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Considered in this paper is the modified Camassa-Holm equation
with cubic nonlinearity, which is integrable and admits the single
peaked solitons and multi-peakon solutions. The short-wave limit
of this equation is known as the short-pulse equation. The main
investigation is the Cauchy problem of the modified Camassa-
Holm equation with qualitative properties of its solutions. It is
firstly shown that the equation is locally well-posed in a range
of the Besov spaces. The blow-up scenario and the lower bound
of the maximal time of existence are then determined. A blow-up
mechanism for solutions with certain initial profiles is described in
detail and nonexistence of the smooth traveling wave solutions is
also demonstrated.
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1. Introduction

In this paper, we are concerned with the following Cauchy problem of the integrable modified
Camassa-Holm equation with cubic nonlinearity,

{mt—i—(uZ—ui)mx+2uxm2+yuxzo, M=U—Uxy, t >0, XeR,

(11)

u(0, x) =up(x),

The equation in (1.1) was introduced by Fuchssteiner [19] and Olver and Rosenau [30] (see also
[18]) as a new generalization of integrable system by implementing a simple explicit algorithm based
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on the bi-Hamiltonian representation of the classically integrable system. It also arises from a non-
stretching invariant curve flow in the two-dimensional Euclidean geometry [21]. In most cases, these
new nonlinear systems are endowed with nonlinear dispersion, and thus support non-smooth soliton-
like structures. It was shown in [31] that the equation in (1.1) admits the Lax pair and the Cauchy
problem (1.1) may be solved by the inverse scattering transform method. It was also found that the
equation in (1.1) is related to the short-pulse equation derived by Schdfer and Wayne [32],

1
Vg = §(v3)xx—i-)/v, (1.2)

which is a model for the propagation of ultra-short light pulses in silica optical fibers [32] and is also
an approximation of nonlinear wave packets in dispersive media in the limit of few cycles on the
ultra-short pulse scale [6].

Indeed, the short-pulse equation (1.2) is a short-wave limit of the equation in (1.1) by applying the
following scaling transformation [21]

X ex, te el U €u

where

u(t, x) = ug(t, X) + €uq (t, x) + €2ux(t,x) + - --

is expanded in powers of the small parameter €. Then v = ug (t, x) satisfies the short-pulse equation
(1.2).

The equation in (1.1) is formally integrable and can be rewritten as the bi-Hamiltonian form [30],
that is

SHo  8Hi
me = —((u? = ux)m), — yux=J = ==K,
where
j:—%ﬂﬂw—gaam K=2%—2,

corresponding to the Hamiltonian

Hyp =/mudx,

R

and the Hamiltonian

Hi=

=

1
/<u4 +2u?u? — §uf< + 2yu2> dx.
R

It also admits the Lax pair [31], that is
Y1\ _ Y1 Y1\ _ Y1
(), =vmn () (), =vemun(3):
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1/-Q im
uGm.2) =3 (_km o )

Q=Q1,y)=/1+2%y,

and

V(im,u,\)
1 ( A2Q +3Q? —ud) —27Nu - Quy) — Ia? —u,%)m)
2@+ Quo @ —uhm —a2Q - Q@ —ud) '

The Camassa-Holm (CH) equation [2,20] defined by

me +umy 4+ 2uym+ yux =0, m=u— Uy

has attracted much attention in the last twenty years because of its interesting properties: complete
integrability, existence of peaked solitons and multi-peakons [2,3], geometric formulations [5,12,13,26,
28] and the presence of breaking waves (i.e. a solution that remains bounded while its slope becomes
unbounded in finite time) [7,9-11]. Note that the nonlinearity in the CH equation is quadratic. In
contrast to the integrable modified KdV equation with a cubic nonlinearity, it is our interest to find
an integrable CH-type equations with a cubic nonlinearity. Indeed, two integrable CH-type equations
with cubic nonlinearity have been discovered recently. One is the equation in (1.1) and the second one
is the so-called Novikov equation [29]. The integrability, peaked solitons, well-posedness and blow-up
phenomena to the Novikov equation have been studied extensively, see the references [22,29,33,34],
for example.

The goal of the present paper is to establish qualitative results for the Cauchy problem (1.1).

We first study the local well-posedness for the strong solutions to the Cauchy problem (1.1) (see
Theorem 3.1). The proof of the local well-posedness is inspired by the argument of approximate so-
lutions by Danchin [16] in the study of the local well-posedness to the CH equation. However, one
problematic issue is that we here deal with a higher-order nonlinearity in the Besov spaces, making
the proof of several required nonlinear estimates somewhat delicate. These difficulties are never-
theless overcomed by careful estimates for each iterative approximation of solutions to the Cauchy
problem (1.1).

With the local well-posedness obtained in hand, we then present a refined local well-posedness,
i.e. local existence in the Besov space B 2.1 with the critical index s = g (see Theorem 3.2). Then a
precise blow-up scenario (see Theorem 4. 2) and a lower bound of the maximal time of existence (see
Theorem 4.3) are obtained.

Blow-up in finite time depends on strong nonlinear dispersion usually and makes, of course, the
analysis more challenging in our case with higher nonlinearities. It is known that a solution of the
Camassa-Holm equation, which can be considered as the transport equation, blows up in finite time
when its slope uy is unbounded from below. This idea is expected to be applied to the modified
CH equation in (1.1), since it can be written as a transport equation in terms of m along the flow
generated by u? — u2, that is

me + ( z)mx = —2u,m? — yuy. (1.3)
Generally speaking, the transport equation theory ensures that, if the slope
(u? - u)z()x =2uym (1.4)

is bounded, the solution will remain regular and, therefore, cannot blow up in finite time. In view
of this property, together with the Sobolev embedding theorem, it can be shown that the solution
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blows up in finite time if and only if the slope in (1.4) is unbounded from below. Thus to prevent
the solution from blow-up in finite time, the main issue is that it is impossible to control the bound
of uym in (1.4) in terms of the H'-norm of the solution unless a higher, positive conserved quantity
involved in H3-norm of the solution can be found. To overcome this difficulty, we may regard the
evolution equation (1.3) in terms of the quantity (1.4) being transported along the flow generated
by u? — u%. Then blow-up result can be established by using the global conservative property of the
potential density m along the characteristics. This new idea was used in [21] in the case y = 0.
Inspired by this method, we are able to improve the blow-up result in [21] by using the conservation
quantity

Io:/u(O,x)dx:/u(t, X)dx (see Theorem 5.1).
R R

As mentioned above, it is well known that the CH equation has the peakons [2], which are shown
to be orbitally stable in the intriguing papers [14,15]. Stability of the periodic peakons of the CH
equation can be found in [27]. So it is of interest to identify traveling wave solutions of the equation
in (1.1). Indeed, it is found by Gui, Liu, Olver, and Qu in [21] (see also [24]) that the equation in (1.1)
with y =0 has single peakons given by

3c
Uc(t,x) =,/ > e Xl 50

and multi-peakons. In particular, the two-peakons can be given explicitly by

/3
u(t,x) = §C1 exp{— }

+,/ %cz exp{— 3V e —con

Cc1 —C2
As a part of the present paper, we are able to show that the equation in (1.1) with y =0 does not
have any nontrivial smooth traveling wave solutions.

The rest of the paper is organized as follows. In Section 2, some preliminary properties, which will
be used later, are presented. The local well-posedness in the Besov spaces is established in Section 3.
In Section 4, a blow-up scenario and a lower bound of the maximal existence time of (1.1) will be
derived. A new blow-up mechanism is described and some blow-up data are determined in Section 5.
Nonexistence of smooth traveling waves for ¥ =0 is demonstrated in Section 6.

3V elc1—c2)t

€1—C2

X—cCit —

X —Cot —

}, 0<C1<C2.

Notation. In the following, for a given Banach space Z, we denote its norm by || - ||z. Since all space
of functions are over R, for simplicity, we drop R in our notations of function spaces if there is no
ambiguity. We denote Fu or i the Fourier transform of the function u.

2. Preliminaries

For convenience of the reader, we recall some basic facts on the Littlewood-Paley theory for the
transport equations. One may check [1,4,16,17] for more details.

Proposition 2.1 (Littlewood-Paley decomposition). (See [1,4].) Let B def {E eR, |§] < %} and C def

{€ eR, % <€ < %}. There exist two radial functions x € C2°(B) and ¢ € C2°(C) such that
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XE+) ¢(279%) =1, VeEeR
q=20
lg—q|=2 = Suppe(279)NSuppp(27?-) =2,
g=1 = Suppx(-)NSuppp(279) =2,
and

<XEP+Y_0(27%)° <1, VeeR?
q=0

W] =

Furthermore, let h %l - ¢ and P X . Then the dyadic operators Ag and S; can be defined

as follows

Af o2 qD)f=2"d/h(2qy)f(X—y)dy forg>0
Rd
x2D)f= > Akfzzqdffl(qu’)f(X_J’)d%
~1<k<g-1 Re

AifEsof and Aqfd—efO for g < —2.

Sof &

Definition 2.1 (Besov space). (See [1,4].) Let s € R, 1 < p,r < oo. The inhomogeneous Besov space
Bf:,r(Rd) (B}, for short) is defined by

By, £ {feS'(RY; IIfllgs, < oo},

where

1
1f g & (X qez 2% I1Aq f )T, forr < oo,
" supgez 2% Aq flle,  forr=oo.

Ifs= BOO &« mse]R

Proposition 2.2. (See [1,16,17].) The following properties hold.

i) Density: if p.r < oo, then S(RY) is dense in B3, , (RY).

1

(L,7

ii) Sobolev embeddings: if p1 < p2 and ry < 1o, then B;l r < sz ,2’” fs1 <52, 1< p<+ooand
1 <rq, 1 < 400, then the embedding Bp ry <= Bp r, is locally compact.

iii) Algebralc propertles fors >0, B - N L is an algebra. Moreover, (B;_, is an algebra) < (Bi,,r — L®)

@(s> or(s) Sandr=1)).
iv) Fatou property. if (u(”))neN is a bounded sequence of B, . which tends to u in S’ thenu e B3y and

lullgy, <lim inf [u®]
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v) Complex interpolation: if u € B;r Al B;r and 60 € [0,1], 1 < p,r < oo, then u € Bf,f;r(FHE and

0 1-6
u o < lu ujl ;-
N L U

vi) Let m € R and f be an S™-multiplier (that is, f : R? — R is smooth and satisfies that for all multi-index
«, there exists a constant Cy, such that for any & € RY, |0% f (£)| < Co (1 + |E])™71].) Then for all s € R
and 1< p,r < oo, the operator f (D) is continuous from By, . to By ™.

Lemma 2.1. (See [1,16,17].) Suppose that (p,r) € [1, +0c]®> and s > —%. Let v be a vector field such that Vv
d

belongs to L([0, T1; BZ,_rl) ifs>1+ % or to L([0, T1; Bg,r N L) otherwise. Suppose also that fy € B;.r,

F e L?([O, TI; B;’r) and that f € L*°([0, T]; B;’r) N C([0, T]; &) solves the d-dimensional linear transport
equations

oof+v-Vf=F,
M {flt:0=fo-

Then there exists a constant C depending only on s, p and d such that the following statements hold:
1) Ifr=1o0rs#1+ %,then

t

g dt+C [V (@] fD)
p.r

0

dr,
B,

t
I1fllss, < follgs, + / |F()]
0

or

t

£ 1B, <€Cv(t)<||f0||3;” - / e VO F()|

0

B, dr) (2.1)

hold, where V (t) = [3 Vv (T)]| g drifs<1i+ % and V (t) = f, IVV(D)ll 5.1 de else.
BJ,.NL® r

2) Ifs<1+ % and, in addition, V fo € L, V f € L*([0, T] x RY) and VF e L1([0, T]; L®), then

17O, + 1V O]
t

<etVO (ufongg,,, + IV follz= + f e VO ([F@ gy + HW(r)}Wdr)
0

with V() = [y IVv(Dll ¢  dr.
B} .NL®

3) If f = v, then for all s > 0, the estimate (2.1) holds with V (t) = fot [loxu(T)||Lee dT.

4) Ifr < o0, then f € C([0, T]; B;’r). Ifr = +o00, then f € C([0, T1; Bg,l)for alls' <s.
Lemma 2.2. (See [17].) Let (p, p1,7) € [1, +00]>. Assume that s > —d min{pl—l, %} with p’ & (1 — %)‘1. Let
foe B;’r and F € L1([0, T]; B;’r). Let v be a time dependent vector field such that v € LP ([0, T]; Bgo’f/’oo) for

d
some p>1,M>0and Vv e L' ([0, T]; Byl oo NL®) ifs <1+ 51_1 and Vv € L'([0, T); BS, L) if s > 1+ EL]

ors=1+ % and r = 1. Then the transport equations (T) has a unique solution f € L*°([0, T]; B;,,) N
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(ﬂs,<s Cc([0, T, B;J)) and the inequalities in Lemma 2.1 hold true. If, moreover, r < oo, then we have f €
C([0. T1; By

Lemma 2.3 (1-D Moser-type estimates). (See [4].) Assume that 1 < p, r < +00, the following estimates hold:

(i) fors >0, [ fgllg;, < CUIfllgs, gl +11gllBs, 1S 1)

(ii) forsy; < %,sz>%(sz>%ifr:1)ands1 + 593> 0,

1£glgs, < CIFllg, gl .
where the constant C is independent of f and g.

Lemma 24. (See [17].) Denote N = N U oo. Let (v") 5 be a sequence of functions belonging to

1
C([0, T1; B ;). Assume that v is the solution to

(2.2)

v ® 4+ a®yv® = f,
vl _y=vo

1 1
with vg € Bzqu, fell(,T; 322’1) and that, for some g € L1(0, T),

sup[[axa™ ()] 1 < B(©).
neN B

1
2
2.1

1 1
If in addition a™ tends to a* in L' (0, T; BJ ;) then v tends to v in C(0, T; B3 ;).

Next we reformulate the Cauchy problem (1.1) in a more convenient form. Note that the equation
in (1.1) is equivalent to the following one:

Ur — Uxxt + 3u2ux — AUUylyy + u)zcuxxx + 2uxu,2cx — uzuxxx — ui + yux=0.

Applying the operator (1 — 8)%)*l to both sides of the above equation, we obtain

3
ue + (u? - %uﬁ)ux +0,(1—22)7" <§u3 + uuf‘) +(1-02)"" <u3—" + yux> =0, (23)

which enables us to define the weak solution of the Cauchy problem (1.1).
3. Local well-posedness
3.1. Local existence

In this section, we shall discuss the local well-posedness of the Cauchy problem (1.1). At first, we
introduce the following spaces.

Definition 3.1. For T >0, s€ R and 1 < p < +o0, we set

def _ .
ES (T) = ([0, T; B} ,) N C'([0, TT; BS,') ifr < +oo,

Please cite this article in press as: Y. Fu et al., On the Cauchy problem for the integrable modified Camassa-Holm equation
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ES oo (1) E'1([0, T1; B} ) NLip([0, T1; BS L)

def
and ES S MNyog ES ().

The result of the local well-posedness in the Besov space may now be enunciated.
Theorem 3.1. Suppose that 1 < p,r < +00, S > max{2 + %, %} and ug € B;’r. Then there existsa time T > 0

such that the initial-value problem (1.1) has a unique solution u € E;’r(T), and the map ug — u is continuous
from a neighborhood of ug in B;’r into

([0, T1; BS,) nC' ([0, T1; B3 ")
forevery s’ <swhenr = +o0 and s’ = s whereas r < +o0.

Remark 3.1. When p =r =2, the Besov space B;’r coincides with the Sobolev space HS. Theorem 3.1
implies that under the condition ug € H® with s > 5/2, we can obtain the local well-posedness for
the initial-value problem (1.1).

Remark 3.2. As in Remark 4.1 in [21], the existence time for the initial-value problem (1.1) may be
chosen independently of s in the following sense. If

ueC([0,T]; H) nCl ([0, T]; HS)

is the solution of the initial-value problem (1.1) with initial data ug € H" for some r > 5/2, r #s, then

ueC([0, T H")NC ([0, T H')
with the same time T. In particular, if ug € H*, then u € C([0, T]; H*).

Remark 3.3. For a strong solution m = u — uyy in Theorem 3.1, if, in addition, the initial data ug € LT,
then the following three functionals are conserved:

Io:/u(t)dx, I1 :/(uz—f—ui)dx,
R R

1
I =/(u4 +2u%u2 — §u§ - 2yu2> dx. (3.1)

Under the assumptions in Theorem 3.1 (especially p =r = 2), we introduce the flow generated by
2 _ 2

u® —uy:
dq(t’x)_ 2 2
T = (v —u) (£, q(, ), xeR, te[0,T). (3.2)
q(0,x) =x,

If y =0, then it is easy to check that [21]

m(t,q(t, x))qx(t, x) =mg(x), forall (t,x) €[0,T) x R.

Please cite this article in press as: Y. Fu et al., On the Cauchy problem for the integrable modified Camassa-Holm equation
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Remark 3.4. Note that from the above flow, it follows that [21]

qx(t, x) = <2/(mux)(s,q(s,x))ds) >0, forall(t,x)e[0,T)xR.

In view of the above conservation law, we deduce that: if ug(x) has compact support in x in the
interval [a, b], then so does m(t,-) in the corresponding interval [q(t,a), q(t,b)]. This property of
retaining compact support for m is actually similar to the case of the CH equation [8,23]. Moreover, if
mo=(1-— Bf)uo does not change sign, then m(t, x) will not change sign for any t € [0, T). On the other
hand, the L°°-norm of any function v(t,-) € L*° is preserved under the family of diffeomorphisms
q(t, ), that is,

[v@ )] = vt a@ ). teO. D).

In the following, we denote C > 0 a generic constant only depending on p,r,s. Uniqueness and
continuity with respect to the initial data are an immediate consequence of the following result.

Proposition 3.1. Let 1 < p,r < +oc and s > max{2 + %, 2}. Let u™, u® be two given solutions of the
initial-value problem (1.1) with the initial data u(()l), u(()z) € BS,, satisfying u®, u® € L*([0, T]; B} ;) N
C([0,T]; 8). Then forevery t € [0, T]:

[ —u®) 0]

t
<= lypesolc [0l + WO, +har). a3
0

Proof. Denote u12 & 4@ _ M 1t is obvious that
u® e 1([0, T]; B} ;) N C([0. T]: §'),

which along with the equivalent formulation (2.3) of (1.1) implies that u'® € C([0, T]; B} ") and u'?
solves the transport equation

st 4 [ = 3l ) [ = 102 a®) 3)

with

f(u(12>,u“>,u<2>):_(1_af)‘1<;(( 1PV 1 uPu? + (12))u (12)+yu<12)>

— (u(l) +u(2))u§2)u(12)

—ox(1-92)7" <§((u(1))2 +uDu® 4 (@)%

FuO @ +u@)ul? 4+ (@)’ u“2>>, (35)

Please cite this article in press as: Y. Fu et al., On the Cauchy problem for the integrable modified Camassa-Holm equation
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Thanks to the transport theory in Lemma 2.1, one gets

t
[412 @] s < € / () = S (") +uu? + @P)?)
0
t
+/||f(u“2>,u“>,u<2>)(z)||3;1 dr + ||u(12)(0)||3;}1. (36)

0

12)
- [u™ (1) ”B;—rl dt

Applying the product law in the Besov spaces, we have

1
(W) = )+ uf? + (u))

2 2
< C(||u(”||B§J + [Ju® ||Bsp.r).
p.r

Similarly, one gets

_1/(1
H (1-a2)”" (5((11,&”)2 FuPu® 1 @)Dl + yu,i”))

s—1
By

1
< C” g((u,((l))2 +uPul® + (uff))z)u,ﬁ“) +yull?

s—2
Bp.r

<l e + 1 g

2
P g+ 1 e + D s

w12

[+ u@)uPu ] oy < D [ g + Ju® ] o) [ g, 2

and

(1 =) (3 +uPu 4 @) D 4 Pl 4w )

s—1
Byr

gCH%((H(Df+u(1)u(2)+(u(z))z)u(n)_i_u(l)(u)((l)_i_u)((Z))u)((lZ)+(u)(<2))2u(12)

By
2 2
< (D s+ Ju® ) [0 |
which leads to
2 2
||f(u(12>, u®, u(z))“BSpTrl < C(”“(UHB;T 4 ||u(2) “B;,r + |)/|)||u(12) ”B‘p}l'
Hence, one obtains from (3.6) that

[u™ o] BS
t
< Ju" Oy +C f (e @15, + @@+ ) [u? @] 4 de,
0

and then applying Gronwall’s inequality, we reach (3.3). O

Please cite this article in press as: Y. Fu et al., On the Cauchy problem for the integrable modified Camassa-Holm equation
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Now let us start the proof of Theorem 3.1, which is motivated by the proof of local existence
theorem about the Camassa-Holm equation in [16]. Firstly, we shall use the classical Friedrichs regu-
larization method to construct the approximate solutions to the Cauchy problem (1.1).

Lemma 3.1. Let ug, p, r and s be as in the statement of Theorem 3.1. Assume that u® := 0. There exists
a sequence of smooth functions (u™)pen € C(RT; B$7,) solving the following linear transport equation by
induction:

(Ta) { (o + [(@™) = @) Joum™D = —2u"(m™)* - yul®, t>0, xeR, (3.7)

+1
u™b| _ = ud"™ (x) = Spy1uo, xeR.
Moreover, there exists a T > 0 such that the solutions satisfying the following properties:

(i) ™)nen is uniformly bounded in ES, (T).
(ii) (u™)nen is a Cauchy sequence in C([0, T]; B3 1.

Proof. Since all data S,;1uo belongs to B;f’r, Lemma 2.2 enables us to show by induction that for all

n € N, the equation (T,) has a global solution which belongs to C(R; Bg‘fr). Applying Lemma 2.1 to
(Ty), we get for all n € N:

|m® D @) 52

t M)\2 _ ¢, (M2
<ot Jo M2 =YDl sy d

X

ISn+1tioligs,,
t
C SEI@™)? @21 51 dT’
+C/e e * By ||2u,(<")(m("))2+yu§")(r)\|3572 dr. (3.8)
p.r
0

Thanks to the product law in Besov spaces, one has

1) = () g < a5,

I 2u(V (m("))2 +yul

3
2 <CU™ 3 +[u®] ).
which along with (3.8) leads to

C fo @2, d
[0, <e

T
luollss,

t
C C fEum™ @3, dr’ 3
+E/e B (Ju®@ g+ [uP @ g YdT. (39)
0

Let us choose a T > 0 such that

. { 1 3(W2 - 1)}
< min R ,
8Cuollg, 4c
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and suppose by induction that for all t € [0, T],

V2lluollps,,
(1—8Cuoll3; 01/
p.r

WD), <

Indeed, one obtains from (3.10) that for any 0 < 7 <t,

; P 2luoll?s
¢ [lu (), ar <c [
T T

1—-8Clluoll3,

p.r
zlln(1—8C||uo||2 t)—lln(l—SClluollz t)
4 By 4 By

And then inserting the above inequality and (3.10) into (3.9) leads to

00 < ol .
P fi—sCiuold, ¢ V21-8Cluol3, ¢
pr pr

p Zﬁlluollisr V2luolls,
e
0

5 1
(1-8Cluol3, 7 (1-8C|uol}, 1)

2 3
luollsy, 1~ Ja—8Cluolig, o)

< 9
J1- 8CIIU0|I§§”t 6lluollps,, 1 — 8C||U0||%;§”t

which implies

V2]|uollgs,
(1—8Cllugll2;, 012
p.r

”u(”"'l)(t) H 5, <

Therefore, (u™)nen is uniformly bounded in C([0, T]; B}, ,).
On the other hand, using the Moser-type estimates (see Lemma 2.3(ii)), one finds that

2 2 2 2
IH®)" = (@) Joum ™D s < Cm D o (u® [y + [ [550)

2

<Cu ], Juf, .

and

2 2 3
[ (m ™) gz < Cm® ez Ju®™ [ g < Cu™ 1 -

Hence, using the equation (Tj), we have

pu™ e ([0, T): B,

YJDEQ:7193

(3.10)

uniformly bounded, which yields that the sequence (u™),cy is uniformly bounded in E;’r(T).
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Next we are going to show that

(u("))nEN is a Cauchy sequence in C([0, T1; Bi,_fr]).

In fact, according to (3.7), we obtain that, for all n, £ € N,

{3t + [(u(n+e))2 _ (u§n+£))2]ax}(m(n+e+1) _ m(n+1))

— g(u(nJrl)’ u(n)’ m(n+£)’ m(n)’ m(n+1))’
where

g(u(”H), u® Mt gm0 m(n+l))

— [(u(”) _ u("“))(u(”’ + u(n+l)) _ (u,(‘") _ u;n+f))(u§n) + u,ﬁ"“))]axm(”*”

YJDEQ:7193
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(3.11)

_ 2u)((n+£) (m(n+l) _ m(n))(m(n) + m(n+e)) + 2(u,(<") _ u}({ﬂﬂ)) (m(n))2 Ty (uf(m _ u,((”“)).

We rewrite (3.11) as the equation in terms of (u®+¢+D — @+

{at + [(u(n+e))2 _ (u,(<n+£))2]3x}(l _ 83)(u(n+l+1) _ u(n+1))

— g(u(”H), u("), m(”H), m("), m(n+l))7
which is equivalent to
(1- 33){((’% + [(u<n+a)2 _ (u,ﬁ"*e))Z]ax)(u(””“) _ u(n+1))} —h.0
with

B0 = 23, [ (u™0)? — (u{0)2]a2 (D — (D)
+ 83[(u(n+£))2 . (u§"+e))2]8x(u("+”l) . u(n+1))

4 g(u(”’%), u(”), m(n+€), m(”), m“”‘”).

Applying the operator (1 —32)~! to (3.12) gives rise to

{0 + [(u(n+Z))2 _ (u,ﬁ”*[))z]ax}(u(””“) _ u(n+1)) =(1- af)flh("").

Thanks to Lemma 2.1 again, then for every t € [0, T], we obtain

=C f3 M@ ™02 —@f™)2)(0)] 51 dT
v n+€+1) _ o (n+1)
P (u u™ D)o B

< ”uénJrZJrl) _ u(()nJrl) H B%Trl

t
—C J5 @™ )2 =@ 2@ 5y de’
e / e : 57 o | s dr.
p.r
0

(312)

(313)

(314)

with cubic nonlinearity, ]. Differential Equations (2013), http://dx.doi.org/10.1016/j.jde.2013.05.024
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In the case of s > max{2 + %, %}, one can deduce from the product law in Besov spaces that

” [(u(n) _ u(n+£))(u(n) + u(n+£)) _ (u,((n) _ u)((n+£))(u)(<n) + u§n+€))]axm(n+1) HBS’3
p,r

<P o (a0 a0 4 U

N

0 [0 i)

2 2 2
< Clu™ 0 —u® g (Ju™ g+ Ju™ Vs + u™ O ),

”u)(<n+l) (m(n-t-t’) _ m(n)) (m(n) + m(n—HZ)) “ B
< C”u(n-HZ) “ 5, ”m(n+€) —mm ||B§;,_r3 ||m(n+£) + m™ ” Bf;,_rz

2 2
U0 —u® g (2, + w2, ),

and

i = a0 )2 g s < a0 —u® o [m® [

2
< Clu™0 —u™ ] g u™ 5, -
From this, one finds that

”g(u(nJrl)’ u(n), m(n+5)’ m(n)7 m(n+1)) ” e

p.r

2 2 2
™0 —u® | ([u® 3+ [u L2+ O i),
Similarly, we may check that

[20[(u™0)” = (") o (u D —uD) s

< CumH D —um D |y O
and

[20("0)? — (O oD )

p.r

<O D O
Hence, we obtain
2
“h(n_g) ”Bs‘f < C||u(n+e+1) _ @D [ B ||u(n+e) ”B;r

p.

™0 —u® gy (™0, 4 u™ PG + a5, 1)

Please cite this article in press as: Y. Fu et al., On the Cauchy problem for the integrable modified Camassa-Holm equation
with cubic nonlinearity, ]. Differential Equations (2013), http://dx.doi.org/10.1016/j.jde.2013.05.024




Y. Fu et al. /. Differential Equations eee (eeee) eee—see

Therefore, we obtain

—C ™02 —@{™O2(1)| g de
e Jo BS! I (u(”“””)—u(”+1))(t)||85,1
p,l’

< ||ug1HH) _ ugn+1) ”Bifrl

t
—C [ M@0 2| oy d’
+C/e ’ i B (™0 — u ™) (7)) o
p.r

0

< (Ju™ @], + [ 0@, + [P @], +Ivl)de

t
—c [T (n+0)y2 _ )((’H'@) 27(+/ . dt!
+C/e Jo M2 =™ 21Tl oy r”(u(wﬂ)_u(n“))(r)‘
0

x [u™O @) dr.

Since (u™)ycy is uniformly bounded in E5, .(T) and

n+¢
(n+£+1) (n+1)
ug — Uy = Spte+1Uo — Spy1llo = Z Aqug,
q=n+1

then there exists a constant Ct independent of n and ¢ such that for all t € [0, T],

s—1
By

t
| (@D — y D) ) g <Cr (2n + / | (™0 —u®)(7) P dr).
0

Arguing by induction with respect to the index n, one can easily prove that

(TCp)™! N
g < G L+ o

” e+

k!

YJDEQ:7193
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(3.15)

(TCr)k

Similarly [ju‘® ||L1°.°(B§7 .y can be bounded independently of ¢, we conclude that there exist some new

constant C/. independent of n and £ such that
(n+€+1) (n+1) —ne’
Ju —u ”Lf;c(Bf;rl) <27°Cr.

Hence (u™)nen is a Cauchy sequence in C([0, T]; BS,)). O

Proof of Theorem 3.1. Thanks to Lemma 3.1, we obtain that (u®™),cy is a Cauchy sequence in
C([0, T]; B;,Trl), so it converges to some function u € C([0, T]; Bf{ﬂ). We now have to check that u
belongs to EZ,r(T) and solves the Cauchy problem (1.1). Since (u®™)pcy is uniformly bounded in
L*°([0, T]; B;,r) according to Lemma 3.1, the Fatou property for the Besov spaces (Proposition 2.2iv))

guarantees that u also belongs to L*°([0, T]; Bz’r).

with cubic nonlinearity, ]. Differential Equations (2013), http://dx.doi.org/10.1016/j.jde.2013.05.024
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On the other hand, as (u™),cn converges to u in C([0, T]; B ) an interpolation argument en-

sures that the convergence holds in C([0, T]; prr), for any s’ <s. [t is then easy to pass to the limit
in the equation (T,) and to conclude that u is indeed a solution to the Cauchy problem (1.1). Thanks
to the fact that u belongs to L*°([0, T]; B;_r), the right-hand side of the equation

dm + (u? — uf)dm = —2uym* — yuy

belongs to L°°([0, T]'BS*Z) In particular, for the case r < oo, Lemma 2.2 implies that u €
C([0, TY; BS r) for any s’ <s. Fmally, using the equation again, we see that d;u € C([0, T]; B ) if

r< oo, and in L*°([0, T]; B 1) otherwise. Moreover, a standard use of a sequence of v1sc051ty ap-
proximate solutions (u€)€>0 for the Cauchy problem (1.1) which converges uniformly in

(0. T1: B,)nC'([0. T]: B
leads to the continuity of the solution u in Ez,r(T). O

3.2. Critical case

Attention is now restricted to the critical case in the local well-posedness.

Theorem 3.2. Suppose that the initial data ugy(x) € B 1- Then there exists a maximal T =T (up) > 0 and a
unique solution u(t, x) to the Cauchy problem (1. 1)such that

3 3
u=u(,ug) e C([0,T]; B ;) NC'([0,T]; B ).

Moreover, the solution depends continuously on the initial data, i.e. the mapping

3 E) 3
ug — u(-,up) : B ; = C([0, T]; B3 ;) N C' ([0, T]: B ;)
is continuous.

Remark 3.5. Note that the equation in (1.1) with regard to m is a transport form, that is,

2.2 2
me + (u® — ug)my = —2uxm* — yuy.

Roughly speaking, in order to propagate the regularity of the solution m to the Cauchy problem
(11) in terms of its initial data mg, the “coefficient” u? — u,z( of my needs to satisfy the Lips-
chitz condition. Toward this purpose, it suffices to guarantee u belonging to W2, the space of
bounded functions with bounded first and second derivatives, which satisfies the embedding proper-

ties BZZl — BOol > W2® s 82 . From this, we call s = the critical regularity index in terms
of u for the well-posedness of the 1n1t1a1 value problem (1.1) m the following sense:

(N[5}

H®< B

Moo

5 , 5
1> H>—BJ —H* foralls’<i<s.

Remark 3.6. Similar to the result of the Camassa-Holm equation presented by Danchin in [16], using
the estimates in the proofs of Theorem 3.1-3.2, we may demonstrate the well-posedness of Eq. (1.1)

5
with the initial data uo belonging to the critical space B; . N W2, We leave the details to the
readers.
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Proof of Theorem 3.2. Theorem 3.2 will be divided into the following three lemmas. O
We first present the existence of the solution.

5
Lemma 3.2. Assume that ug € 322,1- Then there exists a time T > 0 such that the Cauchy problem (1.1) has a

5 3
solution u € C([0, T; Bzzyl) nclqo, Tl; Bzzyl).

Proof. On account of ugp € B2 1, the transport theory (see Lemma 2.1) can be applied. Similar to the
case ug(x) € BP "S> max{2+
omitted without details. O

2 2} we can establish this lemma. The proof of the lemma is therefore

3
We are now in a position to establish estimates in L*°(0, T; 822_1) for the difference of two so-

5 3
lutions of the Cauchy problem (1.1) belonging to L°°([0, T]; 322’1) N C(o,T]; Bzzyl). Uniqueness is a
corollary of the following result.

3
Lemma 3.3. Suppose that ug (resp. vg) € B 21 such that u (resp. v) € L*°([0, T1; B > 1) NC(O0,T]; 822,1) isa
solution to the Cauchy problem (1.1) with initial data ug (resp. vo). Let w =u — v and wo = ug — vo. Then
foreveryt [0, T]:

t

|w) ”32%1 < [w() ”32%1 exp{cf(uu(r)||z§1 + Hv(r)”zzg] + Iyl)dr}. (3.16)

0

Proof. Thanks to the formulation (2.3), we see that w solves the linear equation
1 n-1{1, > 2
w + |u? — §(u Uy F v ) aw + (1—105) §(ux + UxVx + VE)Wx + Y Wy

_1(2
+ U+ V) vew + (1 — 87) 1<§(u2—i—uv—i—vz)w—i—u(u,(—i—vx)wx—i-v,z(W) =0. (317)

Consider that ug (resp. vg) € le such that u (resp. v) € L*°([0, T]; le) NC(0, T; le) by virtue
of the transport theory in Lemma 2.1, the following inequality holds true:

t
Iwo| s < |wo)] 3 +¢ [ o2 = 22 +ugvy+v?)
B2 B2 3
2 2
0

@ |w@|

3 3
j 2
2 2

/ £t v, g, v W, w) (D) (318)

3
B2
2

where

f@u, v, uy, ve, w, wy)

~1/(1
_ (1 B axz) l(g(ui_}_uxvx—i—vi)wx—i-)/w,()

_1(2
+ U+ V)viw + 3 (1 — 37) ]<§(u2+uv+v2)w+u(ux+vx)wx+v§w>.
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Applying the product law in the Besov spaces, we have

u? — %(ui + UgVy + v2)

C(lull?s +||v||2% )-

2
B B34

>
BZ 2.1

,1

Similarly, one gets

~1/(1
H (1- 8,%) l(i(ui + uyvy + vf)wx + ywx)

3
B34
1, 5 2
<C §(ux+uxvx+vx)wx+ywx |
B,
<C(||u||23 + Il %||V|| 3 +viZ, +ly)lwl 3
322_1 B3, B34 3221 2.1
H(u+v)vwa 3 <C(llull 3 +1lvl 3 )Ivll s wll 3
BZ BZ BZ BZ 2
2,1 2,1 2,1 2,1 2,1
and
n-1(2, 2 2 2
ax(1—195) g(u Fuv + V)Wt u(ux+ vOwx+viw )|
BZ,
2. 9 2 2
<C §(u Fuv + V)W + uux + v wx + viw|
B3
C(Ilullzl +vIZy A+ full %(llull 3 + vl %)+|IV||2; Jiwl
Bfl Bfl B3 B3 B34 322,1

which leads to

”f(u! v, uXa Vx, w, WX) H 3
BZZJ B34 B3,

Hence, we obtain from (3.18) that

t
[wol 5 <lwo] 4 +Cf(||u(f)llzg +lv@l’s +IV|)||W<f>||
2 32,1 0 82,1 BZ.]
Therefore, due to the Gronwall inequality, we deduce that
t
[wol 3 <[w@] 5 e f [e@ %5 +Ivl’s +ivdr,
2 2 0 2 2,1

which is the desired result. O

Now

<C(lull®s +1vIEs +1yl)iwl
2 2 B

YJDEQ:7193
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At last, we are going to verify the continuity of the solution with regard to initial data in sz 1-

Please cite this article in press as: Y. Fu et al., On the Cauchy problem for the integrable modified Camassa-Holm equation

with cubic nonlinearity, ]. Differential Equations (2013), http://dx.doi.org/10.1016/j.jde.2013.05.024




YJDEQ:7193
Y. Fu et al. /. Differential Equations eee (eeee) eee—see 19
Lemma 3.4. For any ug € 32 1» there exists a time T > 0 and a neighborhood V of ug in B 3 1 such that for any
v € V, which is the solution of the Cauchy problem (1.1) with the initial data v, the map
5 El 1 3
@ :vo—v(-,vp):V CBF —C(0,T];B3,)NC([0,T]; B ;)
is continuous.

Motivated by [17], Lemma 3.4 can be established by applying Lemma 3.3 and a continuity result
Lemma 2.4 for the linear transport equations.

3
Proof of Lemma 3.4. We first prove the continuity of the map & in C([0, T}]; BZ2 1)- Let us fix a ug €

5 5
BZZ.1 and a § > 0. We claim that there exists a T > 0 and M > 0 such that for any iig € B;; with
lliig — ugl| 5 < 8, the solution it = @ (iig) of the Cauchy problem (1.1) associated to iip belongs to
BZ.
5
C([0,T]; By ;) and satisfies ||il]| 5 < M. Indeed, from the proof of the local well-posedness
’ L°(0,T;B,)
we know that when we fix a T > 0 such that

Tgmin{ ! 3(ﬁ_1)},

8Clliol>s =~ 4C
B,
then from (3.10) similarly we deduce that
ﬁllﬁollB%
i) s < 21 forallt € [0, T]. (319
” “351 (1-8Cliol* 5 )1/ !
321
Since ||tip — uol| 5 < 8, we get ||tg]| 5 < juoll 5 + 8. One can choose some suitable constant C,
BZ. BZA BZ.
such that
- 3 > and M =2vV2(lluoll 5 +3).
32C(Jlug]| 5 +484+1) B3,
BZ

Now combining the above uniform bounds with Lemma 3.3, we infer that

| @ (o) — @ (uo) L < 5eC@MPHYIT,
oo .32%1)

5
In view of this inequality, we know that & is the Holder contmuous from BZ1 into C([O T]; B 1)

Next, we present the continuity of the map & in C([0, T]; B 1) Let u(oo) € BZ] and (uo JneN

3
tend to uffo) in B; ;. Denote by u™ the solution corresponding to datum u(()"). According to the above

argument, one can find T, M > 0 independent of n such that for all n € N, u®™ is defined on [0, T]
and

sup||u(”) [ <M. (3.20)
ne

1Pl

Please cite this article in press as: Y. Fu et al., On the Cauchy problem for the integrable modified Camassa-Holm equation
with cubic nonlinearity, ]. Differential Equations (2013), http://dx.doi.org/10.1016/j.jde.2013.05.024




YJDEQ:7193

20 Y. Fu et al. /]. Differential Equations eee (eeee) eee—see

5
Thanks to the first step, proving that u™ tends to u‘ in C([0, T]; B; ;) amounts to proving that

1
m® =u® —u® tends to m©® = u© —uS in C([0, T]; B3 ).
Note that m™ solves the following linear transport equation:

[{at+[<u(">>2—<u§">>z]a i = £,

(()n) (X) () ()

(m —
m®| _,=m =Uy — Upxe

where f® = —2u{"[m™12 — yu™. Following the Kato theory [25], we decompose m™ into m™ =
z® + w® with

{ {8t + [(u(n))Z _ (u)(cn))Z]a }Z(n) _ f(n) _ f(oo),

Z(I‘l) |t=0 — mgn) (X) _ (00) (X)

and

a2 _ ()2 ) _ £(c0)
{{m[( ) = W) o w® = 5, 1)

WOy =mg ).

Using Lemma 2.2 and the product law in the Besov spaces, one may check that
#0] | < { / )~ @), o]
B3 B3
t
«(Imt=m1y e 1= oo,y o)
0 2

t
<ol [l ac] [ [m - nf]
0 2 2,1

t
e (e
, B34

3
BZ

le—‘

+1y1)

Al )]y + 160 a0l g o] oz

1
B2
Bj1

5
On the other hand, since the sequence (u(”))neN is uniformly bounded in C([0, T]; 322’1) and tends

3
to u® in C([0,T]; B3 ,), applying Lemma 24 to (3.21) implies that w™ tends to m in

1
C([0,TI; B3 ;).
Let ¢ > 0. Thanks to the above result of convergence with estimates (3.20) and (3.22), we deduce
that for large enough n € N,
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| )]
BZ,]

<&+ C(M? 4 [y|)eCM iyt

t
x{||ma"> T L L
2 2

1

!"Nl._a

1

3
As u™ tends to u® in C([0, T]; B ,), the last term in the above integral is less than ¢ for large n.
Hence, thanks to Gronwall’s inequality, we get

() (OO)
[ (m® —m©)(D)] y <Curpyi(e+[mg” —mg™] )
L°°(0,T;B2,) By,
for some constant Cy, 1|, depending only on M, |y| and T, which completes the continuity of the
5

map @ in C([0, T]; B3 ;).
Finally, applying o; to the equation in (1.1) and using the same argument to the resulting equation
3

in terms of d;u, we may verify the continuity of the map @ in C'([0, T]; 8271). This completes the
proof of Lemma 3.4. O

4. Blow-up scenario and a lower bound of the maximal existence time

In [21], the authors derived a new wave-breaking mechanism for solutions to the equation in (1.1)
with certain initial profiles. It means that the maximal time of existence of solutions to the equation
in (1.1) has some definite upper bounds under given initial conditions. In this section, we will give a
lower bound of the existence time for this equation. We first present the following theorem.

Theorem 4.1. (See [21].) Let mg = (1 — Hf)uo € H°(R) with s > % Let m be the corresponding solution to
(1.1). Assume T}, o >0 is the maximum time of existence. Then
T,’;,O

Ty <oo = /||(mux)(t)||Loo dt = oc. (41)

Remark 4.1. There is a little difference between this theorem and the original theorem (Theorem 4.2
in [21]). We recall the result in [21] as follows:
T,’,go

Ty<oo = [ Im)de =o0, (42)

which, together with the maximum principle to the transport equation (1.1) in terms of m applied,
implies (4.1). In fact, applying the maximum principle to the transport equation (1.1), we immediately
get

t

[m@)] o < Imolli= +C f (Jmiu) (0| o + 1¥1) (D) | o de. (43)
0
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where we used the estimate |ux|/;~ < C|im|;~ and [(u? — uf)x||,_oo = 2||muy||z~. Then, Gronwall’s
inequality applied to (4.3) yields

t
[m®)| o < llmollze exp:C/(H (Mu) (7)o + lyl)dt}, (44)
0

which along with (4.2) gives rise to (4.1).

In the following, attention is now turned to blow-up issue. We first recall a blow-up scenario in
[21].

Theorem 4.2. (See [21].) Let ug € H', s > 5/2, and u(t, x) be the solution of the Cauchy problem (1.1) with
life-span T. Then T is finite if and only if

lim inf( inf (mux(t, 9) ) = —oc.

inf
xeR

We now deduce a lower bound depending only on ||ug||y 2~ for the maximal time of existence of
the solution to (1.1).

Theorem 4.3. Assume that ug € H® with s > % Let T* > 0 be the maximum time of existence of the solution
u to (1.1) with the initial data ug. If y # 0, then T* satisfies

% 2ly|
T > In{ 1+ 3 5 )
20[y| (2lluollee + ll9xttollLoe + 2[5 to L)

Otherwise, if y = 0, then

1
~ 2Q3lluolli + 3lldxuollL + [18Fuol|L0)?

*

Proof. Note that the equation in (1.1) is equivalent to the following equation

1 2 1
ue + (uz - gu)z()ux + 0xG * (§u3 +uu,2(> +Gx (5”’% + yux> =0, (4.5)

where u =G *m= (1 —32)"'m and G(x) = e~ Multiplying the above equation by u?"~! and
integrating the results in x-variable, in view of Hoélder’s inequality, we obtain

1d d
2n—1 _ = 2n __ 2n—-1
[ = o i, = i S

R
’/ u?n 1y dx
R

2 2n—1
<||ux||L00||u||L2n lluxllp2n,

and
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2 1
‘/ u?1G « (8x<§u3 + uuﬁ) + gui + yux> dx
R

11 2 2,2 2
S Mz ™\ 5 1ttll oo el + S llullzoo lfull e + fuelzoc l[ull2n 4 1y [l ).

Integrating over [0, t], it follows that

t
2
Ju®)l0 < 4@ s + [ a0 (i) + S o )t
0

t
4
43 [ 1@ | (@ [ + 17 .
0

Letting n tend to infinity in the above inequality, we have

t

2
Ju®l < 5@ + [ (100 | @)+ 3 O+ 1] )
0

t
4
+ §/”ux(r)\|foo dr. (4.6)
0

Differentiating (4.5) with respect to x, in view of (1 — 83)6 * f = f, we obtain

2 2 1
Upy + Uty + uu? — §u3 — WUy + G % (5”3 + uu,zc) + 094G * (gui + )/ux> =0. (4.7)

Multiplying the above equation by u2"~! and integrating the results in x over R, still in view of

Holder’s inequality, we have

d
2n—1 2n—1
[ = 257 5

i |
R

2n-1,,2
‘/ux U Uyy dX

1 2(,.2n 1 / 2
=|— [ v?(@?") dx| = |—— | 2uu?tldx
‘Zn/ (15 )" 2n X
R R

2
2 2n—1
< — lluxll{oo ||ux||L2n [l 2n,

2n
/ u2ludx

R

2n—1
/ux udx
R

2n—1

2 2
< luxllfes < ||Ux||L00||ux||LG lluell2n,

’/ uu dx
R

‘/ wui—1dx
R

2n—1

2 2
< lullze < lullToo luelly2e  lullp2n,

and
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2 1
Vu)z(nflc % (§u3 +uu? + 3x<3“x + yux>> dx
R

< w11 2 202 2
llull 72 3||ux||L00||ux||L2"+3||u||LOC||u||L2"+||ux||L00||u||L2n+|V|||ux||L2" .

24

Integrating over [0, t] and letting n tend to infinity, it follows that

t

4
|ux©® ] oo < [ux(O) ] o +/(3 [u@) ] Jux@ [ + 5 Ju @ + |y|||ux||Loo) de
0

t
1
+3 [l dr. (48)
0

Differentiating (4.7) with respect to x, in view of (1 — 83)6 * f = f, we obtain

2
Uy + U Uy + AUl ULy — 2u° ux+3u — 22Uy, — WUy — YUy

2 1
+8xG*<3u +uu >+G>x<(§u)3<+yux>:0. (4.9)

Multiplying the above equation by uz’1 1 and integrating the results in x-variable, still in view of
Holder’s inequality, we have

d
2n—1 2n—1
Uy Upe dx = ||uxx||,_gn E”uxx”LZn:

XX
R
1 fu2(u2n) dx
2n *x7x

2n—1,,2
‘/ Uy U Uy dX

1
= ‘ /2uuxu2” dx
2n
R

R
2
2—||U|leIIUxIILOOIIUxxlleﬂ,
and
2n—1,,2 dx| = 1 2(,,2n dx| = 1 2 2n+1d
U Ul dX) = | oo ug (ugy), dx| = —5 [ 2uxtt " dx
R R R
_||ux||L°°||uxx||L°° ||Uxx||L2n
Similarly, one gets
2 3, 21 2 -1
‘/uuxu " dx| <l gl 22, '/u U2 x| < o 25 k2,
2n-1 2 2n—1 2n+1 2
‘/u Unllie x| < [[ullfoo lluxxll 2 lluxll2n, ‘/uxu x| < el oo el oo |25

Please cite this article in press as: Y. Fu et al., On the Cauchy problem for the integrable modified Camassa-Holm equation
with cubic nonlinearity, ]. Differential Equations (2013), http://dx.doi.org/10.1016/j.jde.2013.05.024




YJDEQ:7193

Y. Fu et al. /. Differential Equations eee (eeee) eee—see 25

and

2 1
’/ u2=1G « <3x<§u3 + uu,2<> + 5”’3; + yux) dx
R

< w11 2 202 2
< Muxxll 20 3 lluxllzoo llUxllg2n + 3 lullzeo lull2n + Nluxlizoo lull2n + 1y Hiuxli 20 ).

Integrating the resulting inequality over [0, t] and letting n tend to infinity, it follows that

|| uXX(t) || Lo© g || uXX(O) “ Lo®

t
2 7 5
+ [l (Gl + Sl + 5 e ) ae
0

t
# [l @O + @[ + 3w + 21y e (410
0

If y #0, let

h(t) =2 u®) | o + |ux® ] ;0 + 2| U ]| joo-
Combining (4.6), (4.8) and (4.10), we deduce that

t

Hmmmmgmogmm+5/ﬂmwﬁ+zwmuﬂm. (411)
0

Define

2
(i AN
20|y | (2lluolle + l|9xuollee + 2[105uol| )2

By (4.11), then for all ¢ < min{T, T*}, one can easily get

v 2y 1h(0)

V(h2(0) + 2[y D=2t —h2(0)

[m©] - <

By virtue of Theorem 3.1, it follows that T* > T.
If y=0, let

h© =3[u®] o +3ux® [ 1 + [ue® ] -
Combining (4.6), (4.8) and (4.10), we obtain that

t

Hmmmmgmngmm+/wa»%p (412)
0
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And let

1
=2 3|9 92 2
(Blluollee + 30xtollLoe + [|9x ol L)

Similarly, we obtain that for all t < min{T, T*},

h(0)

J/1—8h20)t

Im®) . <he) < (413)

This completes the proof of Theorem 4.2. 0O

5. Blow-up data for y =0

In this section, we will provide sufficient conditions for the blow-up data to the initial-value prob-
lem (1.1) with y = 0. The blow-up result is now established in the following.

Theorem 5.1. Let y = 0. Suppose ug € H* N L' with s > 5/2. Let T > 0 be the maximal time of existence of
the corresponding solution m(t, x) to (1.1) with the initial data mg(x) = (1 — af)uo. Assume mg(x) > 0 for all
x € R and mo(xo) > 0 at some point xg € R.

i) If
Iy )
dxlo(Xo) < —|luglly with Ip := [ up(x)dx, (5.1)
mo(xo)
R
then the solution m(t, x) blows up at a time
2
« . —Oxlio(Xo) OxlUo(X0) 1
To<t":= 5 > - 5 :
Tolluoliy;y Tolluolly; Iolluollf;1mo(xo0)

Moreover when Tog = t*, the following estimate of the blow-up rate holds
.. . 1
llmll‘lf((To —t) inf (muy)(t, x)) <—=. (5.2)
Ty xeR 2
ii) If

0 > dxug(xg) > —Ip and

1 dxlio(X0) 1 Io
_ < In , (53)
mo(x0)  2lglluollyr  ~v2luolly \ o+ dxto(xo)

then the solution m(t, x) blows up at a time

1 I
To <t™:= 11’1< 0 )
V2Iollugllyr  \ o+ dxtio(x0)
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iii) If oxug(xp) < —Io, then the solution m(t, x) blows up at a time Ty < ty, where t1 uniquely solves the
equation

V2(Ig + dxuo(x0)) (eﬁlolluollmf _ 1) ot +

4lglluoll 4 mo(xo)

Proof. Denoting M = muy, we first recall from Proposition 5.1 in [21] that for all (t,x) € [0, T) x R,

M+ (u? —u2)My = —2M? —2m(1 — Bf)_l(u,%m) —2max(1 — af)_](uuxm),

X

which along with (3.2) implies

%M(t, q(t, %) = (—2M* —2m(1 — 2) " (uZm) — 2mdy(1 — 02) " (wwem)) (¢, 4(t, %)). (5.4)
Since mg(x) > 0 for all x € R, Remark 3.4 implies that

m(t,x) >0, (5.5)
for all t €[0,T), x € R, and hence
(m(1—02)"" (um))(t, % > 0.
On the other hand, for G = Je~™, we have

dx(1 — 02) ™ (uuxm) (¢, X) = 3G x (uuym)(t, x)
1 e
=3 / sign(x — y)e Y (wu,m)(t, y)dy,

—00
which implies

+oo
—2mdy(1 - 83)_] (uuym) =m / sign(x — y)e ¥ Y uu,m)(y) dy
—00
+o0
<m/e“x‘y'(u|ux|m)(y)dy

—0o0

=2m(1—02)" (uluxlm). (5.6)

Therefore, we find from (5.4) and (5.6) that

d _
EM(t, a6, %) < (—2M* +2m(1 - 32) l((u — [uxDuxlm)) (¢, q(¢, %)). (5.7)
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Notice that
L
ut.=GxmE.x =7 e Yim(t, y)dy,
R

we have

X “+0o0
e X e
u(t,X)=7 / eym(t,y)dy+5/e‘ym(t,y)dy,

—00 X

Ux(t, x) = ——/eym(t y)dy+—/ e~ Ym(t, y)dy,

—00

which along with (5.5) and Remark 3.3 leads to

+00 +00
O</e"’ym(t,y)dy:u(t,x)—i—ux(t,x)g/m(t,y)dy:]o,

X —0o0

X +00
0</ey‘xm(t,y)dy=u(t,><)—ux(t,X)</m(t,y)dy=lo-

—00 —0o0

From this, we obtain for all (t,x) €[0,T) x R,
lux(&, 0] <ut,x),  ut,x)—|uxt, 0| <lo and u(t,x) < I+ ux(t, x). (5.8)

Therefore, in view of the Sobolev inequality [ul|jm®) < %HullHl(R) and (5.8), it follows from (5.7)
that

%M(t q(t,x)) < —2M?(t, q(t, %)) + 2lollullom(t, q(¢, %)) [ (1 —af)‘]m](t,q(t, X))
= —2M2(t, q(t, %)) + 2lolullL~ (mu)(t, q(t, X))
< —2M%(t,q(t. %)) + 2ollullfm(t. q(t, ))
< —2M2(t,q(t, %)) + TolluollZ,,m(t, q(t, x))

and

d
a1\/1(t, q(t, %)) < —2M2%(t, q(t, %)) + 2lollull = (mu) (¢, 4(¢, %))

< —2M?(t,q(t. %)) + 2lo]|ullr~[m(Io + u)](t. g(t, X))

< —2M(t, q(t, %)) + v 2o l|uoll 1 M(t, q(t, %) + V213 [uoll im(t. q (¢, %)),

which, in particular, implies

d
M (ta(t.x0)) < —2M(t,q(t, %0)) + Toluol; m(t. 4. x0)) (5.9)

Please cite this article in press as: Y. Fu et al., On the Cauchy problem for the integrable modified Camassa-Holm equation
with cubic nonlinearity, J. Differential Equations (2013), http://dx.doi.org/10.1016/j.jde.2013.05.024




YJDEQ:7193

Y. Fu et al. / J. Differential Equations eee (sses) ese—see 29
and
d 2
M (€. x0)) < =2M (£, q(t, %0)) + ¥ 2lolluoll M (£, 4(¢, 0))
+ V21 luollrm(t, 4(¢, x0)). (5.10)

Similarly, one can see from the equation in (1.1) that

am(t, q(t, x0)) = —2mM(t, q(t, Xo)). (5.11)
Denote that
M(t) :=2M(t,q(t,x0)) and m(t) :=2m(t,q(t, xo)).
We first reformulate (5.9) and (5.11) as
9 5i0) < ~M©2 + lolluoll2, (o)
dt = H!
and

d _ =
Em(t) =-—m@{)M(®). (5.12)

Combining this with (5.5), we deduce that

d 1 d
(m(t)zar ()) dt<_‘<t> “)

1
:W< m(t)— M(t)+M(t)—m(t))

1 — T )2
Y () (M(6)* — Iolluoll?, m(t)) — m(t)M(t)%)
= —Iolluoll?:.
Integrating from O to ¢t leads to
dm(t) > Co — Iolluoll%,t (5.13)
02 dt = Co — lollUoll &, .
with
Co:=— Mo _ —(9xlo) (Xo)-
0:= m0) xUo)(Xo
Combining this with (5.12) yields
M(t) = — Lgm(t) —m(t)(Co — lolluollt) (5.14)
mt) dt HIY '
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Integrating (5.13) again on [0, t] implies

_L - _L < 1Io||uo||21t2 — Cot,
m() m@0) 2 H
and hence
1 1 2Co 2
_—<—10||u0||21(f2— t+ — )
m(t) 2 H lolluoll2,  Iolluoll?,,m(0)
1 2Co 1
=—10||U0||21(t2— t+ )
2 H lolluoll2,  Iolltoll3;mo(x0)

The quadratic equation

, 20 1

- —t+ : =
Iolluollyy  Iolluolly,mo(xo0)

has two roots:

g Co ( Co )2 1
~ Iolluoligy N \Molluol, Iolluoll?,,mo(x0)”

. Co N ( Co )2 1
k o— — 5 - .
Iolluolly | \olluoll3: Iolluoll?,,mo(Xo)

It thus transpires from assumption (5.1) that

2

C 1 C

( 02 ) > 5 , hence0<t*<702<t*.
Tolluolly; Iolluollf;;mo(x0) Iolluolly,

Thus,

1 Iolluoll?,
=< ———(t=t")(t —t,). 5.15
R R [ (515)

It is then adduced from (5.15) that there is a time Ty € (0, t*] such that

m(t) — +oo, ast— Ty <t*,

which, by (5.14), implies that

M(t) - —oo, ast— T <t*.

Therefore,
inﬂgM(t, X) <M(t) - —oo, ast— To<t¥,
Xe

which, in view of Theorem 4.2, implies that the solution m(t, x) blows up at the time Tp.
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Having established wave breaking results for (1.1) as above, attention is now given to blow-up rate
for the solution. In fact, owing to (5.14) and (5.15), we derive that for all 0 <t < Ty,

Um4ggﬂmm<Gh—MWO<Uv4wm«wmaw+MWﬂ@0
2
Tolluoll?,, (¢ — £¥)( — t.)

2(To — 1) (t (Bxuo)(xO))
< + ,
(t—t5)(t — t,) Tolluoll?,

<(To—1) (Iolluol? 1t + (3xtt0) (x0))

which leads to (5.2) when Tg = t*. Therefore, we end the proof of Theorem 5.1(i).
On the other hand, we reformulate (5.10) as

d — _ — _
MO < —M(t)? + ~/2Io||uoll ;1 M(t) + /213 [l ;1 (E).

Combining this with (5.12) and (5.5), we deduce that
d(_ Mo —i< L dam) = = (—mo Lre + Mo Lac
dt( rﬁ(t)>_dt m(t)? dt ( >_rﬁ(t)2< ( dt © ()dt ()>
S 1
~m(t)?

[m() (M(t)* — ~/2Iolluoll 1 M(¢) — V213 ||uoll 1M () — m(E)M(t)?]
M(t
= —%ﬁlolluollm — V23 lluoll 1

which gives rise to

i _@ —Cit o —Cit
dt( M(t)e 1)> Cye 1 (5.16)

with
C1:=2Iolluollyr,  Ca:=~23uplly-

Integrating (5.16) from O to t leads to

Wit C CoC1—C
__()e,c1t>_2€7c1r+M (5.17)
m(t) G G
with
__MO __ ooy
0= TT‘l(O) = xU0 0),
which implies
_ C, CoCi—C
M) < —m() | =+ Gt (5.18)
Cq Cq
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and
d 1 C CoC1 —C
= > _2+40 1 2oCt (5.19)
dt \ m(t) Cq Cq

Integrating (5.19) again on [0, t] implies

1 1 Cy — CoC C
LI < 2 01(ec1t_1)__2t7
m()  m(0) 3 C1
and hence
1 Cy — CoC C 1
0 —<K &(eﬁt_])_ —2t+_—:: f(l')
m(t) c2 C; ' m()
Notice that f(0) = % > 0 and the assumption (5.3) implies the equation %f(t) =0 has only one
root
1 C
£ = —In[ —2—
Cq Cy — CoCq
and then

C 1 C C
Flewy=S0 4 ——§1n<72) <0.
G mo(xo) €7 \C2—CoCy

From this, we may find a time 0 < To < t** such that

m(t) = +o0o, ast— To<t™,
which, by (5.18), implies that

M(t) > —oo, ast— To <™.

Therefore,
inﬂgM(t,x) <M(t) —» —o0, ast— To<t*,
Xe

which, in view of Theorem 4.2, implies that the solution m(t, x) blows up at the time Tg. This ends
the proof of Theorem 5.1(ii). Similarly, we may prove Theorem 5.1(iii). This completes the proof of
Theorem 5.1. O

Remark 5.1. (1) Compared to the blow-up result of Theorem 5.2 in [21] where dxup(xg) <

[V2lluol? . . . .
- ﬁ Theorem 5.1(i) looks better at least in some sense as the following example: taking

the initial data ug(x) = e*"z, then

o0 o0 o
lo= / e Xdx=vm, |uol? = f e dx+4 / e 2% dx = /27,
£ o I

Please cite this article in press as: Y. Fu et al., On the Cauchy problem for the integrable modified Camassa-Holm equation
with cubic nonlinearity, ]. Differential Equations (2013), http://dx.doi.org/10.1016/j.jde.2013.05.024




YJDEQ:7193

Y. Fu et al. /. Differential Equations eee (eeee) eee—see 33

Ig \/i”u()”?{l
lluoll g < .
mo(Xo) mo(xo)

(2) In view of Theorem 5.1(iii), if dyug(xg) < —Ip, then the function

which implies

\/5(10 + dxuo(xp)) (eﬁIQIIHOHHlf _

F(t) .=
4loluoll g

1) —Igt+ =
) mo (o)

has only one root on [0, +00). In fact, we need only consider the case dxug(xg) < —Io, that is, Ig +
dxllo(x0) < 0. Notice that F(0) = —-— > 0, F(+00) < 0, and %F(t) <0 for all t € [0, +00). We then

mg(Xo)
deduce from the Intermediate Value Theorem that F(t) =0 has only one root on [0, +00).

6. Nonexistence of smooth traveling waves for y =0
In this section, we prove that the equation in (1.1) does not have nontrivial smooth traveling waves.

Theorem 6.1. There is no nontrivial smooth traveling wave solution u(t, x) = ¢ (x — ct), ¢ € R of the Cauchy
problem (1.1) with y = 0 in C([0, c0); H>(R)) N C1 ([0, 00); H2(R)).

Proof. We use a contradiction argument. Assume that ¢ € H3 is a strong solution of the Cauchy
problem (1.1). Then we have

c(¢—0") =((¢* - o) (@~ ¢") nLl’®).
Since ¢ € H*(R) C C3(R), we find that

c(p—9¢")=(*—7)(¢—¢") inH'®). (6.1)

Note that ¢ 0 and ¢, ¢, ¢” — 0 as |x| — oo, it implies that ¢ — ¢” # 0. Otherwise, ¢ = c1e* +cye %,
which gives ¢ =0, x € R since ¢ — 0 as |x|] — oo. It then follows from (6.1) that

¢*—¢'%=c. (6.2)

Let |x| — oo. Then ¢, ¢’ — 0. It yields from (6.2) that ¢ = 0. Hence we deduce from (6.2) that

¢2 _¢/2:0’

which implies that either ¢ = cie* or ¢ = cye™*. This then leads to a contradiction that ¢ =0, since
¢ — 0, as |x| — oo. This completes the proof of the theorem. O
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