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We study the semi-classical limit of the least energy solutions to
the nonlinear Dirac equation

−iε
3∑

k=1

αk∂ku + aβu = P (x)|u|p−2u

for x ∈ R
3. Since the Dirac operator is unbounded from below and

above, the associate energy functional is strongly indefinite, and
since the problem is considered in the global space R

3, the Palais–
Smale condition is not satisfied. New phenomena and mathemati-
cal interests arise in the use of the calculus of variations. We prove
that the equation has the least energy solutions for all ε > 0 small,
and additionally these solutions converge to the least energy solu-
tions of the associate limit problem and concentrate to the maxima
of the nonlinear potential P (x) in certain sense as ε → 0.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and main results

In this paper we are concerned with the semi-classical ground states to the stationary Dirac equa-
tion in relativistic quantum mechanics:

−ih̄
3∑

k=1

αk∂ku + aβu = P (x)|u|p−2u (1)
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with p ∈ (2,3). In contrast to the related results in the literature, we are interested in the following
new cases: firstly, existence of solutions when P (x) depends indeed on x but having neither periodicity nor
limit at the infinity; secondly, concentration on the maxima of the coefficient of nonlinear external field. Here,
h̄ denotes the Plank’s constant, x = (x1, x2, x3) ∈ R

3, ∂k = ∂
∂xk

, a > 0 is a constant, α1,α2,α3 and β are
4 × 4 complex matrices:

β =
(

I 0
0 −I

)
, αk =

(
0 σk
σk 0

)
, k = 1,2,3,

with

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and P ∈ C(R3,R).
The equation or the more general one

−ih̄
3∑

k=1

αk∂ku + aβu + M(x)u = Fu(x, u) (2)

arises when one seeks for the standing wave solutions of the nonlinear Dirac equation

−ih̄∂tψ = ich̄
3∑

k=1

αk∂kψ − mc2βψ − V (x)ψ + Gψ(x,ψ). (3)

Assuming that G(x, eiθψ) = G(x,ψ) for all θ ∈ [0,2π ], a standing wave solution of (3) is a solution of

the form ψ(t, x) = e
iμt
h̄ u(x). It is clear that ψ(t, x) solves (3) if and only if u(x) solves (2) with a = mc,

M(x) = V (x)/c + μI4 and F (x, u) = G(x, u)/c.
There are many papers devoted to the study on the existence of solutions of (2) under various

hypotheses on the potential and the nonlinearity (see [18] for a review). In [4,5,10,24] the authors
studied the problem with M(x) ≡ ω ∈ (−a,a) and the nonlinearity (the so-called Soler model)

F (u) = 1

2
H(ũu), H ∈ C2(R,R), H(0) = 0, ũu := (βu, u)C4 ,

and in [19] Finkelstein et al. considered the nonlinearity

F (u) = 1

2
|ũu|2 + b|ũαu|2, ũαu := (βu,αu)C4 , α := α1α2α3,

by using shooting methods. Such a kind of nonlinearities was later studied in Esteban and Séré [17]
by using firstly a variational method (in fact, [17] also considered certain more general super-linear
subcritical F (u) independent of x). If the equation is periodic, that is, M(x) and F (x, u) depend pe-
riodically on x, by using a critical point theory Bartsch and Ding [6] established also the existence
and multiplicity of solutions of (2) with scalar potentials of the type M(x) = V (x)β (see also [33]). If
the potential is non-periodic (typically, the Coulomb-type potential), in [15] Ding and Ruf considered
some asymptotically quadratic nonlinearities, and in [16] Ding and Wei treated the super-quadratic
subcritical nonlinearities with mainly the limits of M(x) and F (x, u) existing as |x| → ∞.

For small h̄, the standing waves are referred to as semi-classical states. To describe the translation
from quantum to classical mechanics, the existence of solutions uε , h̄ small, possesses an important
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physical interest. Only very recently, the paper [14] studied the existence of a family of ground states
of the problem

−ih̄
3∑

k=1

αk∂ku + aβu + M(x)u = |u|p−2u

for all h̄ small, and showed that the family concentrates around the minima of M(x) as h̄ → 0.
Comparing with [14], in this paper we are interested in the existence and concentration phe-

nomenon around the maxima of the nonlinear external field. Remark that, mathematically, since the
Dirac operator is unbounded from above and below, the associated energy functional is strongly in-
definite, and since the problem is posed on the whole space R

3, the functional does not satisfy the
Palais–Smale condition. In addition, since the solutions depend on the coefficient of nonlinear term,
the present argument seems to be more delicate than those of [14].

We now describe our result. For notational convenience, writing ε = h̄, w = u, α = (α1,α2,α3)

and α · ∇ = ∑3
k=1 αk∂k , we reread Eq. (1) as

−iεα · ∇w + aβw = P (x)|w|p−2 w. (4)

It is standard that (4) is equivalent to

−iα · ∇u + aβu = Pε(x)|u|p−2u (5)

where Pε(x) = P (εx) with u(x) ↔ w(εx). Assume P satisfies

(P0) inf P > 0 and lim sup|x|→∞ P (x) < max P (x).

Set m := maxx∈R3 P (x), and

P := {
x ∈ R

3: P (x) = m
}
.

The limit problem associated with (5) reads as

−iα · ∇u + aβu = m|u|p−2u. (6)

Denote the energy of a solution w �= 0 of (4) by

E(w) :=
∫
R3

(
1

2

〈
(−iεα · ∇ + aβ)w, w

〉 − 1

p
P (x)|w|p

)
dx,

here and in the sequel 〈·,·〉 denotes the usual scale product in C
4. Setting

τε := inf
{

E(w): w �= 0 is a solution of (4)
}
,

a solution w0 �= 0 with E(w0) = τε is called a least energy solution. Let Sε denote the set of all least
energy solutions of (4).

Theorem 1.1. Assume that p ∈ (2,3) and (P0) is satisfied. Then for all ε > 0 small,

(i) Eq. (4) has at least one least energy solution wε ∈ W 1,q(R3,C
4) for all q � 2;
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(ii) Sε is compact in H1(R3,C
4);

(iii) there is a maximum point xε of |wε| such that limε→0 dist(xε,P) = 0, and, for any sequence of such xε ,
uε(x) := wε(εx + xε) converges uniformly to a least energy solution of (6);

(iv) |wε(x)| � C exp(− c
ε |x − xε|) for some C, c > 0.

In fact, we are going to focus on studying the equivalent problem (5), this means that we will
prove an equivalent form of the theorem: for all small ε � 0, (i) Eq. (5) has a least energy solution uε ∈⋂

q�2 W 1,q; (ii) the set of all least energy solutions is compact in H1; (iii) there exists a maximum point xε of
|uε| such that limε→0 dist(εxε,P) = 0, and, for any sequence of such xε , vε(x) := uε(x + xε) converges in
H1 to a least energy solution of (6); (iv) |uε(x)| � C exp(−c|x − xε|) for some C, c > 0.

It should be compared with the investigation on Schrödinger equations. There is a large number
of literature contributed to the study on the semi-classical states of Schrödinger equations

h̄2�w − V (x)w + f (w) = 0, w ∈ H1(
R

N)
. (7)

It is the first time that Floer and Weinstein [20] construct a single-peak solution of (7) for N = 1 and
f (w) = w3 which concentrates around any given non-degenerate critical point of V . Oh [26] extended
this result in a higher dimension for f (w) = |w|p−2 w , 2 < p < 2N/(N − 2), and proved the existence
of multi-peak solutions concentrating around non-degenerate critical points of V . The arguments in
[20,26] are based on a Lyapunov–Schmidt reduction. Subsequently, variational arguments were applied
to such issues and the existence of spike layer solutions in the semi-classical limit has been estab-
lished under various conditions of V (x). In particular, the existence of a ground state of (7) (with
more general nonlinearity) was first proved by Rabinowitz [28]. Later Wang [31] proved that the least
energy solution concentrates at a global minimum of V (x) provided lim inf|x|→∞ V (x) > inf V > 0.
See also [2,3,7–9,12,22,23,25] and the references therein. Note that, since the Schrödinger operator
−� + V is bounded from below, techniques based on the Mountain-pass theorem are well applied to
the investigation.

2. The functional-analytic setting

We start with discussing the functional-analytic framework.
Without loss of generality we may assume that 0 ∈ P throughout the paper.
In what follows by | · |q we denote the usual Lq-norm, and (·,·)2 the usual L2-inner product. Let

H0 = −iα ·∇ +aβ denote the selfadjoint operator on L2(R3,C
4) with domain D(H0) = H1(R3,C

4). It
is well known, by a Fourier analysis, that σ(H0) = σc(H0) = R \ (−a,a) where σ(·) and σc(·) denote
the spectrum and the continuous spectrum. Thus the space L2 possesses the orthogonal decomposi-
tion:

L2 = L− ⊕ L+, u = u− + u+ (8)

so that H0 is negative definite (resp. positive definite) in L− (resp. L+). Let E := D(|H0|1/2) = H1/2 be
equipped with the inner product

(u, v) = �(|H0|1/2u, |H0|1/2 v
)

2

and the induced norm ‖u‖ = (u, u)1/2, where |H0| and |H0|1/2 denote respectively the absolute value
of H0 and the square root of |H0|. Since σ(Hε) ⊂ R \ (−a,a), one has

a|u|22 � ‖u‖2 for all u ∈ E. (9)
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Note that this norm is equivalent to the usual H1/2-norm, hence E embeds continuously into Lq

for all q ∈ [2,3] and compactly into Lq
loc for all q ∈ [1,3). It is clear that E possesses the following

decomposition

E = E− ⊕ E+ with E± = E ∩ L±, (10)

orthogonal with respect to both (·,·)2 and (·,·) inner products. This decomposition induces also a
natural decomposition of L p , hence there is πp > 0 such that

πp
∣∣u+∣∣p

p � |u|p
p for all u ∈ E. (11)

On E we define the functional

Φε(u) = 1

2

(∥∥u+∥∥2 − ∥∥u−∥∥2) − Ψε(u)

for u = u− + u+ , where

Ψε(u) := 1

p

∫
R3

Pε(x)|u|p .

Defining the form a(u, v) := ∫
R3 〈H0u, v〉 and setting a(u) = a(u, u) one has

Φε(u) = 1

2
�a(u) − Ψε(u)

= 1

2
a(u) − Ψε(u).

Clearly, Φε ∈ C1(E,R). In fact, for any u, v ∈ E ,

d

ds
Φε(u + sv)

∣∣∣
s=0

= �a(u, v) − �
∫
R3

Pε(x)|u|p−2〈u, v〉

= (
u+ − u−, v

) − �
∫
R3

Pε(x)|u|p−2〈u, v〉.

A standard argument shows that critical points of Φε are solutions of (5).

Lemma 2.1. Ψε is weakly sequentially lower semi-continuous and Φ ′
ε is weakly sequentially continuous.

Proof. The lemma follows easily because E embeds continuously into Lq for q ∈ [2,3] and compactly
into Lq

loc for q ∈ [1,3) [13]. �
Set, for r > 0, B+

r = {u ∈ E+: ‖u‖ � r} and S+
r = {u ∈ E+: ‖u‖ = r}, and for e ∈ E+

Ee := E− ⊕ R
+e

with R
+ = [0,∞).
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Lemma 2.2. Φε possesses the linking structure:

1) There exist r > 0 and ρ > 0 both independent of ε such that Φε|B+
r
(u) � 0 and Φε|S+

r
� ρ .

2) For any e ∈ E+ \ {0}, there exist Re > 0 and C = Ce > 0 both independent of ε such that Φε(u) < 0 for
all u ∈ Ee \ B R and maxΦε(Ee) � C.

Proof. Recall that a|u|22 � ‖u‖2 for all u ∈ E by (9).
1) follows easily because, for u ∈ E+ ,

Φε(u) = 1

2
‖u‖2 − Ψε(u)

� 1

2
‖u‖2 − 1

p
m|u|p

p

and p > 2.
For checking 2) take e ∈ E+ \ {0}. In virtue of (11), one gets

Φε(u) = 1

2
‖se‖2 − 1

2
‖v‖2 − Ψε(u)

� 1

2
s2‖e‖2 − 1

2
‖v‖2 − πp sp

p
inf P |e|p

p, (12)

hence 2) since p > 2. �
Define (see [27,30])

cε := inf
e∈E+\{0}

max
u∈Ee

Φε(u).

As a consequence of Lemma 2.2 we have

Lemma 2.3. There is C > 0 independent of ε such that ρ � cε < C.

Proof. By 1) of Lemma 2.2 and the definition of cε one has cε � ρ . Take e ∈ E+ with ‖e‖ = 1. It
follows from (12) the following

cε � C ≡ Ce,

ending the proof. �
Recall that a sequence {un} ⊂ E is said to be a (PS)c , c ∈ R, sequence for Φε if Φε(un) → c and

Φ ′
ε(un) → 0, and Φε is said to satisfy the (PS)c condition if any (PS)c sequence for Φε has a conver-

gent subsequence. A standard linking argument shows that if Φε satisfies the (PS)c condition then cε

is a critical value of Φε (see, e.g., [13,30]).
Following Ackermann [1], for a fixed u ∈ E+ we introduce φu : E− → R defined by

φu(v) = Φε(u + v).

For any v, w ∈ E− ,

φ′′
u (v)[w, w] = −‖w‖2 − Ψ ′′

ε (u + v)[w, w] � −‖w‖2.
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In addition,

φu(v) � 1

2

(‖u‖2 − ‖v‖2).
Therefore, there is a unique hε(u) ∈ E− such that

φu
(
hε(u)

) = max
v∈E− φu(v).

It is clear that

0 = φ′
u

(
hε(u)

)
v = −(

hε(u), v
) − Ψ ′

ε

(
u + hε(u)

)
v

for all v ∈ E− , and

v �= hε(u) ⇔ Φε(u + v) < Φε

(
u + hε(u)

)
.

Observe that for u ∈ E+ and v ∈ E− ,

φu(v) − φu
(
hε(u)

)

=
1∫

0

(1 − t)φ′′
u

(
hε(u) + t

(
v − hε(u)

))[
v − hε(u), v − hε(u)

]
dt

= −
1∫

0

(1 − t)

(∥∥v − hε(u)
∥∥2 + (p − 1)

∫
R3

Pε(x)
∣∣u + hε(u) + t

(
v − hε(u)

)∣∣p−2∣∣v − hε(u)
∣∣2

)
dt,

hence,

(p − 1)

1∫
0

∫
R3

(1 − t)Pε(x)
∣∣u + hε(u) + t

(
v − hε(u)

)∣∣p−2∣∣v − hε(u)
∣∣2

dx dt + 1

2

∥∥v − hε(u)
∥∥2

� Φε

(
u + hε(u)

) − Φε(u + v). (13)

Define Iε : E+ → R by

Iε(u) = Φε

(
u + hε(u)

) = 1

2

(‖u‖2 − ∥∥hε(u)
∥∥2) − Ψε

(
u + hε(u)

)
.

Set

Nε := {
u ∈ E+ \ {0}: I ′ε(u)u = 0

}
.

Lemma 2.4. For any u ∈ E+ \ {0}, there is a unique t = t(u) > 0 such that t(u)u ∈ Nε .

Proof. See [1,16]. �
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Now we define

dε := inf
u∈Nε

Iε(u).

Lemma 2.5. dε = cε , hence, there is C > 0 independent of ε such that dε � C.

Proof. Indeed, given e ∈ E+ , if u = v + se ∈ Ee with Φε(u) = maxz∈Ee Φε(z) then the restriction
Φε|Ee of Φε on Ee satisfies (Φε|Ee )

′(u) = 0 which implies v = hε(se) and I ′ε(se)(se) = Φ ′
ε(u)(se) = 0,

i.e. se ∈ Nε . Thus dε � cε . On the other hand, if w ∈ Nε then (Φε|E w )′(w + hε(w)) = 0 so
cε � maxu∈E w Φε(u) = Iε(w). Thus dε � cε . This proves dε = cε . Now, this, together with Lemma 2.3,
yields immediately the last conclusion of the lemma. �
Lemma 2.6. For any e ∈ E+ \ {0}, there is Te > 0 independent of ε > 0 such that tε � Te for tε > 0 satisfying
tεe ∈ Nε .

Proof. Since I ′ε(tεe)(tεe) = 0 one sees that the restriction of Φε satisfies (Φε|Ee )
′(tεe + hε(tεe)) = 0.

Thus

Φε

(
tεe + hε(tεe)

) = max
w∈Ee

Φε(w).

This, together with Lemma 2.5 and (12), implies the desired conclusion. �
Let Kε := {u ∈ E: Φ ′

ε(u) = 0} be the critical set of Φε . It is easy to see that if Kε \ {0} �= ∅ then

dε = inf
{
Φε(u): u ∈ Kε \ {0}}

(see an argument of [16]). Using the same iterative argument of [17, Proposition 3.2] one obtains
easily the following

Lemma 2.7. If u ∈ Kε with |Φε(u)| � C1 and |u|2 � C2 , then, for any q ∈ [2,∞), u ∈ W 1,q(R3) with
‖u‖W 1,q � Λq where Λq depends only on C1, C2 and q.

Let Sε be the set of all least energy solutions of Φε . If u ∈ Sε then Φε(u) = dε and a standard
argument shows that Sε is bounded in E , hence, |u|2 � C2 for u ∈ Sε , some C2 > 0 independent
of ε. Therefore, as a consequence of Lemmas 2.5 and 2.7 we see that, for each q ∈ [2,∞), there is
Cq > 0 independent of ε such that

‖u‖W 1,q � Cq for all u ∈ Sε. (14)

This, together with the Sobolev embedding theorem, implies that there is C∞ > 0 independent of ε
with

|u|∞ � C∞ for all u ∈ Sε. (15)
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3. The limit problem

We will make use of the limit equation for proving our main result. To this end we discuss in this
section the existence and some properties of the least energy solutions of the limit problem.

For any b > 0, consider the equation

−iα · ∇u + aβu = b|u|p−2u, u ∈ H1(
R

3,C
4) (16)

(p ∈ (2,3)). Its solutions are critical points of the functional

Γb(u) := 1

2

(∥∥u+∥∥2 − ∥∥u−∥∥2) − 1

p
b

∫
R3

|u|p

= 1

2

(∥∥u+∥∥2 − ∥∥u−∥∥2) − Ψb(u)

defined for u = u− + u+ ∈ E = E− ⊕ E+ where Ψb = 1
p b|u|p

p . Denote the critical set, the least energy,
and the set of least energy solutions of Γb as follows

Lb := {
u ∈ E: Γ ′

b(u) = 0
}
,

γb := inf
{
Γb(u): u ∈ Lb \ {0}},

Rb := {
u ∈ Lν : Γb(u) = γb,

∣∣u(0)
∣∣ = |u|∞

}
.

The following lemma is from [16].

Lemma 3.1. There hold the following:

i) Lb �= ∅, γb > 0, and Lb ⊂ ⋂
q�2 W 1,q for all q � 2;

ii) γb is attained, and Rb is compact in H1(R3,C
4);

iii) there exist C, c > 0 such that

∣∣u(x)
∣∣ � C exp

(−c|x|) for all x ∈ R
3, u ∈ Rb.

As before (replacing Pε with b) we introduce the following notations:

Jb : E+ → E−: Γb
(
u + Jb(u)

) = max
v∈E− Γb(u + v);

Jb : E+ → R: Jb(u) = Γb
(
u + Jb(u)

);
Mb := {

u ∈ E+ \ {0}: J ′
b(u)u = 0

}
.

Plainly, critical points of Jb and Γb are in one-to-one correspondence via the injective map u →
u + Jb(u) from E+ into E .

Notice that, similar to (13), we have for u ∈ E+ and v ∈ E−

(p − 1)

1∫
0

∫
R3

(1 − t)b
∣∣u + Jb(u) + t

(
v − Jb(u)

)∣∣p−2∣∣v − Jb(u)
∣∣2

dx dt + 1

2

∥∥v − Jb(u)
∥∥2

� Γb
(
u + Jb(u)

) − Γb(u + v). (17)
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It is not difficult to check that, for each u ∈ E+ \ {0}, there is a unique t = t(u) > 0 such that
tu ∈ Mb (see [1,16]).

Clearly, Jb has the Mountain-pass structure. Set

b1 := inf
{

Jb(u): u ∈ Mb
}
,

b2 := inf
γ ∈Ωb

max
t∈[0,1] Jb

(
γ (t)

)
,

b3 := inf
γ ∈Ω̃b

max
t∈[0,1] Jb

(
γ (t)

)
,

where

Ωb := {
γ ∈ C

([0,1], E+)
: γ (0) = 0, Jb

(
γ (1)

)
< 0

}
and

Ω̃b := {
γ ∈ C

([0,1], E+)
: γ (0) = 0, γ (1) = u0

}
for any arbitrarily fixed u0 ∈ E+ with Jb(u0) < 0. Then

γb := b1 = b2 = b3

(see [16, Lemma 3.8]).

Lemma 3.2. Let u ∈ Mb be such that Jb(u) = γb, and set Eu = E− ⊕ Ru. Then

max
w∈Eu

Γb(w) = Jb(u).

Proof. Clearly, since u + Jb(u) ∈ Eu ,

Jb(u) = Γb
(
u + Jb(u)

)
� max

w∈Eu
Γb(w).

On the other hand, for any w = v + su ∈ Eu ,

Γb(w) = 1

2
‖su‖2 − 1

2
‖v‖2 − Ψb(v + su)

� Γb
(
su + Jb(su)

) = Jb(su).

Thus, since u ∈ Mb ,

max
w∈Eu

Γb(w) � max
s�0

Jb(su) = Jb(u),

giving the conclusion. �
Lemma 3.3. If b1 < b2 then γb1 > γb2 .
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Proof. Let u ∈ Lb1 with Γb1(u) = γb1 and set e = u+ . Then

γb1 = Γb1(u) = max
w∈Ee

Γb1(w).

Let u1 ∈ Ee be such that Γb2(u1) = maxw∈Ee Γb2(w). One has

γb1 = Γb1(u) � Γb1(u1) = Γb2(u1) + 1

p
(b2 − b1)|u1|p

p

� γb2 + 1

p
(b2 − b1)|u1|p

p

as claimed. �
Lemma 3.4. dε � γm for all ε > 0.

Proof. Arguing indirectly, assume that dε < γm for some ε > 0. By definition and Lemma 2.5 we
can choose an e ∈ E+ \ {0} such that maxu∈Ee Φε(u) < γm . By definition again one has γm �
maxu∈Ee Γm(u). Since Pε(x) � m, Φε(u) � Γm(u) for all u ∈ E , and we get

γm > max
u∈Ee

Φε(u) � max
u∈Ee

Γm(u) � γm,

a contradiction. �
4. Proof of the main result

We are now in a position to give the proof of the main result, that is, Theorem 1.1. The key for the
proof is that dε → γm as ε → 0 (Lemma 4.1). With this we argue by contradiction to show the exis-
tence of semi-classical solutions (Lemma 4.2). The compactness of Sε is easy to check (Lemma 4.3). In
order to show the concentration it is sufficient to verify that, for any sequence ε j → 0 with u j ∈ Sε j ,
there is a subsequence which converges, up to a shift of x-variable, to a least energy solution of
the limit problem, and such a subsequence is uniformly small at the infinity with the help of the
sub-solution estimate. Lastly, by a Kato’s inequality we complete the proof.

Lemma 4.1. dε → γm as ε → 0.

Proof. Set W 0(x) = m − P (x) and W 0
ε (x) = W 0(εx). Then

Φε(v) = Γm(v) + 1

p

∫
R3

W 0
ε (x)|v|p . (18)

In virtue of Lemma 3.1 let u = u− + u+ ∈ Rm , a least energy solution of (16) with b = m, and
set e = u+ . It is clear that e ∈ Mm , Jm(e) = u− and Jm(e) = γm . There is a unique tε > 0 such that
tεe ∈ Nε . One has

dε � Iε(tεe). (19)

By Lemma 2.6, {tε} is bounded, hence, without loss of generality we can assume tε → t0 as ε → 0.
Observe that, by (13) and (17),
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1

2

∥∥Jm(tεe) − hε(tεe)
∥∥2 + (I)

� Φε

(
tεe + hε(tεe)

) − Φε

(
tεe + Jm(tεe)

)
= Γm

(
tεe + hε(tεe)

) + 1

p

∫
R3

W 0
ε (x)

∣∣tεe + hε(tεe)
∣∣p

− Γm
(
tεe + Jm(tεe)

) − 1

p

∫
R3

W 0
ε (x)

∣∣tεe + Jm(tεe)
∣∣p

= −(
Γm

(
tεe + Jm(tεe)

) − Γm
(
tεe + hε(tεe)

))
+ 1

p

∫
R3

W 0
ε (x)

(∣∣tεe + hε(tεe)
∣∣p − ∣∣tεe + Jm(tεe)

∣∣p)
,

hence,

∥∥hε(tεe) − Jm(tεe)
∥∥2 + (I) + (II)

� 1

p

∫
R3

W 0
ε (x)

(∣∣tεe + hε(tεe)
∣∣p − ∣∣tεe + Jm(tεe)

∣∣p)
(20)

where

(I) := (p − 1)

∫
R3

1∫
0

(1 − s)Pε(x)
(∣∣tεe + hε(tεe) + s

(
Jm(tεe) − hε(tεe)

)∣∣p−2

· ∣∣Jm(tεe) − hε(tεe)
∣∣2)

ds dx,

(II) := (p − 1)

∫
R3

1∫
0

(1 − s)m
(∣∣tεe + Jm(tεe) + s

(
hε(tεe) − Jm(tεe)

)∣∣p−2

· ∣∣hε(tεe) − Jm(tεe)
∣∣2)

ds dx.

Observe that

∣∣tεe + hε(tεe)
∣∣p − ∣∣tεe + Jm(tεe)

∣∣p

= ∣∣tεe + Jm(tεe)
∣∣p−2〈

tεe + Jm(tεe),hε(tεe) − Jm(tεe)
〉

+ (p − 1)

1∫
0

(1 − s)
(∣∣tεe + Jm(tεe) + s

(
hε(tεe) − Jm(tεe)

)∣∣p−2

· ∣∣hε(tεe) − Jm(tεe)
∣∣2)

ds.
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Noting that W 0
ε (x) � m, substituting this into (20) yields

∥∥hε(tεe) − Jm(tεe)
∥∥2 + (I) +

(
1 − 1

p

)
(II)

� 1

p

∫
R3

W 0
ε (x)

∣∣tεe + Jm(tεe)
∣∣p−1∣∣hε(tεe) − Jm(tεe)

∣∣

�
(∫

R3

(
W 0

ε (x)
)p/(p−1)∣∣tεe + Jm(tεe)

∣∣p
)p/(p−1)∣∣hε(tεe) − Jm(tεe)

∣∣
p . (21)

Since tε → t0, by the exponential decay of e, we have

lim sup
R→∞

∫
|x|�R

∣∣tεe + Jm(tεe)
∣∣p = 0

which implies that

∫
R3

(
W 0

ε (x)
)p/(p−1)∣∣tεe + Jm(tεe)

∣∣p

=
( ∫

|x|�R

+
∫

|x|>R

)(
W 0

ε (x)
)p/(p−1)∣∣tεe + Jm(tεe)

∣∣p

�
∫

|x|�R

(
W 0

ε (x)
)p/(p−1)∣∣tεe + Jm(tεe)

∣∣p

+ mp/(p−1)

∫
|x|>R

∣∣tεe + Jm(tεe)
∣∣p

= o(1)

as ε → 0. Thus by (21) we see that ‖hε(tεe) − Jm(tεe)‖2 → 0, that is, hε(tεe) → Jm(t0e). Conse-
quently,

∫
R3

W 0
ε (x)

∣∣tεe + hε(tεe)
∣∣p → 0

as ε → 0. This, jointly with (18), implies

Φε

(
tεe + hε(tεe)

) = Γm
(
tεe + hε(tεe)

) + o(1)

= Γm
(
t0e + Jm(t0e)

) + o(1),

that is,

Iε(tεe) = Jm(t0e) + o(1)
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as ε → 0. Recall that by Lemma 3.2

Jm(t0e) � max
v∈Ee

Γm(v) = Jm(e) = γm.

Now, using Lemma 3.4 and (19) we obtain

γm � lim
ε→0

dε � lim
ε→0

Iε(tεe) = Jm(t0e) � γm,

hence, dε → γm as claimed. �
Lemma 4.2. dε is attained for all small ε > 0.

Proof. Given ε > 0, let un ∈ Nε be a minimization sequence: Iε(un) → dε . By the Ekeland variational
principle we can assume that un is, in addition, a (PS)dε sequence for Iε on Nε . A standard argument
shows that un is in fact a (PS)dε sequence for Iε on E+ (see, e.g., [27,32]). Then wn = un + Iε(un) is
a (PS)dε sequence for Φε on E . It is easy to see that wn is bounded. We can assume without loss of
generality that wn ⇀ wε = z+

ε + z−
ε ∈ Kε in E . If wε �= 0 then clearly Φε(wε) = dε . So we are going

to check that wε �= 0 for all ε > 0 small.
For this end, take lim sup|x|→∞ P (x) < b < m and define

P b(x) = min
{

b, P (x)
}
.

Consider the functional

Φb
ε (u) = 1

2

(∥∥u+∥∥2 − ∥∥u−∥∥2) − 1

p

∫
R3

P b
ε(x)|u|p

and as before define correspondingly hb
ε : E+ → E− , Ib

ε : E+ → R, N b
ε , db

ε and so on. As done in the
proof of Lemma 4.1 before,

γb � db
ε → γb (22)

as ε → 0.
Assume by contradiction that there is a sequence ε j → 0 with wε j = 0. Then wn = un +hε j (un) ⇀

0 in E , un → 0 in Lq
loc for q ∈ (1,3), and wn(x) → 0 a.e. in x ∈ R

3. Let tn > 0 be such that tnun ∈ N b
ε j

.
We see as before that {tn} is bounded and one may assume tn → t0 as n → ∞. By (P0), the set
Aε := {x ∈ R

3: Pε(x) > b} is bounded. Remark that hb
ε j

(tnun) ⇀ 0 in E and hb
ε j

(tnun) → 0 in Lq
loc as

n → ∞ (cf. [1]). Additionally, Φε j (tnun + hb
ε j

(tnun)) � Iε j (un) by virtue of Lemma 3.2. We obtain

db
ε j

� Ib
ε j

(tnun) = Φb
ε j

(
tnun + hb

ε j
(tnun)

)
= Φε j

(
tnun + hb

ε j
(tnun)

) + 1

p

∫
R3

(
Pε j − P b

ε j

)∣∣tnun + hb
ε j

(tnun)
∣∣p

� Iε j (un) + 1

2

∫
Aε j

(
Pε j − P b

ε j

)∣∣tnun + hb
ε j

(tnun)
∣∣p

= dε j + o(1)
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as n → ∞, hence, db
ε j

� dε j . By (22), letting j → ∞ yields

γb � γm,

contradicting with γm < γb (see Lemma 3.3). �
Lemma 4.3. Sε is compact for all small ε > 0.

Proof. Assume by contradiction that, for some ε j → 0, Sε j is not compact in E . Let u j
n ∈ Sε j with

u j
n ⇀ 0 as n → ∞. As done in proving the above Lemma 4.2, one gets a contradiction. �

For the later use, letting

D = −i
3∑

k=1

αk∂k,

we write (5) as

Du = −aβu + Pε(x)|u|p−2u.

By Lemma 2.7, u ∈ ⋂
q�2 W 1,q for any u ∈ Kε . Acting the operator D on the two sides of the above

representation and noting that D2 = −� we get

−�u = −a2u + rε
(
x, |u|)u

where

rε
(
x, |u|) = |u|p−2

(
D

(
Pε(x)

) − i(p − 2)Pε(x)
3∑

k=1

αk
�〈∂ku, u〉

|u|2

+ Pε(x)
(−aβ + Pε(x)|u|p−2)).

Letting

sgn u =
{

u
|u| if u �= 0,

0 if u = 0,

by the Kato’s inequality [11], there holds

�|u| � �[
�u(sgn u)

]
.

Observe that

�
[(

D
(

Pε(x)
) − i(p − 2)Pε(x)

3∑
k=1

αk
�〈∂ku, u〉

|u|2
)

u
u

|u|

]
= 0

and
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�
[
βu · u

|u|
]

= 0.

Hence

�|u| � (
a2 − (

Pε(x)|u|p−2)2)|u|. (23)

Since u ∈ W 1,q for any q � 2, by the sub-solution estimate [21,29] one has

∣∣u(x)
∣∣ � C0

∫
B1(x)

∣∣u(y)
∣∣dy (24)

with C0 independent of x and u ∈ Kε , ε > 0.

Lemma 4.4. There is a maximum point xε of |uε| such that dist(yε,P) → 0 where yε = εxε , and, for any
such xε , vε(x) := uε(x + xε) converges in E to a least energy solution of (6), as ε → 0.

Proof. Let ε j → 0, u j ∈ S j where S j = Sε j . Then {u j} is bounded. A concentration argument shows
that there exist a sequence {x j} ⊂ R

3 and constants R > 0, δ > 0 such that

lim inf
j→∞

∫
B(x j,R)

|u j|2 � δ.

Set

v j(x) = u j(x + x j).

Then v j solves, denoting P̂ε j (x) = P (ε j(x + x j)),

−iα · ∇v j + aβv j = P̂ε j (x)|v j |p−2 v j (25)

with energy

E (v j) := 1

2

(∥∥v+
j

∥∥2 − ∥∥v−
j

∥∥2) − 1

p

∫
R3

P̂ε j (x)|v j|p

= Φε j (u j) =
(

1

2
− 1

p

)∫
R3

P̂ε j (x)|v j|p

= dε j . (26)

Additionally, v j ⇀ v in E and v j → v in Lq
loc for q ∈ [1,3).

We claim that {ε j x j} is bounded in R
3. Assume by contradiction that ε j |x j | → ∞. Without loss of

generality assume P (ε j x j) → P∞ . Clearly, m > P∞ by (P0). Since for any ϕ ∈ C∞
0 ,
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0 = lim
j→∞

∫
R3

〈
H0 v j − P̂ε j |v j|p−2 v j,ϕ

〉

=
∫
R3

〈
H0 v − P∞|v|p−2 v,ϕ

〉
,

v solves

−iα · ∇v + aβv = P∞|v|p−2 v. (27)

Therefore, the energy

E (v) := 1

2

(∥∥v+∥∥2 − ∥∥v−∥∥2) − 1

p

∫
R3

P∞|v|p � γP∞ .

Remark that since m > P∞ one has γm < γP∞ by Lemma 3.3. Moreover, by the weakly lower semi-
continuity of L p-norm,

lim
j→∞

(
1

2
− 1

p

)∫
R3

P̂ε j |v j|p �
(

1

2
− 1

p

)∫
R3

P∞|v|p = E (v).

Consequently, using (26) one gets

γm < γP∞ � E (v) � lim
j→∞

dε j = γm,

a contradiction.
Thus {ε j x j} is bounded. Hence, we can assume y j = ε j x j → y0. Then v solves

−iα · ∇v + aβv = P (y0)|v|p−2 v.

Since P (y0) � m, the energy

E (v) := 1

2

(∥∥v+∥∥2 − ∥∥v−∥∥2) − 1

p

∫
R3

P (y0)|v|p � γP (y0) � γm.

Using (26) again

E (v) =
(

1

2
− 1

p

)∫
R3

P (y0)|v|p � lim
j→∞

dε j = γm.

This implies E (v) = γm , hence P (y0) = m, so by Lemma 3.3, y0 ∈ P .
The above argument shows also that

lim
j→∞

∫
3

P̂ε j (x)|v j|p =
∫

3

P (y0)|v|p = 2pγm

p − 2

R R
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which implies |v j − v|p → 0 by the Brezis–Lieb lemma, then |(v j − v)±|p → 0 by (11). For proving
that v j → v in E , denote z j = v j − v . Remarking that z±

j → 0 in L p , the scale product of (25) with

z+
j yields

(
v+

j , z+
j

) = o(1).

Similarly, using the exponential decay of v together with the fact that z±
j → 0 in L2

loc , it follows from
(27) that

(
v+, z+

j

) = o(1).

Thus

∥∥z+
j

∥∥2 = o(1).

Similarly,

∥∥z−
j

∥∥2 = o(1).

We then get v j → v in E .
In order to verify that v j → v in H1, observe that by (25) and (27)

H0z j = P̂ε j (x)
(|v j|p−2 v j − |v|p−2 v

) + (
P̂ε j (x) − m

)|v|p−2 v,

and

lim
R→∞

∫
|x|�R

∣∣( P̂ε j (x) − m
)|v|p−2 v

∣∣2 = 0

by the exponential decay of v . This, together with the uniform estimate (15), shows that |H0z j |2 → 0.
Therefore v j → v in H1.

By virtue of (24) it is clear that one may assume that x j ∈ R
3 is a maximum point of |u j|. More-

over, from the above argument we readily see that, any sequence of such points satisfies y j = ε j x j
converging to some point in P as j → ∞. �
Lemma 4.5. Let v j be given in the proof of the above lemma. Then |v j(x)| → 0 as |x| → ∞ uniformly in j ∈ N.

Proof. Assume by contradiction that the conclusion of the lemma does not hold. Then by (24) there
exist κ > 0 and x j ∈ R

3 with |x j | → ∞ such that κ � |v j(x j)| � C0
∫

B1(x j)
|v j |. Since v j → v in H1

one gets

κ � C0

∫
B1(x j)

|v j| � C0

∫
B1(x j)

|v j − v| + C0

∫
B1(x j)

|v|

� C ′
(∫

R3

|v j − v|2
)1/2

+ C0

∫
B1(x j)

|v| → 0,

a contradiction. �
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Lemma 4.6. There exists C > 0 such that for all j ∈ N

∣∣u j(x)
∣∣ � Ce

− a√
τ
|x−x j | ∀ j ∈ N.

Proof. By Lemma 4.5 we may take 0 < δ and R > 0 such that |v j(x)| � δ and

∣∣∣∣�
[

rε j

(
x, |v j|

)
v j

v j

|v j|
]∣∣∣∣ � a2

2
|v j|

for all |x| � R, j ∈ N. This, together with (23), implies

�|v j| � a2

2
|v j| for all |x| � R, j ∈ N.

Let Γ (y) = Γ (y,0) be a fundamental solution to −�+a2/2 (see, e.g., [29]). Using the uniform bound-

edness, one may choose Γ so that |v j(y)| � a2

2 Γ (y) holds on |y| = R , all j ∈ N. Let z j = |v j | − a2

2 Γ .
Then

�z j = �|v j| − a2

2
�Γ

= a2

2

(
|v j| − a2

2
Γ

)
= a2

2
z j.

By the maximum principle we can conclude that z j(y) � 0 on |y| � R . It is well known that there is
C ′ > 0 such that Γ (y) � C ′ exp(− a√

2
|y|) on |y| � 1. We see that

∣∣v j(y)
∣∣ � C exp

(
− a√

2
|y|

)

for all y ∈ R
3 and all j ∈ N, that is,

∣∣u j(x)
∣∣ � C exp

(
− a√

2
|x − x j|

)

for all x ∈ R
3 and all j ∈ N.

The proof is completed. �
Proof of Theorem 1.1. Going back to Eq. (4) with the variable substitution: x �→ x/ε, Lemma 4.2,
jointly with Lemma 2.7, shows that, for all ε > 0 small, Eq. (4) has at least one least energy solution
wε ∈ W 1,q(R3,C

4) for all q � 2, that is, the conclusion (i) of Theorem 1.1. Lemma 4.3 is nothing but
the conclusion (ii). And finally, the conclusions (iii) and (iv) follow from Lemma 4.4 and Lemma 4.6
respectively. �
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