, for k large enough, we obtain that

‖D1,1,1(ω
α,θ
k ,ω

β,θ
k ,W 3

k )‖N(Ik) � θ.

Case 4: the others: D2,1(ω
α,θ
k , ωβ,θ,±∞

k ) with α �= β .

Case 4.1: lim supk→∞
Nk,β

Nk,α
= +∞.

By Lemma 8.1, and choosing B and k large enough,

‖D2,1(ω
α,θ ,P>BNk,α

ωβ,θ,±∞)‖N(Ik) � (B−1/200 + N
−1/200
k,α ) � θ. (8.8)

And for the other part,

‖P≤BNk,α
ω

β,θ,±∞
k ‖X1(Ik)

= ‖P≤BNk,β
Nk,α
Nk,β

ω
β,θ,±∞
k ‖X1(Ik)

= ‖P≤BNk,β
Nk,α
Nk,β

π
x

β
k

TNk,β
(φβ,θ,±∞)‖H 1(T 4)

= ‖P≤B
Nk,α
Nk,β

φβ,θ,±∞‖Ḣ 1(R4) → 0, as k → ∞.

So for k large enough, we obtain that

‖D2,1(ω
α,θ
k ,P≤BNk,α

ω
β,θ,±∞
k )‖N(Ik) � ‖P≤BNk,α

ω
β,θ,±∞
k ‖X1(Ik)

‖ωα,θ
k ‖2

X1(Ik)
� θ.

Case 4.2: lim supk→∞
Nk,α

Nk,β
= +∞.

We assume that B is sufficiently large such that for k large, by a similar estimate as (8.8), we 
obtain that

‖D2,1(ω
α,θ
k ,P>BNk,β

ω
β,θ,±∞
k )‖N(Ik) � (B−1/200 + N

−1/200
k,β ) � θ.

And by the similar estimate as (8.4), for k large enough, we obtain that

‖P≤Nk,β
ω

α,θ
k ‖X1(Ik)

= ‖P≤Nk,α
Nk,β
Nk,α

ω
α,θ
k ‖X1(Ik)

� θ,

and ‖P>Nk,β
ω

α,θ
k ‖X1(Ik)

� 1.
Consider the remaining part, by the nonlinear estimate (4.3) and (4.4),

‖D2,1(ω
α,θ
k ,P≤BNk,β

ω
β,θ,±∞
k )‖N(Ik)

�‖D2,1(P≤Nk,β
ω

α,θ
k ,P≤BNk,β

ω
β,θ,±∞
k )‖N(Ik) + ‖D2,1(P>Nk,β

ω
α,θ
k ,P≤BNk,β

ω
β,θ,±∞
k )‖N(Ik)

+ ‖D1,1,1(P>Nk,β
ω

α,θ
k ,P≤Nk,β

ω
α,θ
k ,P≤BNk,β

ω
β,θ,±∞
k )‖N(Ik)

�‖P≤N ω
α,θ‖X1(I ) + ‖D2,1(P>N ω

α,θ
,P≤BN ω

β,θ,±∞
)‖N(I )
k,β k k k,β k k,β k k
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�θ + ‖P≤BNk,β
ω

β,θ,±∞
k ‖Z′(Ik)

�θ,

where lim supJ→∞ lim supk→∞ ‖P≤BNk,β
ω

β,θ,±∞
k ‖Z′(Ik) = 0 (by a similar estimate with (5.28)

from extinction lemma).
Case 4.3: Nk,α ≈ Nk,β and Nk,α|xα

k − x
β
k | → ∞ as k → ∞.

From Proposition 6.2, we can use an equivalent frame of Oα to adjust Nk,α and tαk such that 

Nk,α = Nk,β and tαk = t
β
k .

By the definition of ωα,θ
k and ωβ,θ,±∞

k , for k large enough, we obtain that ωβ,θ
k ω

α,θ,±∞
k ≡ 0.

Case 4.4: Nk,α ≈ Nk,β and N2
k,α|tαk − t

β
k | → ∞ as k → ∞.

By Proposition 6.2, we can adjust Nk,α such that Nk,α = Nk,β := Nk .

By the definition of ωα,θ
k and ωβ,θ,±∞

k , taking k large enough and N2
k |tαk − t

β
k | > Tθ , we obtain 

that

ω
α,θ
k ω

β,θ,±∞
k = 1[tα− Tθ

N2
k

,tα+ Tθ

N2
k

]ω
α,θ
k ω

β,θ,±∞
k ,

and also ωα,θ,±∞
k = P≤RθNk

ω
α,θ,±∞
k .

By (5.15) and (5.17), for any T ≤ Nk , we obtain that

‖ωβ,θ,±∞
k ‖L2(T 4) = ‖P≤RθNk

ω
β,θ,±∞
k ‖L2(T 4)

� (1 + Rθ)
−10 1

Nk

,
(8.9)

and

sup
|t−t

β
k |∈[T N−2

k ,T −1]
‖wβ,θ,±∞

k ‖L∞(T 4) � T −2R4
θNk. (8.10)

Interpolate (8.9) and (8.10), we can obtain that

sup
|t−t

β
k |∈[T N−2

k ,T −1]
‖wβ,θ,±∞

k ‖Lp(T 4) �Rθ T
4
p
−2

N
1− 4

p

k . (8.11)

By choosing Tk = Nk|tαk − t
β
k | 1

2 → ∞ as k → ∞ and using (8.11), we obtain that

sup
t∈[tαk − Tθ

N2
k

,tαk + Tθ

N2
k

]
‖ωβ,θ,±∞

k ‖L∞(T 4) �Rθ T −2
k Nk, (8.12)

and

sup
t∈[tαk − Tθ

N2 ,tαk + Tθ

N2 ]
‖〈∇〉ωβ,θ,±∞

k ‖L4(T 4) �Rθ T −1
k Nk. (8.13)
k k
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So by using of Leibniz rule, (5.28), (8.13) and (8.12), we obtain that

‖D2,1(ω
α,θ
k ,ω

β,θ,±∞
k )‖

N([tαk − Tθ

N2
k

,tαk + Tθ

N2
k

])

�‖D2,1(ω
α,θ
k ,ω

β,θ,±∞
k )‖

L1([tαk − Tθ

N2
k

,tαk + Tθ

N2
k

],H 1(T 4))

�

tαk + Tθ

N2
k∫

tαk − Tθ

N2
k

(
‖D2(〈∇〉ωα,θ

k )‖L2(T 4)‖ωβ,θ,±∞
k ‖L∞(T 4) + ‖D2(ω

α,θ
k )‖L4(T 4)‖〈∇〉ωβ,θ,±∞

k ‖L4(T 4)

)
dt

�

tαk + Tθ

N2
k∫

tαk − Tθ

N2
k

(
N2

k T −2
k R8

θ + N2
k T −1

k R3
θ

)
dt

�T −1
k TθR

8
θ → 0 as k → ∞. �
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[50] R. Killip, M. Vişan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, 

Am. J. Math. 132 (2) (2010) 361–424.
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