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Abstract

In this paper we focus on existence and symmetry properties of solutions to the cubic Schrödinger system

−�ui + λiui =
d∑

j=1

βij u2
j ui in � ⊂R

N, i = 1, . . . d

where d � 2, λi, βii > 0, βij = βji ∈R for j �= i, N = 2, 3. The underlying domain � is either bounded or 
the whole space, and ui ∈ H 1

0 (�) or ui ∈ H 1
rad(RN) respectively. We establish new existence and symmetry 

results for least energy positive solutions in the case of mixed cooperation and competition coefficients, as 
well as in the purely cooperative case.
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1. Introduction

The existence and the qualitative description of least energy solutions to the nonlinear elliptic 
system⎧⎪⎨⎪⎩

−�u + λ1u = μ1u
3 + βuv2

−�v + λ2v = μ2v
3 + βu2v

u, v ∈ H 1
0 (�),

with � ⊂R
N or � =R

N , and N = 2,3, (1.1)

have attracted considerable attention in the last ten years, starting from the seminal paper [15] by 
T.-C. Lin and J. Wei. Collecting all the results contained in several contributions, it is possible 
to obtain an exhaustive picture of the problem, see the forthcoming Subsection 1.1. In striking 
contrast, a complete understanding in the case of an arbitrary d ≥ 3 components system⎧⎪⎨⎪⎩

−�ui + λiui = ∑d
j=1 βiju

2
j ui in �

ui �≡ 0

ui ∈ H 1
0 (�),

i = 1, . . . , d, βij = βji (1.2)

is not available, mainly due to the possible coexistence of cooperation and competition, that is, 
the existence of two pairs (i1, j1) and (i2, j2) such that βi1j1 > 0 and βi2j2 < 0. We recall that 
the sign of the coupling parameter βij determines the nature of the interaction between the com-
ponents ui and uj : if βij > 0, then they cooperate, while if βij < 0, then they compete. Very 
recently, the systematic study of existence of least energy solutions in problems with simulta-
neous cooperation and competition has been started by the first author in [27] and by Y. Sato 
and Z.-Q. Wang in [22]. Nevertheless, there are still some gaps to fill in order to obtain a com-
plete picture. In the present paper we give a contribution to fill some of these gaps, and, in the 
meantime, we analyse the symmetry properties of least energy solutions to (1.2), proving results 
which are new also in a purely cooperative context (βij > 0 for every i �= j ), and recover what is 
known in the purely competitive one (d = 2 and β12 = β < 0).

In order to motivate our research, in the following we review the results already available in the 
literature, but before it is worth to observe that thanks to the assumption βij = βji , system (1.2)
has variational structure, as its solutions are critical points of the functional J : H 1

0 (�, Rd) → R

defined by

J (u) :=
∫
�

1

2

d∑
i=1

(
|∇ui |2 + λiu

2
i

)
−

∫
�

1

4

d∑
i,j=1

βiju
2
i u

2
j ,

where we used the vector notation u = (u1, . . . , ud). Observe that (1.2) admits semi-trivial solu-
tions, i.e., solutions u �≡ 0 with some zero components. However, we will be only interested in 
the existence of positive solutions: u solving (1.2) such that ui > 0 for every i. In particular, we 
will be interested in the existence of least energy positive solutions, that is solutions achieving 
the least energy positive level:

a := inf {J (u) : u is a solution of (1.2) such that ui > 0 for all i} ,
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or a := +∞ if (1.2) has no positive solution. Observe that, due to the strong maximum principle, 
in the definition of the previous energy level, one can replace ui > 0 by ui ≥ 0 and ui �≡ 0. 
Observe moreover that, depending on the ranges of βij , this might not coincide with the least 
energy level (ground state):

inf{J (u) : u �= 0 is a solution of (1.2)},

(see for instance [2] or [25]), which is an additional difficulty when one looks for least energy 
positive solutions.

The research of least energy solutions is strictly related to the minimization of the functional 
J on Nehari type sets such as

N1 :=
{

u ∈ H 1
0 (�,Rd) : u �= 0 and

d∑
i=1

∂iJ (u)ui = 0

}

or

N2 :=
{

u ∈ H 1
0 (�,Rd) : ui �= 0 and ∂iJ (u)ui = 0 for every i = 1, . . . , k

}
⊂N1,

in the following sense. Let us set

c1 := inf
N1

J and c2 := inf
N2

J ;

if a positive solution u of (1.2) does exist, then u ∈ N2, and hence a ≥ c2 ≥ c1. Clearly, this 
means that if c2 is attained, then c2 = a and a positive minimizer for c2 is a least energy positive 
solution. In a similar way, if c1 is attained by a minimizer u such that ui > 0 for every i, then 
c1 = a and u is a least energy positive solution. We emphasize that in general the inequalities 
a ≥ c2 ≥ c1 could be strict, see the discussion below.

1.1. Known results

Let us first describe the existing results in either the purely cooperative case βij > 0 for 
every i �= j , or in the purely competitive case βij < 0 for every i �= j . Some results deal with �
bounded, while others with the case � = R

N . An important observation is that, in all the cited 
contributions dealing with the case RN , one is naturally led to work in H 1

rad(R
N), and with least 

energy positive radial solutions, that is positive radial solutions having minimal energy among all 
the positive radial solutions. In fact, in the purely cooperative case, each positive solution of (1.2)
is radially decreasing, as comes out from [9]; hence a least energy positive level coincides with 
the radial one. On the other hand, in the purely competitive case, it is proved in [15, Theorem 1]
and [2, Proposition 4.1-(i)] that c2 defined above is not achieved, and that c1, which is achieved 
if β12 > −√

β11β22, is attained by semi-trivial solutions; as a consequence, in order to adopt a 
Nehari-set approach one is induced to work in spaces of radial functions, taking advantage of 
the compactness of the Sobolev embedding H 1

rad(R
N) ↪→ L4(RN) to prove the existence of a 

minimizer for

inf{J (u) : u ∈ N2 and is radially symmetric}.
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We notice that such a compactness result makes the research of least energy positive radial solu-
tions in RN substantially equivalent to that of least energy positive solutions in bounded domains. 
For the sake of clarity, in what follows we always refers to a result as it was stated in its original 
contribution, but the reader has always to keep in mind that, whenever we cite a result for “least 
energy radial positive solution in RN”, this also yields an existence of “least energy positive 
solution in a bounded domain”, and vice-versa.

Having this in mind, we focus at first on the 2 components system (1.1) in RN (N = 2, 3), with 
λ1, λ2, μ1, μ2 > 0. By collecting the main theorems in [2,14,15,20,25], one deduces that there 
exist 0 < β ≤ β (depending on λi and μi ) such that if either −∞ < β < β , or β > β , then (1.1)
has a least energy radial positive solution (whose level coincides with the least energy positive 
level for β > 0). For the expression of the optimal values for β and β , we refer to [11,21,25].

The results for the 2 components system have been partially extended for systems with an 
arbitrary number of components. Sufficient conditions for the existence of a least energy radial 
positive solutions of (1.2) in RN are the following.

• Strong cooperation: λ1 = · · · = λN = λ > 0, βii > 0, and βij = β for every i �= j is larger 
than a positive constant depending on βii and λ (see Corollary 2.3 and Theorem 2.1 in [19]; 
see also Theorem 1.6 and Remark 3 in [27]).

• Weak cooperation: λi > 0, βii > 0, 0 < βij smaller than a positive constant depending on λi

and βii , and the matrix (βij ) is positive definite (see Theorem 2 in [14]).
• Competition: if λi > 0, βii > 0, and βij ≤ 0 for every i �= j , then there exists a least energy 

radial positive solution (see Theorem 1.1. plus Remark 1.5 in [16] for the case � bounded; 
we refer also to Theorem 3.1 in [19], and to Corollary 1.4 plus Proposition 1.5 in [27]).

Other sufficient conditions in a purely cooperative setting have been given in [25, Section 4], [19, 
Theorem 2.1] and [10]. It is natural to assume that βij is either large, or small, with respect to 
βii and βjj . Indeed if for instance βii ≤ βij ≤ βjj and λi > λj , then a positive solution of (1.2)
does not exists, see Theorem 1-(ii) in [25] or Theorem 0.2 in [5].

As far as the possible occurrence of simultaneous cooperation and competition is concerned, 
in [22, Theorem 0.1] Y. Sato and Z.-Q. Wang considered a 3 components system in a bounded 
domain, showing that a least energy positive solution of (1.2) does exist if β13, β23 ≤ 0 are fixed, 
and β12 
 1 is very large (depending on β13 and β23); we refer to this cases as competition vs. 
arbitrarily large cooperation. In [27, Theorems 1.6, 1.7, 1.9] the author considered an arbitrary 
d components system, proving the existence of least energy positive solutions whenever the d
components are divided into m groups, with m ≤ d , and

• the relation between components of the same group is purely cooperative, with coupling 
parameters greater than an explicit positive constant,

• the relation between components of different groups is competitive, and the competition is 
very strong.

When restricted to a 3 components system, this leads for instance to existence of a least energy 
solution if β12 > β > 0, and β13, β23 � −1 (depending on β12). We refer to this cases as to 
strong cooperation vs. arbitrarily large competition. In the previous two results we would like to 
stress that the “large” parameters depend on all the other interaction terms. Ahead we will give 
a result which allows to fix a priori all the ranges for the parameters, which consists of a novelty 
when dealing with mixed cooperative and competitive interaction.
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Remark 1.1. It is worth to point out the difference between strong cooperation and arbitrar-
ily large cooperation: in the former case, we mean that some βij ’s are greater than a positive 
constant which can be large but is fixed and determined as function of βii and λi , more or less 
explicitly; in the latter one we mean that some βij have to be thought as very large parame-
ters which are tending to +∞, depending in a non-explicit way on the other parameters. The 
same discussion holds for the distinction between competition and arbitrarily large competi-
tion.

For further existence results for system (1.2) with mixed cooperative and competitive cou-
plings, which regard solutions not necessarily of least energy, we refer the reader to [15, Theo-
rem 4], [18, Theorem 2.1], [27, Corollary 1.4], [23] and [12].

Concerning the symmetry properties of least energy positive solutions in bounded domains, 
the main results are contained in [28,30]. We postpone a precise description of them after hav-
ing introduced some notation. In the next subsections, we describe the main results of this 
paper.

1.2. Main results: existence

We are concerned with the existence of least energy solutions of system (1.2):

{
−�ui + λiui = ∑d

i=1 βijuiu
2
j in �

ui = 0 on ∂�,
i = 1, . . . , d

where either

� is a bounded domain of RN with N = 2,3,

λi > −μ1(�) and βii > 0 for every i = 1, . . . , d,

βij = βji ∈ R for every i �= j, (1.3)

and μ1(�) is the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary 
conditions on �, or

� =R
N , with N = 2,3,

λi > 0 and βii > 0 for every i = 1, . . . , d,

βij = βji ∈R for every i �= j . (1.4)

In this last case, the boundary condition ui = 0 on ∂� has to be replaced by ui → 0 as |x| → ∞, 
and in the following instead of H 1

0 (�) we have to write H 1
rad(R

N), the space of H 1 radially 
symmetric functions in RN .

We refer to the forthcoming Remarks 2.6 and 4.1 for more details on the equivalence between 
the problem in bounded domains and the radial problem in RN .
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In the following we recall some notations already introduced in [27].

• B := (βij )i,j=1,...,d , and we refer to it as to the coupling matrix of system (1.2).
• We endow the Sobolev space H 1

0 (�) – or H 1
rad(R

N) – with scalar products and norms

〈u,v〉i :=
∫
�

(∇u · ∇v + λiuv) and ‖u‖2
i := 〈u,u〉i ,

for every i = 1, . . . , d ; in light of the assumptions on λi , these norms are equivalent to the 
standard one.

• For an arbitrary 1 ≤ m ≤ d , we say that a vector a = (a0, . . . , am) ∈ Nm+1 is a m-decompo-
sition of d if

0 = a0 < a1 < · · · < am−1 < am = d;

given a m-decomposition a of d , we set, for h = 1, . . . , m,

Ih := {i ∈ {1, . . . , d} : ah−1 < i ≤ ah},
K1 :=

{
(i, j) ∈ I 2

h for some h = 1, . . . ,m, with i �= j
}

,

K2 := {(i, j) ∈ Ih × Ik with h �= k} . (1.5)

This way, we have partitioned the set {1, . . . , d} into m groups I1, . . . , Im, and have conse-
quently splitted the components into m groups: {ui : i ∈ Ih}.

We point out that the limit cases m = 1 or m = d are also included in our terminology. This 
means that we will be able to recover (and sometimes improve) the known results for the purely 
cooperative case (taking m = 1) and for the purely competitive or weakly cooperative one (taking 
m = d).

Let us continue to introduce more notations.
Given a m-decomposition a of d , we introduce the Nehari-type set induced by a as

N :=
{

u ∈ H 1
0 (�;Rd)

∣∣∣∣ ∑
i∈Ih

‖ui‖i �= 0 and
∑

i∈Ih
∂iJ (u)ui = 0

for every h = 1, . . . ,m

}
. (1.6)

Only to fix our minds, we assume from now on that � is a bounded domain, and then we 
suppose that (1.3) is in force. Unless otherwise specified, the results can be extended for systems 
in RN replacing “least energy positive solution” with “least energy radial positive solution”.

For a given d ≥ 2, let a be a m-decomposition of d . We set

c := inf
u∈N

J (u),

the infimum of J on the Nehari-type set N .

Theorem 1.2. There exists K > 0, depending only on βii , λi (i = 1, . . . , d), such that, whenever 
B satisfies
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βij � 0 ∀(i, j) ∈ K1, −∞ < βij < K ∀(i, j) ∈ K2,

then c is achieved by a nonnegative umin ∈ N . Furthermore, any minimizer is a nonnegative 
solution of (1.2).

This is an improvement of Theorem 1.3 in [27], where K depends also on βij with (i, j) ∈ K1, 
and the minimization is considered in an open subset of N (notice that in such case a minimizer 
with all positive components needs not to be a least energy solution).

Theorem 1.2 gives existence of nonnegative solutions for systems of d equations where the 
populations are associated in groups, in such a way that inside each group there is cooperation, 
while between different groups we have either competition or weak cooperation.

Observe that if we can show that umin has all positive components, we can immediately con-
clude that it is a least energy positive solution of the system. We are able to obtain this conclusion 
in several situations. First, applying Theorem 1.2 in the particular case m = d , which leads to the 
decomposition a = (0, 1, . . . , d), we have existence of least energy positive solutions of (1.2)
also in regimes of competition and/or weak cooperation.

Corollary 1.3. There exists K > 0, depending only on βii , λi (i = 1, . . . , d), such that if

−∞ < βij < K for every i �= j ,

then c is achieved by a least energy positive solution of (1.2).

Recall from the previous subsection that, up to now, this result was only know in the pure 
competitive or in the pure cooperative cases. Focusing on this last situation, note in particular that, 
unlike in [14, Theorem 2] (where the case βij > 0 for every i �= j is considered), Corollary 1.3
does not require the positive definiteness of the matrix B . Moreover, in the particular case of pure 
cooperation, we will show that

K := mini=1,...,d{S2
i }

2
∑d

j=1
S2

j

βjj

, where Si := inf∫
� u4=1

‖u‖2
i , (1.7)

which generalizes [30], where only the case d = 2 is considered.
If we consider a general m-decomposition with m < d , to find new least energy positive 

solutions we have to find conditions on the coupling parameters ensuring that the minimizer umin

in Theorem 1.2 has all non-trivial components. In what follows we shall use this argument to 
prove new existence results with respect to those in [22,27]. As in the quoted papers, the idea is 
to find conditions on the coupling parameters βij which ensure that

inf
N

J < inf {J (u) : u ∈ N and ui = 0 for some i} .

Theorem 1.4. Let d ≥ 2, let a be a m-decomposition of d for some 1 ≤ m ≤ d . Let K be the 
constant defined in Theorem 1.2. If
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(i) βij = βh > max{βii : i ∈ Ih} for every (i, j) ∈ I 2
h with i �= j , h = 1, . . . , m;

(ii) βij = b < K for every (i, j) ∈K2;
(iii) λi = λh > −μ1(�) for every i ∈ Ih, h = 1, . . . , m;

then any minimizer of J in N is positive, and hence system (1.2) has a least energy positive 
solution.

This statement together with Corollary 2.3 in [19] and our Corollary 1.3 provides the natural 
extension of what is known for the 2 components system for systems with an arbitrary number 
of equations. To be more precise, let us give an example in the case of 3 components system 
with the additional assumptions λ1 = λ2 = λ and β13 = β23. In this case, from our result and the 
quoted ones we deduce the existence of 0 < β < β such that (1.2) admits a least energy positive 
solution when one of the following conditions is verified:

β12 = β13 = β23 > β; λ3 = λ

β12 > β and − ∞ < β13 = β23 < β;
− ∞ < β12, β13, β23 < β. (1.8)

The downsize of the previous theorem is that the restriction βij = b for every (i, j) ∈ K2 is 
quite strong. For this reason we present also an alternative result, which permits to avoid this 
assumption but requires that |βij | is not too large for (i, j) ∈K2.

Theorem 1.5. Let d ≥ 2, let a be a m-decomposition of d for some 1 ≤ m ≤ d . Let K be the 
constant defined in Theorem 1.2, and fix α > 1. If

(i) βij = βh for every (i, j) ∈ I 2
h with i �= j , h = 1, . . . , m, and

βh >
α

α − 1
max{βii : i ∈ Ih};

(ii) for every (i, j) ∈K2 there holds

|βij | ≤ K

αd2
;

(iii) λi = λh > −μ1(�) for every i ∈ Ih, h = 1, . . . , m;

then any minimizer of J in N is positive, and hence system (1.2) has a least energy positive 
solution.

We observe that the previous two results seem to be the first dealing simultaneously with 
strong and weak cooperation.

With these results in hands, together with those in [19,22,27], we can give quite a complete 
picture for the problem of the existence of a least energy solution for system (1.2) when d ≥ 1. 
We have already recalled in Subsection 1.1 that the existence of a least energy positive solution 
has been proved in regimes of strong cooperation, competition, weak cooperation, arbitrarily 
large cooperation vs. competition, strong cooperation vs. arbitrarily large competition. Thanks 



JID:YJDEQ AID:8299 /FLA [m1+; v1.227; Prn:18/03/2016; 12:54] P.9 (1-33)

N. Soave, H. Tavares / J. Differential Equations ••• (••••) •••–••• 9
to Corollary 1.3, Theorems 1.4 and 1.5, we have existence results in regimes of competition 
or weak cooperation and weak cooperation or competition vs. strong competition. Recalling 
the non-existence of positive solution when βii ≤ βij ≤ βjj proved in [5,25], at least from a 
qualitative point of view the existence of a least energy positive solutions is proved in all the 
admissible cases.

We would like to stress that in all the previous theorems, unlike in [22,27], the bounds only 
depend on λi and βii , for i = 1, . . . , d .

1.3. Main results: non-existence of non-radial minimizers in RN

As it was observed in Subsection 1.1, in the purely competitive case (βij < 0 for every i �= j ) 
the Nehari-set approach fails without any radial constraint, cf. Theorem 1 in [15]. A case of 
mixed cooperation and competition is treated in [14, Theorem 3], but only when exactly one 
state repels all the other, and the remaining ones have small attractive coefficients. The general 
case is left open in [14,15].

As we pointed out, our Theorem 1.2 in case � =R
N works only in a radial setting, and allows 

much more combinations of cooperation with competition coefficients. It seems natural to ask 
whether the radial restriction, in general, is completely justified or not. We can prove that it is in 
several situations.

Theorem 1.6. Under (1.4), let d � 2, and let a be a m-decomposition of d , with 1 ≤ m ≤ d . If

• βij ≥ 0 ∀(i, j) ∈ K1,
• βij ≤ 0 ∀(i, j) ∈ K2, and there exist h1 �= h2 such that βij < 0 for every (i, j) ∈ Ih1 × Ih2 ;

then

l := inf
M

J (1.9)

is not achieved, where

M :=
{

u ∈ H 1(RN,Rd)

∣∣∣∣ ∑
i∈Ih

‖ui‖i �= 0 and
∑

i∈Ih
∂iJ (u)ui = 0

for every h = 1, . . . ,m

}
.

For the reader’s convenience, we recall that Ih, K1 and K2 have been defined in (1.5). Notice 
also that M is the Nehari set associated to the m-decomposition a without the radial constraint.

1.4. Main results: partial symmetry

We now pass to the statements regarding partial symmetry. First, we recall the following.

Definition 1.7. Let � ⊂ R
N be radial with respect to 0. A function u : � → R is called foli-

ated symmetric Schwarz with respect to the direction p ∈ SN−1 if u depends only on (r, θ) :=
(|x|, arccos(x · p/|x|)), and is non-increasing in θ .

We write that the vector valued function (u1, . . . , uk) is foliated Schwarz symmetric with 
respect to p if each ui is foliated Schwarz symmetric with respect to p.
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We write that (u1, . . . , uh) and (uh+1, . . . , uk) are foliated Schwarz symmetric with respect to 
antipodal directions if there exists p ∈ S

N−1 such that u1, . . . , uh are foliated Schwarz symmetric 
with respect to p, while uh+1, . . . , uk are foliated Schwarz symmetric with respect to −p.

We analyse the symmetry properties of umin when � is a bounded radial domain (since in 
R

N we deal with radial solutions, an analogue statement would be trivial in that setting). The 
following result is stated in the greatest possible generality.

Theorem 1.8. Let � ⊂ R
N be a bounded radially symmetric domain, with N = 2, 3. Let d ≥ 2, 

let a = (a0, . . . , am) be a m-decomposition of d for some 1 ≤ m ≤ d , assume that (1.3) holds, 
and take K as in Theorem 1.2. Assume that B satisfies

βij � 0 ∀(i, j) ∈K1, −∞ < βij < K ∀(i, j) ∈ K2,

and for some l := ah̄ with h̄ ∈ {1, . . . , m},

βij > 0 for every (i, j) ∈ {1, . . . , l}2 ∪ {l + 1, . . . , d}2

βij < 0 for every (i, j) ∈ {1, . . . , l} × {l + 1, . . . , d}. (1.10)

Then any nonnegative u achieving c = infN J is such that (u1, . . . , ul) and (ul+1, . . . , ud) are 
foliated Schwartz symmetric with respect to antipodal directions.

The interpretation of the theorem is the following. A m-decomposition of d induces a sepa-
ration of the d components into m different groups: {ui : i ∈ Ih}, h = 1, . . . , m (with Ih defined 
in (1.5)). We join the m groups into two macro groups, the first one collecting the first h̄ groups 
{ui : i ∈ I1 ∪ . . . ∪ Ih̄}, the second one the remaining components. If we assume that the relation 
between components in the same macro-group is purely cooperative, while the relation between 
components in different macro-groups is purely competitive (see assumption (1.10)), then pairs 
of components of different macro-groups are foliated Schwartz symmetric with respect to an-
tipodal directions.

Up to our knowledge, in the literature all the symmetry results so far were for systems in the 
pure cooperative or pure competitive cases. We point out also that Theorem 1.8 in the particular 
case d = 2 and l = 1 (competition between two components) permits to recover Theorem 1.3 
in [28] in the present setting. Moreover, when m = 1 and l = d (purely cooperative setting), we 
recover and significantly extend the results in [30] for N = 2, 3. Further remarks and comments 
are postponed to Section 3, but we would like to remark here that, in general, least energy positive 
solutions of (1.2) when � is radial are not radially symmetric, see Remark 5.4 in [28], the results 
of Section 3 in [30], and Corollary 0.5 in [22]. This break of symmetry can be caused either due 
to the presence of competition terms, or by the non-convexity of the underlying domain.

Clearly one can now combine Theorem 1.8 with the existence of least energy positive solu-
tions of Subsection 1.2. As particular relevant cases, we would like to highlight that we have 
existence and symmetry of least energy positive solutions whenever B satisfies the following:

• For a system with d � 2 equations, if 0 < βij < K (where K is given by (1.7)), then (1.1)
admits a least energy positive solution, whose components are foliated Schwartz symmetric 
with respect to the same point.
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• In the special case d = 3, and assuming moreover that λ1 = λ2 = λ, we have symmetry for 
least energy solutions (u1, u2, u3) in all the possible situations described in (1.8):
– if either β12 = β23 = β13 > β̄ and λ3 = λ, or β12 > β̄ and 0 < β13 = β23 < β , then 

(u1, u2, u3) are foliated Schwartz symmetric with respect to the same point.
– if β12 > β̄ and β13 = β23 < 0, then (u1, u2) and u3 are foliated Schwartz symmetric with 

respect to antipodal points.

1.5. Structure of the paper

In Section 2 we prove Theorem 1.2. Although in the introduction we presented the partial 
symmetry results at last, we point out that Theorem 1.8 regards not only least energy positive 
solutions, but constrained minimizers found under the assumptions of Theorem 1.2. For this 
reason, the proof of Theorem 1.8 is the object of Section 3. Section 4 is devoted to the proof 
of the new results on least energy positive solutions: Theorems 1.4 and 1.5. Finally, in the last 
section we prove Theorem 1.6.

2. Existence of nonnegative minimizers

This section is devoted to the proof of Theorem 1.2. In the literature, minimization on Nehari 
type sets as N is usually addressed by firstly studying properties of minimizing sequences, and 
then showing that any limit of such a sequence can be projected on N . The second part of this 
argument is extremely delicate from a technical point of view when the number of components 
is arbitrary (see e.g. Lemmas 2.6–2.8 in [27]). In what follows we use a different approach 
based on the Ekeland’s variational principle for the constrained functional J |N . As we shall see, 
this permits both to avoid several technicalities, and to obtain an explicit constant K depending 
only on βii and λi . Fix � be a bounded domain, d ≥ 2, and take a = (a0, a1, . . . , am) be a 
m-decomposition of d for some 1 ≤ m ≤ d . We always assume that (1.3) is in force; the case 
� = RN can be treated in the same way as the case � bounded, assuming (1.4) instead of (1.3), 
see Remark 2.6 for more details. We use both the notation introduced in Subsection 1.2, and the 
following:

• we let

S := inf
i=1,...,d

inf
u∈H 1

0 (�)\{0}
‖u‖2

i

|u|2
L4

.

By Sobolev embedding, S > 0.
• let u ∈ H 1

0 (�, Rd). We set, for h = 1, . . . , m,

uh := (
uah−1+1, . . . , uah

) ∈ (H 1
0 (�))ah−ah−1 .

The space (H 1
0 (�))ah−ah−1 is naturally endowed with scalar product and norm

〈v1,v2〉h :=
∑
i∈Ih

〈v1
i , v

2
i 〉i and ‖v‖2

h := 〈v,v〉h.
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• It will be useful to consider the following set, which contains weak H 1
0 limits of elements 

of N :

Ñ =
{

u ∈ H 1
0 (�;Rd)

∣∣∣∣ ‖uh‖h �= 0 and
∑

i∈Ih
∂iJ (u)ui � 0

for every h = 1, . . . ,m

}
. (2.1)

Finally, we introduce

E :=
{

u ∈ H 1
0 (�;Rd) : MB(u) is strictly diagonally dominant

}
, (2.2)

where the m × m matrix MB(u) is defined by

MB(u) :=
⎛⎝ ∑

(i,j)∈Ih×Ik

∫
�

βiju
2
i u

2
j

⎞⎠
h,k=1,...,m

.

Recall that a m × m matrix A = (aij )i,j is strictly diagonally dominant if for every i = 1, . . . , m
there holds |aii | > ∑

j �=i |aij |. Recall that, if a square matrix A is strictly diagonally dominant 
and has positive diagonal terms, then it is positive definite. Thus, in particular, for each u ∈ E , 
MB(u) is positive definite. This will be a key property of the matrices MB(u). Since we deal 
with m × m matrices, with m arbitrary, it does not seem easy to check directly that for some u
the matrix MB(u) is positive definite, and will be always proved by checking that it is strictly 
diagonally dominant (a condition which involves only the verifications of some inequalities).

Firstly, we recall some basic facts about the geometric structure of N ∩ E , for which we refer 
to Proposition 1.1 and Remark 9 in [27]. The set E is an open set in H 1

0 (�, Rd). The set N is 
defined by a systems of inequalities (‖uh‖h > 0 for h = 1, . . . , m) and a system of equations 
Gh(u) = 0, where

Gh(u) := ‖uh‖2
h −

m∑
k=1

∑
(i,j)∈Ih×Ik

∫
�

βiju
2
i u

2
j . (2.3)

It is not difficult to check that N ∩ E �= ∅, and that if u ∈ N ∩ E , then N is a smooth manifold 
of codimension m in a neighbourhood of u. Furthermore, one can show that N ∩ E is a natural 
constraint, that is, critical points of J restricted on N ∩ E are critical points of J in the whole 
space H 1

0 (�, Rd).
Finally, we recall that with the notation previously introduced the functional J can be written 

as

J (u) = 1

2

m∑
h=1

‖uh‖2
h − 1

4
MB(u)1 · 1,

where 1 = (1, . . . , 1), and · denotes the Euclidean scalar product, and that the constrained func-
tional J |N reads as

J (u) = 1

4

d∑
i=1

‖ui‖2
i = 1

4

d∑
i,j=1

∫
βiju

2
i u

2
j , (2.4)
�
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so that J |N is coercive and bounded from below. Thus, it makes sense to search for a constrained 
minimizer for

c = inf
N

J ≥ 0,

where we recall that N has been defined in (1.6). The following is a refinement of [27, 
Lemma 2.1], and it is the first step to obtain the constant K > 0 in Theorem 1.2.

Lemma 2.1. It holds

c := inf
N

J � C̄,

with

C̄ = 1

4
max

h=1,...,m
min
i∈Ih

{
(1 + λi)

2

βii

}
· inf
�⊃�1,...,�m open
�i∩�j =∅, (i �=j)

m∑
h=1

S̃2(�h), (2.5)

S̃(�) being the best Sobolev constant for the embedding H 1
0 (�) ↪→ L4(�), characterized as

S̃(�) := inf
u∈H 1(�)\{0}

∫
�

|∇u|2 + u2∫
�

u4
.

Proof. For each h, denote ih the index achieving mini∈Ih

{
(1+λi)

2

βii

}
. Take ũi1, . . . , ũim �≡ 0 such 

that ũih · ũik ≡ 0 whenever h �= k, and define th = ‖ũih‖h/(
√

βihih |ũih |2L4). Define ū such that 
ūih = thũih for h = 1, . . . , m, and ūi = 0 for i �= i1, . . . , im. It is clear that ūh �≡ 0 for every h, 
and that ū ∈N . Thus, by definition,

c � J (ū) = 1

4

d∑
i=1

‖ūi‖2
i = 1

4

m∑
h=1

t2
h‖ũih‖2

ih

� 1

4

m∑
h=1

(1 + λih)
2

βihih

‖ũih‖4
H 1

|ũih |4L4

� 1

4
max

h=1,...,m

(1 + λih)
2

βihih

m∑
h=1

‖ũih‖4
H 1

|ũih |4L4

,

where, as usual, we used the notation

‖u‖2
H 1 :=

∫
�

|∇u|2 + u2. �

The following is a key result, both for the existence result of this section, as well as for the 
symmetry one in the following.

Lemma 2.2. For K = S2/(16C̄) > 0 (which depends only on λi , βii , i = 1, . . . , d) we have that, 
whenever
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−∞ < βij < K ∀(i, j) ∈K2,

the following inclusion holds:

Ñ ∩
{

u :
d∑

i=1

‖ui‖2
i � 8C̄

}
⊂ E,

where we recall that Ñ and E have been defined in (2.1) and (2.2) respectively.

Proof. Let us prove that MB(u) is strictly diagonally dominant, that is, for each h = 1. . . . , m,

∑
(i,j)∈I 2

h

∫
�

βiju
2
i u

2
j >

m∑
k=1
k �=h

∣∣∣∣∣∣
∑

(i,j)∈Ih×Ik

∫
�

βiju
2
i u

2
j

∣∣∣∣∣∣ (2.6)

Some of the terms inside the absolute value might be positive, while others might be negative. 
Suppose, without loss of generality, that there exists m̄ ∈ {0, . . . , m} such that

m∑
k=1
k �=h

∣∣∣∣∣∣
∑

(i,j)∈Ih×Ik

∫
�

βiju
2
i u

2
j

∣∣∣∣∣∣ = −
m̄∑

k=1
k �=h

∑
(i,j)∈Ih×Ik

∫
�

βiju
2
i u

2
j +

m∑
k=m̄+1

k �=h

∑
(i,j)∈Ih×Ik

∫
�

βiju
2
i u

2
j .

On the other hand, since u ∈ Ñ , for each h = 1, . . . , m,

∑
(i,j)∈I 2

h

∫
�

βiju
2
i u

2
j �

∑
i∈Ih

‖ui‖2
i −

m∑
k=1
k �=h

∑
(i,j)∈Ih×Ik

∫
�

βiju
2
i u

2
j .

Thus (2.6) is true if we show that

∑
i∈Ih

‖ui‖2
i > 2

m∑
k=m̄+1

k �=h

∑
(i,j)∈Ih×Ik

∫
�

βiju
2
i u

2
j ,

which holds if, for (i, j) ∈ K2, βij < K := S2/(16C̄). Indeed, recalling that by assumption ∑
i ‖ui‖2

i ≤ 8C̄, we have

2
m∑

k=m̄+1
k �=h

∑
(i,j)∈Ih×Ik

∫
�

βiju
2
i u

2
j <

2K

S2

m∑
k=m̄+1

k �=h

∑
(i,j)∈Ih×Ik

‖ui‖2
i ‖uj‖2

j

� 16KC̄

S2

∑
i∈Ih

‖ui‖2
i =

∑
i∈Ih

‖ui‖2
i ,

thanks to the choice of K . �
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An immediate consequence is the following.

Lemma 2.3. If

−∞ < βij < K ∀(i, j) ∈ K2,

then N is a manifold at each u ∈ N with J (u) < 2C̄. Moreover, constrained critical points of 
J |N such that J (u) < 2C̄ are in fact free critical points of J .

Proof. If u ∈ N and J (u) < 2C̄, then u ∈ Ñ and 
∑

i ‖ui‖2
i ≤ 8C̄. Thanks to the previous lemma, 

we deduce that u ∈ N ∩ E , thus N is a manifold at u (see [27, Remark 9]), while the other 
conclusion comes from [27, Proposition 1.2]. �

Now we can prove that minimizing sequences for c are also conveniently bounded from below.

Lemma 2.4. Take δ := S/(2d) > 0. If

βij ≥ 0 ∀(i, j) ∈ K1 and − ∞ < βij < K ∀(i, j) ∈ K2,

then for every u ∈N such that J (u) � 2C̄ there holds

(
max
i,j∈Ih

βij

)
·
∑
i∈Ih

|ui |2L4 � δ ∀h = 1, . . . ,m.

Proof. Following the proof of Lemma 2.2 in [27], since u ∈N :

S
∑
i∈Ih

|ui |2L4 �
∑
i∈Ih

‖ui‖2
i ≤

∑
(i,j)∈I 2

h

∫
�

βij

2

(
u4

i + u4
j

)
+ K

∑
i∈Ih

∑
j /∈Ih

|ui |2L4 |uj |2L4

< max
i,j∈Ih

{βij }
∑
i∈Ih

|ui |4L4 + 8KC̄

S

∑
i∈Ih

|ui |2L4

< d max
i,j∈Ih

{βij }
⎛⎝∑

i∈Ih

|ui |2L4

⎞⎠2

+ S

2

∑
i∈Ih

|ui |2L4 . �

Having established the basic properties of minimizing sequences, we can proceed with the 
core of the argument.

Lemma 2.5. The constrained functional J |N satisfies the Palais–Smale condition at level c, 
whenever B is such that

βij � 0 ∀(i, j) ∈ K1 and − ∞ < βij < K ∀(i, j) ∈ K2.
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Proof. Take {un} ⊂N such that

J (un) → c, J ′(un) =
m∑

h=1

λh,nG
′
h(un) + o(1), (2.7)

where we recall that Gh has been defined in (2.3). We can take n large enough so that 
J (un) � 2C̄. By (2.4), up to a subsequence

ui,n → ui weakly in H 1
0 (�) and strongly in L4(�),

whence

(i) u ∈ Ñ and 
∑

i ‖ui‖2
i ≤ 8C̄;

(ii) MB(un) → MB(u) component-wise.

From (i), by Lemma 2.2 we deduce that u ∈ E , so that MB(u) is positive definite. Testing the 
second equation in (2.7) with ûh ∈ H 1

0 (�, Rd) defined by

ûh
i,n :=

{
ui,n if i ∈ Ih

0 if i /∈ Ih,

we obtain with (ii) that

o(1) = MB(un)

⎛⎜⎝ λ1,n

...

λm,n

⎞⎟⎠ = (MB(u) + o(1))

⎛⎜⎝ λ1,n

...

λm,n

⎞⎟⎠ ;

multiplying by (λ1,n, . . . , λm,n), and using the fact that MB(u) is positive definite, we finally 
infer

o(1)|(λm,n, . . . , λm,n)| � C|(λ1,n, . . . , λm,n)|2 + o(1)|(λ1,n, . . . , λm,n)|2,

yielding λi,n → 0. Moreover, {G′
h(un)} is a uniformly bounded family of operators, thanks to 

the boundedness of {un}, and hence J ′(un) → 0. This means that un is a standard Palais–Smale 
sequence, and the result follows easily from now on. �

We are now ready to prove the main result of this section.

Proof of Theorem 1.2. The proof is a simple consequence of what was established before. In 
fact, c � 0, hence we can take a minimizing sequence un, which we can choose, by Ekeland’s 
variational principle, to be a Palais–Smale sequence for J |N at level c. Note that the Ekeland’s 
principle is applicable, since by Lemma 2.4 the set N ∩ {J ≤ 2C̄} endowed with the H 1

0 (�)

topology is a complete metric space. Thus, by the previous lemma, up to a subsequence un → u
strongly in H 1(�), and by Lemma 2.4 this implies that u ∈N . By convergence, we infer that
0
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J (u) = lim
n→∞J (un) = c,

which completes the proof since N ∩ {J < 2C̄} is a natural constraint (cf. Lemma 2.3). �
Remark 2.6. In the proof of Theorem 1.2 we used the validity of the Sobolev inequality (for the 
definition of S and S̃(�)), the weak lower semi-continuity of ‖ · ‖i and the compactness of the 
embedding H 1

0 (�) ↪→ L4(�) (see Lemma 2.5). These tools are still in force if we replace H 1
0 (�)

with H 1
rad(R

N), so that, as already observed, Theorem 1.2 holds also for the radial problem in 
the whole space.

Remark 2.7. For future reference, we observe that the constant K is equal to S2/(16C̄), where

S := inf
i=1,...,d

inf
u∈H 1

0 (�)\{0}
‖u‖2

i

|u|2
L4

,

and

C̄ = 1

4
max

h=1,...,m
min
i∈Ih

{
(1 + λi)

2

βii

}
· inf
�⊃�1,...,�m open
�i∩�j =∅, (i �=j)

m∑
h=1

S̃2(�h)

(recall Lemma 2.2 and (2.5)).

Remark 2.8. In the particular case of full cooperative systems, we can have a better (and more 
explicit) constant K > 0. Thinking for instance at the d-decomposition a = (0, 1, . . . , m), one 
can take:

K := mini=1,...,d{S2
i }

2
∑d

j=1
S2

j

βjj

, where Si := inf∫
� u4=1

‖u‖2
i . (2.8)

This constant is similar to the one appearing in assumption (H2) of [30] (for d = 2), being ours 
slightly worse in the framework of Z.-Q. Wang and M. Willem’s paper. This is a price to pay from 
passing from d = 2 to more equations, since we had to prove that MB(u) is positive definite by 
proving that actually it is strictly diagonally dominant (while in 2 ×2 matrices one can perform an 
explicit computation). The proof of (2.8) is not completely immediate, but since we consider this 
to be a lateral statement, here we just provide some hints. By taking w̃i to be functions achieving 
Si , we can take wi = √

Si/βiiw̃i , which satisfies the equation −�wi + λiwi = βiiw
3
i , with 

‖wi‖2
i = S2

i /βii . Moreover, since we are in a full cooperative case, it is straightforward to check 
that w ∈ Ñ . By using (2.8), w ∈ E and there exist 0 < ti < 1 such that (t1w1, . . . , tdwd) ∈ N . 
Thus c �

∑d
j=1 S2

j /(4βjj ), and working through the proof of Lemma 2.2 the rest follows.

3. Partial symmetry of nonnegative minimizers

We now turn to the problem of the symmetry of least energy positive solutions when � is a ra-
dially symmetric bounded domain of RN (which we always assume along this section). Observe 
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that when � is a ball, the classical result by Troy [29] (see also [24]) yields that, in the coop-
erative case, each positive solution is radially symmetric. However, thanks to [28, Theorem 1.4]
(which deal with the competitive case), [22, Corollary 0.5] (mixed cooperation and competition 
case), and [30, Section 3] (cooperative case, � an annulus), it is known that in general a least 
energy positive solution is not radial. On the other hand, it is natural to expect that least energy 
solutions inherit part of the symmetric structure of the problem. Theorem 1.8 establishes that this 
is the case when the competition takes place between two groups of cooperative components, or 
in a purely cooperative setting.

3.1. Comments on Theorem 1.8

Due to its general formulation, Theorem 1.8 might not be easy to read and to understand. In 
this subsection we present several remarks which should help the reader towards this purpose.

Remark 3.1. The reader could object that only the division in macro-groups is necessary, and 
that one could drop the original division into m groups considering only a 2 decomposition of 
d in 2 different groups. This is a particular case of our result, but it is not equivalent, because 
in our statement we allow to minimize in different Nehari type sets (related to the division in m
groups), and so in this way we can deal with a larger class of constrained minimizers.

As an illustrative example, we consider a 3 components system, separating (u1, u2, u3) into 2
macro-groups (u1, u2) and u3. This can be the result of two different decompositions:

• Let us consider the natural 2-decomposition (0, 2, 3). By Theorem 1.7 in [27], it is know that 
if β12 > C max{β11, β22} for a positive constant C > 0 depending on λi , and β13, β23 � −1, 
then the minimum of J on N(0,2,3) is achieved by a positive solution of (1.2) (here N(0,2,3)

is the Nehari set determined by the 2-decomposition of 3). The same result holds true if 
β13, β23 < 0 and β12 
 1, as proved in Theorem 0.1 in [22]. In both cases, Theorem 1.8 ap-
plies proving that (u1, u2) and u3 are foliated Schwartz symmetric with respect to antipodal 
points.

• Let us now consider the 3-decomposition (0, 1, 2, 3), denoting by N(0,1,2,3) the correspond-
ing Nehari set. By Corollary 1.3, there exists K > 0 such that if βij < K for every i �= j , 
then the minimum of J on N(0,1,2,3) is achieved by a positive solution of (1.2). If we assume 
further that 0 < β12 < K and β13, β23 < 0, then by Theorem 1.8 we obtain that (u1, u2) and 
u3 are foliated Schwartz symmetric with respect to antipodal points.

The second result would not have been obtained if we had considered only the 2-decomposition 
(0, 2, 3) in our symmetry result.

Let us now make some comments regarding Theorem 1.8 in the purely cooperative case, 
which correspond to l = d in the assumptions.

Remark 3.2. In [30], Z.-Q. Wang and M. Willem proved partial symmetry results in two situ-
ations. For a system with d components, they showed that if the infimum of J on the natural 
Nehari manifold {

u ∈ H 1
0 (�;Rd)

∣∣∣∣∣u �= 0 and
d∑

∂iJ (u)ui = 0

}

i=1
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is achieved (which is suitable only for large cooperation rates), then any positive minimizer 
is such that all the components (u1, . . . , ud) are foliated Schwartz symmetric with respect to 
the same point. Moreover, for systems of d = 2 components, they showed that if 0 < β12 <

C(β11, β22, λ1, λ2), then the infimum of J on the Nehari set{
u ∈ H 1

0 (�;R2)

∣∣∣∣ ui �= 0 and ∂iJ (u)ui = 0
for i = 1,2

}
is achieved by a positive solution of (1.2), and any minimizer is such that u1, u2 are foliated 
Schwartz symmetric with respect to the same point. The restriction d = 2 is relevant in their 
proof.

Our result recovers both the ones in [30], extend the second one to systems with an arbitrary 
number of components, and provide partial symmetry also when m-decompositions of d with 
m �= 1, d are considered. For this reason, we think that Theorem 1.8 in the purely cooperative 
case deserves a statement on its own.

Corollary 3.3. Let d ≥ 2, and let a be a m-decomposition of d . Take K > 0 be as in Theorem 1.2. 
If

βij > 0 ∀(i, j) ∈ K1, 0 < βij < K ∀(i, j) ∈K2,

then any nonnegative minimizer ũ of J constrained on N is such that all the components 
ũ1, . . . , ũd are foliated Schwartz symmetric with respect to the same point.

Remark 3.4. Concerning the proof of Theorem 1.8, in the literature the partial symmetry of 
solutions of elliptic equations is often obtained through an inf sup characterization. Dealing with 
systems, it turns out to be very complicated to obtain such a variational characterization; for 
instance, this is why the proof of Theorem 1.2 in [30] works only for systems with 2 components. 
Thus, we think that it is worth to point out that we will not use any inf sup characterization, basing 
our argument directly on the constrained minimality.

3.2. Proof of Theorem 1.8

In what follows, without loss of generality, we suppose that � is radial with respect to 0. We 
will use polarization techniques, and hence at first we recall some definitions which are by now 
classic.

Assume H is a closed half-space in RN . We denote by σH : RN → R
N the reflection with 

respect to the boundary ∂H of H . For a measurable function w : RN → R we define the polar-
ization wH of w relative to H by

wH (x) =
{

max{w(x),w(σH (x))}, x ∈ H,

min{w(x),w(σH (x))}, x ∈R
N \ H.

We consider the set H0 of all closed half-spaces H in RN such that 0 ∈ ∂H . Given an unitary 
vector p ∈ S

N−1, we denote by H0(p) the set of all closed half-spaces H ∈ H0 such that p ∈
int(H).
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Recall that a function f : RN → R is said to be foliated Schwarz symmetric with respect to 
a unitary vector p if it is axially symmetric with respect to the axis Rp and non-increasing in 
the polar angle θ = arccos(p · x/|x|) ∈ [0, π]. We mention that, up to our knowledge, the link 
between polarization and foliated Schwarz symmetry appeared firstly in [7,26]. We would like to 
mention also the precursory works [1,3,8] that brought to light the relation between polarizations 
and rearrangements in many different settings, and refer to the survey [32] for a detailed history of 
the subject. The following is a useful alternative characterization of foliated Schwarz symmetry, 
and we refer to [7, Lemma 4.2] (see also [32, Proposition 2.7]) for the proof.

Lemma 3.5. Let � a radial set centered at the origin, and let u : � → R be a continuous func-
tion. Then u is foliated Schwarz symmetric with respect to p ∈ S

N−1 if, and only if, for every 
H ∈H0(p) we have u(x) � u(σH (x)) whenever x ∈ � ∩ H .

For every H ∈ H we denote by Ĥ ∈H0 the closure of the complementary half-space RN \H . 
In the spirit of [6,28,30], the proof of Theorem 1.8 is based upon a general criterion (cf. for 
instance Theorem 2.6 in [6] or Theorem 4.3 in [28]).

Proposition 3.6. Let u be a nonnegative solution of (1.2). If for every H ∈ H0 the function

uH := (u1,H , . . . ,uh̄,H ,uh̄+1,Ĥ , . . . ,um,Ĥ ) = (u1,H , . . . , ul,H ,ul+1,Ĥ , . . . , ud,Ĥ )

is still a solution of (1.2), then (u1, . . . , ul) and (ul+1, . . . , ud) are foliated Schwartz symmetric 
with respect to antipodal points.

Proof. Since u ∈ N , there exists an index i ∈ I1 such that ui �≡ 0 in �. Without loss of gen-
erality, we assume i = 1. Let r > 0 be such that ∂Br(0) ⊂ �, and let p ∈ S

N−1 be such that 
max∂Br (0) u1 = u1(rp). By assumption, for any H ∈ H0(p),

−�u1,H + λ1u1,H =
l∑

j=1

β1j u1,H u2
j,H +

d∑
j=l+1

β1j u1,H u2
j,Ĥ

in �.

Thus, if we let w := u1,H − u1, we obtain

−�w + λ1w =
l∑

j=1

β1j

(
u1,H u2

j,H − u1u
2
j

)
+

d∑
j=l+1

β1j

(
u1,H u2

j,Ĥ
− u1u

2
j

)

=
l∑

j=1

β1j u1,H

(
u2

j,H − u2
j

)
+

d∑
j=l+1

β1j u1,H

(
u2

j,Ĥ
− u2

j

)

+
d∑

j=1

β1j u
2
j (u1,H − u1),

in � ∩ H , that is
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−�w +
⎛⎝λ1 −

d∑
j=1

β1j u
2
j

⎞⎠
︸ ︷︷ ︸

=:q(x)∈L∞
loc(�∩H)

w =
l∑

j=1

β1j u1,H

(
u2

j,H − u2
j

)
+

d∑
j=l+1

β1j u1,H

(
u2

j,Ĥ
− u2

j

)
.

(3.1)

By definition uj,H ≥ uj in � ∩H for every j = 1, . . . , l, while uj,Ĥ ≤ uj in � ∩H for every j =
l+1, . . . , d . Therefore, recalling that β1j > 0 for j = 1, . . . , l, while β1j < 0 for j = l+1, . . . , d , 
we deduce that −�w + q(x)w ≥ 0 and w ≥ 0 in � ∩ H . The strong maximum principle leads 
to the alternative w > 0 in � ∩ H , or w ≡ 0 in � ∩ H . As w(rp) = 0, the latter condition holds 
true, and coming back to equation (3.1) we deduce that

0 = −�w + q(x)w =
l∑

j=1

β1j u1,H

(
u2

j,H − u2
j

)
+

d∑
j=l+1

β1j u1,H

(
u2

j,Ĥ
− u2

j

)
≥ 0,

which in turn implies (since u1 �≡ 0 ⇒ u1 > 0 in �) that uj,H ≡ uj in � ∩ H for every j =
1, . . . , l and uj,Ĥ ≡ uj in � ∩H for every j = l+1, . . . , k. Since H ∈H0(p) has been arbitrarily 
chosen, the thesis follows from Lemma 3.5. �

In the following we will prove that, under the assumptions of Theorem 1.8, it is possible to 
apply Proposition 3.6. First we need some preliminary results.

Lemma 3.7. For every u, v ∈ H 1
0 (�) and H ∈ H0(p), then also uH , vH ∈ H 1

0 (�), and more-
over:

(i)
∫
�

|u|p dx =
∫
�

|uH |p , for every p � 1.

(ii)
∫
�

|∇uH |2 =
∫
�

|∇u|2.

(iii)
∫
�

u2v2 ≤
∫
�

u2
H v2

H and 
∫
�

u2v2 ≥
∫
�

u2
H v2

Ĥ
.

Proof. For the first two items, check for instance [32, Lemma 3.1]. As for (iii), the first inequality 
follows by Proposition 31.7 in [33], while the second one is a particular case of Lemma 4.5 
in [28]. �

Assume that B is as in the assumption of Theorem 1.8, let c = infN J , and let u be 
a nonnegative minimizer of J on N . In view of Proposition 3.6, we aim at proving that 
uH := (u1,H , . . . , ul,H , ul+1,Ĥ , . . . , ud,Ĥ ) also achieves c for every H ∈ H0. In this perspec-
tive, the main difficulty consists in showing that uH ∈N (in the literature, this is usually the part 
of the proof which requires an inf sup characterization, see Remark 3.4). To this aim, we study 
the function of real variables:


 : (t1, . . . , tm) ∈ R
m+ �→ J

(√
t1u1,H , . . . ,

√
t ¯u ¯ ,

√
t ¯ u ¯ ̂, . . . ,

√
tmu ̂) ∈R,
h h,H h+1 h+1,H m,H
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and claim that, under the considered assumption, it has a unique maximum point t̃ = (t̃1, . . . , ̃tm)

such that t̃h > 0 for every h = 1, . . . , m.
By the properties of polarization stated in Lemma 3.7, and the assumptions made on B , we 

have that

uH ∈ Ñ ,

m∑
h=1

‖uH
h ‖2

h =
d∑

j=1

‖ui‖2
i = 4c � 4C̄

where C̄ is as in (2.5). Hence, thanks to Lemma 2.2, the matrix MB(uH ) is positive definite, and 
observing that


(t1, . . . , tm) = 1

2

m∑
h=1

‖uH
h ‖2

hth − 1

4
MB(uH )t · t,

this implies that there exists κ > 0 such that


(t1, . . . , tm) � 1

2

m∑
h=1

th‖uH
h ‖2

h − κ

m∑
h=1

t2
h → −∞ as |t| → ∞.

Therefore, 
 admits a global maximum t̃ in Rm+. Note also that it is a strictly concave function. 
Since 
 is of class C1 up to the boundary of Rm+, the maximality of t̃ entails ∂h
(t̃) ≤ 0 if t̃h = 0, 
and ∂h
(t̃) = 0 if t̃h > 0. In particular, we observe that

‖uH
h ‖2

h =
m∑

k=1

MB(uH )hk t̃
H
k whenever t̃h > 0. (3.2)

Remark 3.8. Let us consider the function

� : (t1, . . . , tm) ∈ R
m+ �→ J

(√
t1u1, . . . ,

√
tmum

)
.

Under our assumption, by Lemma 2.2 any minimizer for c stays in E . Therefore, as in the pre-
vious discussion, we can check that � is strictly concave and has a maximum point in Rm+. 
Moreover, since u ∈ N , the point 1 = (1, . . . , 1) is a critical point for �. Hence, by strict con-
cavity, 1 is the unique critical point of �, and is a global maximum.

Lemma 3.9. We have

m∑
h=1

t̃h‖uH
h ‖2

h � 4C̄.

Proof. We claim that

‖uH
h ‖2

ht̃h =
m∑

MB(uH )hk t̃ht̃k ∀h = 1, . . . ,m.
k=1
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Indeed, if t̃h = 0 this relation is trivially satisfied. If t̃h > 0, then it follows by (3.2). Therefore

J
(√

t̃1uH
1 , . . . ,

√
t̃muH

m

)
= 1

4

m∑
h=1

‖uH
h ‖2

ht̃h.

On the other hand, combining Lemma 3.7 with the assumptions on B , we have also

J
(√

t̃1uH
1 , . . . ,

√
t̃muH

m

)
� J

(√
t̃1u1, . . . ,

√
t̃mum

)
� sup

t1,...,tm�0
J
(√

t1u1, . . . ,
√

tmum

)
= J (u1, . . . ,um) = c � C̄.

Notice that we have used the fact that � has the unique maximizer (1, . . .1), see the previous 
remark. �
Lemma 3.10. There holds

t̃1, . . . , t̃h > 0.

Proof. Assume, in view of a contradiction, that t̃1 = 0. We will check that

J
(√

t1uH
1 , . . . ,

√
t̃muH

m

)
> J

(
0,

√
t̃2uH

2 , . . . ,
√

t̃muH
m

)
for t1 > 0 sufficiently close to 0, which contradicts the maximality of (0, ̃t2, . . . , ̃tm). The left 
hand side of the inequality can be rewritten as

1

2
t1‖uH

1 ‖2
1 − 1

2

m∑
h=2

MB(uH )1ht1 t̃h − 1

4
MB(uH )11t

2
1 + 1

2

m∑
h=2

t̃h‖uH
h ‖2

h − 1

4

m∑
h,k=2

MB(uH )hk t̃ht̃k.

Observe that, for βij < K in K2 (and K as in Remark 2.7), it results

m∑
h=2

MB(uH )1ht̃h =
m∑

h=2

∑
(i,j)∈I1×Ih

∫
�

βij (u
H
i uH

j )2 t̃h � K

S2

m∑
h=2

∑
(i,j)∈I1×Ih

‖uH
i ‖2

i ‖uH
j ‖2

j t̃h

� K

S2
‖uH

1 ‖2
1

m∑
h=2

t̃h‖uH
h ‖2

h � 4KC̄

S2
‖uH

1 ‖2
1 � 1

4
‖uH

1 ‖2
1,

where we used the estimate of the previous lemma. Thus

1

2
t1‖uH

1 ‖2
1 − 1

2

m∑
h=2

MB(uH )1ht1 t̃h − 1

4
MB(uH )11t

2
1

= 1

2
t1

(
‖uH

1 ‖2
1 −

m∑
h=2

MB(uH )1ht̃h − 1

2
MB(uH )11t1

)
≥ 1

2
t1

(
3

4
‖uH

1 ‖2
1 − t1M(uH )11

)
> 0

for sufficiently small t1 > 0, which yields the desired contradiction. �
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End of the proof of Theorem 1.8. Given u achieving c and H ∈ H0, we have concluded that 
there exists a maximizer t̃ for the function 
 in Rm+, and t̃1, . . . , ̃tm > 0. By (3.2), we infer that 

(
√

t̃1uH
1 , . . . , 

√
t̃muH

m ) ∈ N ; together with Lemma 3.7, this implies that

c � J
(√

t̃1uH
1 , . . . ,

√
t̃muH

m

)
� J

(√
t̃1u1, . . . ,

√
t̃mum

)
� sup

t1,...,tm�0
J
(√

t1u1, . . . ,
√

tmum

) = J (u) = c,

which is then a chain of equalities. The uniqueness of the maximum for the function � (see 
Remark 3.8) entails t̃h = 1 for every h, and thus uH also achieves c, being in particular a solution 
of (1.2) (cf. Lemma 2.3). We can now conclude using the criterion of Proposition 3.6. �
4. Existence of least energy positive solutions

This section is devoted to the proofs of Theorems 1.4 and 1.5. They are inspired by those of 
Theorems 1.6 and 1.7 in [27].

The argument for the proof of both results is the same up to a certain point, thus we proceed 
in a unified way. Under the considered assumptions, by Theorem 1.2 there exists a nonnegative 
solution u of (1.2) which minimizes J in the Nehari set N . We wish to show that

inf
N

J < inf
N∩{wi=0 for some i}

J.

If this is true, then by minimality ui �= 0 for every i. By contradiction, let us assume that for 
some index l there holds ul = 0. Let h̄ ∈ {1, . . . , m} be such that l ∈ Ih̄. By definition of N , there 
exists p ∈ Ih̄ such that up �= 0, and actually, by Lemma 2.4 and since βh̄ > maxi∈Ih̄

{βii}, there 
exists p ∈ Ih̄ such that

βh̄|up|2
L4 � δ

|Ih̄|
� δ

d
. (4.1)

By Lemma 2.2 we know that u ∈ E , and hence N defines, in a neighbourhood of u, a smooth 
manifold (actually a C2-manifold, as it is immediate to verify) of codimension m in H 1

0 (�; Rd). 
We claim that

d2J (u)[v,v] ≥ 0 for every v ∈ Tu(N ), (4.2)

where Tu(N ) denotes the tangent space to N at the point u. To prove this, we observe that since 
N is of class C2, for any v ∈ Tu(N ) there exists a C2 curve γ : (−ε, ε) → N for some ε > 0 such 
that γ (0) = u and γ ′(0) = v. Now by minimality of u, and recalling that dJ (u) = 0, we infer 
that

0 ≤ d2

dt2
J (γ (t))

∣∣∣∣
t=0

= d2J (γ (t))[γ ′(t), γ ′(t)]
∣∣∣
t=0

+ dJ (γ (t))[γ ′′(t)]∣∣
t=0 = d2J (u)[v,v],

which proves the claim (4.2). By direct computations, one can easily check that
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d2J (u)[v,v] =
d∑

i=1

‖vi‖2
i −

d∑
i,j=1

∫
�

βiju
2
i v

2
j − 2

d∑
i,j=1

∫
�

βijuiuj vivj .

We consider the variation v defined by

vi :=
{

0 if i �= l

up if i = l.

Since 〈∇Gh(u), v〉 = 0 for every h, we have that v ∈ Tu(N ) (for the reader’s convenience, we 
recall that Gh has been defined in (2.3)). Plugging this choice of v into (4.2), we infer that

0 ≤ ‖up‖2
l −

∑
i∈Ih̄

∫
�

βilu
2
i u

2
p −

∑
i /∈Ih̄

∫
�

βilu
2
i u

2
p. (4.3)

On the other hand, testing the equation for up against up itself, and recalling that ul ≡ 0, we 
deduce that

‖up‖2
p =

∑
i∈Ih̄\{l}

∫
�

βipu2
i u

2
p +

∑
i /∈Ih̄

∫
�

βipu2
i u

2
p (4.4)

Conclusion of the proof of Theorem 1.4. Using assumptions (i)–(iii) in the theorem, (4.3) and 
(4.4) give

0 ≤ ‖up‖2
p −

∑
i∈Ih̄\{l}

∫
�

βh̄u
2
i u

2
p −

∑
i /∈Ih̄

∫
�

bu2
i u

2
p,

and

‖up‖2
p =

∫
�

βppu4
p +

∑
i∈Ih̄\{l,p}

∫
�

βh̄u
2
i u

2
p +

∑
i /∈Ih̄

∫
�

bu2
i u

2
p,

respectively. Therefore

0 ≤
∫
�

βppu4
p +

∑
i∈Ih̄\{l,p}

∫
�

βh̄u
2
i u

2
p −

∑
i∈Ih̄\{l}

∫
�

βh̄u
2
i u

2
p =

∫
�

(
βpp − βh̄

)
u4

p < 0

whenever βh̄ > βpp , which is guaranteed by our assumptions. �
Conclusion of the proof of Theorem 1.5. Recalling the explicit shapes K = S2/16C̄ and δ =
S/2d from Lemma 2.4 and Remark 2.7, (4.1), (4.3) and (4.4) give
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0 ≤
∫
�

βppu4
p +

∑
i∈Ih̄\{l,p}

∫
�

βh̄u
2
i u

2
p −

∑
i∈Ih̄\{l}

∫
�

βh̄u
2
i u

2
p +

∑
i /∈Ih̄

∫
�

(βip − βil)u
2
i u

2
p

=
∫
�

(
βpp − βh̄

)
u4

p +
∑
i /∈Ih̄

∫
�

(βip − βil)u
2
i u

2
p

≤ (
βpp − βh̄

)︸ ︷︷ ︸
<0

|up|4
L4 + 2K

αd2S
|up|2

L4

∑
i /∈Ih̄

‖ui‖2
i

≤ βpp − βh̄

βh̄

δ

d
|up|2

L4 + 8KC̄

αd2S
|up|2

L4

= S

2d2

(
βpp

βh̄

− 1 + 1

α

)
|up|2

L4 = S

2d2

(
βpp

βh̄

− α − 1

α

)
|up|2

L4 < 0,

where we used the assumption on the coupling parameters, and the estimates of Lemmas 2.1
and 2.4. �
Remark 4.1. If � is replaced by RN , the proofs of Theorems 1.4 and 1.5 remain unchanged.

5. Non-existence results in H 1(RN)

In this section we prove Theorem 1.6, which illustrates that when working in � = R
N in 

presence of simultaneous cooperation and competition, in order to find some kind of least en-
ergy solution it is often necessary to work in H 1

rad(R
N) instead that in H 1(RN). We choose a 

m-decomposition a of d , and we assume that the basic assumption (1.4) holds true. Throughout 
this section we assume that βij > 0 for every (i, j) ∈ K1 (recall the definition (1.5) of K1) and, 
for every h = 1, . . . , m, we consider the sub-system

{
−�vi + λivi = ∑

j∈Ih
βij viv

2
j in RN

vi ∈ H 1(RN),
∀ i ∈ Ih. (5.1)

We introduce the functional

Eh(v) :=
∫
RN

∑
i∈Ih

1

2

(
|∇vi |2 + v2

i

)
− 1

4

∑
(i,j)∈I 2

h

βij v
2
i v

2
j ,

and the Nehari manifold for the system (5.1), defined by

Mh :=
{

v ∈ (H 1(RN))ah−ah−1 : v �= 0 and 〈∇Eh(v),v〉 = 0
}

.

We set

lh := inf Eh.
Mh
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The strategy consists in showing that l, defined in (1.9), coincides with the sum of the least 
energy levels lh of the uncoupled sub-systems (5.1). This is inspired by Theorem 1 in [15], which 
is a particular case of our Theorem 1.6 (for m = d , K1 = ∅). We point out that our proof present 
substantial differences with respect to the one in [15], referring to the forthcoming Remark 5.6
for more details.

Before proceeding, we need the following preliminary result. Although it is essentially known 
by the community, we present a short proof of it here, as we were not able to find any reference.

Lemma 5.1. Let (ui)i∈Ih
be a nonnegative solution of (5.1) with ui ∈ H 1(RN). Then for each 

0 < β < mini{λi} there exists α > 0 such that

|ui(x)| � αe−√
1+β|x|2 , ∀x ∈R

N, i ∈ Ih.

Proof. By a Brezis–Kato type argument, one has that ui ∈ L∞(RN). Thus, by standard gradient 
estimates for Poisson’s equation (see [13, eq. (3.15)]), we deduce also that ∇ui ∈ L∞(RN). Since 
we also assume that ui ∈ L2(RN), this clearly implies that ui → 0 as |x| → ∞.

Defining z(x) = α exp(−√
1 + β|x|2), a straightforward computation gives

−�z + βz � αβ

1 + β|x|2 e−√
1+β|x|2 .

The difference z − ui satisfies:

−�(z − ui) + β(z − ui) � (λi − β)ui −
∑
j∈Ih

βij uiu
2
j + αβ

1 + β|x|2 e−√
1+β|x|2 ,

where k = |Ih|. Fix any 0 < β < λi . Since 
∑

j∈Ih
βij uiu

2
j → 0 as |x| → ∞, we can take R > 0

such that ∑
j∈Ih

βij uiu
2
j � (λi − β)ui, for |x| � R,

which implies that −�(z − ui) + β(z − ui) � 0 for |x| � R. On the other hand, there exists 
C > 0 and a sufficiently large α > 0, such that

∑
j∈Ih

βij uiu
2
j � C � αβ

1 + βR2
e−√

1+βR2 � αβ

1 + β|x|2 e−√
1+β|x|2 for |x| ≤ R.

To sum up, we show that it is possible to choose α > 0 in such a way that

−�(z − ui) + β(z − ui) � 0 in R
N,

and testing the inequality with (z − ui)
−, we deduce that ui � z. �
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For h = 1, . . . , m, we introduce

Ẽh(v) := 1

4

∑
i∈Ih

∫
�

(|∇vi |2 + λiv
2
i ) = 1

4
‖v‖2

h

M̃h :=

⎧⎪⎨⎪⎩v : v �= 0 and ‖v‖2
h ≤

∑
(i,j)∈I 2

h

∫
RN

βij v
2
i v

2
j

⎫⎪⎬⎪⎭
l̃h := inf

M̃h

Ẽh.

Lemma 5.2. Both lh and l̃h are achieved, lh = l̃h, and any minimizer for l̃h is a minimizer for lh.

Proof. Since Mh ⊂ M̃h and

Eh(v) = 1

4
‖v‖2

h = Ẽh(v) ∀v ∈ Mh,

we have l̃h ≤ lh. As far as l̃h is concerned, we start by observing that, if v ∈ M̃h, then also its 
Schwarz symmetrization v∗ ∈ M̃h, and by the Polya–Szego inequality ‖v∗‖2

h ≤ ‖v‖2
h. There-

fore,

l̃h = inf
{
Ẽh(v) : v ∈ M̃h, v is radial

}
.

The functional Ẽh is coercive in H 1
rad(R

N), so that any minimizing sequence is bounded from 
above. Reasoning exactly as in Lemma 2.4, any such sequence is also bounded from below. This 
permits immediately to obtain the existence of a minimizer for l̃h (in this step it is used the fact 
that H 1

rad(R
N) compactly embeds into L4(RN) for N = 2, 3). To complete the proof, we show 

that if ṽ is a minimizer for l̃h, then ṽ ∈ Mh and Ẽh(ṽ) = lh. Let 
(t) := Eh(
√

t ṽ). By definition 
we have that

t > 0 and 
 ′(t) = 0 ⇐⇒ √
t ṽ ∈ M̃h.

By direct computations, it is easy to check that the unique positive critical point of 
 is given 
by

t̃ = ‖ṽ‖2
h∑

(i,j)∈I 2
h

∫
RN ṽ2

i ṽ
2
j

≤ 1,

where the last estimate follows by the fact that ṽ ∈ M̃h. Thus, we have

lh ≤ Eh

(√
t̃ ṽ
)

= 1

4
‖ṽ‖2

ht̃ ≤ 1

4
‖ṽ‖2

h = l̃h,

which implies lh = l̃h, and in turn forces t̃ = 1, that is ṽ ∈Mh. �
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From now on, for each h = 1, . . . , m, we fix a minimizer vh for lh, hence a non-trivial solution 
of (5.1). We have the following decay estimate.

Lemma 5.3. Let e1 �= e2 ∈ S
N−1. Then, whenever h1 �= h2,

lim
R→+∞

∫
RN

∑
(i,j)∈Ih1×Ih2

(
v

h1
i (x − Re1)v

h2
j (x − Re2)

)2
dx = 0.

Proof. Since e1 �= e2, R|e1 − e2| → +∞ as R → +∞. Recalling from Lemma 5.1 that each vh
i

is exponentially decaying as |x| → +∞, the thesis follows easily. �
In the next lemma we show that the least energy level of the complete d system (1.2), which is 

denoted by l, can be controlled by the sum of the least energy levels lh of the sub-systems (5.1).

Lemma 5.4. In the previous notation, we have l ≤ ∑m
h=1 lh.

Proof. First of all, we observe that

J (u) =
m∑

h=1

Eh(uh) +
∑

(i,j)∈K2

∫
RN

βiju
2
i u

2
j .

Let e1, e2, . . . , em ∈ S
N−1 with ei �= ej for i �= j be m different directions in RN . For R > 0, we 

define uR by means of

uR
i (x) := vh

i (x − Reh) for i ∈ Ih, for h = 1, . . . ,m.

Clearly, by a change of variables we have that

Eh(uR
h ) = lh ∀R > 0.

We aim at solving the linear system in t1, . . . , tm

∂

∂th
J
(√

t1uR
1 , . . . ,

√
tmuR

m

)
= 0 ⇐⇒

m∑
k=1

MB(uR)hktk = ‖uR
h ‖2

h.

We claim that, for every R 
 1 sufficiently large, this system has a solution (tR1 , . . . , tRm) with 
0 < tRh → 1 as R → +∞. Once that this is proved, we deduce that

(√
tR1 uR

1 , . . . ,

√
tRmuR

m

)
∈ M. (5.2)

To prove the claim, we observe that by Lemma 5.3 MB(uR)hk → 0 as R → +∞ for every h �= k. 
Since on the contrary MB(uR)hh is positive and constant in R, we deduce that MB(uR) is strictly
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diagonally dominant, and hence invertible, for every R sufficiently large. As a consequence, for 
any such R we can compute⎛⎜⎝ tR1

...

tRm

⎞⎟⎠ = MB(uR)−1

⎛⎜⎝ ‖uR
1 ‖2

1
...

‖uR
m‖2

m

⎞⎟⎠ = MB(uR)−1

⎛⎜⎝ ‖v1‖2
1

...

‖vm‖2
m

⎞⎟⎠ .

But, as already observed, MB(uR) is converging to a diagonal matrix, whose diagonal entry in 
the h-th row is equal to

∑
(i,j)∈I 2

h

∫
RN

(
vh
i (x − Reh)v

h
j (x − Reh)

)2
dx =

∑
(i,j)∈I 2

h

∫
RN

(vh
i vh

j )2,

so that

lim
R→+∞ tRh = ‖vh‖2

h∑
(i,j)∈I 2

h

∫
RN (vh

i vh
j )2

= 1,

where we used the fact that by assumption vh ∈Mh.
To sum up, we have just showed that for any large R there exists tR � 1 such that (5.2) holds. 

Therefore

l ≤ lim
R→+∞J

(√
tR1 uR

1 , . . . ,

√
tRmuR

m

)

= lim
R→+∞

m∑
h=1

Eh

(√
tRh uR

h

)
+ lim

R→+∞
∑
h�=k

MB

(√
tR1 uR

1 , . . . ,

√
tRmuR

m

)

=
m∑

h=1

Eh

(
vh

)
=

m∑
h=1

lh. �

Now we have to show that the opposite inequality holds.

Lemma 5.5. There holds l ≥ ∑m
h=1 lh.

Proof. Let u ∈M. Thanks to the assumption βij ≤ 0 for every (i, j) ∈ K2, we have

0 < ‖uh‖2
h =

m∑
k=1

MB(u)hk ≤ MB(u)hh,

so that uh ∈ M̃h for every h = 1, . . . , m. As a consequence

1

4
‖uh‖2

h ≥ inf
v∈M̃h

1

4
‖v‖2

h = l̃h = lh, and J (u) =
m∑

h=1

1

4
‖uh‖2

h ≥
m∑

h=1

lh. � (5.3)
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Conclusion of the proof of Theorem 1.6. By contradiction, we suppose that there exists u ∈M
such that J (u) = l. Thanks to the fact that M is a natural constraint (cf. Lemma 2.3, which holds 
also in H 1(RN)), u is a solution of (1.2), which we can assume to be nonnegative. By the strong 
maximum principle and the definition of M, we deduce that for every h there exists ih such that 
uih > 0 in RN . To reach a contradiction, we observe that the first equation in (5.3), together with 
the fact that 

∑
h lh = l, imply that necessarily

1

4
‖uh‖2

h = lh = l̃h.

Since βij ≤ 0 for every (i, j) ∈ K2, we have uh ∈ M̃h, so that uh minimizes l̃h = lh. Thus, by 
the last statement of Lemma 5.2, also uh ∈Mh, and in particular

‖uh‖2
h = MB(u)hh ∀h = 1, . . . ,m.

This is in contradiction with the fact that, since u was supposed to be in M, we have

‖uh1‖2
h1

=
m∑

k=1

MB(u)h1k ≤ MB(u)h1h1 +
∫
RN

βih1 ih2
u2

ih1
u2

ih2
< MB(u)h1h1 ,

(for the reader’s convenience we recall that h1 and h2 have been introduce in the assumptions of 
Theorem 1.6). �
Remark 5.6. A remarkable fact, which marks a significant difference in our proof with respect 
to that of Theorem 1 in [15], is that we do not assume that each lh admits a unique minimizer, 
nor that it is achieved by a unique positive solution, of the form ui(x) = αiw(σix) (with w
the unique positive radially decreasing solution of the related single equation problem). This 
was used in [15]. Instead, our argument is only based upon the decay estimate provided by 
Lemma 5.1.

Concerning the uniqueness of ground states, although sufficient conditions that imply unique-
ness are already known in the literature, it is still an open problem to completely determine the 
range of parameters for which completely cooperative systems as (5.1) have a unique solution, 
corresponding to the least energy positive level. This is known in the 2 component case with 
λ1 = λ2 and β12 > max{β11, β22}, see [31]. For systems of more than 2 components, we refer 
to Theorem 1.1 in [17], where it is shown in particular that if λi ≡ λ and βij , i �= j are large 
and satisfy additional technical assumptions, then any sub-system (5.1) has a unique least en-
ergy positive solution. The results in [19, Section 2], in [25, Section 4], and [4, Proposition 2.1]
suggest that uniqueness should hold also in more general situations.
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