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Abstract

In this paper we prove some existence results of semilinear Dirichlet problems in nonsmooth domains in
presence of lower and upper solutions well-ordered or not. We first prove existence results in an abstract
setting using degree theory. We secondly apply them for domains with conical points.
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1. Introduction

There is a large literature concerning the existence and localization of a solution of the Dirich-
let problem

{−�u = f (x,u), in Ω ,

u = 0, on ∂Ω ,
(1)
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in presence of lower and upper solutions α and β satisfying α � β . This result goes
back to G. Scorza Dragoni in 1931 for the one-dimensional Dirichlet problem [25] and to
M. Nagumo [24] in 1954 for the multi-dimensional one. In 1972, H. Amann [2] proved his three
solutions theorem in presence of two pairs of lower and upper solutions satisfying α1 � β1 � β2,
α1 � α2 � β2 and α2 �� β1, by using the relation between lower–upper solutions and degree
theory.

In 1972, D.H. Sattinger [26] presents as an open problem the question of the solvability of
(1) in presence of lower and upper solutions without ordering. It was pointed out by an example
in [3] that these conditions are not sufficient to guarantee the solvability of (1). This example is
essentially of the type

{−�u = λmu + ϕm(x), in Ω ,

u = 0, on ∂Ω ,
(2)

where λm is an eigenvalue of −� on H 1
0 (Ω) different from the first one and ϕm is the corre-

sponding nonzero eigenfunction. It is easy to see that (2) has no solution even if we can construct
lower and upper solutions α and β as multiples of the first eigenfunction ϕ1 satisfying β < 0 < α.
Hence to have existence of a solution in presence of non-ordered lower and upper solutions, we
have to avoid the interference of the nonlinearity with the higher part of the spectrum.

The first important contribution in this direction is due to H. Amann, A. Ambrosetti and
G. Mancini [4] in 1978 who assume

sup
Ω×R

∣∣f (x,u) − λ1u
∣∣ < ∞.

More recently, this kind of result was generalized to consider unbounded perturbations of λ1u

(see C. De Coster and M. Henrard [8] and the references therein, as well as [9] for other types of
extensions in the framework of parabolic problems).

Up to now, these results have been proved in a regular context (i.e. for domains with a smooth
boundary) and the main scope of these papers is the generalization of the conditions on the non-
linearity f . Moreover the proofs of these results (see for instance [8]) use deeply the fact that the
solution of (1) with f (·, u(·)) ∈ Lp(Ω) is in W 2,p(Ω) with p > N (N being the dimension of Ω ,
in such a way that W 2,p(Ω) ↪→ C1(Ω)) which is no more true even for non-convex polygonal
domains for example. The aim of this paper is to extend Amann–Ambrosetti–Mancini’s result in
what concerns the regularity of Ω .

This paper is organized in the following way. In the first section, we give general hypotheses
and technical results with minimal regularity on the boundary of the domain. Then, we prove
some existence results in presence of lower and upper solutions in an abstract setting. In the
non-well-ordered case we consider only situations where “f is a bounded perturbation of the
first eigenvalue” as in [4]. Extension of the asymptotic behaviour can be done arguing as in [8,9].
Using an argument of [7], we prove also an extension of Amann’s three solutions theorem asking
less ordering relations between the lower and upper solutions. In Sections 4, 5 and 6, we show
how the abstract results can be interpreted in case of a regular domain, a polygonal domain of
R2 and a domain of Rn, for n � 3, with a conical point. The last section is mainly devoted to the
construction of the lower and upper solutions for some particular nonlinearities f .
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2. Preliminaries

The theory of lower and upper solutions is based on maximum principles due to J.-M. Bony [5]
and P.-L. Lions [20]. Here we use them in the following forms (see [11, Theorem 9.6, Lemma 3.4]
or [28, Theorem 3.27, Lemma 3.26]).

Theorem 2.1 (Maximum Principle). Let Ω1 be a bounded domain in RN with ∂Ω1 of class C1,1,
p > N and λ � 0. If u ∈ W 2,p(Ω1) satisfies

−�u + λu � 0, in Ω1,

then u cannot achieve a maximum M � 0 in Ω1 unless u is constant.

Theorem 2.2 (Hopf Boundary Point Lemma). Let Ω1 be a bounded domain in RN with ∂Ω1
of class C1,1, p > N , λ � 0, x0 ∈ ∂Ω1 and b0 such that (b0|ν(x0)) > 0 for ν(x0) the outward
normal at x0. If u ∈ W 2,p(Ω1) satisfies −�u + λu � 0 in Ω1 and u achieves a strict local
maximum M � 0 at x0, then (

b0
∣∣∇u(x0)

)
> 0.

A simple consequence of Theorem 2.1 is the following corollary.

Corollary 2.3. Let Ω be a bounded domain in RN , p > N and λ � 0. If u ∈ W
2,p

loc (Ω) ∩ C(Ω)

satisfies {−�u + λu � 0, in Ω ,

u � 0, on ∂Ω ,

then u � 0 in Ω .

As in [27], in our purpose, the first eigenfunction plays a crucial role. We here recall some
useful properties (see [11, Section 8.12] or [10,21]).

Proposition 2.4. Let Ω ⊂ RN be a bounded domain. Then the eigenvalue problem: find λ ∈ R
and u ∈ H 1

0 (Ω) \ {0} such that

{−�u = λu, in Ω ,

u = 0, on ∂Ω ,
(3)

has a sequence of solutions (λn,ϕn)n�1 such that

(i) 0 < λ1 � λ2 � · · · and limn→∞ λn = ∞;
(ii) ϕn ∈ C∞(Ω);

(iii) λ1 is simple and the corresponding eigenfunction ϕ1 can be chosen such that ϕ1(x) > 0
in Ω ;

(iv) λ1 = min{∫
Ω

|∇u|2 dx | u ∈ H 1
0 (Ω),

∫
Ω

u2 dx = 1};
(v) if u ∈ H 1

0 (Ω) is such that
∫
Ω

|∇u|2 dx = λ1
∫
Ω

u2 dx, then there exists C ∈ R with u = Cϕ1.
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Following [29] we introduce the following space.

Definition 2.1. We define the space

Cϕ1 = {
u ∈ C(Ω)

∣∣ ∃a > 0, ∀x ∈ Ω,
∣∣u(x)

∣∣ � aϕ1(x)
}
.

This space is a Banach space endowed with the norm

‖u‖ϕ1 = inf
{
a > 0

∣∣ ∀x ∈ Ω,
∣∣u(x)

∣∣ � aϕ1(x)
}
.

We denote the open ball in that space

Bϕ1(0,R) := {
u ∈ Cϕ1

∣∣ ‖u‖ϕ1 < R
}
.

Remark 2.1. In case ϕ1 ∈ C(Ω), there exists C > 0 such that

∀u ∈ Cϕ1 , ‖u‖∞ � C‖u‖ϕ1 .

Definition 2.2. Given functions u,v :Ω → R, we write

• u � v if u(x) � v(x) in Ω ;
• u < v if u � v and u �= v;
• u 
 v if there exists ε > 0 such that u + εϕ1 � v with ϕ1 given by Proposition 2.4;
• [u,v] = {w ∈ Cϕ1 | u � w � v}.

Remark 2.2. Defining in Cϕ1 , the order cone Kϕ1 = {v ∈ Cϕ1 | v � 0}, we observe that u 
 v if
and only if v − u ∈ int(Kϕ1).

The regularity assumptions on the domain we use are the following

Assumption (H-1). There exist p > N and a normed space A ⊂ L
p

loc(Ω) such that, for every
h ∈A, the problem

{−�u = h, in Ω ,

u = 0, on ∂Ω ,
(4)

admits a unique solution u ∈ Cϕ1 .
Moreover we ask that

• the cone K = {w ∈A | w � 0 a.e. in Ω} is normal;
• Cϕ1 is continuously imbedded in A;
• the operator T :A → Cϕ1 :h �→ u, with u the unique solution of (4), is compact.

Remark 2.3. Observe that, as h ∈ L
p

loc(Ω), the local regularity theory for the Laplacian implies

that u ∈ W
2,p

loc (Ω) (see for example [11] or [22]).
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Remark 2.4. In the practical situations, A = L
p
w(Ω) := {f ∈ L

p

loc(Ω): w1/pf ∈ Lp(Ω)}, for
some w ∈ L1

loc(Ω), w > 0, where w depends on the regularity of the domain and ‖f ‖A =
(
∫
Ω

w|f |p dx)1/p . In that case, the cone K is obviously normal.

We can now give the following results concerning the first eigenfunction. We use the space

C0(Ω) = {
u ∈ C(Ω)

∣∣ u = 0 on ∂Ω
}
.

Proposition 2.5. Let Ω ⊂ RN be a bounded domain. Assume that the first eigenfunction ϕ1 de-
fined in Proposition 2.4 satisfies ϕ1 ∈ C0(Ω). Let p > N and v ∈ Cϕ1 ∩ W

2,p

loc (Ω) with ‖v‖ϕ1 = 1
be a solution of (3) with λ = λ1. Then v = ±ϕ1.

Remark 2.5. Observe that, by [11, Corollary 8.28 and the remark after Theorem 8.29], if N < 6
and Ω satisfies an exterior cone condition (which is in particular the case if ∂Ω is Lipschitz),
then ϕ1 ∈ C0(Ω).

Remark 2.6. This proposition is not a direct consequence of Proposition 2.4 as v is not a priori
in H 1

0 (Ω). Note further that this result is closely related to the Krein–Rutman theorem (see [29])
but the strong positiveness of T in Cϕ1 is not easy to establish since we make no regularity
assumptions on the boundary of Ω . We then give here a simple and direct proof.

Proof of Proposition 2.5. As v ∈ C(Ω), by Lax–Milgram theorem, there exists a unique
u ∈ H 1

0 (Ω) such that

∀ξ ∈ H 1
0 (Ω),

∫
Ω

∇u∇ξ dx = λ1

∫
Ω

vξ dx. (5)

By the local regularity theory, we know that u ∈ C(Ω) ∩ W
2,p

loc (Ω).
As v − ϕ1 � 0 in Ω , applying (5) with ξ = (u − ϕ1)

+, we obtain∫
Ω

∣∣∇(u − ϕ1)
+∣∣2

dx =
∫
Ω

∇(u − ϕ1)∇(u − ϕ1)
+ dx

= λ1

∫
Ω

(v − ϕ1)(u − ϕ1)
+ dx � 0.

Hence (u − ϕ1)
+ = 0, i.e. u � ϕ1, a.e. in Ω . In the same way we prove that u � −ϕ1 a.e. in Ω .

By continuity of u and ϕ1 we conclude that

−ϕ1 � u � ϕ1, in Ω.

As ϕ1 ∈ C0(Ω) we deduce that u ∈ C(Ω) and hence u ∈ Cϕ1 . We then have u − v ∈ Cϕ1 ∩
W

2,p

loc (Ω) satisfying

{−�(u − v) = 0, in Ω ,

u − v = 0, on ∂Ω .

By Corollary 2.3, v = u ∈ H 1(Ω) and we conclude by Proposition 2.4. �
0
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Proposition 2.6. Let Ω ⊂ RN be a bounded domain such that Assumption (H-1) is satisfied.
Let (λ1, ϕ1) be the first eigenvalue and eigenfunction defined in Proposition 2.4. Assume that
ϕ1 ∈ C0(Ω). Let p > N , γ ∈ A, d ∈ A ∩ L∞(Ω) with d > 0. Then there exists a unique
w ∈ Cϕ1 ∩ W

2,p

loc (Ω) solution of

{−�w = (λ1 − d)w + γ, in Ω ,

w = 0, on ∂Ω .
(6)

Proof. We know that w ∈ Cϕ1 ∩ W
2,p

loc (Ω) is a solution of (6) if and only if w is a solution of

w = T
(
(λ1 − d)w

) + T (γ ).

Hence, by the Fredholm alternative, the result will be proved if we show that

w = T
(
(λ1 − d)w

)
has only the trivial solution in Cϕ1 .

Let w ∈ Cϕ1 be a solution of w = T ((λ1 − d)w), i.e. w ∈ Cϕ1 ∩ W
2,p

loc (Ω) is a solution of

{−�w = (λ1 − d)w, in Ω ,

w = 0, on ∂Ω .
(7)

As (λ1 − d)w ∈ L2(Ω), by Lax–Milgram theorem, there exists a unique w̃ ∈ H 1
0 (Ω) such

that, for all ξ ∈ H 1
0 (Ω),

∫
Ω

∇w̃ ∇ξ dx =
∫
Ω

(λ1 − d)wξ dx.

Let C be such that |w| � Cϕ1. Then we have, for D > max(C,
(‖d‖L∞(Ω)+λ1)C

λ1
),

∫
Ω

∣∣∇(w̃ − Dϕ1)
+∣∣2

dx =
∫
Ω

∇(w̃ − Dϕ1)∇(w̃ − Dϕ1)
+ dx

=
∫
Ω

[
(λ1 − d)w − Dλ1ϕ1

]
(w̃ − Dϕ1)

+ dx

�
∫
Ω

ϕ1
(|λ1 − d|C − Dλ1

)
(w̃ − Dϕ1)

+ dx � 0.

It follows that (w̃ − Dϕ1)
+ = 0, i.e. w̃ � Dϕ1, a.e. in Ω . In the same way we prove that

w̃ � −Dϕ1 a.e. in Ω . By local regularity, we have that w̃ ∈ C(Ω) ∩ W
2,p

loc (Ω) and as |w̃| � Dϕ1

in Ω , we have w̃ ∈ C(Ω) and hence w̃ ∈ Cϕ1 ∩ W
2,p

(Ω).
loc
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We then have w̃ − w ∈ Cϕ1 ∩ W
2,p

loc (Ω) satisfying

{−�(w̃ − w) = 0, in Ω ,

w̃ − w = 0, on ∂Ω .

By Corollary 2.3, w̃ = w and hence, for all ξ ∈ H 1
0 (Ω),

∫
Ω

∇w ∇ξ dx =
∫
Ω

(λ1 − d)wξ dx.

In particular for ξ = w and using the variational characterization of the first eigenvalue (Propo-
sition 2.4(iv)) we obtain

0 �
∫
Ω

|∇w|2 dx − λ1

∫
Ω

w2 dx = −
∫
Ω

dw2 dx � 0.

We have then

∫
Ω

|∇w|2 dx = λ1

∫
Ω

w2 dx and
∫
Ω

dw2 dx = 0.

From the first identity, we deduce from Proposition 2.4 that w = Cϕ1 for some C, and by the
second, we have C = 0 as d > 0 and hence w = 0. Hence w = 0 as d > 0. �

On the nonlinearity f we assume the following regularity

Assumption (H-2). For the space A ⊂ L
p

loc(Ω) of Assumption (H-1), we assume that the Ne-
mytskii operator

N :Cϕ1 → A :u �→ f (x,u)

is continuous.

Remark 2.7. Observe that in case A = L
p
w(Ω) := {f ∈ L

p

loc(Ω): w1/pf ∈ Lp(Ω)}, for some
w ∈ L1

loc(Ω), w > 0, Assumption (H-2) will be satisfied in particular if f :Ω × R → R is
A-Carathéodory according to the following definition.

Definition 2.3. A function f :Ω × R → R is said to be A-Carathéodory if

(i) for a.e. x ∈ Ω , the function f (x, ·) is continuous;
(ii) for all z ∈ R, the function f (·, z) is measurable;

(iii) for all R > 0, there exists hR ∈ A such that, for all u ∈ Bϕ1(0,R), |f (x,u(x))| � hR(x) a.e.
on Ω .
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3. Abstract formulation

Definition 3.1. A function α ∈ C(Ω) ∩ W
2,p

loc (Ω) is a lower solution of (1) if

(i) for a.e. x ∈ Ω , −�α(x) � f (x,α(x));
(ii) for all x ∈ ∂Ω , α(x) � 0.

Similarly, a function β ∈ C(Ω) ∩ W
2,p

loc (Ω) is an upper solution of (1) if

(i) for a.e. x ∈ Ω , −�β(x) � f (x,β(x));
(ii) for all x ∈ ∂Ω , β(x) � 0.

A solution of (1) is a function u ∈ C(Ω) ∩ W
2,p

loc (Ω) which is both a lower and an upper
solution of (1).

Definition 3.2. A lower solution α of (1) is said strict if, for all u solution of (1) with u � α, we
have u � α.

In a similar way, an upper solution β of (1) is said strict if, for all u solution of (1) with u � β ,
we have u 
 β .

Our first result concerns the well-ordered case, i.e. the case α � β .

Theorem 3.1. Let Ω be a bounded domain and f :Ω × R → R be such that Assumptions (H-1)
and (H-2) are satisfied. Assume that there exist α,β ∈ C(Ω) ∩ W

2,p

loc (Ω), respectively lower and
upper solutions of (1), such that α � β . Moreover assume that there exists h ∈ A such that, for
all u ∈ [α,β], |f (x,u(x))| � h(x) a.e. in Ω .

Then problem (1) has at least one solution u ∈ Cϕ1 ∩ W
2,p

loc (Ω) such that

α � u � β.

Moreover if α and β are strict, then there exists R > 0 such that

deg
(
I − T ◦ N,S ∩ Bϕ1(0,R)

) = 1,

where

S = {u ∈ Cϕ1 : α 
 u 
 β}.

Remark 3.1.

(i) If α and β are strict then there exists ε > 0 such that β − α � εϕ1.
(ii) If in Assumptions (H-1) and (H-2), Cϕ1 is replaced by C(Ω), we obtain a similar result except

that the solution is now in C(Ω) ∩ W
2,p

loc (Ω).

Proof of Theorem 3.1. Step 1. Existence of a solution u ∈ Cϕ1 ∩ W
2,p

loc (Ω) of (1) with α �
u � β . Let γ :Ω × R → R be defined by γ (x,u) = max{α(x),min{u,β(x)}}. Observe that
Γ : Cϕ1 → Cϕ1 :u �→ γ (·, u) is continuous.
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We study the modified problem

{−�u = f
(
x, γ (x,u)

)
, in Ω ,

u = 0, on ∂Ω .
(8)

Claim 1. Every solution u ∈ Cϕ1 ∩ W
2,p

loc (Ω) of (8) is such that α � u � β .

We prove that α � u; the other part is proved in a similar way. By contradiction, assume that
maxx∈Ω(α(x) − u(x)) = M > 0. As α − u � 0 on ∂Ω , we can find Ω1 ⊂ Ω with ∂Ω1 of class
C1,1 and x0, x1 ∈ Ω1 such that α(x0) − u(x0) = M , α(x1) − u(x1) < M and α(x) − u(x) � 0
on Ω1. This contradicts the maximum principle (Theorem 2.1) as for a.e. x ∈ Ω1

−�(α − u)(x) � f
(
x,α(x)

) − f
(
x,α(x)

) = 0.

Claim 2. The problem (8) has at least one solution u ∈ Cϕ1 ∩ W
2,p

loc (Ω).

By Assumptions (H-1) and (H-2), the operator T ◦ N ◦ Γ :Cϕ1 → Cϕ1 is completely
continuous. Moreover, by assumption, there exists R > 0 such that, for every u ∈ Cϕ1 ,
‖T ◦ N ◦ Γ (u)‖ϕ1 < R. Hence, for all λ ∈ [0,1]

deg
(
I − T ◦ N ◦ Γ,Bϕ1(0,R)

) = deg
(
I − λT ◦ N ◦ Γ,Bϕ1(0,R)

)
= deg

(
I,Bϕ1(0,R)

) = 1,

and (8) has at least one solution.

Claim 3. The problem (1) has at least one solution u ∈ Cϕ1 ∩ W
2,p

loc (Ω) satisfying α � u � β .

By Claim 2, (8) has at least one solution u. By Claim 1, this solution satisfies α � u � β and
hence, is a solution of (1).

Step 2. Degree computation in case α and β are strict. By Claim 1, we know that every fixed
point u of T ◦ N ◦ Γ is such that α � u � β and is a fixed point of T ◦ N . Moreover, if α and
β are strict, u satisfies α 
 u 
 β and u ∈ S . By the excision property of the degree and as
T ◦ N ◦ Γ = T ◦ N on S , we obtain

deg
(
I − T ◦ N,S ∩ Bϕ1(0,R)

) = deg
(
I − T ◦ N ◦ Γ,S ∩ Bϕ1(0,R)

)
= deg

(
I − T ◦ N ◦ Γ,Bϕ1(0,R)

) = 1. �
Remark 3.2. Observe that R is such that, for all k ∈ A with |k| � h, we have ‖T (k)‖ϕ1 < R.

Our next result extends Amann’s three solutions theorem and gives the existence of three
solutions in presence of two pairs of lower and upper solutions with order relations.
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Theorem 3.2. Let Ω be a bounded domain and f :Ω × R → R be such that Assumptions (H-1)
and (H-2) are satisfied. Assume that there exist α1, α2 ∈ C(Ω) ∩ W

2,p

loc (Ω), lower solutions and

β1, β2 ∈ C(Ω) ∩ W
2,p

loc (Ω), upper solutions of ( 1) such that

α1 � β1, α1 � β2, α2 � β2,

and there exists x0 ∈ Ω with

α2(x0) > β1(x0).

Suppose further that β1 and α2 are strict.
Moreover assume that there exists h ∈ A such that, for all u ∈ [α1, β1] ∪ [α2, β2] ∪ [α1, β2],

|f (x,u(x))| � h(x) a.e. in Ω .
Then the problem (1) has at least three solutions u1, u2, u3 ∈ Cϕ1 ∩ W

2,p

loc (Ω) such that

α1 � u1 
 β1, α2 
 u2 � β2

and there exist x1, x2 ∈ Ω with

u3(x1) > β1(x1), u3(x2) < α2(x2).

Notice that the condition u3(x1) > β1(x1) and u3(x2) < α2(x2) is a localization condition that
implies that u3 �= u1 and u3 �= u2.

Proof. Define, for i, j ∈ {1,2}, γi,j (x,u) = max{αi(x),min{u,βj (x)}} and Γi,j :Cϕ1 → Cϕ1 :
u �→ γi,j (·, u). Observe that Γi,j is continuous and consider the modified problem

{−�u = f
(
x, γ1,2(x,u)

)
, in Ω ,

u = 0, on ∂Ω .
(9)

Let us choose k so that β1 � β2 + k and α1 − k � α2 and let R be such that, for every k ∈A with
|k| � h, ‖T (k)‖ϕ1 < R.

Step 1. Computation of deg(I − T ◦ N ◦ Γ1,2,S1,1 ∩ Bϕ1(0,R)), where

S1,1 = {u ∈ Cϕ1 | α1 − k 
 u 
 β1}.
Define the alternative modified problem

{−�u = f̄ (x, u), in Ω ,

u = 0, on ∂Ω ,
(10)

where

f̄ (t, u) = max
{
f

(
x, γ1,1(x,u)

)
, f

(
x, γ1,2(x,u)

)}
.

Observe that N̄ :Cϕ1 → A :u → f̄ (·, u) is continuous. For any λ ∈ [0,1], we consider then the
homotopy λT ◦ N̄ + (1 − λ)T ◦ N ◦ Γ1,2.
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Claim 1. If λ ∈ [0,1] and u is a fixed point of λT ◦N̄ +(1−λ)T ◦N ◦Γ1,2, we have α1 � u � β2.

This result follows from the usual maximum principle argument as in Claim 1 of the proof of
Theorem 3.1.

Claim 2. If λ ∈ [0,1] and u ∈ S̄1,1 is a fixed point of λT ◦ N̄ + (1 − λ)T ◦ N ◦ Γ1,2, we have
u 
 β1.

Assume there exists x0 ∈ Ω such that u(x0) = β1(x0). We deduce from Claim 1 that
α1 � u � β2 so that u solves (1). As further β1 is a strict upper solution, the claim follows.

Claim 3. deg(I − T ◦ N ◦ Γ1,2,S1,1) = 1.

It follows from the above claims that α1 − k and β1 are strict lower and upper solutions of
(10) and we deduce from Theorem 3.1 and the properties of the degree that

deg
(
I − T ◦ N ◦ Γ1,2,S1,1 ∩ Bϕ1(0,R)

)
= deg

(
I − (

λT ◦ N̄ + (1 − λ)T ◦ N ◦ Γ1,2
)
,S1,1 ∩ Bϕ1(0,R)

)
= deg

(
I − T ◦ N̄,S1,1 ∩ Bϕ1(0,R)

) = 1.

Step 2. deg(I − T ◦ N ◦ Γ1,2,S2,2 ∩ Bϕ1(0,R)) = 1, where

S2,2 = {u ∈ Cϕ1 | α2 
 u 
 β2 + k}.

The proof of this result parallels the proof of Step 1.

Step 3. There exist three solutions ui (i = 1,2,3) of (1) such that

α1 � u1 
 β1, α2 
 u2 � β2, α1 � ui � β2, for i = 1,2,3,

and there exist x1, x2 ∈ Ω with

u3(x1) > β1(x1), u3(x2) < α2(x2).

The first two solutions are obtained from the fact that

deg
(
I − T ◦ N ◦ Γ1,2,S1,1 ∩ Bϕ1(0,R)

) = 1

and

deg
(
I − T ◦ N ◦ Γ1,2,S2,2 ∩ Bϕ1(0,R)

) = 1.

Define

S1,2 = {u ∈ Cϕ1 | α1 − k 
 u 
 β2 + k}.

We have
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1 = deg
(
I − T ◦ N ◦ Γ1,2,S1,2 ∩ Bϕ1(0,R)

)
= deg

(
I − T ◦ N ◦ Γ1,2,S1,1 ∩ Bϕ1(0,R)

) + deg
(
I − T ◦ N ◦ Γ1,2,S2,2 ∩ Bϕ1(0,R)

)
+ deg

(
I − T ◦ N ◦ Γ1,2,

(
S1,2 \ (S̄1,1 ∪ S̄2,2)

) ∩ Bϕ1(0,R)
)
,

which implies

deg
(
I − T ◦ N ◦ Γ1,2,

(
S1,2 \ (S̄1,1 ∪ S̄2,2)

) ∩ Bϕ1(0,R)
) = −1

and the existence of u3 ∈ S1,2 \ (S̄1,1 ∪ S̄2,2) follows.
As we know from Claim 1, that the solutions u of (9) are such that

α1 � u � β2,

they are solutions of (1). �
Remark 3.3. Observe that in this theorem

u1 � min{β1, β2} and u2 � max{α1, α2}.

Theorem 3.3. Let Ω be a bounded domain and f :Ω × R → R be such that Assumptions (H-1)
and (H-2) are satisfied and moreover ϕ1 ∈ C0(Ω).

Assume that there exist α,β ∈ C(Ω) ∩ W
2,p

loc (Ω) lower and upper solutions of (1) such that,
for some C > 0,

α 
 Cϕ1, −Cϕ1 
 β,

and there exists x0 ∈ Ω with

α(x0) > β(x0).

Moreover suppose that, for every R > C, there exists hR ∈A such that, for all u ∈ [α,Rϕ1] ∪
[−Rϕ1, β] ∪ [−Rϕ1,Rϕ1], |f (x,u(x))| � hR(x) a.e. in Ω .

Assume further that there exists γ ∈ A such that, for all (x,u) ∈ Ω × R,

∣∣f (x,u) − λ1u
∣∣ � γ (x).

Then the problem (1) has at least one solution u ∈ Cϕ1 ∩ W
2,p

loc (Ω) such that u ∈ O where

O = {
u ∈ Cϕ1

∣∣ min(u − α) < 0 < max(u − β)
}
.

Moreover, if α and β are strict, there exists R > 0 such that

deg
(
I − T ◦ N,O ∩ Bϕ1(0,R)

) = −1.

Remark 3.4. Observe that if α and β are strict, every solution u ∈ O satisfies u ∈ O.
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Proof of Theorem 3.3. In the course of this proof, we relabel α and β as α = α2 and β = β1 in
order to apply Theorem 3.2.

For every r > 1, define the function fr : Ω × R → R by

fr(x,u)=f (x,u) if |u| < r

= (|u| − r
)(

λ1 − 1

r
d

)
u + (

r + 1 − |u|)f (x,u) if r � |u| � r + 1

=
(

λ1 − 1

r
d

)
u if r + 1 < |u|,

where d ∈ A∩ L∞(Ω), d > 0.
For every r > 1, consider the modified problem{−�u = fr(x,u), in Ω ,

u = 0, on ∂Ω .
(11)

Observe that we can decompose fr(x,u) = pr(x,u)u+qr(x,u) such that, for all (x,u) ∈ Ω ×R,

λ1 − 1

r
d � pr(x,u) � λ1,∣∣qr(x,u)

∣∣ � γ (x).

Claim. There exists K > 1 such that, for all r > K and for all u ∈ O, solution of (11), we have
‖u‖ϕ1 < K .

Otherwise, for all n � 1, there exist rn > n and un ∈ O solution of (11) for r = rn with
‖un‖ϕ1 � n. Then vn = un/‖un‖ϕ1 satisfies⎧⎨

⎩−�vn = prn(x,un)vn + qrn(x,un)

‖un‖ϕ1

, in Ω ,

vn = 0, on ∂Ω .

As {prn(x,un)vn + qrn (x,un)

‖un‖ϕ1
| n ∈ N} is bounded in A, we deduce from Assumption (H-1) that,

up to a subsequence, vnk
→ v in Cϕ1 . It is then easy to see that prnk

(x,unk
)vnk

→ λ1v in A and
qrnk

(x,unk
)

‖unk
‖ϕ1

→ 0 in A. Passing to the limit in

vnk
= T

(
prnk

(x,unk
)vnk

+ qrnk
(x,unk

)

‖unk
‖ϕ1

)

we obtain

v = λ1T v,

i.e. v is a solution of {−�v = λ1v, in Ω ,
v = 0, on ∂Ω .
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By Proposition 2.5, we deduce that v = ±ϕ1. Hence for k large enough, either

unk
� 1

2
‖unk

‖ϕ1ϕ1 � Cϕ1 � α

or

unk
� −1

2
‖unk

‖ϕ1ϕ1 � −Cϕ1 
 β,

which contradicts the localization unk
∈ O and the claim is proved.

Conclusion. We apply Theorem 3.2 to the problem (11) with

r = R := 1 + max
{
K,‖α‖∞,‖β‖∞

}
.

Let w ∈ Cϕ1 ∩ W
2,p

loc (Ω) be the solution of

⎧⎨
⎩−�w =

(
λ1 − 1

R
d

)
w + d + γ, in Ω ,

w = 0, on ∂Ω ,

which exists by Proposition 2.6. Choose a > 0 large enough such that β2 := w + aϕ1 �
Cϕ1 � α2. It is then easy to see that β2 is an upper solution of (11) and in the same way, for
b > 0 large enough, α1 := −w − bϕ1 � −Cϕ1 � β1 is a lower solution of (11). Hence we have
the two pairs of lower and upper solutions required by Theorem 3.2.

Assume α2 is not a strict lower solution. Then there exists a solution u of (11) with u � α2 and
u �� α2. As further u(x0) � α2(x0) > β1(x0), we see that u ∈ O and, by the Claim, ‖u‖ϕ1 < R.
Hence u is a solution of (1) in O. The same argument holds in case β1 is not a strict upper
solution.

It remains to consider the case where α2 and β1 are strict. In that case, we deduce from
Theorem 3.2 the existence of three solutions of (11), one of them, namely u, being in O. Hence,
from the Claim, we have ‖u‖ϕ1 < R and u is a solution of (1) which concludes the proof. �

The assumption α � Cϕ1 is satisfied in case we require a little more regularity on f .

Proposition 3.4. Let Ω be a bounded domain and f :Ω ×R → R be such that Assumptions (H-1)
and (H-2) are satisfied.

Assume that there exist α ∈ C(Ω) ∩ W
2,p

loc (Ω) lower solution of (1). Moreover suppose that
there exists h ∈ A such that, for all u ∈ [α,‖α‖∞ + 1], |f (x,u(x))| � h(x) a.e. in Ω .

Then there exists C > 0 such that α � Cϕ1.

Proof. Let R = ‖α‖∞ and consider the function

f̄ (x, u)=f (x,u) if u � R

= (R + 1 − u)f (x,u) if R < u � R + 1

=0 if R + 1 < u,
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and the modified problem

{−�u = f̄ (x, u), in Ω ,

u = 0, on ∂Ω .
(12)

Observe that β = R + 1 is an upper solution of (12) with α � β . Hence we conclude by The-
orem 3.1 the existence of u ∈ Cϕ1 with α � u � β and hence, there exists C > 0 such that
α � u � Cϕ1. �
Remark 3.5. The same type of result holds true for β .

4. Regular domain

If Ω is a regular domain of RN , the space A is simply Lp(Ω) for some p > N and we recover
the classical results.

Theorem 4.1. Let Ω ⊂ RN be a bounded domain in RN with ∂Ω of class C1,1, f be an
Lp-Carathéodory function with p > N . Assume that there exist α and β ∈ C(Ω) ∩ W

2,p

loc (Ω)

respectively lower and upper solutions of (1).

(i) If α � β and there exists h ∈ Lp(Ω) such that, for all u ∈ [α,β], |f (x,u(x))| � h(x) a.e.
in Ω , then the problem (1) has at least one solution u ∈ Cϕ1 ∩ W 2,p(Ω) such that

α � u � β.

(ii) Assume α � β . If moreover, for every R > 0, there exists hR ∈ Lp(Ω) such that, for all
u ∈ R with |u| � R, |f (x,u)| � hR(x) a.e. in Ω and there exists γ ∈ Lp(Ω) such that, for
all (x,u) ∈ Ω × R, |f (x,u) − λ1u| � γ (x), then the problem (1) has at least one solution
u ∈ Cϕ1 ∩ W 2,p(Ω) such that u ∈ O where

O = {
u ∈ Cϕ1

∣∣ min(u − α) < 0 < max(u − β)
}
.

Remark 4.1. Recall that in this situation, we have W 2,p(Ω) ⊂ C1(Ω).

Proof of Theorem 4.1. We apply the previous results with A = Lp(Ω). We know by [11, Sec-
tion 9.6] or [28, Lemmas 3.21 and 3.22], that for every h ∈ Lp(Ω), the problem (4) has a unique
solution u ∈ W 2,p(Ω) and that the operator T is continuous from Lp(Ω) to W 2,p(Ω). Moreover
W 2,p(Ω) is compactly imbedded into C1(Ω).

On the other hand, ϕ1 ∈ C1(Ω) ∩ C0(Ω) and, by Theorem 2.2, is such that ∂νϕ(x0) < 0 for
all x0 ∈ ∂Ω where ν = ν(x0) is the outward normal at x0. Hence, we deduce, arguing as in [14,
Lemma 3.1] that C1(Ω) ∩ C0(Ω) is continuously imbedded into Cϕ1 and Assumption (H-1) is
satisfied.

Assumption (H-2) can be deduced easily from the Carathéodory condition.
Hence the result can be deduced from Theorems 3.1, 3.3 and Proposition 3.4. �
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5. Polygonal domain of RRR2

In this section we consider the case where Ω is a polygonal domain of R2 with a Lipschitz
boundary ∂Ω , in the following sense.

Definition 5.1. Let Ω be an open subset of R2. We say that Ω is a polygonal domain if it has the
following properties:

(i) Ω is bounded, connected and is only on one side of its boundary;
(ii) the boundary of Ω is the union of a finite number of linear segments Γ̄j , j ∈ {1, . . . , J };

Γj being supposed to be open.

Denote by Sj , j = 1, . . . , J , the vertices of ∂Ω enumerated clockwise. Without loss of
generality we may assume that B(Sj ,1) ∩ Ω does not contain any other vertex of Ω . For
j ∈ {1,2, . . . , J }, let ψj be the interior angle of Ω at the vertex Sj , λj = π

ψj
and (rj , θj ) the

polar coordinates centered at Sj such that

B(Sj ,1) ∩ Ω = {
(rj cos θj , rj sin θj )

∣∣ 0 < rj < 1, 0 < θj < ψj

}
.

It is well known [6,13,16,18] that the solution of the Dirichlet problem in Ω is not smooth in
general. The singularities of this problem are of the form

r
kλj

j sin(kλj θj ) near Sj

with k ∈ N∗. From this expression, we see that this last function is in W 2,p(Ω) if and only if
kλj > 2 − 2

p
.

We now introduce our space A.

Definition 5.2. We introduce the Banach space

L
p

�μ(Ω) := {
f ∈ L

p

loc(Ω): w
1
p f ∈ Lp(Ω)

}
,

where the weight w is given by

w(x) =
{

r
μj

j (x), on B(Sj ,1), ∀j = 1, . . . , J ,

1, else,

for �μ = (μ1, . . . ,μJ ) ∈ RJ .
Its natural norm is

‖f ‖p

L
p

�μ(Ω)
=

∫
Ω

w(x)
∣∣f (x)

∣∣p dx.

Remark 5.1. If �μ1 and �μ2 are such that, ∀j = 1, . . . , J , μ1j � μ2j , then we have L
p

�μ1
(Ω) ⊂

L
p

(Ω). Hence, we try to take the powers as large as possible.
�μ2
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Our result is the next one

Theorem 5.1. Let Ω be a polygonal domain of R2, p > 2 and A = L
p

�μ(Ω) with, in the previous
notations,

μj < 2(p − 1) − λjp, ∀j = 1, . . . , J. (13)

Assume that f is an A-Carathéodory function and that there exist α and β ∈ C(Ω) ∩
W

2,p

loc (Ω), respectively lower and upper solutions of (1).

(i) If α � β and there exists h ∈ A such that, for all u ∈ [α,β], |f (x,u(x))| � h(x) a.e. in Ω ,
then the problem (1) has at least one solution u ∈ Cϕ1 ∩ W

2,p

loc (Ω) such that

α � u � β.

(ii) Assume α �� β and, for some C > 0, α � Cϕ1 and −Cϕ1 � β . If moreover, for every
R > C, there exists hR ∈ A such that, for all u ∈ [α,Rϕ1] ∪ [−Rϕ1, β] ∪ [−Rϕ1,Rϕ1],
|f (x,u(x))| � hR(x) a.e. in Ω and there exists γ ∈ A such that, for all (x,u) ∈ Ω × R,
|f (x,u) − λ1u| � γ (x), then the problem (1) has at least one solution u ∈ Cϕ1 ∩ W

2,p

loc (Ω)

such that u ∈ O where

O = {
u ∈ Cϕ1

∣∣ min(u − α) < 0 < max(u − β)
}
.

To prove this result we need the following result on the first eigenfunction.

Lemma 5.2. Let Ω be a polygonal domain of R2 and let S be one of its vertices. Denote by ψ

the interior angle of Ω at the vertex S and λ = π/ψ . Then there exists C1 > 0 such that

ϕ1(x) � C1r
λ sin(λθ), in B(S,1) ∩ Ω, (14)

where (r, θ) are the polar coordinates centered in S.
Moreover, for all γ < λ, there exists C2 > 0 such that

ϕ1(x) � C2r
γ , in B(S,1) ∩ Ω.

Proof. Let us denote D := B(S,1) ∩ Ω .
By Proposition 2.4, ϕ1(r, θ) > 0 for (r, θ) ∈ ]0,1] × ]0,ψ[ and by Theorem 2.2, we know

that ∂νϕ1(1, θ) < 0 for θ ∈ {0,ψ}. Hence, there exists C1 > 0 such that ϕ1(1, θ) � C1 sin(λθ)

for θ ∈ [0,ψ]. As {
−�ϕ1 = λ1ϕ1 � 0 = −�

(
C1r

λ sin(λθ)
)
, in D,

ϕ1 � C1r
λ sin(λθ), on ∂D,

we deduce from Corollary 2.3 that

ϕ1(x) � C1r
λ sin(λθ), on D,

which proves the first part of the result.
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To prove the second part of the result, we need the following claim.

Claim. For γ < λ, if there exists C3 > 0 such that ϕ1 � C3r
γ−2 on D, then there exists C4 > 0

such that ϕ1 � C4r
γ on D.

To prove the claim, consider the function

u(r, θ) = 2C5r
γ

sin γ (ψ−θ)
2 sin γ θ

2

γ 2 cos γψ
2

,

where (r, θ) are the polar coordinates centered in S and C5 � λ1C3 is large enough such that
u(1, θ) � ϕ1(1, θ) for θ ∈ [0,ψ]. Observe then that

⎧⎪⎨
⎪⎩

−�ϕ1 = λ1ϕ1 � λ1C3r
γ−2 � C5r

γ−2 = −�u, in D,

ϕ1 = 0 = u, on ∂D ∩ B(0,1),

ϕ1 � u, on ∂D ∩ ∂B(0,1).

Hence, by Corollary 2.3, ϕ1 � u and in particular, there exists C4 > 0 such that ϕ1 � C4r
γ on D

which proves the Claim.
Now to conclude the proof, observe that, as ϕ1 is bounded, using the Claim, we can prove

recursively that, for all γ < λ, there exists C > 0 with ϕ1 � Crγ on D. �
Proof of Theorem 5.1. In the course of this proof we will use the following notations: a � b

means the existence of a positive constant C, which is independent of the quantities a and b

under consideration such that a � Cb and a ∼ b means a � b and b � a.
By Remark 5.1, we can suppose without loss of generality that

μj > max
{−2 − λjp,2(λj − 1)(1 − p)

}
.

We apply the results of Section 3 with A = L
p

�μ(Ω). The verification of Assumption (H-2) is

easy via the L
p

�μ-Carathéodory conditions. Moreover, by Remark 2.4, the cone K is normal and by

Remark 2.5 or [13, Theorem 4.4.3.7], ϕ1 ∈ C0(Ω). To verify that Cϕ1 is continuously imbedded in
L

p

�μ(Ω), let f ∈ Cϕ1 . By Lemma 5.2, for all γj < λj , we have |f | � r
γj

j on Cj (1) = Ω ∩B(Sj ,1).

Hence f is in L
p

�μ(Ω) as there exists γj < λj such that

1∫
0

rγj p+μj +1 dr < ∞

(which holds if μj > −2 − λjp).
Let us concentrate on the verification that T :Lp

�μ(Ω) → Cϕ1 is well defined and compact. We
introduce the operator

T0 :Lp
(Ω) → H 1

0 (Ω) :h → u,
�μ
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where u ∈ H 1
0 (Ω) is the unique (variational) solution of

{−�u = h, in Ω ,

u = 0, on ∂Ω .
(15)

Step 1. The operator T0 is well defined and continuous from L
p

�μ(Ω) into H 1
0 (Ω). To apply

Lax–Milgram theorem, it suffices to show that

L :H 1
0 (Ω) → R :v �→

∫
Ω

h(x)v(x) dx

is continuous for h ∈ L
p

�μ(Ω).

Let us concentrate on
∫
Dj

h(x)v(x) dx for Dj = Ω ∩ B(Sj ,1).

In case μj � 0, let q = p
p−1 . Using the continuous imbedding of H 1

0 (Dj ) into Lq(Dj ), we
obtain ∫

Dj

hv dx =
∫
Dj

rμj /phr−μj /pv dx

�
∥∥rμj /ph

∥∥
Lp(Dj )

∥∥r−μj /p
∥∥

L∞(Dj )
‖v‖Lq(Dj ) � C‖v‖H 1

0 (Dj ).

If μj > 0, observe that r−μj /p ∈ Lqj (Dj ) if qj <
2p
μj

. Hence, choosing qj ∈ ] p
p−1 ,

2p
μj

[ (which

is possible as 0 < μj < 2(p − 1) − λjp) and defining sj = pqj

(p−1)qj −p
so that 1

p
+ 1

qj
+ 1

sj
= 1

we have, using the continuous imbedding of H 1
0 (Dj ) into Lsj (Dj )∫

Dj

hv dx =
∫
Dj

rμj /phr−μj /p v dx

�
∥∥rμj /ph

∥∥
Lp(Dj )

∥∥r−μj /p
∥∥

L
qj (Dj )

‖v‖L
sj (Dj ) � C‖v‖H 1

0 (Dj ).

Hence L is continuous and we conclude by Lax–Milgram theorem.

Step 2. The operator T is well defined and compact. Observe first that, by Corollary 2.3, (15)
has at most one solution in Cϕ1 ∩ W

2,p

loc (Ω).
Let (hn)n∈N be a bounded sequence in L

p

�μ(Ω), i.e., there exists R > 0 such that, for all n ∈ N,

‖hn‖L
p

�μ(Ω) � R. (16)

Denote by un ∈ H 1
0 (Ω) the unique solution of (15) with datum hn.

Using regularity results far from the singular points of Ω for the Laplace equation with Dirich-
let boundary conditions (see [11,13]), un ∈ W 2,p(Ω̃), where Ω̃ is a subdomain of Ω with a
smooth boundary, its boundary being the same as Ω except in

⋃J
j=1 B(Sj , δ) for some δ > 0,

with the estimate

‖un‖W 2,p(Ω̃) � ‖hn‖L
p
(Ω), ∀n ∈ N.
�μ
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As W 2,p(Ω̃) is compactly imbedded into C1(Ω̃), we deduce that there exists u ∈ C1(Ω̃) such

that un → u in C1(Ω̃) and hence, arguing as in [14, Lemma 3.1], we obtain

sup
x∈Ω̃\⋃J

j=1 B(Sj ,δ)

|un(x) − u(x)|
ϕ1(x)

→ 0 as n → ∞. (17)

It then remains to look at the behaviour of un near the corners. Therefore for any j = 1, . . . , J ,
we fix a cut-off function ηj ∈D(R2) such that

ηj ≡ 1 near Cj(1/2), ηj ≡ 0 on Ω \ Cj (1),

where Cj (r) is the truncated cone Cj (r) = Ω ∩B(Sj , r). For shortness we write C = Cj (1) and
drop the index j . Let us set

ũn = ηun.

This function satisfies {−�ũn = h̃n, in C,

ũn = 0, on ∂C,
(18)

where h̃n = ηhn − 2∇η · ∇un − un�η. Moreover due to the above results (regularity far from
the corners), h̃n belongs to L

p

�μ(C) and there exists R′ > 0 such that, for all n ∈ N,

‖h̃n‖L
p

�μ(C) � R′.

Let us introduce the polar coordinates (r, θ) centered in S.
Let α = ψ

2−p
(μ−2p +λp +2) and γ = α

ψ
. Observe that α ∈]0,π[ as 2(λ−1)(1−p) < μ <

2(p − 1) − λp. Using the change of variables similar to the one used in [23] ρ = rγ , θ ′ = γ θ ,
the above problem (18) is transformed into{−�Un = Fn, in Cα ,

Un = 0, on ∂Cα ,
(19)

where Un(ρ, θ ′) = ũn(ρ
1
γ , θ ′

γ
), Fn(ρ, θ ′) = 1

γ 2 ρ
2(1−γ )

γ h̃n(ρ
1
γ , θ ′

γ
) and

Cα = {
(ρ cos θ ′, ρ sin θ ′)

∣∣ 0 < ρ < 1, 0 < θ ′ < α
}
.

Moreover Un belongs to H 1
0 (Cα), while Fn belongs to L

p
μ1(Cα) where μ1 = (1 − π

α
)p with the

estimate

‖Fn‖L
p
μ1 (Cα) � ‖h̃n‖L

p

�μ(C) � 1, ∀n ∈ N.

By definition of η, we have also that Un is a solution of{−�Un = Fn, in C̃α ,
˜ (20)
Un = 0, on ∂Cα ,
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where C̃α has a smooth boundary except in S and coincide with Cα except in a neighbourhood
of ∂B(S,1).

Let us introduce the spaces V k,p(C̃α, κ) as the closure of

C∞
S (C̃α) = {

v ∈ C∞(C̃α)
∣∣ S /∈ suppv

}
with respect to the norm

‖u‖
V k,p(C̃α,κ)

=
( ∑

|γ |�k

∫
C̃α

∣∣Dγ u(x)
∣∣prp(κ−k+|γ |)(x) dx

)1/p

.

As, by [17, Remark 9.11], L
p
μ1(C̃α) = V 0,p(C̃α,1 − π

α
), applying [18, Lemma 11.2(ii)] (as

in [18, Example 11.3]) we prove that Un ∈ V 2,2(C̃α,1). Hence, by [18, Corollary (iv) of Theo-
rem 10.2] (see also [16, Section 8.4.1])

Un = Dnρ
π
α sin

(
π

α
θ ′

)
+ Wn in a neighbourhood of S

with Dn ∈ R and Wn ∈ V 2,p(C̃α,1 − π
α
). By [18, Theorem 10.3], we have also

‖Wn‖V 2,p(C̃α,1− π
α

)
+ |Dn| � ‖Fn‖V 0,p(C̃α,1− π

α
)
� 1.

Now observe that the application

V 2,p

(
C̃α,1 − π

α

)
→ W 2,p(C̃α) :u → u/ρ

π
α

−1

is continuous and hence we have also∥∥∥∥ Wn

ρ
π
α

−1

∥∥∥∥
W 2,p(C̃α)

� ‖Fn‖V 0,p(C̃α,1− π
α

)
� 1.

By the compact imbedding of W 2,p(C̃α) in C1(C̃α) (see [1, Theorem 6.2]), we have, passing to

a subsequence that Dnk
→ D and

Wnk

ρ
π
α −1 → W in C1(C̃α) and hence

sup
C̃α

∣∣∣∣Wnk
(ρ, θ ′) − ρ

π
α

−1W(ρ, θ ′)
ρ

π
α sin(π

α
θ ′)

∣∣∣∣ → 0, as k → ∞. (21)

Going back to ũnk
, we get, for some ε > 0,

sup

∣∣∣∣ ũnk
(r, θ) − ũ(r, θ)

rλ sin(λθ)

∣∣∣∣ → 0, as k → ∞,

C∩B(S,ε)
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where ũ(r, θ) = Drλ sin(λθ) + r
λ− α

ψ W(r
α
ψ , α

ψ
θ). Introducing (14) in the above convergence

yields

sup
C∩B(S,ε)

|unk
(r, θ) − ũ(r, θ)|

ϕ1(r, θ)
→ 0, as k → ∞, (22)

if ε � 1
2 (as in that case ũnk

= unk
in C ∩ B(S, ε)).

The conclusion follows from (17) and (22) as δ can be chosen smaller than ε by a correct
choose of Ω̃ . �
Remark 5.2. In the regular case, the condition (13) becomes μj < p − 2, so that, we can choose
μj � 0. Hence Lp(Ω) ⊂ L

p

�μ(Ω) and this result improves Theorem 4.1.

Remark 5.3. The condition (13) is almost necessary. In fact consider the truncated cone C with
angle ψ . Then if μ > 2(p − 1) − λp and γ ∈ ] 2p−2−μ

p
,λ[, the function u(r, θ) = rγ ϕ(r) sin(λθ)

with ϕ a regular function such that ϕ(r) = 1 for r < 1/4 and ϕ(r) = 0 for r > 1/2 is a solution
of {−�u = h, in C,

u = 0, on ∂C,

with h ∈ L
p
μ(C) and u /∈ Cϕ1 .

6. Domain of RRRN , N ��� 3, with a conical point

Definition 6.1. Let Ω be an open subset of RN,N � 3. We say that Ω has a conical point if it
has the following properties:

(i) Ω is bounded, connected and is only on one side of its boundary ∂Ω ;
(ii) the boundary ∂Ω is Lipschitz;

(iii) the boundary ∂Ω is smooth except at one point 0 (called a conical point), where there exists
a neighborhood U of 0 such that U ∩ Ω coincides with U ∩ K , when K is an infinite cone
centered at 0.

Without loss of generality we may assume that the conical point 0 is at the origin of the
cartesian coordinates and that B(0,1) ⊂ U . Now we denote by G the intersection between K

and the unit sphere. Denote furthermore by (r, θ) the spherical coordinates centered at 0.
As before, the solution of the Dirichlet problem in Ω is not smooth in general (see e.g. [6,13,

16,18]). The singularities are here of the form

rλ′
ψλ′(θ),

where ψλ′ is the eigenfunction of the positive Laplace–Beltrami operator δG with Dirichlet
boundary conditions of eigenvalue ν′:

{
δGψλ′ = ν′ψλ′ , in G,
ψλ′ = 0, on ∂G,
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the singular exponent λ′ being related to the eigenvalue ν′ by the relation

λ′ = 1 − N

2
+

√
ν′ +

(
1 − N

2

)2

.

Denote by λ the smallest singular exponent (corresponding to the smallest eigenvalue ν of δG).
As in the previous section, we are now able to introduce our space A.

Definition 6.2. Let Ω be a domain with one conical point in 0. We introduce the Banach space

Lp
μ(Ω) := {

f ∈ L
p

loc(Ω): rμ/pf ∈ Lp(Ω)
}
.

Its natural norm is

‖f ‖p

L
p
μ(Ω)

=
∫
Ω

rμ
∣∣f (x)

∣∣p dx.

In this setting, we can prove the

Theorem 6.1. Let Ω be a domain with one conical point in 0, p > N such that 1 − N/p �=
λ′ − λ for all singular exponent λ′ and A = L

p
μ(Ω) with μ = (1 − λ)p. Then the statements of

Theorem 5.1 remain valid.

As before we need the following result on the first eigenfunction.

Lemma 6.2. Let Ω be a domain with one conical point 0. Then there exists C1 > 0 such that

ϕ1(x) � C1r
λψλ(θ), in B(0,1) ∩ Ω. (23)

Moreover, for all γ < λ, there exists C2 > 0 such that

ϕ1(x) � C2r
γ , in B(0,1) ∩ Ω.

Proof. The proof is quite similar to the one of Lemma 5.2. Let us give it for the sake of com-
pleteness. Let us denote D := B(0,1) ∩ Ω .

By Proposition 2.4, we know that ϕ1(r, θ) > 0 for (r, θ) ∈ ]0,1] × G and by Theorem 2.2,
∂νϕ1(1, θ) < 0 for θ ∈ ∂G. Hence, there exists C1 > 0 such that ϕ1(1, θ) � C1ψλ(θ) for θ ∈ Ḡ.
As {

−�ϕ1 = λ1ϕ1 � 0 = −�
(
C1r

λψλ(θ)
)
, in D,

ϕ1 � C1r
λψλ(θ), on ∂D,

the first part of the result directly follows from Corollary 2.3.
To prove the second part of the result, we need the following claim.

Claim. For γ < λ, if there exists C3 > 0 such that ϕ1 � C3r
γ−2 on D, then there exists C4 > 0

such that ϕ1 � C4r
γ on D.
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To prove the Claim, consider the solution U of

{−�U = rγ−2, in K ,

U = 0, on ∂K ,

where K is given in the definition of a conical point. Such a solution exists and is of the form

U(r, θ) = rγ χ(θ),

for some smooth function χ because γ is not a singular exponent.
Now consider u = C5U , with C5 large enough such that C5 � λ1C3 and u(1, θ) � ϕ1(1, θ)

for θ ∈ Ḡ (always possible because ∂νU(1, θ) < 0 for θ ∈ ∂G). Now we observe that

⎧⎪⎨
⎪⎩

−�ϕ1 = λ1ϕ1 � λ1C3r
γ−2 � C5r

γ−2 = −�u, in D,

ϕ1 = 0 = u, on ∂D ∩ B(0,1),

ϕ1 � u, on ∂D ∩ ∂B(0,1).

Hence, by Corollary 2.3, ϕ1 � u, which implies the existence of C4 > 0 such that ϕ1 � C4r
γ on

D which proves the Claim.
As in Lemma 5.2, we conclude by recurrence since ϕ1 is bounded. �

Proof of Theorem 6.1. We apply the results of Section 3 with A = L
p
μ(Ω). The main difficulty

is the verification that T :A → Cϕ1 is well defined and compact. The rest of the proof follows as
in Theorem 5.1.

Step 1. The operator T0 is well defined and continuous from L
p
μ(Ω) into H 1

0 (Ω). As in 2d, we
are reduced to show that

∫
D

h(x)v(x) dx is well defined for h ∈ L
p
μ(Ω) and v ∈ H 1

0 (Ω), where
D = Ω ∩ B(0,1).

In case μ � 0, let q = p
p−1 . As the condition p > N implies that q � 2N

N−2 , using the continu-

ous imbedding of H 1(D) into Lq(D), we conclude as in 2d.
If μ > 0, we here remark that r−μ/p ∈ Lq(D) if q <

Np
μ

. Hence defining s = pq
(p−1)q−p

so

that 1
p

+ 1
q

+ 1
s

= 1 we have, using the continuous imbedding of H 1(D) into Ls(D) for s � 2N
N−2∫

D

hv dx �
∥∥rμ/ph

∥∥
Lp(D)

∥∥r−μ/p
∥∥

Lq(D)
‖v‖Ls(D) � C‖v‖H 1(D).

Note that the conditions 1 < s � 2N
N−2 are satisfied if and only if

2Np

Np + 2p − 2N
� q and

p

p − 1
< q.

Since q must be chosen such that q <
Np
μ

, these two conditions are valid if

2Np
<

Np
and

p
<

Np
,

Np + 2p − 2N μ p − 1 μ
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or equivalently

μ <
Np + 2p − 2N

2
and μ < N(p − 1).

As μ = (1 − λ)p < p, these last conditions hold since p > N .

Step 2. The operator T is well defined and compact. Let (hn)n∈N be a bounded sequence in
L

p
μ(Ω), i.e., there exists R > 0 such that, for all n ∈ N,

‖hn‖L
p
μ(Ω) � R. (24)

Denote by un ∈ H 1
0 (Ω) the unique solution of (15) with datum hn.

Let us introduce the spaces V k,p(Ω,μ) as the closure of

C∞
S (Ω) = {

v ∈ C∞(Ω)
∣∣ 0 /∈ suppv

}
with respect to the norm

‖u‖V k,p(Ω,μ) =
( ∑

|γ |�k

∫
Ω

∣∣Dγ u(x)
∣∣prp(μ−k+|γ |)(x) dx

)1/p

.

As, by [17, Remark 9.11], Lp
μ(Ω) = V 0,p(Ω,1−λ), applying [18, Lemma 11.2(ii)] (as in [18,

Example 11.3]) we deduce that un ∈ V 2,2(Ω,1). Hence, by [18, Corollary (iv) of Theorem 10.2]
(see also [16])

un = η
∑

1− N
2 <λ′<λ+1− N

p

cλ′,nr
λ′

ψλ′(θ) + wn,

where η is a cut-off function equal to 1 near 0 and with a sufficiently small support, cλ′,n ∈ R and
wn ∈ V 2,p(Ω,1 − λ). By [18, Theorem 10.3], we have also

‖wn‖V 2,p(Ω,1−λ) +
∑

1− N
2 <λ′<λ+1− N

p

|cλ′,n| � ‖hn‖V 0,p(Ω,1−λ) � 1.

Now observe that the application

V 2,p(Ω,1 − λ) → W 2,p(Ω) :u → u/rλ−1

is continuous and hence we have also

∥∥∥∥ wn

rλ−1

∥∥∥∥
2,p

� ‖hn‖V 0,p(Ω,1−λ) � 1.

W (Ω)
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By the compact imbedding of W 2,p(Ω) in C1(Ω) (see [1, Theorem 6.2]), we have, passing to a
subsequence that cλ′,nk

→ cλ′ and
wnk

rλ−1 → w in C1(Ω). As wnk
is equal to zero on ∂Ω ∩B(0,1),

by Lemma 6.3 below we deduce that

sup
x∈D

∣∣∣∣
wnk

rλ−1 − w

rψλ(θ)

∣∣∣∣ �
∥∥∥∥ wnk

rλ−1
− w

∥∥∥∥
C1(Ω)

→ 0 as k → ∞. (25)

Now setting

u := η
∑

1− N
2 <λ′<λ+1− N

p

cλ′rλ′
ψλ′(θ) + rλ−1w,

using Lemma 6.2, we see that

∣∣∣∣unk
(x) − u(x)

ϕ1(x)

∣∣∣∣ �
∑

1− N
2 <λ′<λ+1− N

p

|cλ′,nk
− cλ′ |rλ′−λ |ψλ′(θ)|

ψλ(θ)

+ sup
x∈D

∣∣∣∣
wnk

(x)

rλ−1 − w(x)

rψλ(θ)

∣∣∣∣ + sup
x∈Ω\D

∣∣∣∣wnk
(x) − rλ−1w(x)

ϕ1(x)

∣∣∣∣.
By the estimate (25) and the estimate (consequence of [14, Lemma 3.1])

|ψλ′(θ)|
ψλ(θ)

� 1,

we therefore conclude that unk
converges to u in Cϕ1 , applying again [14, Lemma 3.1] for the

last term of the sum. �
Lemma 6.3. Using the above notations, there exists a positive constant C such that, for all
w ∈ C1(Ω) with w = 0 on ∂Ω ∩ B(0,1),

sup
x∈D

∣∣∣∣ w

rψλ(θ)

∣∣∣∣ � C‖w‖C1(Ω).

Proof. Denote by

S = {
x ∈ K: 1/2 < |x| < 1

}
.

Let ŵ be a function in C1(S̄) such that

ŵ = 0 on ∂S ∩ ∂K.

For any x̂0 ∈ ∂S ∩ ∂K set x̂ = x̂0 − tν, for t > 0 small enough, ν being the outward normal
vector at x̂0. By Taylor’s theorem we may write∣∣ŵ(x̂)

∣∣ � ‖∇ŵ‖C(S)t.
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Applying the same Taylor’s expansion to ŵ0 = rψλ(θ), we have

ŵ0(x̂) = −∂νŵ0(x̃0)t,

where x̃0 = x̂0 − t̃ν for some t̃ ∈ ]0, t[. By Theorem 2.2, we know that

∂νŵ0(x̂0) < 0 ∀x̂0 ∈ ∂S ∩ ∂K,

and consequently there exists t0 small enough such that

inf
0<t<t0, x̂0∈∂S∩∂K

∣∣∂νŵ0(x̂0 − tν)
∣∣ > 0.

Therefore there exists C > 0 such that∣∣ŵ(x̂)
∣∣ � C‖∇ŵ‖C(S)ŵ0(x̂), ∀x̂ ∈ V̂ , (26)

where V̂ is a fixed neighborhood of ∂S ∩ ∂K .
Now coming back to w, for any fixed s < 1, we set x̂ = x/s and

ŵ(x̂) = w(x).

Applying the estimate (26) to ŵ and a scaling argument yield∣∣w(
reiθ

)∣∣ � Cr‖∇w‖C(D)ψλ(θ), ∀θ ∈ Ŵ , r < 1, (27)

where Ŵ is a fixed neighborhood of ∂G. This estimate proves the result because outside Ŵ the
function ψλ is strictly positive. �
Remark 6.1. The results of this section are also valid for N = 2. But in that case, our condition
on μ is not optimal since (1 − λ)p < 2(p − 1) − λp. This is the reason of the use of finer
arguments in 2d. For p near 2, the two conditions are almost similar since (1 − λ)p is close to
2(p − 1) − λp for p close to 2.

7. Examples

Until now, we have illustrated Assumption (H-1) in three different situations assuming the
existence of appropriate lower and upper solutions and related conditions on the nonlinearity f .
Now in order to show the usefulness of our results, we turn to some particular nonlinearities for
which the above assumptions are satisfied.

Example 7.1. The easiest choice of lower and upper solutions are constant functions. For exam-
ple, let Ω be a domain as considered in Section 4, 5 or 6 and consider the problem{−�u = g(x)

(
u sinu + h(x)

)
, in Ω ,

u = 0, on ∂Ω ,

where h ∈ L∞(Ω) and g ∈ A, g � 0, with A defined in the corresponding section. Then, for
k > 0 large enough, α = π −2kπ and β = 3π +2kπ are lower and upper solutions of the problem
2 2
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with α � β and we can apply the corresponding result to prove the existence of a solution to the
above problem.

Example 7.2. A more interesting situation is for example the problem{−�u = g(x) − sgn(u)|u|ξ , in Ω ,

u = 0, on ∂Ω ,
(28)

where, as in Section 5, Ω is a polygonal domain in R2, g ∈ L
p

�μ(Ω) with, in the notations of
Section 5,

μj < 2(p − 1) − λjp, ∀j = 1, . . . , J,

and ξ > 0. In that case, there is no hope to apply the result with constant lower and upper so-
lutions if ψj is small as the constant functions are in L

p

�μ(Ω) with �μ satisfying the required
restriction only if ψj > π

2 .
So let w ∈ Cϕ1 be the solution of

{−�w = g(x), in Ω ,

w = 0, on ∂Ω ,

which exists as follows from the proof of Theorem 5.1. Let R > 0 be large enough such that
|w| � Rϕ1 in Ω . Then α = w − Rϕ1 and β = w + Rϕ1 are lower and upper solutions of (28)
with α � 0 � β . This follows from

−�α = g − Rλ1ϕ1 � g − sgn(α)|α|ξ , in Ω,

−�β = g + Rλ1ϕ1 � g − sgn(β)|β|ξ , in Ω,

as the boundary conditions are trivially satisfied. Now observe that, for all u ∈ [α,β], i.e. such
that α(x) � u(x) � β(x) in Ω (as α,β ∈ Cϕ1 ), we have

∣∣f (x,u)
∣∣ = ∣∣g(x) − sgn(u)|u|ξ ∣∣ �

∣∣g(x)
∣∣ + Kϕ

ξ
1 (x),

for some K > 0. Hence we can apply Theorem 5.1 to prove the existence of a solution of (28) if
ξ >

λj −2
λj

, for all j = 1, . . . , J (this last condition guarantees that ϕ
ξ
1 ∈ L

p

�μ(Ω)).

Example 7.3. In this third example, we want to consider the so-called Landesman–Lazer condi-
tions at the right of the first eigenvalue. These conditions where introduced by E.M. Landesman
and A.C. Lazer [19] in 1970 in the regular case. The first ones to consider such problems at the left
of the first eigenvalue via lower and upper solutions seem to be J.L. Kazdan and F.W. Warner [15]
in 1975. Extensions to nonlinearities between the two first eigenvalues had been considered
mainly by J.-P. Gossez and P. Omari [12] and P. Habets and P. Omari [14] (see also [7]) with
the help of non-ordered lower and upper solutions as here.

Consider the problem {−�u = λ1u + g(x,u), in Ω ,
(29)
u = 0, on ∂Ω ,
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where Ω is a domain as in Section 4, 5 or 6 and let A be defined in the corresponding section.
Assume that g :Ω × R → R is a Carathéodory function such that

(a) there exist s+ ∈ R and g+ ∈A such that

g(x,u) � g+(x) if u � s+ϕ1(x) and
∫
Ω

g+(x)ϕ1(x) dx � 0;

(b) there exist s− ∈ R and g− ∈A such that

g(x,u) � g−(x) if u � s−ϕ1(x) and
∫
Ω

g−(x)ϕ1(x) dx � 0;

(c) there exists γ ∈ A such that

∣∣g(x,u)
∣∣ � γ (x), for (x,u) ∈ Ω × R.

Then (29) has at least one solution.

To prove this result, we need first to prove that, for all h ∈ A with
∫
Ω

h(x)ϕ1(x) dx = 0, the
problem

{−�u = λ1u + h(x), in Ω ,

u = 0, on ∂Ω ,
(30)

has a solution in Cϕ1 .
Let X = {u ∈ Cϕ1 | ∫

Ω
u(x)ϕ1(x) dx = 0} and define T1 :X → X by T1(v) = u where u is the

unique solution of

{−�u = λ1v + h, in Ω ,

u = 0, on ∂Ω .

Observe that this problem has a unique solution in Cϕ1 as it is proved in the corresponding section
but also that

0 =
∫
Ω

(h + λ1v)ϕ1 dx = −
∫
Ω

�uϕ1 dx = λ1

∫
Ω

uϕ1 dx.

Hence T1 is well defined.
Now let us prove that T1 has a fixed point. Consider the homotopy

{−�u = λ1u + μh(x), in Ω ,
(31)
u = 0, on ∂Ω ,
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and observe that we have an a priori bound on the solutions of (31) in X for μ ∈ [0,1]. Otherwise
we have a sequence (un)n ⊂ X of solutions corresponding to the sequence (μn)n ⊂ [0,1] such
that ‖un‖Cϕ1

→ ∞. Set vn = un/‖un‖Cϕ1
and observe that vn satisfies

⎧⎨
⎩

−�vn = λ1vn + μn

‖un‖Cϕ1

h(x), in Ω ,

vn = 0, on ∂Ω .

As T :A → Cϕ1 is compact, we have that, up to a subsequence, vn → v with v solution of{−�v = λ1v, in Ω ,

v = 0, on ∂Ω ,

such that ‖v‖Cϕ1
= 1 and

∫
Ω

vϕ1 dx = 0. We deduce from Proposition 2.5 that v = ±ϕ1 which
contradicts

∫
Ω

vϕ1 dx = 0. Hence there exists R > 0 such that, for all μ ∈ [0,1], every solution
u ∈ X of (31) satisfies ‖u‖Cϕ1

< R. As for μ = 0 the only solution of (31) in X is u = 0 and the
corresponding fixed point operator is linear, we have, by homotopy invariance,

deg
(
I − T1,B(0,R)

) �= 0

and there exists u ∈ X solution of (30).
Using this result, let us show how to construct a lower solution α � s+ϕ1. Assume without

loss of generality that we choose the normalization of ϕ1 in such a way that
∫
Ω

ϕ2
1(x) dx = 1.

Let w be the solution in X of⎧⎪⎨
⎪⎩

−�w = λ1w + g+ −
(∫

Ω

g+ϕ1 dx

)
ϕ1, in Ω ,

w = 0, on ∂Ω ,

and define α = Rϕ1 + w with R large enough in such a way that α � s+ϕ1. Observe that, in Ω ,

−�α = λ1α + g+ −
(∫

Ω

g+ϕ1 dx

)
ϕ1

� λ1α + g(x,α) −
(∫

Ω

g+ϕ1 dx

)
ϕ1

� λ1α + g(x,α)

and hence, α is a lower solution. We construct in the same way an upper solution β � s−ϕ1.
Moreover there exists C > 0 such that −Cϕ1 � β � α � Cϕ1. By assumption, there exists γ ∈ A
such that |g(x,u)| � γ (x) in Ω × R, and, for all R > C and all u ∈ [α,Rϕ1] ∪ [−Rϕ1, β] ∪
[−Rϕ1,Rϕ1] we have ∣∣λ1u + g(x,u)

∣∣ � λ1Rϕ1(x) + γ (x) = hR(x)

with hR = λ1Rϕ1 + γ ∈ A. Hence all the conditions to apply (ii) of Theorem 4.1, 5.1 or 6.1 are
satisfied and we have proved the existence of a solution of (29).
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