Available online at www.sciencedirect.com

Journal of

CrossMark SClenceDlreCt Differential
= Equations
ELSEVIER J. Differential Equations 257 (2014) 3521-3553 —_—

www.elsevier.com/locate/jde

Inflow problem for the one-dimensional compressible
Navier—Stokes equations under large initial perturbation

Lili Fan®, Hongxia Liu ", Tao Wang “*, Huijiang Zhao *

a School of Mathematics and Computer Science, Wuhan Polytechnic University, Wuhan 430023, China
b Department of Mathematics, Jinan University, Guangzhou 510632, China
¢ School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Received 6 March 2014; revised 29 June 2014
Available online 15 July 2014

Abstract

This paper is concerned with the inflow problem for the one-dimensional compressible Navier—Stokes
equations. For such a problem, Matsumura and Nishihara showed in [10] that there exists boundary layer
solution to the inflow problem, and that both the boundary layer solution, the rarefaction wave, and the
superposition of boundary layer solution and rarefaction wave are nonlinear stable under small initial per-
turbation. The main purpose of this paper is to show that similar stability results for the boundary layer
solution and the supersonic rarefaction wave still hold for a class of large initial perturbation which can
allow the initial density to have large oscillation. The proofs are given by an elementary energy method and
the key point is to deduce the desired lower and upper bounds on the density function.
© 2014 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with the large time behaviors of solutions to the inflow problem for
one-dimensional compressible Navier—Stokes equations on the half line R = (0, 400), which
is an initial-boundary value problem in Eulerian coordinates:

pr + (pu)x =0, inR; xR,
(puw)i + (ou® + p) , = pite. inR; x Ry,

(1.1)
(pau)|X:0=(p—’u—)a u_ >0,

(0, u)(0,x) = (po, uo)(x) = (o4, u4), asx—> +oo.

Here, p(> 0), u, and p = p(p) = p¥ with y > 1 being the adiabatic exponent are, respectively,
the density, the velocity, and the pressure, while the viscosity coefficient p (> 0), farfield states
o+ (> 0) and uy are constants.

We assume that the initial data (oo (x), uo(x)) satisfy the boundary condition (1.1)3 as a com-
patibility condition, i.e.

p0(0) = p—, up(0) =u_.

The assumption u_ > 0 implies that, through the boundary x = 0 the fluid with the density p_
flows into the region R, and hence the problem (1.1) is called the inflow problem. The cases of
u_ =0 and u_ < 0, the problems where the condition p(t,0) = p_ is removed, are called the
impermeable wall problem and the outflow problem, respectively.

For the case of u_ > 0, as in [10], the inflow problem (1.1) can then be transformed to the
problem in the Lagrangian coordinates:

vy —uy =0, x>s_t, t>0,

Ux
Hz‘f‘P(U)x:M(T)x, x>s_t, t>0, (12)
W, ) |x=s_r = (V—,u_), u_ >0,

(v, u)|r=0 = (vo, up)(x) = (v4,uy), asx— +oQ,

where
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—y 1 1 u_
pw)y=v7, U=;, Ui=p—i, S_=—v— <0. (1.3)

The characteristic speeds of the corresponding hyperbolic system of (1.2) are

A =—v=p'(v), ha=+/=p'(v), (1.4)

and the sound speed c(v) is defined by

c) = vy/—p' (W) = Jyv T (1.5)

Comparing |u| with c¢(v), we divide the phase space Ry x R into three regions:

Qo= {0, 1); [u] <), v>0, u>0),
Tirans = {(v.w); |u|=c(v), v>0, u >0},

Lguper = {(v, u); lul>c@), v>0, u> O},

which are called the subsonic, transonic and supersonic regions, respectively.
In the phase plane, we denote the curves through a point (v, u1)

BL(UI’ ul) = {(U,M) €R+ X R+, z = u—l}
v V1

and

v

Ri(v1,u1):=i(v,u)eR+xR+; U=u —/Ai(s)ds, u>u1} (i=1,2)

V1

as the boundary layer line and the i -rarefaction wave curve, respectively.

For the precise description of the large time behaviors of solutions to the initial-boundary
value problem in the half line for the one-dimensional isentropic model system (1.1);—(1.1), of
compressible viscous gas, a complete classification in terms of (v, u4) for the impermeable
wall problem, the inflow problem, and the outflow problem is given by Matsumura in [6]. For the
rigorous mathematical justification of this classification, some results have been obtained which
can be summarized as in the following:

e For the impermeable wall problem, to describe its large time behaviors, it is unnecessary to
introduce the boundary layer solution and the nonlinear stability of the viscous shock wave
and the rarefaction wave are well-understood, cf. [7,9]. It is worth pointing out that although
the nonlinear stability result for the viscous shock wave in [7] is obtained only for small
initial perturbation, the corresponding result in [9] for the rarefaction wave holds for any
large initial perturbation;

e For the outflow problem, Kawashima, Nishibata, and Zhu [4] and Kawashima and Zhu [5]
showed that the boundary layer solution together with the superposition of the boundary
layer solution and the rarefaction wave are asymptotically nonlinear stable under small initial
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perturbation, while Nakamura, Nishibata and Yuge [11] investigated the convergence rate to-
ward the boundary layer solution. Recently, Huang and Qin [2] show that not only the bound-
ary layer solution but also the superposition of the boundary layer solution and the rarefaction
wave are still stable under large initial perturbation and improve the works of [4] and [5];

e For the inflow problem (1.2), Matsumura and Nishihara [10] established the asymptotic sta-
bility of the boundary layer solution and the superposition of the boundary layer solution and
the rarefaction wave when (v_, u_) € £24,, together with the assumption that the initial per-
turbation is small. Shi [15] studied the rarefaction wave case when (v_, u_) € £2,p.r under
small initial perturbation. Huang, Matsumura and Shi [1] demonstrated the stability of the
viscous shock wave and the boundary layer solution to the inflow problem (1.2), also under
small initial perturbation. As to the inflow problem for the full Navier—Stokes equations, the
interested readers are referred to Qin and Wang [14].

It is worth pointing out that for the impermeable wall problem and the outflow problem, the
corresponding stability results on the boundary layer solution, the rarefaction wave, and/or their
superposition hold true even for certain class of large initial perturbation. Thus a problem of
interest is how about the case for the inflow problem, that is, do similar stability results on the
boundary layer solution and the rarefaction wave hold for the inflow problem? The main purpose
of this paper is devoted to this problem. More precisely, what we are interested in this paper is
to consider the following two cases concerning the boundary layer solution and the rarefaction
wave for the inflow problem (1.1):

Casel: (v_,u_) € 2y and (v4,uy) € BLy(v—,u_) UBL_(v_,u_). Then the time-asymp-
totic state of the solutions to the inflow problem (1.1) is described by the boundary layer
solution (V, U)(x — s_t) which connects (v_, u_) with (v4, u4), where

BLy(v—,u_):= {(v,u) eBL(v_,u_); v_<v< v*}

and

BL_(v_,u_):= {(v, u) e BL(v_,u_); 0<v< v_}.

Here, (vy, uy) is the intersection point of BL(v—, u_) and I4ys, i.€.,

P ) ==, =, (1.6)
v v

The boundary layer solution (V, U)(x — s—_t) will be explained in the next section.

Casell: (v_,u_) € Quper and (v4,uy) € Ry(v—,u_) (or (vy,uy) € Ro(v—,u_)). Then the
time-asymptotic state of the solutions to the inflow problem (1.1) is given by the 1-rarefaction
wave (v}, u])(x/t) (or the 2-rarefaction wave (vj,u5)(x/t)) connecting (v—,u—) with
(Vg uy).

What we want to show is on the nonlinear stability of both the boundary layer solution and the
rarefaction wave for a class of large initial perturbation which can allow the initial density to
have large oscillation, which improve the works of Matsumura and Nishihara [10] and Shi [15].
The precise statements of our main results will be given in Theorems 1-3 below.
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The present paper is organized as follows. After stating the notations, in Section 2, we intro-
duce some properties of the boundary layer solution and the smooth rarefaction wave, and then
state the main results. In Section 3, we establish a priori estimates and then prove the stability
of boundary layer by making use of Kanel’s technique. In Section 4, the stability of rarefaction
wave under large initial perturbation will be treated by the similar method.

1.1. Notations

Throughout this paper, ¢ and C denote some positive constants (generally large), €, A stand
for some positive constants (generally small), and C(-,-) denotes some generic positive con-
stant depending only on the quantities listed in the parenthesis. Notice that all the constants c,
C, C(-,), €, and A may take different values in different places. A < B means that there is a
generic constant C > 0 such that A < CB and A ~ B means A < B and B < A. For func-
tion spaces, L”(Ry) (1 < p < 0o) denotes the usual Lebesgue space on Ry with norm ||-||»
and H¥ (R) the usual Sobolev space in the L? sense with norm l-ll,. Wenote || - | = || - || .2 for
simplicity. Finally, we denote by CX(I; HP) the space of k-times continuously differentiable
functions on the interval / with values in H”(R) and L2(I; HP) the space of L2-functions on
I with values in H” (R}.).

2. Preliminaries and main results
2.1. Boundary layer solution

First we recall some properties about the boundary layer solution. In [10], it is shown that if
(v—,u_) € qp and (v4,uy) € BLy (v—,u_) UBL_(v_,u_), the solution to (1.2) tends to a
boundary layer (V,U) (&) = (V, U)(x — s—t) which is defined by

—s_Ve—Ug=0, £>0,
Ue
—s_Us+p(V)e=n v ) (2.1)
&
V,0)(0) = (v—,u-), (V,U)(00) = (vy,uy).
The strength of the boundary layer solution (V, U)(§) is measured by
8:=|us —u_|. 2.2)

The existence and the properties of the boundary layer solution (V, U)(§) are given in the fol-
lowing lemma.

Lemma 2.1. (Cf. [10].) If (v—,u_) € Qgp and (v4,u4) € BLy(v—,u_)UBL_(v_,u_), there
exists a unique solution (V,U)(§) to (2.1) satisfying for k =0, 1,2,

[0F(V = vy, U —up)®)| <C8e™F  ifvy <,
05V — v, U —u)®] = €81+ 657175 ifuy = vy, (2:3)

and
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|(Ve, Veg, Uge)| < C|Ug, 2.4)

the constants ¢ and C depending only on (v_,u_). Furthermore, the boundary layer (V,U)(&)
is monotonic, that is, Ve 2 0and Us 20 ifuy 2 u_.

The first aim of this paper is to show the boundary layer solution obtained in Lemma 2.1 is
still stable under some large initial perturbation. Defining the perturbation (¢, ¥)(¢, £) by

(@, ), 8) = (v, u),§) — (V,U)(E), (2.5)
we get from (1.2) and (2.1) that (¢, ¥) satisfies
¢ —s-¢z —Ye =0, £>0,1>0,
Vi =5+ (p(V +¢) — p(V)), =u(

(@, ¥)le=0=1(0,0),
(@, ¥)li=0 = (¢o, Yo) :== (vo — V,ug — U).

The solution space is

Ve V

Us + e _ %)
. (2.6)

Xm0, T) = {(¢, ¥) e C([0,T1; Hy); ¢ € L*(0,T; L?), v € L*(0,T; H'),

S VEREE M.t (V9 zm]

Then the time-local existence of the solution (¢, V) (¢, &) to (2.6) is quoted in the next lemma.

Lemma 2.2. (See [10].) Let (¢o, Yo) be in HO1 Ry). IfsupR+(V + ¢o) < M and infg (V +
¢o) > m, then there exists to > 0 depending only on m, M and ||(¢o, Yo)ll1 such that (2.6) has a
unique solution (¢, V) € X 22m(0, 1) satisfying

l@. )|, =2| (0. vo) |, 2.7
and
S_pe(t,0) + (2,00 =0 (2.8)
foreach 0 <t <ft.

Under the above preparation, we give the following stability result of the boundary layer
solution (V, U)(€) which is increasing.

Theorem 1. Assume that (v—,u_) € Qgp and (v4,uy) € BLy(v—,u_). Let (¢o, Vo) € H(} Ry
satisfy

| (0. ¥o) || < Ce®, (o, Yoe) | < C(eP +1), and C7'e <V +¢g<Ce,
(2.9
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where C is a positive constant independent of €. If the indices | > 0, o and B satisfy

2 ~1
oz>7’;r I, a+p>y+0DI, ﬂzyTl’
y+3
—_ <—l
P 2
.{2(;/—1) 3244y 41 3(y—1)  y246y+1 } (2.10)
B —a < min o — ’ o —
y+1 2y +2 y2+1 2()/2+1)
2 245y 42
,8—a<min{a—(y+2)l’_a_wl}7
Y 2y

then there exists a suitably small €y > 0 such that if € < €o, (1.2) has a unique solution (v, u)
satisfying (v — V,u — U) € C([0, 00); Hol), where (V, U) is defined by (2.1).
Furthermore, it holds

sup |(v, u)(t,x) — (V,U)(x —s_1)| > 0, ast— ooc. (2.11)

xX=s_t

Remark 2.1. Several remarks concerning Theorem 1 are listed below:

e Here in Theorem 1 the strength of the boundary layer solution is not assumed to be small
and thus we can show the nonlinear stability of strong increasing boundary layer solution.
Since/ =0and 0 <@ < 8 < & + min{l1, 2, 2(;’“1), 3(’§+i)}a imply (2.10) and in this case
the oscillation of the initial density can be large

e Itis easy to construct some initial perturbation (¢o(x), ¥ (x)) satisfying the conditions listed
in Theorem 1. In fact for each function ( f(x), g(x)) € H'(R.) and each «, B satisfying the
conditions listed in Theorem 1, if we set

atp _
p) =P (P ). Y= g(P ),
one can verify that such a (¢ (x), ¥ (x)) satisfies all the conditions listed in Theorem 1.

For the case when the boundary layer solution is decreasing, we have

Theorem 2. Assume that (v—,u_) € Qgp and (V4,uy) € BL_(v—,u_). Let (¢po, Vo) € HO1 Ry
satisfy

@0, vo)| < €8, ||(doe. woe) | <C(67F +1) and C7'6! <V +py<Cs7,
(2.12)

where C is a positive constant independent of §. If the indices | > 0, o and B satisfy
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2 I _y+5
Loyl 1_r+5,
> = 14 <0£+,3<2 5
+3
a_ﬁSyTl’ (2.13)
— D —4 344024 8y — 1
B —a <min ‘)‘_()/4-2)1,(]/ )( 0‘)_)/—1-)/4-)/ l
2y24+6y —2 27 +6y -2

then there exists 6o > 0 suitably small such that if § < 8o, (1.2) has a unique solution (v, u)
satisfying (v — V,u — U) € C([0, 00); Hol) and (2.11), where (V, U) is defined by (2.1).
Remark 2.2. /=0, a + 8 < % and 0 <« < B < o + min{«, %
in such a case the oscillation of the initial density can be large. We also mention that a similar
result was also obtained by Qin in [ 13] for the case when the L?%-norm of the first order derivative
of the perturbation (¢, 1) is independent of € or the strength § of the boundary layer solutions.

} imply (2.13) and also

2.2. Rarefaction wave

We only consider the case when (v_,u_) € 2yper and (v4,u4) € R1(v—, u_) because the
study of (v4, u4) € Ry(v—, u_) is similar to that of (v4, u4) € Ry (v—, u_). Then the solution to
the inflow problem (1.2) is expected to tend to the 1-rarefaction wave connecting (v_, u_) and
(UJrv u+)‘

Since the rarefaction wave is only Lipschitz continuous, we shall construct a smooth approx-
imation for the rarefaction wave as follows. First consider the Riemann problem for Burgers’
equation:

w; + ww, =0,

w(O,x):wg(x)z{w’ x <0, (2.14)

wg, x>0,

where w+ = A1 (v4). It is obvious that w_ < w. Then it is well known that (2.14) has a contin-
uous weak solution w' (x/¢) given by

w_, x<uw_t,
W' (x/1) = {x/t, w_t <x <wit, 2.15)
Wi, X>wyt.

Define (v", u")(x/t) by

u =u_ —/M(s)ds. 2.16)

v—

Then by a simple calculation, (v”, u”)(x/¢t) satisfies the following Riemann problem of Euler
equations, i.e.,
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vr —ux =0,
ur+p)x =0,

) w—,u), x<0,
@, 1)(0, x) = { (vy,uy), x>0.

2.17)

To construct the smooth approximate rarefaction wave (V,U)(t, x), we consider the follow-
ing Cauchy problem for Burgers’ equation:

w; + ww, =0,

w_, x<0,
€X

2.18

w(0, x) = wo(x) = w,-}-chSr/yqe_ydy, x>0, (2.18)
0

where 8, = wy —w_, g > 101is some constant, C is a constant such that C, 6, fooo yle Vdy =1,
€ < 1is a positive constant to be determined later. Then we have

Lemma 2.3. (See [2].) The problem (2.18) has a unique smooth solution w(t, x) satisfying
(i) w— S w(ta-x) < w-‘rv wx Z O;

(ii) For each 1 < p < oo, there exists a constant C, depending only on p and q such that for
t >0,

Jwe®]|,, < Cmin{s,e' /7, arl/f’flﬂ/p}’

|wex ()], < Cminfs,e21/7, 8}/4=1+1/a};

(iii) when x < w_t, af(w(t, x)—w_)=0fork=0,1,2;
(iv) sup,cp lw(l +1,x) —w" (x/t)] = 0, as t — oo.

We recall (2.16) and so define the smooth approximation (V,U)(t,x) to (v, u")(x/t) by

V(t,x) =2 (w +1,x)),
V(t,x)

~ (2.19)
Ult,x)=u_ — / A1(s)ds,
v—
which satisfies
{\ft—Ux~=O, xeR, t>0, (220)
Ut + P(V)x =0.
Then, define
V.Ut &) =V, U)(t, ) |xzsr, E=x—s_t, (2.21)

and the following lemma holds.
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Lemma 2.4. (V,U)(t, &) satisfies
(i) Us =0;

(i) For each 1 < p < oo, there exists a constant C, depending only on p, q and v+, such that
fort >0,

(Ve, Us)(®)|, , < Cminfe' VP, (1 4 1)~ 1H1/PY, (2.22)
&, Vg LP

| (Ve Use. We/ V3e) 0], < Cmin{e2™ VP, (1 )~ 1/a ) (223)
(iii) supep, [(V,U)(t.8) — W, u")(F5=1)| > 0, as t — oo;

and also

Vi—s_Ve—Us=0, £>0,1>0,
Ui —s_Ug +p(V)e =0, (2.24)
vV, U0)(#,0)=(v—,u-), (V,U)(#, 00)=(vy,us).

Put the perturbation (¢, ¥)(¢, £) by

(@, ¥)(,8) = (v, u)1,§) — (V,U)(&), (2.25)

then the reformulated problem is

¢ —s_¢pg — Y =0, £>0,1>0,
Wi —s e+ (p(V +¢) — p(V)), =u<

(@, ¥)lg=0 = (0,0),
(@, ¥)li=0 = (¢0, Y0)(§) := (vo = V,uo — U) (),

Ug-l‘l/fS)
H

Vo (2.26)

from (1.2) and (2.24). Then the time-local existence of the solution (¢, ¥)(t, &) to (2.26) is
quoted in the next lemma.

Lemma 2.5. Let (¢, Vo) be in HOl Ry). I]‘supR+(V + ¢0) <M and infgr , (V + ¢o) > m, then
there exists to > 0 depending only on m, M and ||(¢o, Yo)ll1 Such that (2.26) has a unique
solution (¢, V) € Xy 2.2m(0, to) satisfying (2.7) and (2.8) for each 0 <t < .

With the above result in hand, for the nonlinear stability of supersonic rarefaction wave, we
can get the following theorem.

Theorem 3. Assume that (v_, u_) € Q2gyper and (v4,uy) € Ry(v—,u_). Let (¢o, Vo) € H(} Ry)
satisfy

(@0, vo)|, <C(e™*+1), u_>Ce™™, and C'é <V4+gy<Ce!, (2.27)

where C is a positive constant independent of €. If the indices | > 0, « and ly satisfy
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1< ,
8y -2
lo>2a+ (y + 1),
4a+2(y+1)12max{l,(y — 1)1},
y—1 2(y = 1) }
6y2 —6y +2'3y2+3y +9]°

(2.28)

4a+2(y + Dl < min{

there exists €g > 0 suitably small such that if € < €q, (1.2) has a unique solution (v, u) satisfying
w—=V,u—U) e C([0, 00); H(}), where (V, U) is defined by (2.21). Furthermore, it holds

sup |(v, u)(t,x)—(V,U)(t,x — s_t)| —0, ast— oo. (2.29)

x>s_t

Remark 2.3./=0, 0 < < 1 min{ o ;); 5 33;13‘;19} and [y > 2« imply (2.28).

2.3. Main difficulties and ideas

To deduce the desired nonlinear stability result for the boundary layer solution, the rarefaction
wave, and/or their superposition by the elementary energy method as in [9], it is sufficient to
deduce certain uniform (with respect to the time variable ¢) energy type estimates on the solutions
(p(t, &), ¥ (t,&)) and the main difficulties to do so lie in the following:

e How to control the possible growth of (¢(#,&), ¥ (¢,£)) caused by the nonlinearity of
Eq. (1.1);—(1.1)2?
o How to control the term

t

t L o
/v_2¢5(r’0)dT:/u_2wé(T’ 0)dt
s -

0

which is due to the inflow boundary condition (1.1)3?

The argument employed in [9] is to use the smallness of N(T) := supy—,7 [(¢, ¥)(t)]l1 to
overcome the above difficulties. One of the key points in such an argument is that, based on
the a priori assumption that N(7') is sufficiently small, one can deduce a uniform lower and
upper positive bounds on the specific volume v(¢, £). With such a bound on v(¢, £) in hand, one
can thus deduce certain a priori H ! (R4) energy type estimates on (¢ (¢, &), ¥ (¢, £)) in terms of
the initial perturbation (¢ (£), Y¥o(£)). Then combination of the above analysis with the standard
continuation argument yields the corresponding nonlinear stability result. It is worth pointing out
that for the case when the strength of the underlying profile is small, for the nonlinear stability
result obtained in [9], Osc v(7) := sup; er, V(1. 8) — infeer, (2, &), the oscillation of the specific
volume v(¢, £), should be sufficiently small also for all r € R..

What we are interested in this paper is to deduce the corresponding nonlinear stability results
for the two cases listed in the introduction for a class of initial perturbation which can allow the
initial density to have large oscillation, the argument used in [9] cannot be used any longer. Our
main ideas to yield the desired nonlinear stability results are the following:
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e For the nonlinear stability of the boundary layer solution listed in Case I of the introduction,
our main observation is that for the case when the underlying boundary layer solution is
increasing, the basic energy estimate, cf. the estimate (3.1), tells us that for each r € [0, T']
the instant energy £(¢) = 0+°°(<D(v(t, £),V(E) + %wz(t, £))d£ is bounded by the initial
energy £(0) and thus one may use the smallness of £(0) to overcome the two difficulties
mentioned above. Since our main purpose is to get a nonlinear stability result for which the
oscillation of the specific volume v(¢, §) can be large, we need to deduce a precise estimates
on v(z, &) in terms of £(0) so that the whole analysis can be carried out. It is worth to em-
phasize that Kanel’s argument [3] plays an important role in this step and it was to guarantee
that the whole analysis to be carried out smoothly that we need to ask the parameters «, 8,
and / to satisfy the conditions listed in Theorem 1.

e For the case when the boundary layer solution is decreasing, the analysis can be adopted
directly since in such a case the basic energy estimate is not self-contained. Even so, if the
strength of the boundary layer solution is small, one can use the smallness of both the initial
energy and the strength of the boundary layer solution to yield a nonlinear stability result
similar to that of the case when the boundary layer solution is increasing.

e For the nonlinear stability of supersonic rarefaction wave corresponding to the Case II listed
in the introduction, our main idea is to use the largeness of u#_ to deal with the two difficulties
mentioned above. In such a case, we do not ask the initial energy to be small and thus such
a result holds for a class of large initial perturbation.

3. Stability of the boundary layer solution
3.1. Proof of Theorem 1

In this subsection, we first assume that (v_,u_) € 24, (v4,uy) € BLL(v_,u_) and the
problem (2.6) has a solution (¢, ¥) € X, p (0, T) satisfying (2.8) for some T > 0 and each 0 <
t < T.We also simply write ¢ and C as positive constants independent of 7, m, M and €. Recall
that the notation A < B is used to denote that A < C B holds uniformly for some positive constant
independent of T, m, M and €. Besides, we will often use the notation (v, u) = (V +¢, U + )
so that m < v < M, though the unknown functions are ¢ and . Without loss of generality, we
choose m and M such that 1/m, M > 1.

Now we devote ourselves to the basic energy estimate.

Lemma 3.1. It holds that for each0 <t <T,

t o0
vZ U,
|V®, )| + //[7‘5 + % +|Usl(p(v) — p(V) — p/(vw)}dsdr
00

< | /o, o)

.

3.1

where

v

D =D, V)= p(V)(v V)—/p(n)dn- (32)
%
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Proof. Multiplying (2.6) (the first equation of (2.6)) and (2.6), by p(V) — p(v) and ¥, respec-

tively, and summing these two identities, we find a divergence from

Lo\ L Ve Ueove
(d)‘i‘ilﬁ >,+M7_MT

| Us+ve U,
_ [s (q> + 5%) +(p(V) = p@)y +“<éT¢§ B 75)1”]3

+ Us(p(v) — p(V) = p'(V)9)

We write

p) = p(V) = p'(V)p = f(v, V)¢,
Put X = V/v > 0 and then recall Bernoulli’s inequality
X" =X14+X-1D)>X4+yXX—-1)
to find

+1
X -+ DXy
X -D? -

Vof(u,V)=V yV7Y,

Noting that v_ <V < vy, we have from (2.1) that

0<ulUs =V (s2(V =vy) + p(V) = p(v)) < Vp(V) = V7

Thus, the discriminant D of

I/ISZ USd”/’S ’
- H oy + Us(p(v) — p(V) = p'(V)9)

satisfies

_ MU 1 o
VZuf(v,V) Ty

Therefore, we integrate (3.3) over (0,¢) x (0, 00) to get (3.1). O

Next, following [8], we set v := v/ V. Then we have @ (v, V) = V=r+1¢(¥) with

- 1
5 — 7 — _ = (3vtl
O(W)=1v 1—|—y_1(v 1).

Eq. (2.6), is also written as

v\ _ v v _rVe o -y
(15 9), 5 =), i = -0

(3.3)

(3.4)

(3.5)

(3.6)

3.7

(3.8)
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Multiplying (3.8) by vg /v, we discover

~ ~ ~2
Y EAREL L
2\ % v, wro?
- — ~ 2

Uy yVe (077 =1 - us— (Vg

X ] _m= %
+[w5 VV“( y o 2 \v/) e

2 2 -
U VVee — (v + 1YV, v —1
_ Ve Uedye VYV~ £(Y +nd). (3.9)
v % Vy+2 y
I
We utilize (2.4) and the fact that
pW)—p(V)=p'(V)p=V7([07 —1+y@-1) (3.10)

to find

Ih] SIUel (377 = 14y (@ = D) SIUel(p() = p(V) = p'(V)9).

Thus, integrating (3.9) over (0, t) x (0, co) yields

/f dsdr H(J_ wo,”f’ )H /(%)2(1,0)dr. 3.11)
0

We have to control the final term of (3.11), fot (%E)z(t, 0)dr. We note here that Matsumura and
Nishihara [10] could control it under the smallness assumption that

%]

N(T) := 0suan @. v, <1, (3.12)
<t<

while our goal in this paper is to investigate the stability of the boundary layer solution and the
rarefaction wave without such a smallness condition (3.12).

Since
E — ¢_5 _ @ (3.13)
v v vV’ ’
we get from ¢ (t,0) =0 and (2.8) that
vg ? [ [
= (r,0) = v—2¢é (r,0)= u—zw%_ (z,0), (3.14)

which together with (3.11) implies the following lemma.
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Lemma 3.2. It holds that

%0
v

- 2 !
—dédr < ” (wbo,wo, %)H +/w§(r,0)dr. (3.15)
0
0

2 t oo ﬁg
+
/ / v
00
We next estimate the last term of (3.15). Apply Holder’s inequality to find

Y20 =2 f Ve s (1, £)d8 <2MH Ve )

{433
o —

and

%
dr:| . (3.17)

3 tlﬂ 2
33
][/Hﬁm
0

Then applying Cauchy’s inequality, we have from (3.17) that for each a > 1,

/%(r O)dz:<a/H Ve o)

Substituting (3.18) into (3.15) and using the basic energy estimate (3.1), we deduce

[ o]

/wé (r,0)dtr < 2M|: H ()

t
2
dr+4M2 1/”%@) dr. (3.18)

”é(z) i
v

+aH(\/_ vo |+ Ma —I/HW“

(3.19)

It is necessary to estimate the last term of (3.19). For this, we multiply (2.6), by —¢¢ to find

1 _ W2
(5‘”§> +<%w§—wtwg) tu—

U,
s‘/fs " ¢slzﬂs (p’(v)+u—§>
v v
Ry Ry
U, Us V; UV,
+¢E§|:(P/(U)—P/(V))V5+M jf;b - j2é¢ - jvgf] (3.20)
R3

Apply Cauchy’s inequality and (3.13) to find
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Ve w2 ¢ w
Ri= -~ 4oV £ (3.21)
16 v
and
w i
Ry < 5% + Co(v 2 4 v ) (iF + V2eP). (3.22)
Noting that
1
|p'(v) = p' (V)| = / pl(Bv+(1—0)V)dolg| < (v 2+ 1)I4l, (3.23)
0
we have
w i
R3 < 5% +Co[VE(W T 1) + 00U + (v 0T UEVE PR (324

We now estimate the last term of (3.21). Applying Sobolev’s inequality and Cauchy’s inequality,
we get

2

Ve

FoBE e’
[ e[|

LOO

s P e | [ e | | e ve L | Yeve
=10l el vm T2z | T | 20372
R 7 T Y 27 RN 3 7
128 || v 2| v3/2 2| v3/2 v Nl ’
which implies
A e | P, | Ve P, A | ve |
C 3.26
/ v3 &= 64 H H v3/2 + v v (9-26)
0
Integrating (3.21) over (0, co) and then plugging (3.26) into this last inequality, we find
[ v Ve, MK
&& (Al P 3
Rid§ < — +C C — 3.27
f E_ 16 ‘ H v3/2 + v v (327
0

Therefore, we integrate (3.20) over (0, ¢) x (0, c0) and then recall the above estimates (3.22),
(3.24), (3.27) and m < v < M to conclude
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2
dr

I t
2 > Vee
|[ve®] +O/IS—|x!fg(r,0)dr+O/H @

2

< s I +// Mo IUE) —ydéde

t o0

of [l s |5

0

Ve

with
—2y-3 2 —1772 -1 —3\7727,2
J=™ o)V o Uz + (v + 0T UFVE
We use (2.4) and (3.5) to deduce
TS o) U S (m7 7+ M) Uel f (0, V).
Hence, we obtain from (3.1) and (3.4) that

t oo

//[’¢ +m Ve % }dfdﬂ( 22 4 2| (Vo yo) |

0

and

¢s

v

1/fs o¢

d < /P o) | sup —(r)

0<r<t

t
0
Plugging estimates (3.31) and (3.32) into (3.28), we have

lve @]’ +/|s Y2(x, 0)dr /‘ Vee (T)

100 5
2 1—y y—1 Ve
Slivoell” + (m' ™7 + M7 vmzd%’df

00

O s TR R TRy
<v<t

Since

3537

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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1 1
(v, V):—//le 01620 + (1 — 616,)V )d0 6292, (3.34)
0 0

we have
C'M 77 g <p, V) <Cm 7 1¢% (3.35)

Then we deduce from (3.13) that

2 ~ 2
Hd’—j(r) < C|Ve@|;m M |[VE 0| + %S(r) (3.36)
Hence we have from (3.1), (3.15) and (3.17) that
o | 4 \ ’
Hf(r) Sm—4M2y+2||(\/¢TO’ 1#0)” + + [/¢§(r,0)drj|
0
a | e |* ) | vee |
Sm*4M2y+2“(\/¢TO’ vo)|| + | = +M2||(\/¢TO, ol /Hﬁ(r) dr.
0
(3.37)
Substituting (3.37) into (3.33), we find a positive constant ¢ such that if
M| (Do, vo) | <, (3.38)
then
lve)|? +/|s Wi, 0)dr+/‘ L
o 52
Sh(m, M, ¢o, o) + (m' ™7 +MV—1)f/ §_dedr, (3.39)
VY 02
0 0
with
h(m, M, ¢o, o)
=||1ﬂos||2+[ 2 M2 M2 (o, o) | + HH(\/_ o).
(3.40)

Plugging (3.39) into (3.19) gives the following lemma.
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Lemma 3.3. There exists co > 0 independent of T, m, M and a, such that if

gola. m. M. go. Vo) = M*| (P, yo) | + M2a= (m' 7 + M?") <o, (3.41)

it holds that for eacha > 1 and 0 <t <T,

- 2 )
Vg %
= (1) —i—//vyﬁzdédr
0 0
~ 2
V), 2
SI=Z | +a| (/Po, v0)||” + M2a hm, M, o, o) (3.42)

and

2
dr

r t
[we @] +O/IS—|wg(r,0)dr+0/H @

~ 12
Sh(m,M,qso,on(m‘V+MV‘)[‘;E +61H(\/¢To,¢o)||2} (3.43)

where h(m, M, ¢g, Vo) is given by (3.40).

Proof of Theorem 1. Without loss of generality, we assume that € < 1. First, we note from

(3.35), (3.13) and the initial conditions (2.9) that

Yog
0

| (V/®o. o) | < Ce= 51, ‘ ol = Ce ™' (ol + 1Vepll) < Ce =P,

Since (¢, Yo) € Hé (R4), we apply Lemma 2.2 to find 79 > 0 such that the problem (2.6)

has a unique solution (¢, ¥) € Xy m,(0, f0) with 1/mg, My < €~!. Then we find that for
a=e20—2B+y-Dl o |,

go(a, mo, Mo, ¢o. o) S €** 20+ | 2at2b=2yl,

Hence if (2.10); holds, there exists €; > 0 such that (3.41) holds for each 0 < € < ¢;. Further-
more, we have that if (2.10); holds,

h(mo, Mo, go. ¥0) < €28 + [eCrDl 4 gho—(y+8)l 4 —4i—4p] 2a—(y+D)

< =24+ =DI

Clearly we conclude from Lemma 3.3 that for each 0 < € <€y,

)

£ < —20-28

+f/vy62dEdINe .
00

% 1)
v




3540 L. Fan et al. / J. Differential Equations 257 (2014) 3521-3553

To get the upper and lower bounds for the specific volume v, we follow [9] and introduce

RN
W(v)::/ , dn, (3.44)
1

where @ is defined by (3.7). Then we have from v(#y, 00) = 1 and Lemma 3.1 that

<é?, (3.45)

< [Véw)| H %(m)

3
¥ (5010, £))| = | / e (i(10. £))

where 6 = o — B — (y + 3)1/2. Since ¥ (¥) = O(3'/2) as T — oo and ¥ (?) = O(317)/2) as
v — 04, (3.45) yields

/01 < y(r0,8) <€, VE eR,. (3.46)

Since (2.10), implies 26/(y — 1) < 0 and 26 < 0, we exploit Lemma 2.2 again and recall
(3.46) to find #; > O such that (2.6) has a unique solution (¢, ¥) € X, m, (0, to + t1), where

a4
my > €20/0=v) and My < €??. Note that § < 0 implies that €%/ > ¢ 7T % Thus we have

dy+4 80 _
h(my, My, §(t0), ¥ (t0) S € 2 4 [e 71" eyt T HFRIHACT2HDN | (A=A 2o (4D

and therefore the right-hand side of (3.42) is bounded by Ce ~2/~2# By elementary calculations,
we conclude from (2.10); 3 4 that

h(mi, My, $(to), ¥ (t9)) S e 020~ 4P+0 =3,
We recall @ = e ~2¢=28+(=Dl - 1 (o deduce
go(anmi, My, ¢ (1), (1)) < e¥+4a—2074D1 | (60+2426—(r=DI | (y+20-+2a+26—(/=1)

Then we have from (2.10)4 that there exists €y > 0 such that (3.41) holds for each € < ¢g.
Combining LLemma 2.2 and the continuation process, we can prove (2.1) has the global-in-time
solution (¢, ¥) € X, m, (0, 00) satisfying

t
l@. »)0) +/|| (U1, 6. . ye) (0 Pdr <€, ViR, (3.47)
0

the constant C depending only on €. And so the asymptotic behavior of the solution (2.11) is
concluded by employing Sobolev’s inequality. O
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3.2. Proof of Theorem 2

In this subsection, we assume that (v_,u_) € Qgp, (V4+,u+) € BL_(v—,u_) and (2.6) has
a solution (¢, ¥) € X, m (0, T) satistying (2.8) for some T > 0 and each 0 <t < T. As in the
proof of Theorem 1, ¢ and C are used to denote some positive constants independent of 7', m, M
and § and the notation A < B stands for that A < C B holds uniformly for some positive constant
independent of 7, m, M and §. Without loss of generality, we choose m and M such that
1/m,M>1.

The basic energy estimate is stated as follows.

Lemma 3.4. If § is suitably small, then it holds that for each 0 <t <T,

r o0
v U
I™z3 w>(r>||2+ff[75+'$‘:ﬂ+|ug|(p(v>—p<v>—p’(V)as)]der
00

t
</ Po. v + om7 2 / e (1) |, (3.48)
0

where @ = ® (v, V) is defined by (3.2) and § = |uy — u_| is the strength of the boundary layer
(v, 0).

Proof. First we recall (v4,uy) € BL_(v—,u_) and thus we have Uz < 0. Noting that (3.5) and
(2.3) hold, we conclude that if § is suitably small, the discriminant D of

Vi Usoy
p = = Ue | (p) — p(V) = P (V)g)
v vV
satisfies
0 < _G . 0.
Viuf (v, V) y Vo

where f (v, V) is defined by (3.4). Then we integrate (3.3) over (0, #) x (0, co) to find that

t o0
v U
I&z3 w><z>||2+//[§+'f‘:ﬂ+|Ug|(p<v)—p(V>—p’(V)¢)]dsdr
0 0

t

< /B0, vo) | + / f Uel(p() — p(V) — p'(V)g)dEdr. (3.49)
0

0

To estimate the last term of (3.49), we apply the idea in Nikkuni and Kawashima [12], i.e.,

£
¢(.8) =¢(t,0) +/¢s(l, n)dy <7 e ). (3.50)
0
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Since
1 1
pw) —p(V) = p'(V)p = f / P (01020 + (1 — 6162)V)01d62d01¢> Sm ™Y 292, (3.51)
00

we deduce from |Ug (§)| S 8¢~ and (3.50) that

t o0 t o0
/ / \Uel(p(v) — p(V) — p'(V))dEdT < 8m ™7 2 / f e “p?dedr

00
t
<Somr2 / | (0) | de. (3.52)
0
‘We then substitute (3.52) into (3.49) to find (3.48). O

We now estimate the last term of (3.48). For this, we apply |V ()] S Se~ and (3.50) to
conclude

r o0 t
/ / Vigpidedr <67 / | (x)|*dr. (3.53)
0 0 0

Then, we obtain from (3.13) that

/ | (o) |*dr < M7 +2 / / dgdr+52 / |¢ (o) *dr. (3.54)

Consequently if § is sufficiently small,

/ | (o) |Pdr < M7 +? / f dédr (3.55)

Plugging (3.55) into (3.48) gives that if § is sufficiently small, it holds that

t o0
v U,
Ve )@ + / / [75 + % (Ul (p(v) — p(V) — p’<V>¢>)}dsdr
0 0

t oo ~2
</ Po. wo) || + sm=r2mr+ f / —= - dédr. (3.56)

Similar to proving Lemma 3.2, we obtain from (3.56) that if § is suitably small,
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100

% 4ed
//v”ﬁzgr
00

- 2 1 t oo 172
< (V@0 wo. 22 +/w§(r,0)dt+8m’V’2M”+2// °dedr,
Vo vYo
0 0 0

N 2
” 2ol +
v

which implies that if m =" ~2M"*2 is sufficiently small,

/ f dgdr<” <f o, 2% )H / ¥ (r,0)dr. (3.57)

Now we substitute (3.18) into (3.57) to conclude the following lemma.

% = (1)

Lemma 3.5. There exists a constant c| independent of T, m, M, § and a, such that if
g1(8,a,m, M) :=adm™ " 2M"*? < ¢, (3.58)

then it holds for eacha > 1 and 0 <t <T,

ﬁ lOOﬁz 5
£ 0

i dedr < | 2%

'5 f/v”ﬁzérw
0 0

2
ol + dr

2 s ! " 2
+a||(/@o, ¥o) | +M2a—1fH%(r>
0

(3.59)

and
CTTVE Uyl
|V®, )| + //[75 + %ﬁé +1Uel (p() — p(V) — p’(vw)}dsdr
0 0

Yog
o

2 ! 2
<1/ ®o, o) ||2+é>‘m*V*2MV+2 +M2a18mV2My+2/H%(T) dr.
v

(3.60)

Next, we will use (3.28) to estimate the term fot ||%(t)||2dr. We employ (3.53) and (3.55)
to obtain

t oo t oo t oo ~2
//J¢2dédr<// “ T ) VEgrdedr < (mm T 3+M)52MV+2/f ——dédr.
0 0 0

(3.61)

We have from (3.56) that
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t oo

//nrzv2 édgdz<52 2| (/@o, Wo)H +8mY 4MV+2/[ —_d&dr. (3.62)
0

Substituting (3.61) and (3.62) into (3.28), we conclude that if (3.58) holds, then

|| +/‘ Ve (r)

2
dr.  (3.63)

< |/ Po. Yo, woo) | * +m'~ )’// dgdf+/H¢§

Then combinations of (3.59) and (3.63) give the following lemma.

Lemma 3.6. Assume that (3.58) holds. There exists a constant ¢ independent of T, m, M, §
and a, such that if

g (a,m, M) =a 'm"YM? < oy, (3.64)

then it holds for eacha > 1 and 0 <t <T,

2
dr

ngn”%ﬂ'%(r)
0

g 4

v

Yog
o

2
Ve
v

2
S Ioel® +m' ™ a|| (/o o) |~ +m' Y dr.  (3.65)

2 t
o
0

We now need to estimate the last term in (3.65). First substitute (3.59) and (3.60) into (3.36),
and then recall (3.64) to deduce

¢ |7 _ | Boe |? > oy [ e |
=@ <= +a|Po,v0)| +Ma f—(s) ds. (3.66)
v 0 Jv
0
Applying the inequality
(c+b)? <4(>+b%) ife,b>0, (3.67)

and noting m? 2 M7 +2 < a~!, we discover from (3.66) and (3.60) that
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dl’

[
o]

To close the energy estimate (3.65), we will employ the following result due to Strauss [16].

Yog

2 >3 ! " 2 73
‘ +a] (v ®o. vo) ] +a_l|:M2a_1/H%(t) dri| . (3.68)
0

Lemma 3.7. Let M (t) be a non-negative continuous function of t satisfying the inequality
M@) <A1+ A2M @) (3.69)

in some interval containing 0, where A1 and A, are positive constants and k > 1. Then there is
a positive constant C such that if M (0) < Ay and

1

_1
AASTT <C(1 =k N, (3.70)

then in the same interval

(3.71)

Now we write

t
2
M(t) = ||1pg(t)||2+/H%(r) dr, (3.72)
0
and
2, 1y 2 e P e | 27’
hy = Yo I” +m' Y a| (/®o, Yo) | +m T +a Fo +al| (v ®o, ¥o) | | -
(3.73)
Then we substitute (3.68) into (3.65) to find
M@) Shy+a *MM@)3. (3.74)

Noting that M (0) < k; holds, we can close the estimates (3.65), (3.59) and (3.60) by applying
Lemma 3.7.

Lemma 3.8. Suppose that (3.58) and (3.64) hold. There is a constant c3 independent of T, m,
M, § and a, such that if

g3(8,a,m, M, ¢o, Vo) := hia >M> < c3, (3.75)



3546 L. Fan et al. / J. Differential Equations 257 (2014) 3521-3553

where A1 is defined by (3.73), then it holds that for eacha > 1 and 0 <t <T,

t
I/f 2
||wg<t)|}2+/H%<r> dr Shy, (3.76)
0
e |P. [ [ % e |2 )
'é(r) +f/ izdgdrglﬁ‘ +a| (/o yo) | + M2 hy (3T
v - v’v )
and
FITVE  WUeovel
Voo’ + / [f Ul (@) = p(V) p’<V)¢)]dsdr
00
~ 2
< /o, po)||© + sm=7 27+ Uvﬁ M2 sm Y MY 2, (3.78)
0

Proof of Theorem 2. Without loss of generality, we assume that § < 1. First, we note from
(3.35), (3.13) and the initial conditions (2.12) that

y+ll
9

/@0, vo)| < C8°~ = < C57(Ilgog | + IVegll) < 87",

Yog
Uo

Since (¢o, Yo) € Hé (R4), we apply Lemma 2.2 to find fy > O such that the problem (2.6)

has a unique solution (¢, V) € Xy, m, (0, 70) with 1/mg, My < 8. Then we find that for
a= 8—20(—2;‘34-()/—1)[ > 1,

818, a,mo, Mo) + g2(a, mo, Mo) < 8' 72472~ (4l . gra2p=2rl,
and
g3(8, a, mo, Mo, ¢o, Vo) < [3—2/3—()/+1)l +820{—4/5—(y+5)l]84a+4ﬁ—(2y+1)l‘
Hence if (2.13); holds, there exists §; > 0 such that (3.58), (3.64) and (3.75) hold for each

6 < &1. Next we compute from (2.13); that the right-hand sides of (3.77) and (3.78) are bounded
by C1872#=2l and C,8%*~(+ V! respectively. We conclude from Lemma 3.8 that

v (510, £))| < [V t0) H%m <8, (3.79)

where V¥ is defined by (3.44) and @ = o — B8 — (y + 3)//2. Hence
§20/0=7) < (19,6) < 6%, VEeRy. (3.80)

Since (2.13), implies 26/(y — 1) <0 and 20 < 0, we apply Lemma 2.2 again and recall
(3.46) to find #; > O such that (2.6) has a unique solution (¢, ¥) € X,,, m, (0, to + t1), where
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my > 820/0=v) and M; < §%. By elementary calculations, we conclude from (2.13)3 that there
exists 0 < 6 < 81 such that if § < §,, then the right-hand sides of (3.77) and (3.78) are bounded
by C 18722 and 82— (r+DI respectively. Since

2y<y+2>9

g1(8,a,my, M) + ga(a, my, My) S 8172 720D - 52D

and
(8 a ml,Mla(]b(tO) Ip(t())) [829 2821 82(1—4/3—()/+5)l]84(1+4/3—(2)/—2)l+60’

(2.13)3 implies that there exists 0 < §g < 2 such that (3.64) and (3.75) hold for each § < §.
Then, combining Lemma 2.2 and the continuation process, we can prove (2.1) has the global
solution in time (¢, ¥) € X, m, (0, 00) satisfying (3.47) with the constant C depending only
on §. Thus, the asymptotic behavior of the solution (2.11) is concluded by employing Sobolev’s
inequality. O

4. Stability of rarefaction wave

In this section, we investigate the case when (v—,u_) € Qgper and (v, uy) € Ry(v—,u_),
and we often use the notations same as (3.2), (3.4) and so on, though U and V are the rarefaction
waves different from the boundary layer solutions. We assume that (2.26) has a solution (¢, V) €
Xm,m (0, T) satisfying (2.8) for some T > 0 and each 0 < ¢ < T. As before, we also simply write
c and C as positive constants independent of 7, m, M and € and the notation A < B will mean
that A < C B holds uniformly for some positive constant independent of T, m, M and €. Without
loss of generality, we choose m and M such that 1/m, M > 1.

Our first result is concerned with the basic energy estimate which is stated as follows.

Lemma 4.1. If € is suitably small, then it holds for each 0 <t <T,

t oo
Vi U,
e wol+ [ [ [7%' + 2V 10 () — p(v) - p/(vw)}dfdf
00

2 21
S| @o. vo) | +ed M2, (4.1)
where @ = @ (v, V) is defined by (3.2).
Proof. Multiply (2.26); and (2.26)2 by p(V) — p(v) and ¥, respectively, and add these two

equations to have

1 w2
[cb + sz} tu— Ed’vwf + Uz (pw) — p(V) = p'(V)9)
t

1 Us+v: U, U
— |:s_ (cb n 51/,2> +(p(V) = p)y J”L(\E/T(pé - %)wL +M1//<7‘§>é. 4.2)
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We recall Ug > 0 and thus compute from (3.4) and (2.22) that if € is suitably small, the discrim-
inant D of

vZ U
p— - M%% + Uz (p(v) — p(V) — p'(V)9)

v

satisfies

n|Ug| - Ce

_ MYl 4o T 4o
Vif(, V) vyl T

Then, we integrate (4.2) over (0, t) x (0, co) to find

t o0
v U
Ve v + //[75 + % U (pw) — p(V) — p’(vw)]dsdr
00

Ue
(7>5(T) L!

To estimate the last term of (4.3), we get from (2.23) and g > 10 that

I(9),0],.=1(7),

Then we employ Sobolev’s inequality and Young’s inequality to deduce that for each v > 0,

t
U,
/ v @] (5) ()
& L!
0
‘/ |5

dr. 4.3)

1
I+ [ 16l
0

5+5 | 4
Sed(l+1)75

~

<

L!

dr

dr
L!

wu)u%

I A

Ue
(%),

p 4
</” Vo d”C(”)W/HWr)H% (%) @] ar
4 § L!
2 t
ve 2 -1 201
SV/H%(T) dT—l—/HW(T)” (147) " Bdr+C(v)edM?2. 44
0 0

Plugging (4.4) into (4.3), we can complete this lemma by making use of Gronwall’s inequal-
ity, O

We set v :=v/V, and so Eq. (2.20); is also written as
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& Y Vg Y Ve ~— Usg
|:M__ ]I—S—[M——lﬁ} Vyor+l V}/+1(1_v y)_M(V)E' 4-3)

Multiplying (4.5) by v¢ /v, we have a divergence form

~ ~ ~2 ~ ~
m(OEN ] Y T B ps (TN
2\ 5, w2 5 2 \3/

VP Uy v Ve N Us\ e

v vV yr+l

We have from (3.35) and (2.22) that

1

2
(1= =0 |:)/ /(eu +(1—6)V) as -¢:|

0
ST M 292 <o MY L, .7
and
143 1 _3
[Ve@ | oo < Ve ] [" Se*d4+1)75. (4.8)

These two inequalities imply that

t oo -
577) L dgdr
v
00
t t o0 yijz
— _ 2 2
<Cm MY 1/||vg(r)||m Ve ar+ [ | Sdear
0 00
t oo

< Cm™ M| (VBo. po) | + €5 M +/ (4.9)

4vY
0

where we used (4.1) to get the last inequality. By a similar way as the above, we have from (2.23)

that
r oo - r o0
J ) Sz (5) o [ ]
0 § v 0 v

r oo

~2
<CMVE+// Y% dedr (4.10)
= qori? s '
0 0
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Therefore, integrating (4.6) over (0, ¢) x (0, co) and using (4.9)—(4.10), we have the following
lemma.

Lemma 4.2. [f € is suitably small, it holds that

H—%) // dgdz<B+u”/¢§(r 0)dz, 4.11)
where
p=| 2 s emr e B el e @
Multiplying (2.26), by —ez, we get a divergence form
[%wg]ﬁ[%wg—wzws} +u— ZR —Ml/fss( ) (4.13)

where R; (i = 1,2,3) are defined in (3.20). Therefore, integrating (4.13) over (0,¢) x (0, 00)
yields

2
dr

t 13
M) = ”ws(t)|\2+u/¢§(t,0)dt+/”%(f)
0 0

t oo ~2
<||1/f0&‘|| +( I=y 4 pr-1 2 // dgdr—i-Me

t oo 2 t 4
+//[J¢2+mzvgﬁ]dgdz+/H@ —=
v v
0

00

(4.14)

where J is defined by (3.29). Employing (2.22), (2.23) and (3.35), we have, by Lemma 4.1,

t oo

2 o0 2
//[J¢2+m2v§%]dgdrg//[((m—zy‘3+M)v§+m—1U§§)¢2+m—2ez%}dgdr
0 0

00
e ) NI Ve NP

For the last term on the right-hand side of (4.14), we find from (3.36) that
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[l

! 2
df<[||(\/_ vo) |+ e ] |:(u_1/1ﬁ§(t,0)dr>
0

+ e m™ M2 (| (o yo) | + €5 M2) +32], (4.16)

according to Lemma 4.1 and Lemma 4.2. Substitute (4.11), (4.15) and (4.16) into (4.14), and
then apply Cauchy’s inequality to discover

M(t) < Ay + Ay M(1)?, 4.17)
where
1—y Myfl 252
A= el + (m' 7 + M7\ @) p 4 M)
I(v/®o, Yo) |2 + €5 M2
+ Me+ [ (o, v0) |+ €3 M| [ M7+ (m 2 4 p)e
+etm M| (o, v |+ €3 ME) 4 B (4.18)
and
Ay = u=* | (0. o) | + S M2, (4.19)

Then employing Lemma 3.7, we conclude the following lemma.

Lemma 4.3. There is a constant c3 independent of T, m, M, § and a, such that if € is suitably
small and

A] A2 < (4, (4.20)

where Ay and Aj are defined by (4.18) and (4.19), respectively, then it holds that for each 0 <
t<T,

t t
2
||1pg(t)||2+u_/1p§(r,0)dr+/H%(r) dr < Ay 4.21)
0 0
and
H%f(t) /f dédr <B+ul’A, (4.22)

where B is defined by (4.12).
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Proof of Theorem 3. Since (¢, Vo) € HO1 (R4), we find #p > 0 from Lemma 2.5 such that
(2.26) has a unique solution (¢, ¥) € X, m,(0, o) with 1/mq, My < Ce~!. Then we deduce
that if (2.28); holds, then [|v/®g, Yol|? + %/ M,’* and B are bounded by Cj (1 + ¢=2¢~ ¥+l
Then we compute that if (2.28); holds, then A; and A, are, respectively, bounded by Co(1 +
€003 +Dly and C3(1 4 e*o—2¢=(r+Dly Hence if (2.28), holds, there exists €; > 0 such that
(4.20) holds for each € < 1. Next we compute from (2.28), that the right-hand side of (4.22) is
bounded by C4(1 + e 22—+l We conclude from Lemma 4.1 and Lemma 4.3 that

| (500, )| < [V 10) H =) =ce. 4.23)
where § = —2a — (y + 1)I. Hence
C1e?/0=1) < y(19) < Ce¥. (4.24)

Since (2.28)3 implies 20/(y — 1) < —[ and 20 < —[, we apply Lemma 2.5 again and recall
(4.24) to find #; > O such that (2.6) has a unique solution (¢, V) € X,,; i, (0, to + t1), where
my > Ce®/0=Y) and M| < Ce?. By elementary calculations, we conclude from (2.28)4 that
v/ @o, Yoll* + ez/gMé/2 and B are bounded by C;(1 4+ ¢ ~2*~+D!) Then we compute that if
(2.28)4 holds, then A and A» are, respectively, bounded by Cs(1 + ¢ =3¢ +DIy and Ce(1 +
eMo—20=(y+DIy Hence if (2.28), holds, there exists €y > 0 such that (4.20) holds for each € < €.
Thus, we find from (2.28), that the right-hand side of (4.22) is bounded by C4(1 4 e =24~ +Dl),
Then, combining Lemma 2.5 and the continuation process, we can prove (2.1) has the global
solution in time (¢, ¥) € X, m, (0, 00) satisfying (3.47) with the constant C depending only
on €. Thus, the asymptotic behavior of the solution (2.11) is concluded by employing Sobolev’s
inequality. O
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