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Abstract

We study the large time behavior of solutions of a one-dimensional hyperbolic relaxation system that may
be written as a nonlinear damped wave equation. First, we prove the global existence of a unique solution
and their decay properties for sufficiently small initial data. We also show that for some large initial data,
solutions blow-up in finite time. For quadratic nonlinearities, we prove that the large time behavior of
solutions is given by the fundamental solution of the viscous Burgers equation. In some other cases, the
convection term is too weak and the large time behavior is given by the linear heat kernel.
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MSC: 35L60; 35L70; 35A05; 35B40; 35K05; 35Q53

Keywords: Hyperbolic relaxation system; Damped wave equation; Convective heat equation; Asymptotic behavior;
Blow-up

1. Introduction

This paper is devoted to study the large time behavior of solutions of the following system:

{
ut + vx = 0,

vt + ux = f (u) − v,
(x, t) ∈ R × R

+, (1)
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f being a nonlinear function from R to R. System (1) is a typical example of hyperbolic system
of conservation laws with relaxation and arises in many physical systems such as nonequilib-
rium gas dynamics, flood flow with friction, viscoelasticity, magnetohydrodynamics, etc. (see
Whitham [16]).

The study of the behavior of solutions to hyperbolic relaxation systems has been the object
of intensive work. The interested reader is referred to [2,6–8,10,12,17] and the references cited
therein for a more detailed account of relaxation of hyperbolic systems. Recently, Liu and Na-
talini [9] studied the large time behavior of the solutions of (1) when f (u) = ku2 by means of
scaling arguments. First, they obtained the needed uniform bounds on the scaled solutions by
means of entropy-estimates, valid under the so-called subcharacteristic condition (|f ′(u)| < a)
and assuming that the initial data belong to a positively invariant domain. The main result of [9]
shows that, under the assumptions above and for bounded initial data of finite mass, the first com-
ponent of system (1) decays towards the fundamental solution of the viscous Burgers equation
in the Lp-norm, at a rate faster than t−(p−1)/2p with 1 < p < ∞.

In this article, we consider Eq. (1) as a nonlinear damped wave equation:

utt + ut − uxx + ∂x

(
f (u)

) = 0, (x, t) ∈ R × R
+, (2)

and initial conditions u(x,0) = u0(x), ut (x,0) = −∂xv0(x) in R, (u0, v0) being the initial data
of (1). We see (2) as a hyperbolic perturbation of the convective heat equation

ut − uxx + ∂x

(
f (u)

) = 0, (x, t) ∈ R × R
+. (3)

In fact, considering the linear equation associated with (2),

utt + ut − uxx = 0, (x, t) ∈ R × (0,∞), (4)

the rescaling function uλ(x, t) = λu(λx,λ2t) satisfies

λ−2uλ,tt + uλ,t − ∂2
xuλ = 0, (x, t) ∈ R × R

+.

This indicates that, the term involving second order in time derivatives becomes negligible. Ac-
cording to this formal argument it is natural to expect the asymptotic behavior of the solutions
of (2) to be the same as that of the convection–diffusion equation (3).

Equation (3) is a simple model combining both diffusive and convective effects and has been
studied in [4,5,18], among others, for nonlinearities satisfying f (u) = |u|q−1u and q � 2. It is
by now well known that, when q = 2, the asymptotic behavior of the solutions of (3) with initial
data in L1 is given by a one-parameter family of self-similar solutions (see [5]). When q > 2, the
convective term ∂x(f (u)) is too weak and disappears as t → ∞, the large time behavior being
given in a first approximation by the linear heat equation. Finally, when the exponent is subcritical
q < 2, the solutions of (3) behave like the entropy solutions of the following convective equation
(see [4]):

ut + ∂x

(
f (u)

) = 0, (x, t) ∈ R × R
+. (5)

In this paper we will not address the case q < 2 that cannot be handled with the techniques we
develop.
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In our study of the solutions of (2), we first develop a Fourier splitting method that allows
decomposing the semigroup of the linear problem associated to (2) into a exponentially decaying
one and a slowly decaying one. For the second one, which corresponds to the low frequency
components, the decay properties are those of the semigroup generated by the heat equation.
Based on this Fourier splitting and fixed point arguments, we get global in time solutions and
the decay estimates of u, ux and ut in the L2(R)-norm for small initial data (u0,−v0,x) in
V ≡ H 1 ∩ L1(R) × L2 ∩ L1(R). This smallness condition differs from previously used in the
existing literature [2,9]. Note that [9] imposes one-sided inequalities on the derivatives of the
initial data while we impose smallness in L2 ∩ L1.

We also show that large solutions may blow-up in finite time. This justifies the smallness
condition on the initial data. This blow-up result is also extended for even nonlinearities of the
form f (u) = |u|q . The proof of the blow-up result uses in a critical way the finite speed of
propagation and a construction of explicit solutions in separated variables. At this respect it is
worth mentioning that solutions of (3) are global in time. Thus, the finite speed of propagation
plays a key role on the blow-up mechanism.

We also obtain sharp decay properties as t → ∞ of the global solutions of (2). This yields
uniform estimates on the scaled functions uλ. Then, compactness arguments yield the asymptotic
form of solutions. In this step we need to assume that the initial data belong to the weighted space
L2(1 + |x|;R). This is a natural condition in the study of the asymptotic behavior of solutions of
heat and convection–diffusion equations (see [3,18]) where, usually, the first momentum of the
initial data is assumed to be finite.

An advantage of the method we develop in this article is that it applies also to multidimen-
sional problems and that it does not require of the existence of invariant sets obtained though the
maximum principle. Therefore, it applies to multi-dimensional problems as well. Consider for
instance the following dissipative wave equation with a nonlinear convective term

{
utt + ut − �u + a · ∇f (u) = 0, (x, t) ∈ R

N × R
+,

u(x,0) = u0(x), ut (x,0) = u1(x),
(6)

where a ∈ R
N is a fixed vector. When analyzing (6) the first difficulty to overcome is re-

lated with the local existence and uniqueness of solutions. We look for solutions in the class
C([0, τ ];Hk(RN)) ∩ C1([0, τ ];Hk−1(RN)) with k > 0 such that 2k > N so that Hk(RN) be-
comes an algebra because of the continuous embedding Hk(RN) ↪→ L∞(RN). Thus, assuming
that f is of class Ck+1 and its derivatives up to order k + 1 are uniformly bounded, i.e.,
f ∈ BCk+1(RN), then classical methods yield local existence and uniqueness of solutions in
this space for every pair of initial data (u0, u1) ∈ Hk(RN) × Hk−1(RN). The method of this pa-
per allows showing that for sufficiently small initial data such that, moreover, u0, u1 ∈ L1(RN),
solutions are global in time and decay as t → ∞ with the same velocity as the solutions of the
heat equation with initial data in L1(RN), i.e., with the rate

∥∥u(t)
∥∥

Lp(RN)
� c(1 + t)

− N
2 (1− 1

p
)
, ∀t > 0, 1 � p � ∞.

The methods of this paper allow showing that when the initial data belong to L2(1 +
|x|(N+1)/2;R

N) and (7) is satisfied with a = 1 and q � (N + 1)/N it then follows that

(1 + t)
− N

2 (1− 1
p

)
∥∥u(t) − v(t)

∥∥
p N → 0, as t → ∞, 1 � p � ∞,
L (R )
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where, for q = (N + 1)/N , v is the solution of

vt − �v + a · ∇(|v|q−1v
) = 0, (x, t) ∈ R

N × R
+,

and for q > (N + 1)/N is solution of the heat equation. The same techniques allow obtaining
similar results for the hyperbolic version of the Navier–Stokes equations analyzed in [1].

The rest of the paper is organized as follows. In the following section we present the main
results of this work. In Section 3, we give some results on the asymptotic behavior in Lp(R) of
the solutions of (4). In particular, we develop the Fourier splitting method. The proof of these
estimates is given in Appendix A. Section 4 is devoted to prove the existence and uniqueness of
the solutions of (2) with the appropriate decay properties as t → ∞. In Section 5, we obtain some
compactness results on the family {uλ}. In Section 6, the limit of the family {uλ} when λ → ∞
is identified and the proof of the asymptotic behavior of global solutions is finished. Section 7 is
devoted to prove the blow-up result.

2. Main results

We write system (1) in the form (2). A very large class of nonlinearities f (u) can be conside-
red satisfying that f and f ′ are locally Lipschitz real functions with f (0) = 0 and for which
there exists q � 2 such that

lim
u→0

f (u)

|u|q−1u
= a, or lim

u→0

f (u)

|u|q = a, a ∈ R − {0}. (7)

To simplify the presentation we consider power-like nonlinearities f (u) = |u|q−1u. The equation
under consideration reads:{

utt + ut − uxx + (|u|q−1u)x = 0, (x, t) ∈ R × (0,∞),

u(x,0) = u0(x), ut (x,0) = u1(x).
(8)

Recall that (u0, u1) = (u0,−v0,x), (u0, v0) being the initial data of (1).

Proposition 2.1. Let the exponent q in (8) be such that q � 2 and (u0, u1) ∈ V where V =
[H 1 ∩ L1(R)] × [L2 ∩ L1(R)]. We assume that ‖(u0, u1)‖V � δ, with δ sufficiently small. Then,
there exists a unique global solution u ∈ BC([0,∞);H 1(R)) ∩ BC1([0,∞);L2(R)) of (8).
Moreover, it satisfies

∥∥u(t)
∥∥

2 � c(1 + t)−
1
4 ,

∥∥ux(t)
∥∥

2 � c′(1 + t)−
3
4 , ∀t � 0, (9)

where the constants c, c′ are proportional to the norm of the initial data in V .

The proof of this proposition is given in Section 4.
It is important to note that the smallness condition on the initial data is necessary since so-

lutions for large data may blow-up in finite time. Indeed, let us look for solutions of (8) with
q = 2 such that u(x, t) = xa(t). We observe that the initial data of u do not belong to V . How-
ever, truncating the support of the initial data and thanks to the finite speed of propagation, the
blow-up of solutions of the form u(x, t) = xa(t) leads to blow-up results for data in V too.



R. Orive, E. Zuazua / J. Differential Equations 228 (2006) 17–38 21
Note that u = xa(t) with x < 0 solves (8) if and only if a satisfies the differential equation:
att + at − 2|a|q−1a = 0. The solution of this equation for suitable initial data blows-up in finite
time (see [15] or Section 7). These blow-up result justifies the smallness condition of the previous
global existence result.

Blow-up also occurs for even nonlinearities of the form f (u) = |u|q with q > 1. More pre-
cisely, for system

{
utt + ut − uxx + (|u|q)x = 0, (x, t) ∈ R × (0,∞),

u(x,0) = u0(x), ut (x,0) = u1(x),
(10)

the following holds:

Theorem 2.2. Let u be the solution of (10) and

a(t) =
∫

xu(x, t) dx. (11)

We assume that the initial data u0 and u1 have support in [K1,K2] (K1 > 0). Assume also that
a0 ≡ a(0) > 0 and a1 ≡ at (0) > 0. If

a0 � max

{(
q + 1

8ρ

) 1
q−1

e
2

q−1 , (2q − 1)

(
e2(2q + 2)

K2
1 ρ(q − 1)2

) 1
q−1

}
,

(
1

2
a0 + a1

)2

� 1

4
a2

0 + ρ
2a

q+1
0

q + 1
with ρ = (K1 + K2)

1−2q

(
q − 1

2q − 1

)1−q

,

then, a blows-up in finite time tb < K1.

Let us now address the problem of the asymptotic behavior for t → ∞ of global solutions.
We note that the smooth solutions of (8) with compact support (or decaying as |x| → ∞) satisfy
the conservation law that the mass of ut + u is conserved along time:

m(ut + u) =
∫
R

(u1 + u0) dx = M. (12)

Thus, M is a relevant parameter to describe the large time behavior of solutions. The following
result shows that, actually, M fully determines the asymptotic behavior.

Theorem 2.3. Assume that the hypotheses of Proposition 2.1 are satisfied, that q � 2 and that
u0, u1 ∈ L2

1(R) = {v ∈ L2(R) | (1 + | · |)v ∈ L2(R)}. Let u be the unique solution of (8). Then,
there exists a self-similar function θ = t−1/2f (x/

√
t ) such that

lim t
p−1
2p

∥∥u(·, t) − θ(·, t)∥∥
p

= 0, (13)

t→∞
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for 1 � p � ∞. When q = 2, θ is the source type solution of the Burgers equation with the Dirac
delta as initial datum {

θt − θxx + (|θ |θ)x = 0, (x, t) ∈ R × (0,∞),

θ(x,0) = Mδ0,
(14)

M defined in (12). When q > 2, θ is the fundamental solution of the heat equation{
θt − θxx = 0, (x, t) ∈ R × (0,∞),

θ(x,0) = Mδ0.
(15)

In both cases M = ∫
R
(u0 + u1) dx. In both cases M is defined by (12).

The nature of the assumptions on the initial data in Proposition 2.1 and Theorem 2.3 is dif-
ferent from [9]. The initial data (u0, u1) in (8) coincide with (u0,−v0,x), where (u0, v0) are the
initial data in (1). Thus, according to hypotheses of [9], u0, u0,x and u1 are assumed to be of fi-
nite mass and to satisfy a one-sided inequality. However, in this work we only need the smallness
condition to be satisfied in the energy space V . By the contrary in Theorem 2.3 we assume the
initial data to be in the weighted space L2

1(R).
It is also interesting to observe that when a = 0 in (7) the asymptotic behavior of small solu-

tions is given by the fundamental solution of the linear heat equation.

3. Preliminaries on the linear problem

Now we present some results on the asymptotic behavior of the solutions of

{
utt − �u + ut = 0 in R

N × (0,∞),

u(x,0) = ϕ0(x), ut (x,0) = ϕ1(x) in R
N.

(16)

Note that this is the linear equation involved in the nonlinear equation (1) we analyze. The results
in this section play a key role when performing the Fourier splitting of the semigroup.

The well-posedness of (16) can be easily obtained writing it as an abstract evolution equa-
tion in the energy space H = H 1(RN) × L2(RN). Hille–Yosida–Phillip’s theorem guarantees
that (16) generates a semigroup of contractions denoted by {S(t)}t�0. Thus, for any initial
data (ϕ0, ϕ1) ∈ H 1(RN) × L2(RN), (16) has a unique weak solution u ∈ C1(R+,H 1(RN)) ∩
C1(R+,L2(RN)).

The following estimates on this linear semigroup are well known (see [11]):

Lemma 3.1. Let u be the solution of (16), k ∈ N and α ∈ R
N+ . Then, there exist c, c′ > 0 such

that for any initial data

ϕ0 ∈ Hk+|α| ∩ La
(
R

N
)
, ϕ1 ∈ Hk+|α|−1 ∩ La

(
R

N
)
, 1 � a � 2,

it holds, for any t � 0,

∥∥∂k
t Dα

x u(·, t)∥∥2

� c(1 + t)−
N
2 ( 1

a
− 1

2 )− |α|+2k
2

(∥∥ϕ0
∥∥

k+|α|,2 + ∥∥ϕ0
∥∥

a
+ ∥∥ϕ1

∥∥
k+|α|−1,2 + ∥∥ϕ1

∥∥
a

)
. (17)
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Here and in the sequel ‖ · ‖m,p denotes the norm in Wm,p(RN). To estimate the asymptotic
behavior of the solutions of (16) we introduce the homogeneous Sobolev spaces:

Ḣm
(
R

N
) = {

f : | · |mf̂ ∈ L2(
R

N
)}

and ‖f ‖Ḣm(RN) = ∥∥| · |mf̂
∥∥

2.

Lemma 3.2. Let k = 0,1 and α ∈ R
N+ . Then, there exist positive constants ω,c, c′ > 0 such that

∀t � 0

∥∥∂k
t Dα

x u(·, t)∥∥2 � ce−ωt
(∥∥ϕ0

∥∥
Ḣ k+|α| +

∥∥ϕ1
∥∥

Ḣ k+|α|−1

)
+ c′(∥∥ϕ0

∥∥
a
+ ∥∥ϕ1

∥∥
a

)
(1 + t)−

N
2 ( 1

a
− 1

2 )(1 + t)−
|α|+2k

2 , (18)

when ϕ0 ∈ Hk+|α| ∩La(RN), ϕ1 ∈ Hk+|α|−1 ∩La(RN) with 1 � a � 2. If k +|α| < 1, Ḣ k+|α|−1

must be replaced by Hk+|α|−1 in (18).

We also need the asymptotic behavior as t → ∞ of solutions of Eq. (16) in the weighted
space L2

1(R). To do that we perform the change of variables v(x, t) = xu(x, t). Given u solution
of (16), then v is the unique solution of the Cauchy problem:{

vtt + vt − vxx + 2ux = 0 in R × (0,∞),

v(x,0) = xϕ0(x), vt (x,0) = xϕ1(x) in R.
(19)

Using the variation of constants formula and applying the decay estimates of S(t) in L2 (Lem-
mas 3.1 and 3.2) in this identity, we get:

Lemma 3.3. Let u be solution of (16). Then, there exist ω,c, c1, c2, c3 > 0 such that for any
initial data (ϕ0, ϕ1) ∈ H 1(R) × L2(R) with

ϕ0 ∈ L2
1 ∩ Lb

1 ∩ La(R), ϕ0
x ∈ L2

1(R), ϕ1 ∈ L2
1 ∩ Lb

1 ∩ La(R), a, b ∈ [1,2],
it holds

‖u‖L̇2
1
� ce−ωt

(∥∥xϕ0
∥∥

2 + ∥∥xϕ1
∥∥−1,2

) + c1(1 + t)−
1
2
(∥∥ϕ0

∥∥
2 + ∥∥ϕ1

∥∥−1,2

)
+ c2(1 + t)

1
4 − 1

2b
(∥∥xϕ0

∥∥
b
+ ∥∥xϕ1

∥∥
b

) + c3(1 + t)
3
4 − 1

2a
(∥∥ϕ0

∥∥
a
+ ∥∥ϕ1

∥∥
a

)
, (20)

‖ux‖L̇2
1
� ce−ωt

(∥∥xϕ0
∥∥

Ḣ 1 + ∥∥xϕ1
∥∥

2

) + c1(1 + t)−
1
4 − 1

2b
(∥∥xϕ0

∥∥
b
+ ∥∥xϕ1

∥∥
b

)
+ c2(1 + t)−

1
2
(∥∥ϕ0

∥∥
Ḣ 1 + ∥∥ϕ1

∥∥
2

) + c3(1 + t)
1
4 − 1

2a
(∥∥ϕ0

∥∥
a
+ ∥∥ϕ1

∥∥
a

)
. (21)

Here and in the sequel ‖ · ‖L̇a
s

denotes the semi-norm in the weighted space La
s (R

N), i.e.,

‖f ‖a

L̇a
s
=

∫
RN

|x|as
∣∣f (x)

∣∣a dx.

The proof of these lemmas are given in Appendix A.
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4. Global existence and decay estimates

This section is devoted to prove Proposition 2.1.
Fix initial data (u0, u1) ∈ V . Using the semigroup notation and the variation of constants

formula, we introduce the function

[
Φ(u)

]
(t) = S(t)[u0, u1] −

t∫
0

S(t − s)
[
f

(
u(s)

)
x

]
ds, (22)

where we denote, to simplify the presentation, S(t − s)[0, f (u(s))x ] by S(t − s)[f (u(s))x].
Recall that f (u) = |u|q−1u. With this notation, Eq. (8) can be written as u(t) = [Φ(u)](t). In
other words, the problem is reduced to the obtention of fixed points of Φ . To do this we apply
the Banach fixed point theorem in the Banach space

X ≡ {
u ∈ C

([0,∞);H 1(R)
) ∩ BC1([0,∞);L2(R)

)
s.t.

(1 + t)
1
4 u, (1 + t)

3
4 ux ∈ L∞([0,∞);L2(R)

)}
with norm

‖u‖X ≡ ∥∥(1 + t)
1
4 u

∥∥
L∞([0,∞);L2(R))

+ ∥∥(1 + t)
3
4 ux

∥∥
L∞([0,∞);L2(R))

+ ‖ut‖L∞([0,∞);L2(R)).

Define the ball BR = {u ∈ X s.t. ‖u‖X � R}. We have the following lemma.

Lemma 4.1. There exist c, c′ > 0 so that Φ(u) ∈ X and ‖Φ(u)(t)‖X � c′‖(u0, u1)‖V + cRq , for
any u ∈ BR and t � 0.

We assume for the moment that this lemma is true. Since q > 1, choosing R > 0 such that
c′‖(u0, u1)‖V � R/6 and sufficiently small we obtain that Φ(BR) ⊂ BR . Note that the smallness
condition on R imposes a smallness condition on the size of the initial data (on ‖(u0, u1)‖V ) too.
Thus, from now on, the initial data (u0, u1) are assumed to be small in V . Now, we are going to
see that Φ is a contraction.

Lemma 4.2. Let Φ be defined as in (22). Then, for any u,v ∈ BR and t � 0, there exists a
constant c > 0 so that ‖Φ(u) − Φ(v)‖X � cRq−1‖u − v‖X .

Assuming this lemma, since q > 1, for R sufficiently small, Φ is a strict contraction
in BR . Applying the Banach theorem, there exists a unique solution u of (8) in BR so that
u ∈ BC([0,∞);H 1(R)) and u ∈ BC1([0,∞);L2(R)). Moreover, since ‖u‖X � R, we get for
any t � 0 that ‖u(t)‖2 � R(1 + t)−1/4 and ‖ux(t)‖2 � R(1 + t)−3/4. This confirms that the
constants c, c′ in (9) are proportional to the norm of the initial data in V .

The same argument shows that for any initial data (u0, u1) ∈ H 1(R) × L2(R), for τ > 0
sufficiently small, there exists a unique solution u of (8) so that u ∈ C([0, τ );H 1(R)) ∩
C1([0, τ );L2(R)). This allows showing that the solution we have built in BR is in fact the only
solution of (8).
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Now, we are going to prove Lemmas 4.1 and 4.2. First of all, we show some estimates that we
shall use in the proofs:

t∫
0

(1 + t − s)a(1 + s)b ds �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c(1 + t)a+b+1, a, b > −1,

c(1 + t)a, a � −1 and b < −1,

c(1 + t)b, a < −1, b � −1,

c(1 + t)max(a,b), a, b < −1, a, b �= −1.

(23)

Let us now write estimates (17) and (18) for the solution of (16) with initial data ϕ0 = 0 and
ϕ1 = g. For k ∈ N and α ∈ R

N+ , we have, by (17), that

∥∥∂k
t Dα

x S(t)[g]∥∥2 � c(1 + t)−
N
2 ( 1

a
− 1

2 )− |α|+2k
2

(‖g‖k+|α|−1,2 + ‖g‖a

)
. (24)

For k = 0,1 and α ∈ R
N+ , by (18) we have that

∥∥∂k
t Dα

x S(t)[g]∥∥2 � ce−ωt‖g‖Ḣ k+|α|−1 + c′‖g‖a(1 + t)−
N
2 ( 1

a
− 1

2 )− |α|+2k
2 . (25)

Moreover, the following interpolation inequalities hold for any u ∈ H 1(R),

‖u‖∞ �
√

2‖u‖
1
2
2 ‖ux‖

1
2
2 , ‖u‖Ḣ a(R) � ‖u‖1−a

2 ‖ux‖a
2, a ∈ (0,1). (26)

Proof of Lemma 4.1. First, we use estimates (17) in (22). Thus, it is sufficient to prove the
following estimates:

t∫
0

∥∥Sx(t − s)
[
f

(
u(s)

)]∥∥
2 ds � c(1 + t)−

1
4 Rq, ∀u ∈ BR, (27)

t∫
0

∥∥Sx(t − s)
[
f

(
u(s)

)
x

]∥∥
2 ds � c(1 + t)−

3
4 Rq, ∀u ∈ BR, (28)

t∫
0

∥∥St (t − s)
[
f

(
u(s)

)
x

]∥∥
2 ds � cRq, ∀u ∈ BR. (29)

Again, using estimate (25) with a = 1, k = 0 and α = 1 in (27) and (28) and with a = 1, k = 1
and α = 0 in (29), we have

t∫
0

∥∥Sx(t − s)
[
f

(
u(s)

)]∥∥
2 ds � c

t∫
0

(1 + t − s)−
3
4
[∥∥f

(
u(s)

)∥∥
2 + ∥∥f

(
u(s)

)∥∥
1

]
ds,

t∫ ∥∥Sx(t − s)
[
f

(
u(s)

)
x

]∥∥
2 ds � c

t∫
(1 + t − s)−

3
4
[∥∥f

(
u(s)

)
x

∥∥
2 + ∥∥f

(
u(s)

)
x

∥∥
1

]
ds,
0 0
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t∫
0

∥∥St (t − s)
[
f

(
u(s)

)
x

]∥∥
2 ds � c

t∫
0

(1 + t − s)−
5
4
[∥∥f

(
u(s)

)
x

∥∥
2 + ∥∥f

(
u(s)

)
x

∥∥
1

]
ds.

By the first interpolation inequality (26) and q � 2, we get

∥∥f
(
u(s)

)∥∥
2 � c‖u‖

q+1
2

2 ‖ux‖
q−1

2
2 ,

∥∥f
(
u(s)

)∥∥
1 � c′‖u‖

2+q
2

2 ‖ux‖
q−2

2
2 ,

∥∥f
(
u(s)

)
x

∥∥
2 � c‖u‖

q−1
2

2 ‖ux‖
q+1

2
2 ,

∥∥f
(
u(s)

)
x

∥∥
1 � c‖u‖

q
2
2 ‖ux‖

q
2
2 . (30)

Then, as u ∈ BR , we obtain, for any s � 0:

∥∥f
(
u(s)

)∥∥
2 � cRq(1 + s)−

2q−1
4 ,

∥∥f
(
u(s)

)∥∥
1 � cRq(1 + s)−

q−1
2 ,∥∥f

(
u(s)

)
x

∥∥
2 � cRq(1 + s)−

2q+1
4 ,

∥∥f
(
u(s)

)
x

∥∥
1 � cRq(1 + s)−

q
2 . (31)

We prove (27) and (29) using estimates (31) and thanks to (23). On the other hand, we obtain
(28) with q > 2 using estimates (31) on [f (u(s))]x in L2 and L1, and, applying (23). Now, we
show (28) in the case q = 2. Let α ∈ (0,1) and apply (25) with a = 2. We get

t∫
0

∥∥∂2−α
x S(t − s)

[
∂α
x f

(
u(s)

)]∥∥
2 ds

� cR2

t∫
0

e−ω(t−s)(1 + s)−
5
4 ds + cR2

t∫
0

(1 + t − s)−
2−α

2 (1 + s)−
3+2α

4 ds.

We note that, by (31), for q = 2, ‖∂α
x f (u(s))‖Ḣ 1−α � cR2(1 + s)−5/4. On the other hand, by the

second estimate of (26) and by (31) for q = 2 we have ‖∂α
x f (u(s))‖2 � cR2(1 + s)−(3+2α)/4.

Then, taking α ∈ (0,1/2) and thanks to (23), we prove (28) for q = 2.
Finally, we observe that Φ(u) and Φ(u)t are continuous in time with values in H 1(R) and

L2(R), respectively. Let us check the continuity of Φ(u) (Φ(u)t can be treated in a similar way).
Indeed, given t, t0 > 0 with t � t0 (the case t � t0 is equivalent), by (22) we have

Φ(u)(t) − Φ(u)(t0) = S(t)[u0, u1] − S(t0)[u0, u1] −
t∫

t0

S(t − s)
[
f

(
u(s)

)
x

]
ds

−
t0∫

0

(
S(t − s)

[
f

(
u(s)

)
x

] − S(t0 − s)
[
f

(
u(s)

)
x

])
ds. (32)

Taking into account that (u0, u1) ∈ V , the continuity property of the semigroup S(t) and that
f (u(s)) with u ∈ BR is bounded in H 1(R) and W 1,1(R) and using (25), we only have to study
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the limit of the last term of (32). First, thanks to (24) and since u ∈ BR , we see that ‖S(t − s) ×
[f (u(s))x]‖1,2 and ‖S(t0 − s)[f (u(s))x]‖1,2 are bounded above by a function in L1(0, t0) de-
pending on s which is independent of t . On the other hand, by the continuity of the semigroup
S(t), we get, for any s ∈ (0, t0),

lim
t→t0

∥∥[
S(t − s) − S(t0 − s)

][
f

(
u(s)

)
x

]∥∥
1,2 = 0,

because f (u(s)) ∈ H 1(R). Then, by the dominated convergence theorem, the last term of (32)
goes to zero when t → t0 and we conclude the continuity of Φ(u). �
Proof of Lemma 4.2. Given u,v ∈ BR , let be w(t) = Φ(u)(t) − Φ(v)(t). We define

ϕ(t) = sup
0�s�t

{
(1 + s)

1
4
∥∥u(s) − v(s)

∥∥
2

}
, φ(t) = sup

0�s�t

{
(1 + s)

3
4
∥∥ux(s) − vx(s)

∥∥
2

}
. (33)

Thus, using (24) with a = 1,

∥∥w(t)
∥∥

2 � c

t∫
0

(1 + t − s)−
3
4
[∥∥f

(
u(s)

) − f
(
v(s)

)∥∥
2 + ∥∥f

(
u(s)

) − f
(
v(s)

)∥∥
1

]
ds,

∥∥wx(t)
∥∥

2 � c

t∫
0

(1 + t − s)−
3
4
[∥∥f

(
u(s)

)
x

− f
(
v(s)

)
x

∥∥
2 + ∥∥f

(
u(s)

)
x

− f
(
v(s)

)
x

∥∥
1

]
ds,

∥∥wt(t)
∥∥

2 � c

t∫
0

(1 + t − s)−
5
4
[∥∥f

(
u(s)

)
x

− f
(
v(s)

)
x

∥∥
2 + ∥∥f

(
u(s)

)
x

− f
(
v(s)

)
x

∥∥
1

]
ds.

In view of the definition of ϕ and φ in (33), using that u,v ∈ BR and the first estimate of (26),
we get, for any t � s,

∥∥f
(
u(s)

) − f
(
v(s)

)∥∥
2 � cRq−1(1 + s)−

2q−1
4 ϕ(t),∥∥f

(
u(s)

) − f
(
v(s)

)∥∥
1 � cRq−1(1 + s)−

q−1
2 ϕ(t),∥∥f

(
u(s)

)
x

− f
(
v(s)

)
x

∥∥
2 � cRq−1(1 + s)−

2q+1
4

[
φ(t) + ϕ(t)

1
2 φ(t)

1
2
]
,∥∥f

(
u(s)

)
x

− f
(
v(s)

)
x

∥∥
1 � cRq−1(1 + s)−

q
2
[
φ(t) + ϕ(t)

]
.

Using these inequalities we prove ∀u,v ∈ BR , t � 0,

(1 + t)
1
4
∥∥Φ(u)(t) − Φ(v)(t)

∥∥
2 � cRq−1ϕ(t),

(1 + t)
3
4
∥∥Φ(u)x(t) − Φ(v)x(t)

∥∥
2 � cRq−1[ϕ(t) + φ(t)

]
,∥∥Φ(u)t (t) − Φ(v)t (t)

∥∥
2 � cRq−1[ϕ(t) + φ(t)

]
proceeding like in the proof of Lemma 4.1. �
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The proof of Proposition 2.1 is now complete. We now obtain some extra estimates on the
behavior of u that will be useful in the sequel.

Proposition 4.3. Let u be the solution of (8) under the hypotheses of Proposition 2.1. Then, for
any t � 0, we get

∥∥ut (t)
∥∥

2 �

⎧⎨
⎩ c(1 + t)−

2q+5
8 for 2 � q < 5

2 ,

c(1 + t)− 5
4 for q � 5

2 ,
(34)

with a constant c that depends on the norm of the initial data in V and the exponent q .

Proof. Using the variation of constants formula, by (17) and (25) with a ∈ [1,2], we get

∥∥ut (t)
∥∥

2 � c(1 + t)−
5
4
(‖u0‖1,2 + ‖u0‖1 + ‖u1‖2 + ‖u1‖1

)

+ c

t∫
0

e−ω(t−s)
∥∥f

(
u(s)

)
x

∥∥
2 ds + c′

t∫
0

(1 + t − s)−
3
4 − 1

2a

∥∥f
(
u(s)

)
x

∥∥
a
ds. (35)

Using (30) and estimates (9), we get C depending on the initial data and q � 2 such that

t∫
0

e−ω(t−s)
∥∥f

(
u(s)

)
x

∥∥
2 ds � C(1 + t)−

5
4 .

Now, we study the second integral of (35) distinguishing two cases: q � 5/2 and q ∈ [2,5/2).
Taking a = 1 and using (30) with (9), we prove (34), for q � 5/2,

t∫
0

(1 + t − s)−
5
4
∥∥f

(
u(s)

)
x

∥∥
1 ds � C(1 + t)−

5
4 .

Now, for q ∈ [2,5/2), we use the Hölder inequality and since a ∈ [1,2), then 2a(q − 1)/

(2 − a) � 2, thanks to (26) and (9), we obtain

t∫
0

(1 + t − s)−
3
4 − 1

2a

∥∥f
(
u(s)

)
x

∥∥
a
ds � c

(
(1 + t)

1
2a

− q+1
2 + (1 + t)−

3
4 − 1

2a
)
,

by (23) since (3/4 + 1/2a) > 1 and (q + 1)/2 − 1/2a > 1. We choose a ∈ (1,2) depending on
q ∈ [2,5/2) so that the decay estimate is optimal, i.e., (q + 1)/2 − 1/(2a) = 3/4 + 1/(2a). Then
a = 4/(2q − 1) ∈ (1,4/3], and we conclude the proof of (34) for q ∈ [2,5/2). �
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5. Compactness

The goal of this section is to obtain a compactness result in L2((0, T ) × R) for the family
{uλ}λ>0, defined by

uλ(x, t) = λu
(
λx,λ2t

)
. (36)

This fact will be later used in the proof of Theorem 2.3. For any λ > 0 the function uλ solves

{
λ−2uλ,tt + uλ,t − uλ,xx + λ2−q(|uλ|q−1uλ)x = 0, (x, t) ∈ R × (0,∞),

uλ(x,0) = u0,λ(x) = λu0(λx), uλ,t (x,0) = u1,λ(x) = λ3u1(λx).
(37)

On the other hand, thanks to (9), we have, for any t � 0

∥∥uλ(t)
∥∥

2 � cλ
1
2
(
1 + λ2t

)− 1
4 ,

∥∥uλ,x(t)
∥∥

2 � cλ
3
2
(
1 + λ2t

)− 3
4 . (38)

By (38) the norm of uλ in L2((0, T ) × R) is bounded when λ → ∞. Then, by extracting
subsequences (that we denote with the same subindex λ to simplify the notation), uλ con-
verges weakly in L2((0, T ) × R). Now, we proceed in several steps to conclude the proof of
compactness in L2((0, T ) × R): (1) We establish that the sequence {uλ} is relatively com-
pact in C([t0, T ];Lp

loc(R)) for 1 � p � ∞ and t0 > 0. (2) We obtain the compactness in
C([t0, T ];Lp(R)) for t0 > 0 and any p ∈ [1,∞]. To do it, we prove the existence of k0 > 0
for any ε > 0 such that, for any k � k0 and λ � 1,

∫
|x|�k

∣∣uλ(x, t)
∣∣dx � ε, ∀t ∈ [t0, T ]. (39)

(3) We conclude proving that for any ε > 0, there exists t0 > 0 sufficiently small such that, for
λ � 1, it holds

t0∫
0

∫
R

∣∣uλ(x, t)
∣∣2

dx � ε. (40)

First, we have the following local compactness result.

Proposition 5.1. Let u be the unique solution of (8) under the hypotheses of Proposition 2.1. Let
{uλ} be the family defined in (36) for N = 1. Then, for any t0 > 0, {uλ} is relatively compact in
C([t0, T ];Lp

loc(R)) for 1 � p � ∞ and t0 > 0.

To prove this result, we use a variant of the Aubin–Lions compactness lemma. The following
estimates on the time derivative are needed:

Lemma 5.2. Let 0 < t0 < T . Then, under the hypotheses of Proposition 5.1, {uλ,t }λ�1 is uni-
formly bounded in L2(t0, T ;H−1(R)).
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Proof. We consider the function

vλ(x, t) = λ−2eλ2t uλ,t (x, t), (41)

that satisfies vλ,t = eλ2t [λ−2uλ,tt + uλ,t ]. Since uλ verifies (37),

‖vλ,t‖−1,2 � ceλ2t
[‖uλ,x‖2 + λ2−q

∥∥f (uλ)
∥∥

2

]
.

On the one hand, we get∫
R

λ4−2q
∣∣f (uλ)

∣∣2
dx � cλ3

∫
R

∣∣u(
y,λ2t

)∣∣2q
dy � cλ3(1 + λ2t

)− 2q−1
2 ,

by (26) and estimates (9). With this estimate and (38) we have, for any q � 2,

‖vλ,t‖−1,2 � ceλ2t λ
3
2
(
1 + λ2t

)− 3
4 � ceλ2t , ∀t � t0 > 0.

Using the Cauchy–Schwarz inequality and the previous estimate, we have

∂t

(∥∥vλ(t)
∥∥2

−1,2

)
� ceλ2t

∥∥vλ(t)
∥∥−1,2 for any t � t0.

Then, ∂t (‖vλ(t)‖−1,2) � ceλ2t . Integrating in time, we get

∥∥vλ(t)
∥∥−1,2 �

∥∥vλ(t0)
∥∥−1,2 + cλ−2[etλ2 − et0λ

2]
for any t � t0.

Since vλ is defined by (41), ‖vλ(t)‖−1,2 = λ−2eλ2t‖uλ,t (t)‖−1,2. Thus, we get

∥∥uλ,t (t)
∥∥−1,2 � e(t0−t)λ2∥∥uλ,t (t0)

∥∥−1,2 + 2c
[
1 − e(t0−t)λ2]

for any t � t0.

Thanks to (34), we have the following decay estimates for uλ,t :

∥∥uλ,t (t)
∥∥

2 �

⎧⎨
⎩ cλ

5
2 (1 + λ2t)−

2q+5
8 for 2 � q < 5

2 ,

cλ
5
2 (1 + λ2t)− 5

4 for q � 5
2 ,

(42)

and, in view of the continuity of the embedding L2(R) ↪→ H−1(R), we get that, by (42),
‖uλ,t (t0)‖−1,2 � cλ1/4 for any q � 2 and t0 > 0. Thus, we have

∥∥uλ,t (t)
∥∥−1,2 � ce(t0−t)λ2

λ
1
4 + 2c

[
1 − e(t0−t)λ2]

for any t � t0,

and we conclude the proof. �
Proof of Proposition 5.1. We observe that H 1

loc(R) is included in L
p

loc(R) for 1 � p � ∞ with
compact embedding. Moreover, L2

loc(R) is included in H−1
loc (R) and L

p

loc(R) in L2
loc(R) for 2 �

p � ∞ with continuous embeddings.
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On the other hand, recall that, according to Lemma 5.2, {uλ,t }λ�1 is uniformly bounded
in L2(t0, T ;H−1(R)) for 0 < t0 < T . Moreover, by (38), {uλ} is uniformly bounded in
L∞(t0, T ;H 1(R)), for any 0 < t0 < T . Then, using classical compactness results (see
[14, Corollary 4, p. 85]), the family {uλ} is relatively compact in C([t0, T ];Lp(K)) for any com-
pact set K ⊂ R and 2 � p � ∞. This concludes the proof. �

The proof of (39) is a consequence of the following lemma whose proof is given later.

Lemma 5.3. Let u be solution of (8) given by Proposition 2.1. Moreover, assume that u0, u1 ∈
L2

1(R). Then, we have ∫
R

|x|2∣∣u(x, t)
∣∣2

dx � c(1 + t)
1
2 . (43)

Indeed, by the Cauchy–Schwarz inequality and the definition of uλ,∫
|x|�k

∣∣uλ(x, t)
∣∣dx �

√
2(λk)−

1
2
∥∥u

(
λ2t

)∥∥
L̇2

1
,

and, thanks to (43), we prove (39):∫
|x|�k

∣∣uλ(x, t)
∣∣dx � c(λk)−

1
2
(
1 + λ2t

) 1
4 � ck− 1

2 (1 + T )
1
4 . (44)

Now, thanks to estimate (38) and choosing t0 sufficiently small, we get (40). Then, as a simple
consequence, we have:

Proposition 5.4. Under the hypotheses of Lemma 5.3, the family {uλ} is relatively compact in
C([t0, T ];Lp(R)) for 0 < t0 < T < ∞ and any p ∈ [1,∞].
Proof. First, by Proposition 5.1, (44) and Vitali’s theorem readily imply the relative compactness
{uλ} in C([t0, T ];L1(R)). The Lp analogue now follows from (38) by the Gagliardo–Nirenberg
inequality. �
Proof of Lemma 5.3. We use the variation of constants formula. Applying Lemma 3.3 with
b = 2 and a = 1 to estimate S(t)[u0, u1] and with b = 1 and a = 1 to estimate ∂xS(t − s) ×
[f (u(s))], we have

∥∥u(t)
∥∥

L̇2
1
� c′(1 + t)

1
4
(‖u0‖L1 + ‖u1‖L1 + ‖u0‖L2

1
+ ‖u1‖L2

1

)

+ c

t∫
0

e−ω(t−s)
∥∥f

(
u(s)

)∥∥
L̇2

1
ds + c1

t∫
0

(1 + t − s)−
3
4
∥∥f

(
u(s)

)∥∥
L̇1

1
ds

+ c2

t∫
(1 + t − s)−

1
2
∥∥f

(
u(s)

)∥∥
2 ds + c3

t∫
(1 + t − s)−

1
4
∥∥f

(
u(s)

)∥∥
1 ds. (45)
0 0
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Now, we study the integral terms. Since f (u) = |u|q−1u, using the decay estimates (9), we obtain
immediately:

∥∥f
(
u(s)

)∥∥
L̇2

1
� c(1 + s)−

q−1
2 ‖u‖L̇2

1
,

∥∥xf
(
u(s)

)∥∥
1 � c(1 + s)−

2q−3
4 ‖u‖L̇2

1
,

∥∥f
(
u(s)

)∥∥
2 � c(1 + s)−

2q−1
4 ,

∥∥f
(
u(s)

)∥∥
1 � c(1 + s)−

q−1
2 .

Therefore, applying these estimates in the integrals appearing in (45), we deduce that, for any
t � 0,

∥∥u(t)
∥∥

L̇2
1
� c(1 + t)

1
4 + c̃

t∫
0

(1 + t − s)−
3
4 (1 + s)−

2q−3
4

∥∥u(s)
∥∥

L̇2
1
ds. (46)

Now, we define α(t) = sup{β(s): s ∈ [0, t]} with β(s) = (1 + s)−1/4‖u(s)‖L̇2
1
. First, since

(1 + t − s)−3/4(1 + s)−(2q−3)/4 � 1, we have that α(t) is finite applying the Gronwall lemma in
(46). Now, we consider ε ∈ (0,1/2) and from (46) we have

β(t) � c + c̃α(t)(1 + t)−
1
4
(
1 + (1 − ε)t

)− 3
4

εt∫
0

(1 + s)−
q−2

2 ds

+ c̃α(t)(1 + t)−
1
4 (1 + εt)−

q−2
2

t∫
εt

(1 + t − s)−
3
4 ds

� c + c̃α(t)
(
K1ε + K2(1 + εt)−

q−2
2

)
, (47)

with K1,K2 > 0 and independent of ε. We distinguish two cases:
1. Case q > 2. We choose ε such that c̃K1ε � 1/2 and t0 such that c̃K2(εt0)

−(q−2)/2 � 1/4.
Then, from (47) we obtain that, for any t � 0, α(t) � α(t0)+c+3α(t)/4, from which we get (43)
for q > 2.

2. Case q = 2. From (47) we have α(t) � c + c̃(K1ε + K2)α(t). The constant c̃ > 0 is pro-
portional to the norm of the initial data in V . Therefore, as the norm of (u0, u1) is small in V ,
we can assume that c̃(K1ε + K2) � 3/4. Thus, we obtain (43) for q = 2. �
6. Identification of the limit and asymptotic behavior

First, we are going to identify the limit of the sequence {uλ}λ>0. As λ → ∞, Eq. (37) formally
reduces to the heat equation for q > 2 and to the Burgers equation for q = 2. In particular, we
prove the following proposition.

Proposition 6.1. Under the hypotheses of Proposition 2.1 and Lemma 5.3, the sequence {uλ}λ>0
converges in L2((0, T ) × R) to θ where, if the exponent q > 2, θ is the solution of the heat
equation (15), and, if the exponent q = 2, θ is the solution of the Burgers equation (14).
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Proof. To do it, we use the weak formulation of solutions. We consider the following space
of test functions D(T ) = {ϕ ∈ C([0, T ];H 2(R)) ∩ C1([0, T ];L2(R)): ϕ(T , x) = 0}. The solu-
tions {uλ} of the rescaled problem (37) satisfy:

T∫
0

∫
R

uλ(ϕt + ϕxx) dx dt + λ2−q

T∫
0

∫
R

|uλ|q−1uλϕx dx dt

+ λ

∫
R

[
u0(λx) + u1(λx)

]
ϕ(x,0) dx + λ−2

T∫
0

∫
R

uλ,tϕt dx dt = 0, ϕ ∈ D(T ). (48)

Since uλ is relatively compact in L2((0, T ) × R), there exists a subsequence (denoted with
the same subscript λ) uλ converging in L2((0, T ) × R) to some function θ . Then,

lim
λ→∞

T∫
0

∫
R

uλ(ϕt + ϕxx) =
T∫

0

∫
R

θ(ϕt + ϕxx), ∀ϕ ∈D(T ). (49)

By the change of variable y = λx and applying the dominated convergence theorem, we get

lim
λ→∞

∫
R

[
u0(y) + u1(y)

]
ϕ(y/λ,0) dy = Mϕ(0,0), ∀ϕ ∈D(T ). (50)

Thanks to (42), since min(5/4, (2q + 5)/8) > 1 for q � 2, we get

lim
λ→∞λ−2

T∫
0

∫
R

uλ,tϕt = 0. (51)

Now, we study the integral in (48) involving the term |uλ|q−1uλ. We distinguish two cases: q > 2
and q = 2. Using (26) and estimates (38), we obtain for 0 < T < ∞:

lim
λ→∞λ2−q

T∫
0

∫
R

∣∣|uλ|q−1uλϕx

∣∣dx dt � lim
λ→∞ cλ

T∫
0

(
1 + λ2t

)− q−1
2 dt = 0, (52)

provided q > 2 since

T∫
0

(
1 + λ2t

)− q−1
2 dt �

⎧⎪⎨
⎪⎩

cλ−2 with q > 3,

cλ−2 ln(1 + λ2T ) with q = 3,

cλ−2(1 + λ2T )
3−q

2 with q ∈ [2,3).

Therefore, (49)–(52) guarantee that the limit θ of uλ in L2((0, T )× R) satisfies the weak formu-
lation of the heat equation (15) when the exponent q > 2.
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Now, since the sequence {uλ} converges to θ in L2((0, T )×R), we get, thanks to the fact that
ϕx ∈ C((0, T ) × L∞(R)),

lim
λ→∞

T∫
0

∫
R

|uλ|uλϕx dx dt =
T∫

0

∫
R

|θ |θϕx dx dt. (53)

Thus, thanks to (49)–(51) and (53), the limit θ of the sequence uλ satisfies the weak formulation
of the Burgers equation (14) when the exponent q = 2.

As a final point, we note that the uniqueness of the weak solutions of (14) and (15) in
L2((0, T ) × R) is well known thanks to the classical transposition method. This fact guaran-
tees that the limit θ is unique and that it is actually the limit of the whole family {uλ}. �

Now, we conclude this section deriving the asymptotic behavior of the solutions of (8).

Proof of Theorem 2.3. We know by Proposition 5.4 that, when λ → ∞, there exists θ such that
the sequence {uλ} converges to θ in Lp(R) (1 � p � ∞) for t = 1

lim
λ→∞

∥∥uλ(·,1) − θ(·,1)
∥∥

p
= 0. (54)

We note that, by Proposition 6.1, this convergence holds for the whole sequence {uλ} and that, if
the exponent q > 2 (respectively q = 2), θ is the solution of the heat equation (15) (respectively
Burgers equation (14)). In both cases, it is well be known that the solutions are self-similar:
θ(x, t) = t−1/2fM(x/

√
t ), for a suitable profile fM (see, for example, [5]). Thus, θ is invariant

under the rescaling transformation (36), i.e., θλ ≡ θ , and∫
R

∣∣uλ(x,1) − θ(x,1)
∣∣p dx = λp−1

∫
R

∣∣u(
y,λ2) − θ

(
y,λ2)∣∣p dy.

We choose λ2 = t and thanks to (54), we get the convergence result (13). �
7. Blow-up

In [15] the global nonexistence of nondecreasing positive solutions for the differential
inequalities of the type att + at � αaq is studied. In particular, denoting T ∗ < ∞ the
maximal existence time, a(t) with initial data a0 > 0, a1 � 0 blows-up in the sense that:
‖u‖W 2,1(0,T ∗) = +∞. Now, we show a more general nonexistence result with an explicit esti-
mate on the blow-up time using different arguments than in [15].

Lemma 7.1. Let a = a(t) be a solution of

att + at = α|a|q−1a, t > 0, (55)

with q > 1, α > 0 and initial data (a0, a1) such that a0, a1 > 0 or a0, a1 < 0. Then, if

|a0| �
(

q + 1

8α

) 1
q−1

e
2

q−1 and

(
1

2
a0 + a1

)2

� 1

4
a2

0 + α
2|a0|q+1

q + 1
, (56)

a blows-up in finite time tb � |a0|(1−q)/2e
√

2q + 2/
√

α(q − 1).
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Proof. First, we note that a, at > 0 for all t > 0 when a0, a1 > 0. Indeed, assume that there exists
τ < ∞ such that a(τ) = 0 and a(t) > 0 for any t < τ . Then, from (55), at (t) � a1e

−t > 0 for
any t < τ and, therefore, a being positive and increasing in (0, τ ) it may not vanish in time t = τ .
Furthermore, from (55) we deduce that at is positive as well. Analogously, we have a, at < 0 for
all t > 0 when a0, a1 < 0.

Now, let b(t) = et/2a(t). Then (55) becomes

btt − b

4
= αe− q−1

2 t |b|q−1b, t > 0, (57)

with initial data b(0) = a0 and b′(0) = a0/2 + a1. Now, we multiply (57) by bt , integrate and
again by parts, we obtain

1

2
b2
t � 1

2

(
1

2
a0 + a1

)2

− 1

8
a2

0 + αe− q−1
2 t |b(t)|q+1

q + 1
− α

|a0|q+1

q + 1
.

Given an arbitrary a0 we assume that a1 is sufficiently large such that (56) holds. Considering
τ > 0 arbitrary, we have b2

t � c2|b|q+1, for 0 � t � τ with c2 = 2αe−(q−1)τ/2/(q + 1). When

a, at > 0, then bt � cb(q+1)/2 and after integration we obtain that b(t) � (a
(1−q)/2
0 − c(q − 1)×

t/2)−2/(q−1), and thus, when q > 1, the solution b blows-up in time tb � 2a
(1−q)/2
0 /c(q −1) and,

tb � τ , if

|a0| �
(

2(q + 1)

α(q − 1)2

) 1
q−1

τ
− 2

q−1 e
τ
2 , τ > 0. (58)

Now, we consider the function h(τ) = τ−2/(q−1)eτ/2 in the right-hand side of (58). The mini-
mum critical point of this function in (0,∞) is τ = 4/(q − 1). Taking this value in (58),
a0 has to satisfy (56). Consequently, if a0 and a1 satisfy (56), a blows-up in finite time
tb � a

(1−q)/2
0 e

√
2q + 2/

√
α(q − 1). (In the case a, at < 0, then bt � −c|b|(q+1)/2 and, we con-

clude as above.) �
As we mentioned in Section 2, the blow-up result for the ODE (55) with exponent q = 2

implies the existence of blowing-up solutions of the form u(x, t) = xa(t) for the PDE (8) with
q = 2. The corresponding initial data are of the form u0(x) = xa0, u1(x) = xa1. Obviously they
do not belong to the space V . Note however that, due to the finite speed of propagation (= 1 in
model (8)) one can modify the solution so that it blows-up and has compact support in x. Indeed,
let a be solution of (55) blowing-up in time T . Let ϕ ∈ C∞

c (R) be such that ϕ(x) = x for all
x ∈ [−3T ,0]. Let the initial data for (8) be u0(x) = a0ϕ(x), u1(x) = a1ϕ(x). Then, the solution
of (8) in [−3T + t,−t] is of the form u ≡ xa(t). Consequently, it blows-up in time T for all
x ∈ [−2T ,−T ].

Now, we prove the blow-up result for even nonlinearities.

Proof of Theorem 2.2. Due to the finite speed of propagation and applying Hölder’s inequality,
we get for any t � K1

a(t)q � (K1 + K2)
2q−1

(
q − 1

)q−1 ∫
|u|q dx.
2q − 1
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Now, multiplying Eq. (8) by x, integrating the equation and thanks to the previous inequali-
ty, the function a(t), defined in (11), satisfies the inequality att + at � ρaq with ρ =
(K1 + K2)

1−2q((q − 1)/(2q − 1))1−q . Under the hypotheses of Theorem 2.2, the initial data
a0 and a1 of a are positive. With these initial data a is positive and it satisfies (55) re-
placing α with ρ. Then, applying Lemma 7.1, the function a (11) blows-up in finite time
tb � a

(1−q)/2
0 e

√
2q + 2/(

√
ρ(q − 1)), if the constants (a0, a1) satisfy (56) with α = ρ. Finally,

by the definition of ρ, tb � K1 under the hypotheses of Theorem 2.2. �
Appendix A. Linear estimates

In this appendix we prove Lemmas 3.2 and 3.3. The proofs can be carried out by means of a
careful analysis of the Fourier transform of solutions. Equation (16) can be written as

{
ût t + |ξ |2û + ût = 0 in R

N × (0,∞),

û(ξ,0) = ϕ̂0(ξ), ût (ξ,0) = ϕ̂1(ξ).
(A.1)

Define v̂(ξ, t) = û(ξ, t)χ|ξ |�1/4 and ŵ(ξ, t) = û(ξ, t)χ|ξ |>1/4, where χ stands for the characte-
ristic function. Denoting respectively by v and w the inverse Fourier transform of v̂ and ŵ, one
obtains a decomposition of the solution u of (16) itself u = v + w.

Lemma A.1. Let k ∈ N and α ∈ R
N+ . Then,

∥∥∂α
x ∂k

t w(·, t)∥∥2 � ce−ωt
[∥∥ϕ0

∥∥
Ḣ k+|α| +

∥∥ϕ1
∥∥

Ḣ k+|α|−1

]
, ∀t � 0. (A.2)

The proof is easily obtained using a Lyapunov function as in [13].
Now, we can decompose v̂ as v̂(ξ, t) = p̂(ξ, t) + q̂(ξ, t), where, for |ξ | < 1/4,

p̂(ξ, t) =
[
ϕ̂0(ξ)

(
1

2
+ r(ξ)

)
+ ϕ̂1(ξ)

]
e− t

2

2r(ξ)
er(ξ)t ,

q̂(ξ, t) =
[
ϕ̂0(ξ)

(
r(ξ) − 1

2

)
− ϕ̂1(ξ)

]
e− t

2

2r(ξ)
e−r(ξ)t ,

with r(ξ) = √
1/4 − |ξ |2, for |ξ | � 1/4. Let p and q be the inverse Fourier transforms of p̂

and q̂ , respectively. We have:

Lemma A.2. Let k = 0,1 and α ∈ R
N+ . Then,

∥∥∂α
x ∂k

t q(·, t)∥∥2 � ce− t
2
[∥∥ϕ0

∥∥
Ḣ |α|+k + ∥∥ϕ1

∥∥
Ḣ |α|−1+k

]
, ∀t � 0. (A.3)

However, when k + |α| < 1, Ḣ k+|α|−1 must be replaced by Hk+|α|−1 in (A.3).

Lemma A.3. Let k ∈ N and α ∈ R
N+ . Then, t � 0,

∥∥∂k
t ∂α

x p(·, t)∥∥2 � c(1 + t)
− N

2 ( 1
q
− 1

2 )
(1 + t)−

2k+|α|
2

[∥∥ϕ0
∥∥

a
+ ∥∥ϕ1

∥∥
a

]
. (A.4)
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Proof of Lemma A.2. We observe that for |ξ | � 1/4, r(ξ) is positive, and

∣∣∂k
t q̂(ξ, t)

∣∣ �
∣∣∣∣ϕ̂0(ξ)

(
1

2
− r(ξ)

)
+ ϕ̂1(ξ)

∣∣∣∣ 1

2r(ξ)

(
1

2
+ r(ξ)

)k

e− t
2 .

Thus, q decays exponentially. Since |ξ | � 1/4, we get 2 � 1/r(ξ) � 4/
√

3 and 3/4 �
r(ξ) + 1/2 � 1. Moreover, since 3(1/2 − r(ξ))/4 � (1/2 − r(ξ))(1/2 + r(ξ)) = |ξ |2, then
(1/2−r(ξ)) � 4|ξ |2/3 for any |ξ | � 1/4. Using these inequalities and Parseval’s identity, (A.3) is
obtained immediately. �
Proof of Lemma A.3. First, it is easy to check that∫

|ξ |�δ

e−tω|ξ |2 |ξ |k dξ � c(ω, δ, k)(1 + t)−
k+N

2 . (A.5)

Now, since |ξ | � 1/4, we know that −3|ξ |2/4 � r(ξ) − 1/2 � −|ξ |2. Thus,

∣∣∂k
t p̂(ξ, t)

∣∣ � c
(∣∣ϕ̂0(ξ)

∣∣ + ∣∣ϕ̂1(ξ)
∣∣)|ξ |2ke−|ξ |2t .

Using Parseval’s identity, Hölder’s inequality and (A.5), we get

∥∥∂α
x ∂k

t p(·, t)∥∥2 � c
(∥∥ϕ̂0

∥∥
2p

+ ∥∥ϕ̂1
∥∥

2p

)
(1 + t)

− N
4p′ (1 + t)−

2k+|α|
2 , ∀t � 0.

Choosing 1 � a � 2 such that 1/a + 1/(2p) = 1, taking into account that 1/2p′ = 1/a − 1/2,

and by the Hausdorff–Young inequality, we prove (A.4). �
Combining this estimate, (A.2) and (A.3), we conclude the proof of Lemma 3.2.
Finally, we prove Lemma 3.3.

Proof of Lemma 3.3. Using the variation of constants formula to define v, we have by
Lemma 3.2

‖v‖2 � ce−ωt
(∥∥xϕ0

∥∥
2 + ∥∥xϕ1

∥∥−1,2

) + c′(1 + t)
1
4 − 1

2b
(∥∥xϕ0

∥∥
b
+ ∥∥xϕ1

∥∥
b

)

+ 2

t∫
0

∥∥Sx(t − s)
[
0, u(s)

]∥∥
2 ds. (A.6)

By estimate (17) with (ϕ0 = 0, ϕ1 = u(s)) and (a = 2, k = 0, α = 1), and estimate (18) for
(α = 0, k = 0), we obtain

t∫
0

∥∥Sx(t − s)
[
0, u(s)

]∥∥
2 ds

� c
(∥∥ϕ0

∥∥ + ∥∥ϕ1
∥∥ )

(1 + t)−
1
2 + c′(∥∥ϕ0

∥∥ + ∥∥ϕ1
∥∥ )

(1 + t)
3
4 − 1

2a ,
2 −1,2 a a



38 R. Orive, E. Zuazua / J. Differential Equations 228 (2006) 17–38
thanks to (14). Then, returning to (A.6), we prove (20). Note that xux = vx − u. Since the de-
cay of ‖u(t)‖2 is known by (17), we only need to obtain the behavior of vx to get (21). Using
estimate (18), we get

‖vx‖2 � ce−ωt
(∥∥xϕ0

∥∥
Ḣ 1 + ∥∥xϕ1

∥∥
2

) + c′(1 + t)−
1
4 − 1

2b
(∥∥xϕ0

∥∥
b
+ ∥∥xϕ1

∥∥
b

)
+ 2

t∫
0

∥∥Sx(t − s)
[
0, ux(s)

]∥∥
2 ds. (A.7)

Applying (17) with (a = 2, k = 0, α = 1), (18) with (k = 0, α = 1) and using (23), we get

t∫
0

∥∥Sx(t − s)
[
0, ux(s)

]∥∥
2 ds

� c
(∥∥ϕ0

∥∥
Ḣ 1 + ∥∥ϕ1

∥∥
2

)
(1 + t)−

1
2 + c′(∥∥ϕ0

∥∥
a
+ ∥∥ϕ1

∥∥
a

)
(1 + t)

1
4 − 1

2a .

Then, coming back to (A.7) we obtain (21). �
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