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Abstract

A class of chemotaxis-Stokes systems generalizing the prototype⎧⎨⎩ nt + u · ∇n = ∇ · (nm−1∇n
) − ∇ · (n∇c

)
,

ct + u · ∇c = �c − nc,

ut + ∇P = �u + n∇φ, ∇ · u = 0,

is considered in bounded convex three-dimensional domains, where φ ∈ W2,∞(�) is given.
The paper develops an analytical approach which consists in a combination of energy-based arguments 

and maximal Sobolev regularity theory, and which allows for the construction of global bounded weak 
solutions to an associated initial-boundary value problem under the assumption that

m >
9

8
. (0.1)

Moreover, the obtained solutions are shown to approach the spatially homogeneous steady state ( 1
|�|

∫
� n0,

0, 0) in the large time limit.
This extends previous results which either relied on different and apparently less significant energy-type 

structures, or on completely alternative approaches, and thereby exclusively achieved comparable results 
under hypotheses stronger than (0.1).
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1. Introduction

We consider the chemotaxis-Stokes system

⎧⎪⎨⎪⎩
nt + u · ∇n = ∇ ·

(
D(n)∇n

)
− ∇ · (n∇c

)
, x ∈ �, t > 0,

ct + u · ∇c = �c − nc, x ∈ �, t > 0,

ut + ∇P = �u + n∇φ, ∇ · u = 0, x ∈ �, t > 0,

(1.1)

which was proposed in [35] and [9] as a model for the spatio-temporal evolution in populations of 
oxytactically moving bacteria that interact with a surrounding fluid through transport and buoy-
ancy, where n, c, u and P denote the density of cells, the oxygen concentration, the fluid velocity 
and its associated pressure, respectively, and where the diffusivity D and the gravitational po-
tential φ = φ(x) are given smooth parameter functions (cf. also [2] for a recent independent 
derivation of (1.1) on the basis of fundamental principles from the kinetic theory of active parti-
cles). Indeed, as reported in [10] and [35], even in such a simple setting lacking any reinforcement 
of chemotactic motion by signal production through cells, quite a colorful collective behavior can 
be observed, including the formation of aggregates and the emergence of large-scale convection 
patterns.

In modification of the original model from [35] in which D ≡ 1, the authors in [9] suggested 
to adequately account for the finite size of bacteria by assuming that the random movement of 
cells is nonlinearly enhanced at large densities, leading to the choice

D(s) = sm−1 for s ≥ 0 (1.2)

with some m > 1 in the prototypical case of porous medium type diffusion. In comparison to the 
case D ≡ 1, nonlinear diffusion mechanisms of this type may suppress the occurrence of blow-up 
phenomena, as known to be enforced by chemotactic cross-diffusion e.g. in frameworks such as 
that addressed by the classical Keller–Segel system ([19], [43]). In fact, in three-dimensional ini-
tial value problems for (1.1) with D ≡ 1, global smooth and bounded solutions could be shown to 
exist only under appropriate smallness assumptions on the initial data ([11], [23], [7], [6]), while 
for arbitrarily large data so far only certain global weak solutions have been constructed, which 
do become smooth eventually but may develop singularities prior to such ultimate regularization 
([42], [47]). Contrary to this, assuming (1.2) to hold, recent analysis has revealed the condition

m >
7

6
(1.3)

as sufficient for global existence and boundedness of weak solutions to an associated no-flux-
no-flux-Dirichlet initial-boundary value problem for all reasonably regular initial data in three-
dimensional bounded convex domains ([45], cf. also [27]). This partially extended a precedent 
result which asserted global solvability within the larger range m > 8 , but only in a class of weak 
7
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solutions locally bounded in �×[0, ∞) ([33]). For smaller values of m > 1, up to now existence 
results are limited to classes of possibly unbounded solutions ([12]).

In view of lacking complementary results on possibly occurring singularity formation phe-
nomena, the question of identifying an optimal condition on m ≥ 1 ensuring global boundedness 
in the three-dimensional version of (1.1) remains an open challenge, thus marking a substantial 
difference to the two-dimensional situation in which global existence and boundedness results 
are available for several variants of (1.1) already in presence of linear cell diffusion, and even 
when the fluid flow is governed by the corresponding full nonlinear Navier–Stokes system ([11], 
[42], [44], [8], [48], see also [22] and [32]).

Main results. It is the purpose of this work to demonstrate how an adequate combination of 
energy-based arguments and maximal Sobolev regularity theory can be used to further advance 
the analysis of (1.1), with D essentially of the form in (1.2), even in previously unexplored ranges 
of m. In fact, in the first step our approach we will make use of an observation to be stated in 
Lemma 3.1, according to which the system (1.1) also for m > 1 continues to feature an energy-
type structure known to be present when m = 1 even in an associated chemotaxis-Navier–Stokes 
system ([46]; cf. also [11] and [42] for precedent partial findings in this direction). By means 
of a first iterative bootstrap procedure, the correspondingly obtained a priori estimates will be 
turned into some regularity information on the solution component n (Section 4 and Section 5), 
which itself can be used as a starting point for a second recursive argument: Namely, investigat-
ing how far regularity information of the latter type influences integrability properties of u and 
∇c through maximal Sobolev regularity estimates (Section 6), we will be able to successively 
improve our knowledge on available integral bounds for all solution components under the mild 
assumption that in the setup of (1.2) we merely have

m >
9

8
(1.4)

(Section 7 and Section 8). The estimates thereby obtained will provide appropriate compactness 
properties which will firstly allow us to construct global bounded weak solutions to (1.1) via a 
suitable approximation procedure (Section 9), and which thereafter secondly enable us to assert 
stabilization toward spatially homogeneous equilibria (Section 10).

In order to formulate our results in these directions, let us specify the setup of our analysis by 
declaring that throughout the sequel we shall assume D to generalize the choice in (1.2) in that

D ∈ Cϑ
loc([0,∞)) ∩ C2((0,∞)) is such that D(s) ≥ kDsm−1 for all s ≥ 0 (1.5)

with some ϑ ∈ (0, 1), kD > 0 and m > 1, and by considering the initial-boundary value problem 
for (1.1) associated with the requirements that

n(x,0) = n0(x), c(x,0) = c0(x) and u(x,0) = u0(x), x ∈ �, (1.6)

as well as (
D(n)∇n − n∇c

)
· ν = 0,

∂c = 0 and u = 0 on ∂�, (1.7)

∂ν
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in a bounded convex domain � ⊂ R
3 with smooth boundary. As for the initial data herein, we 

shall suppose for convenience that⎧⎪⎨⎪⎩
n0 ∈ Cω(�) for some ω > 0 with n0 ≥ 0 in � and n0 	≡ 0, that

c0 ∈ W 1,∞(�) satisfies c0 ≥ 0 in �, and that

u0 ∈ D(Aα) for some α ∈ ( 3
4 ,1),

(1.8)

where A = −P� denotes the Stokes operator in L2
σ (�) := {ϕ ∈ L2(�) | ∇ · ϕ = 0} with its 

domain given by D(A) := W 2,2(�) ∩W
1,2
0 (�) ∩L2

σ (�), and with P representing the Helmholtz 
projection on L2(�) ([29]).

We shall then obtain the following result on global existence and large time behavior, where 
as in several places below we make use of the abbreviation ϕ := 1

|�|
∫
�

ϕ for ϕ ∈ L1(�).

Theorem 1.1. Let � ⊂ R
3 be a bounded convex domain with smooth boundary and φ ∈

W 2,∞(�), and suppose that D is such that (1.5) holds with some

m >
9

8
. (1.9)

Then for each n0, c0 and u0 satisfying (1.8) there exist functions⎧⎪⎨⎪⎩
n ∈ L∞(� × (0,∞)) ∩ C0([0,∞); (W 2,2

0 (�))�),

c ∈ ⋂
p>1 L∞((0,∞);W 1,p(�)) ∩ C0(� × [0,∞)) ∩ C1,0(� × (0,∞)),

u ∈ L∞(� × (0,∞)) ∩ L2
loc([0,∞);W 1,2

0 (�) ∩ L2
σ (�)) ∩ C0(� × [0,∞))

(1.10)

such that the triple (n, c, u) forms a global weak solution of (1.1), (1.6), (1.7) in the sense of 
Definition 9.1 below.

Moreover, this solution has the property that for arbitrary p ≥ 1 we have

‖n(·, t) − n0‖Lp(�) + ‖c(·, t)‖W 1,∞(�) + ‖u(·, t)‖L∞(�) → 0 as t → ∞. (1.11)

As a by-product, this trivially extends previous results on blow-up suppression in the associ-
ated fluid-free chemotaxis system with porous medium-type diffusion and signal consumption, 
as obtained on letting u ≡ 0 in (1.1). Even for the latter, apparently somewhat simpler system, 
only under the assumption (1.3) global bounded solutions have been known to exist ([36]), with 
again no example of blow-up available for any choice of D yet.

In order to further put these results in perspective, let us note that alternative modeling ap-
proaches suggest to introduce as blow-up inhibiting mechanisms certain saturation effects in the 
cross-diffusive term in (1.1) at large cell densities (cf. e.g. the survey [20]). Indeed, if in (1.1)
the summand −∇ · (n∇c) is replaced by −∇ · (nS(n)∇c) with S suitably generalizing the pro-
totype given by S(s) = (s + 1)−α for all s ≥ 0 and some α > 0, then known results assert global 
existence of bounded solutions to a corresponding initial-boundary value problem when in the 
context of (1.5) we have m ≥ 1 and m + α > 7

6 ([40]), which in the particular case α = 0 con-
sidered here rediscovers (1.3) and is thereby stronger than (1.9). An interesting open problem, 
partially addressed in [38] and [39], consists in determining optimal conditions on the interplay 
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between these two mechanisms which indeed prevent explosions. This may be viewed as part 
of a more comprehensive ambition to understand the destabilizing potential of chemotaxis-fluid 
interaction that has been in the focus also of studies including further relevant processes such as 
logistic proliferation and death, or off-diagonal cross-diffusive migration ([28], [37], [4], [6], [5], 
[3]).

2. Approximation by non-degenerate problems

In order to construct solutions of (1.1) through an appropriate approximation, following natu-
ral regularization procedures we fix a family (Dε)ε∈(0,1) of functions

Dε ∈ C2([0,∞)) such that Dε(s) ≥ ε for all s ≥ 0 and ε ∈ (0,1) and

D(s) ≤ Dε(s) ≤ D(s) + 2ε for all s ≥ 0 and ε ∈ (0,1), (2.1)

and we moreover regularize the cross-diffusive term in (1.1) by introducing a family (χε)ε∈(0,1) ⊂
C∞

0 ([0, ∞)) fulfilling

0 ≤ χε ≤ 1 in [0,∞), χε ≡ 1 in [0, 1
ε
] and χε ≡ 0 in [ 2

ε
,∞), (2.2)

and by letting

Fε(s) :=
s∫

0

χε(σ )dσ, s ≥ 0, (2.3)

for ε ∈ (0, 1). Then Fε ∈ C∞([0, ∞)) satisfies

0 ≤ Fε(s) ≤ s and 0 ≤ F ′
ε(s) ≤ 1 for all s ≥ 0 (2.4)

as well as

Fε(s) ↗ s for all s ≥ 0 and F ′
ε(s) ↗ 1 for all s > 0 as ε ↘ 0. (2.5)

These choices in particular guarantee that each of the approximate variants of (1.1), (1.6), (1.7)
given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tnε + uε · ∇nε = ∇ ·
(
Dε(nε)∇nε

)
− ∇ ·

(
nεF

′
ε(nε)∇cε

)
, x ∈ �, t > 0,

∂t cε + uε · ∇cε = �cε − Fε(nε)cε, x ∈ �, t > 0,

∂tuε + ∇Pε = �uε + nε∇φ, x ∈ �, t > 0,

∇ · uε = 0, x ∈ �, t > 0,

∂nε

∂ν
= ∂cε

∂ν
= 0, uε = 0, x ∈ ∂�, t > 0,

nε(x,0) = n0(x), cε(x,0) = c0(x), uε(x,0) = u0(x), x ∈ �,

(2.6)

for ε ∈ (0, 1), possesses globally defined classical solutions:
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Lemma 2.1. Assume (1.8), and let ε ∈ (0, 1). Then there exist functions⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
nε ∈ C0(� × [0,∞)) ∩ C2,1(� × (0,∞)),

cε ∈ C0(� × [0,∞)) ∩ C2,1(� × (0,∞)),

uε ∈ C0(� × [0,∞)) ∩ C2,1(� × (0,∞)),

Pε ∈ C1,0(� × (0,∞)),

such that (nε, cε, uε, Pε) solves (2.6) classically in � × (0, ∞), and such that nε and cε are 
nonnegative in � × (0, ∞).

Proof. By means of standard arguments from the local existence theories of taxis-type cross 
diffusive parabolic systems and the Stokes evolution equation ([1], [29], [25], [42]), it fol-
lows that there exist Tmax,ε ∈ (0, ∞] and at least one classical solution (nε, cε, uε, Pε) ∈(
C0(� × [0, Tmax,ε); R5) ∩ C2,1(� × (0, Tmax,ε); R5)

)
× C1,0(� × (0, Tmax,ε)) which is such 

that nε ≥ 0 and cε ≥ 0 in � × (0, Tmax,ε), that cε ∈ C0([0, Tmax,ε); W 1,p(�)) for all p ≥ 1 and 
that if Tmax,ε < ∞ then

lim sup
t↗Tmax,ε

(
‖nε(·, t)‖C2(�) + ‖cε(·, t)‖C2(�) + ‖uε(·, t)‖C2(�)

)
= ∞. (2.7)

For each T > 0, however, using that for any fixed ε ∈ (0, 1) the function F ′
ε has its support located 

in [0, 2
ε
] according to (2.3) and (2.2), successive application of well-established Lp estimation 

techniques and methods from higher order regularity theories for scalar parabolic equations and 
the Stokes system yields C1(ε, T ) > 0 such that

‖nε(·, t)‖C2(�) + ‖cε(·, t)‖C2(�) + ‖uε(·, t)‖C2(�) ≤ C1(ε, T ) for all t ∈ (τε, T̂max,ε),

where τε := min{ 1
2T , 12Tmax,ε} and T̂max,ε := min{T , Tmax,ε}. This shows that (2.7) cannot hold 

when Tmax,ε is finite, whence we actually must have Tmax,ε = ∞. �
In order to simplify presentation, throughout the sequel we shall tacitly assume that 

(n0, c0, u0) satisfies (1.8), and that for ε ∈ (0, 1), (nε, cε, uε, Pε) denotes the corresponding 
solution to (2.6) obtained in Lemma 2.1.

The following two basic properties thereof are immediate consequences of an integration in 
the first equation in (2.6), as well as an application of the maximum principle to the second.

Lemma 2.2. We have

‖nε(·, t)‖L1(�) =
∫
�

n0 for all t > 0 (2.8)

as well as

‖cε(·, t)‖L∞(�) ≤ ‖c0‖L∞(�) for all t > 0. (2.9)
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3. Directly exploiting the natural quasi-energy structure of (2.6)

Some first regularity properties beyond those from Lemma 2.2 can be obtained by making use 
of a quasi-energy structure which the approximate problems (2.6) inherit from (1.1) thanks to the 
particular link between the dependence on nε of the interaction terms −∇ · (nεF

′
ε(nε)∇cε) and 

−Fε(nε)cε therein. Similar energy-like properties have been used in previous studies on related 
problems ([11], [33], [42]), but only in few cases the fluid velocity has been included ([24], [46], 
[47]).

Lemma 3.1. There exist κ > 0 and C > 0 such that

d

dt

{∫
�

nε lnnε + 1

2

∫
�

|∇cε|2
cε

+ κ

∫
�

|uε|2
}

+ 1

C

{∫
�

nε lnnε + 1

2

∫
�

|∇cε|2
cε

+ κ

∫
�

|uε|2
}

+ 1

C

{∫
�

nm−2
ε |∇nε|2 +

∫
�

|∇cε|4
c3
ε

+
∫
�

|∇uε|2
}

≤ C for all t > 0. (3.1)

Proof. The derivation of (3.1) follows a standard reasoning combining ideas from [11], [42] and 
[46]: By means of straightforward computation using the first two equations in (2.6) (cf. [42, 
Lemma 3.2] for details), we obtain the identity

d

dt

{∫
�

nε lnnε + 1

2

∫
�

|∇cε|2
cε

}
+

∫
�

Dε(nε)

nε

|∇nε|2 +
∫
�

cε|D2 ln cε|2

= −1

2

∫
�

|∇cε|2
c2
ε

(uε · ∇cε) +
∫
�

�cε

cε

(uε · ∇cε)

−1

2

∫
�

Fε(nε)
|∇cε|2

cε

+ 1

2

∫
∂�

1

cε

∂|∇cε|2
∂ν

for all t > 0, (3.2)

where

∫
�

Dε(nε)

nε

|∇nε|2 ≥ kD

∫
�

nm−2
ε |∇nε|2 for all t > 0 (3.3)

by (2.1) and (1.5), and where the two last summands on the right are nonpositive by nonnegativity 

of Fε and due to the fact that ∂|∇cε |2
∂ν

≤ 0 on ∂� × (0, ∞) thanks to the convexity of � ([26, 
Lemme 2.I.1]). We next recall from [42, Lemma 3.3] that
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∫
�

|∇cε|4
c3
ε

≤ C1

∫
�

cε|D2 ln cε|2 for all t > 0

with C1 := (2 + √
3)2, and, after two integrations by parts in (3.2), combine (2.9) with Young’s 

inequality to estimate

−1

2

∫
�

|∇cε|2
c2
ε

(uε ·∇cε)+
∫
�

�cε

cε

(uε ·∇cε) = 1

2

∫
�

|∇cε|2
c2
ε

(uε ·∇cε)−
∫
�

1

cε

∇cε · (D2cε ·∇uε)

−
∫
�

1

cε

∇cε · (∇uε · ∇cε)

= −
∫
�

1

cε

∇cε · (∇uε · ∇cε)

≤ 1

2C1

∫
�

|∇cε|4
c3
ε

+ C2

∫
�

|∇uε|2 for all t > 0

(3.4)

with C2 := 1
2‖c0‖L∞(�). Now testing the third equation in (2.6) by uε , thanks to the continuity of 

the embeddings W 1,2
0 (�) ↪→ L6(�) and W 1,2(�) ↪→ L

12
5m (�) we independently see using the 

Gagliardo–Nirenberg inequality, Young’s inequality and (2.8) that there exist positive constants 
C3, C4, C5 and C6 such that

1

2

d

dt

∫
�

|uε|2 +
∫
�

|∇uε|2 =
∫
�

nεuε · ∇φ

≤ ‖∇φ‖L∞(�)‖uε‖L6(�)‖nε‖
L

6
5 (�)

≤ C3‖∇uε‖L2(�)‖n
m
2
ε ‖

2
m

L
12
5m (�)

≤ 1

2

∫
�

|∇uε|2 + C2
3

2
‖n

m
2
ε ‖

4
m

L
12
5m (�)

≤ 1

2

∫
�

|∇uε|2 + C4 ·
{
‖∇n

m
2
ε ‖

2
3m−1

L2(�)
‖n

m
2
ε ‖

10m−4
3m2−m

L
2
m (�)

+ ‖n
m
2
ε ‖

4
m

L
2
m (�)

}

≤ 1

2

∫
�

|∇uε|2 + C5‖∇n
m
2
ε ‖

2
3m−1

L2(�)
+ C5

≤ 1

2

∫
�

|∇uε|2 + kD

4(C2 + 1)

∫
�

nm−2
ε |∇nε|2 + C6 for all t > 0.

In combination with (3.2), (3.3) and (3.4), this shows that
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d

dt

{∫
�

nε lnnε + 1

2

∫
�

|∇cε|2
cε

+ (C2 + 1)

∫
�

|uε|2
}

+kD

2

∫
�

nm−2
ε |∇nε|2 + 1

2C1

∫
�

|∇cε|4
c3
ε

+
∫
�

|∇uε|2

≤ 2(C2 + 1)C6 for all t > 0.

Since finally from the Gagliardo–Nirenberg inequality along with Young’s inequality and (2.9)
we readily obtain C7 > 0 such that

∫
�

nε lnnε + 1

2

∫
�

|∇cε|2
cε

+ (C2 + 1)

∫
�

|uε|2

≤ C7 ·
{∫

�

nm−2
ε |∇nε|2 +

∫
�

|∇cε|4
c3
ε

+
∫
�

|∇uε|2 + 1

}

for all t > 0, this readily establishes (3.1) upon evident choices of κ and C. �
In the sequel we shall make use of the latter exclusively through the following direct conse-

quences.

Lemma 3.2. There exists C > 0 such that for all ε ∈ (0, 1),

t+1∫
t

∫
�

|∇n
m
2
ε |2 ≤ C for all t ≥ 0 (3.5)

and

t+1∫
t

∫
�

|∇cε|4 ≤ C for all t ≥ 0 (3.6)

as well as

t+1∫
t

∫
�

|∇uε|2 ≤ C for all t ≥ 0. (3.7)

Proof. All inequalities immediately result from an integration of (3.1) because of (2.9) and the 
fact that 

∫
�

nε lnnε ≥ −|�|
e

for all t ≥ 0. �
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4. Preparing an inductive argument

We next address the question how far an informational background such as the one provided 
by Lemma 3.2 and Lemma 2.2 can be exploited so as to derive further regularity features of 
solutions to (2.6). More precisely, we shall be concerned with the problem of finding appropriate 
conditions on m and the numbers p� ≥ 1 and p� > p� such that bounds of the form

∫
�

np
ε (·, t) ≤ C and

t+1∫
t

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 ≤ C for all t ≥ 0, (4.1)

assumed to be present for p = p�, can be shown to imply the same estimates for the correspond-
ing quantities for p = p�.

Our first result in this direction actually requires a bound for nε in the single space 
L∞((0, ∞); Lp�(�)) only, but additionally relies on a space-time regularity property of ∇cε

in asserting the following.

Lemma 4.1. Let m > 1, p� ≥ 1, p > 1 and q ≥ 2 be such that

p ≤ 2(q − 1)

3
p� + (2q − 1)(m − 1). (4.2)

Then for all K > 0 there exists C = C(p�, p, q, K) > 0 such that if for some ε ∈ (0, 1) we have

∫
�

np�
ε (·, t) ≤ K for all t ≥ 0 (4.3)

and

t+1∫
t

∫
�

|∇cε|2q ≤ K for all t ≥ 0, (4.4)

then ∫
�

np
ε (·, t) ≤ C for all t ≥ 0 (4.5)

and

t+1∫
t

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 ≤ C for all t ≥ 0. (4.6)
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Proof. In view of (2.8) and Lemma 3.2, since 2(q−1)
3 p� + (2q − 1)(m − 1) ≥ (2q − 1)(m − 1) ≥

3(m − 1) we may assume without loss of generality that p > m − 1 and p ≥ p�. We then test the 
first equation in (2.6) by np−1

ε and use Young’s inequality along with (2.1), (1.5) and (2.4) to see 
that for all t > 0,

1

p

d

dt

∫
�

np
ε + (p − 1)kD

∫
�

np+m−3
ε |∇nε|2 ≤ 1

p

d

dt

∫
�

np
ε + (p − 1)

∫
�

np−2
ε Dε(nε)|∇nε|2

= (p − 1)

∫
�

np−1
ε F ′

ε(nε)∇nε · ∇cε

≤ (p − 1)kD

2

∫
�

np+m−3
ε |∇nε|2

+ p − 1

2kD

∫
�

np−m+1
ε |∇cε|2

so that

d

dt

∫
�

np
ε + C1

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 ≤ p(p − 1)

2kD

∫
�

np−m+1
ε |∇cε|2 for all t > 0 (4.7)

with C1 := 2p(p−1)kD

(p+m−1)2 . Now in order to further estimate the right-hand side herein, we invoke the 
Hölder inequality to obtain

∫
�

np−m+1
ε |∇cε|2 ≤

{∫
�

n(p−m+1)q ′
ε

} 1
q′

·
{∫

�

|∇cε|2q

} 1
q

for all t > 0 (4.8)

with q ′ := q
q−1 , where we firstly note that in the case when (p − m + 1)q ′ ≤ p�, (4.3) together 

with the Hölder inequality yield C2 > 0 such that

{∫
�

n(p−m+1)q ′
ε

} 1
q′

≤ C2 for all t > 0. (4.9)

If, conversely, (p − m + 1)q ′ > p� then due to our assumption q ≥ 2 we have

2(p − m + 1)q ′

p + m − 1
≤ 2q ′ ≤ 4 < 6

and thus W 1,2(�) ↪→ L
2(p−m+1)q′

p+m−1 (�) ↪→ L
2p�

p+m−1 (�), whence in particular the number

a := 3(p + m − 1)[(p − m + 1)q ′ − p�]
′
(p − m + 1)[3(p + m − 1) − p�]q
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satisfies a ∈ [0, 1], and accordingly the Gagliardo–Nirenberg inequality provides C3 > 0 such 
that {∫

�

n(p−m+1)q ′
ε

} 1
q′

=
∥∥∥n

p+m−1
2

ε

∥∥∥ 2(p−m+1)
p+m−1

L
2(p−m+1)q′

p+m−1 (�)

≤ C3

∥∥∥∇n
p+m−1

2
ε

∥∥∥ 6[(p−m+1)q′−p�]
[3(p+m−1)−p�]q′
L2(�)

∥∥∥n
p+m−1

2
ε

∥∥∥ 2(p−m+1)
p+m−1 (1−a)

L
2p�

p+m−1 (�)

+ C3

∥∥∥n
p+m−1

2
ε

∥∥∥ 2(p−m+1)
p+m−1

L
2p�

p+m−1 (�)

for all t > 0. As ∥∥∥n
p+m−1

2
ε

∥∥∥ 2p�
p+m−1

L
2p�

p+m−1 (�)

=
∫
�

np�
ε ≤ K for all t > 0

by (4.3), together with (4.9), (4.8) and Young’s inequality this shows that regardless of the sign 
of (p − m + 1)q ′ − p� we can find C4 > 0 and C5 > 0 fulfilling

p(p − 1)

2kD

∫
�

np−m+1
ε |∇cε|2 ≤ C4 ·

{∥∥∥∇n
p+m−1

2
ε

∥∥∥ 6[(p−m+1)q′−p�]
[3(p+m−1)−p�]q′
L2(�)

+ 1

}
· ‖∇cε‖2

L2q (�)

≤ 2−q ′
C1 ·

{∥∥∥∇n
p+m−1

2
ε

∥∥∥ 6[(p−m+1)q′−p�]
[3(p+m−1)−p�]q′
L2(�)

+ 1

}q ′

+ C5‖∇cε‖2q

L2q (�)

≤ C1

2
·
{∥∥∥∇n

p+m−1
2

ε

∥∥∥ 6[(p−m+1)q′−p�]
3(p+m−1)−p�

L2(�)
+ 1

}
+ C5‖∇cε‖2q

L2q (�)
(4.10)

for all t > 0, the latter inequality being valid because (ξ + η)q
′ ≤ 2q ′−1(ξq ′ + ηq ′

) for all ξ ≥ 0
and η ≥ 0.

Now our assumption (4.2) enters by ensuring that

6[(p − m + 1)q ′ − p�]
3(p + m − 1) − p�

− 2 = 6(q ′ − 1)p − 4p� − 6(m − 1)(q ′ + 1)

3(p + m − 1) − p�

= 6

[3(p + m − 1) − p�](q − 1)

·
{
p − 2(q − 1)

3
p� − (2q − 1)(m − 1)

}
≤ 0,

whence another application of Young’s inequality yields

C1

2
·
{∥∥∥∇n

p+m−1
2

ε

∥∥∥ 6[(p−m+1)q′−p�]
3(p+m−1)−p�

L2(�)
+ 1

}
≤ C1

2

∫ ∣∣∣∇n
p+m−1

2
ε

∣∣∣2 + C1 for all t > 0.
�



M. Winkler / J. Differential Equations 264 (2018) 6109–6151 6121
Together with (4.10), this shows that (4.7) implies that

d

dt

∫
�

np
ε + C1

2

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 ≤ C5

∫
�

|∇cε|2q + C1 for all t > 0, (4.11)

where a linear absorptive term can be generated again by interpolation in a straightforward 

manner: As according to our restriction p > p� we know that W 1,2(�) ↪→ L
2p

p+m−1 (�) ↪→
L

2p�
p+m−1 (�), the number b := 3(p+m−1)(p−p�)

[3(p+m−1)−p�]p satisfies b ∈ [0, 1] and from the Gagliardo–

Nirenberg inequality, (4.3) and Young’s inequality we obtain C6 > 0 and C7 > 0 such that

∫
�

np
ε =

∥∥∥n
p+m−1

2
ε

∥∥∥ 2p
p+m−1

L
2p

p+m−1 (�)

≤ C6

∥∥∥∇n
p+m−1

2
ε

∥∥∥ 6(p−p�)
3(p+m−1)−p�

L2(�)

∥∥∥n
p+m−1

2
ε

∥∥∥ 2p
p+m−1 (1−b)

L
2p�

p+m−1 (�)

+ C6

∥∥∥n
p+m−1

2
ε

∥∥∥ 2p
p+m−1

L
2p�

p+m−1 (�)

≤ C7

∥∥∥∇n
p+m−1

2
ε

∥∥∥ 6(p−p�)
3(p+m−1)−p�

L2(�)
+ C7

≤ C7

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 + 2C7 for all t > 0,

because 6(p−p�)
3(p+m−1)−p�

≤ 6(p−p�)
3p−p�

≤ 2 by nonnegativity of m − 1 and p�. Therefore, (4.11) shows 

that if we let y(t) := ∫
�

n
p
ε (·, t), t ≥ 0, and h(t) := C5

∫
�

|∇cε(·, t)|2q + 3
2C1, t > 0, than

y′(t) + C1

4C7
y(t) + C1

4

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 ≤ h(t) for all t > 0, (4.12)

where in view of our assumption (4.4) we have

t+1∫
t

h(s)ds ≤ C8 := C5K + 3

2
C1 for all t ≥ 0. (4.13)

In view of an elementary lemma on decay in linear first-order ODEs with suitably decaying 
inhomogeneities (see e.g. [30, Lemma 3.4]), (4.12) thus firstly implies that with some C9 > 0 we 
have y(t) ≤ C9 for all t > 0, whereupon (4.12) and (4.13) secondly entail that

C1

4

t+1∫
t

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2
ds ≤ y(t) +

t+1∫
t

h(s)ds ≤ C8 + C9 for all t ≥ 0,

so that indeed both (4.5) and (4.6) hold with some conveniently large C = C(K) > 0. �
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5. Uniform Lp bounds on nε for p < 9(m − 1) by a first iteration

In a first series of applications of Lemma 4.1, with regard to the regularity assumptions on ∇cε

we shall exclusively rely on the corresponding estimate provided by Lemma 3.2 and intend to 
repeatedly increase the integrability parameter in (4.5) and (4.6), thus keeping the number q := 2
in Lemma 4.1 fixed while successively choosing larger values of p� and p. We shall see that this 
indeed leads to improved information whenever m > 10

9 , and thereby we partially re-discover a 
similar observation that was already made in [33], with an important difference consisting in the 
fact that unlike in the latter reference, here the achieved bounds are global in time.

Lemma 5.1. Let m > 10
9 . Then for all p ∈ [1, 9(m − 1)) there exists C(p) > 0 such that for all 

ε ∈ (0, 1), ∫
�

np
ε (·, t) ≤ C(p) for all t ≥ 0 (5.1)

and

t+1∫
t

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 ≤ C(p) for all t ≥ 0. (5.2)

Proof. We define (pk)k∈N0 ⊂R by letting p0 := 1 and

pk+1 := 2

3
pk + 3(m − 1) for k ≥ 0. (5.3)

It can the readily be verified that due to our assumption m > 10
9 the sequence (pk)k∈N0 is strictly 

increasing with pk ↗ 9(m − 1) as k → ∞, so that by means of an interpolation argument it is 
clear that we only need to prove (5.1) and (5.2) for p = pk and each k ∈N0. To this end, we note 
that the case k = 0 can be covered by combining Lemma 3.2 with (2.8), so that in view of an 
inductive reasoning we are left with the verification of the property that whenever k ∈N0 is such 
that

∫
�

npk
ε (·, t) ≤ C1(k) and

t+1∫
t

∫
�

∣∣∣∇n
pk+m−1

2
ε

∣∣∣2 ≤ C1(k) for all t ≥ 0 and each ε ∈ (0,1)

(5.4)

with some C1(k) > 0, we can find C2(k) > 0 satisfying

∫
�

n
pk+1
ε (·, t) ≤ C2(k) and

t+1∫
t

∫
�

∣∣∣∇n
pk+1+m−1

2
ε

∣∣∣2 ≤ C2(k) for all t ≥ 0 and any ε ∈ (0,1).

(5.5)
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To achieve this, we observe that according to the first inequality in (5.4) and (3.6), the require-
ments (4.3) and (4.5) from Lemma 4.1 are fulfilled for p� := pk and q := 2. In light of (5.3), 
both inequalities in (5.5) therefore result from an application of Lemma 4.1 to p := pk+1. �
6. Improving estimates for ∇cε via maximal Sobolev regularity

We next plan to apply Lemma 4.1 by using the outcome of Lemma 5.1 as a starting point 
with respect to the regularity assumptions on nε, but with regard to the hypothesis (4.4) no 
longer going back to Lemma 3.2 but rather using suitably improved integrability information 
on ∇cε . Within a range of m which is smaller than that in Lemma 5.1 but yet larger than the 
interval ( 9

8 , ∞) we shall finally focus on, such further properties can indeed be gained under 
the assumptions provided by the result of Lemma 5.1 by means of the key Lemma 6.3 below 
which in turn relies on the following statement on time-independent bounds for uε in appropriate 
Lebesgue spaces.

Lemma 6.1. Let m > 215
192 . Then there exists δ1(m) > 0 such that for all p > 1 fulfilling p >

9(m − 1) − δ1(m) and K > 0 one can find C(p, K) > 0 with the property that if for some 
ε ∈ (0, 1) we have ∫

�

np
ε (·, t) ≤ K for all t ≥ 0, (6.1)

then ∫
�

|uε(·, t)| 2(5p+3m−3)
3 ≤ C(p,K) for all t ≥ 0. (6.2)

Proof. We let

ρ(p) := 20p2 − (33 − 12m)p − 18(m − 1), p ∈R.

Then our assumption m > 215
192 precisely warrants that

ρ(9(m − 1)) = 1620(m − 1)2 − 9 · (33 − 12m)(m − 1) − 18(m − 1)

= 9(m − 1)(192m − 215) > 0,

while since 215
192 > 131

124 we moreover have

ρ′(p) = 40p − 33 + 12m ≥ 360(m − 1) − 33 + 12m

= 3 · (124m − 131) > 0 for all p > 9(m − 1).

We can therefore pick δ1 = δ1(m) > 0 such that

ρ(p) > 0 for all p > 9(m − 1) − δ1(m),
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and given p > 1 such that p > 9(m − 1) − δ1(m) we thus obtain that q := 2(5p+3m−3)
3 satisfies 

q > 1 and

3(3 − 2p) ·
(
q − 3p

3 − 2p

)
= −ρ(p) < 0

and hence

3

2

( 1

p
− 1

q

)
< 1. (6.3)

Now assuming (6.1) for some ε ∈ (0, 1) and K > 0, on the basis of a variation-of-constants 
representation of uε we can estimate

‖uε(·, t)‖Lq(�) ≤ ‖e−tAu0‖Lq(�) +
t∫

0

∥∥∥e−(t−s)AP[nε(·, s)∇φ]
∥∥∥

Lq(�)
ds, t > 0, (6.4)

and recall known regularization properties of the Dirichlet Stokes semigroup (e−tA)t≥0 ([16, 
p. 201]) to find C1 > 0, C2 > 0 and λ > 0 such that

‖e−tAu0‖Lq(�) ≤ C1‖u0‖Lq(�) for all t > 0 (6.5)

and

t∫
0

∥∥∥e−(t−s)AP[nε(·, s)∇φ]
∥∥∥

Lq(�)
ds

≤ C2

t∫
0

(
1 + (t − s)

− 3
2 ( 1

p
− 1

q
)
)
e−λ(t−s)

∥∥∥P[nε(·, s)∇φ]
∥∥∥

Lp(�)
ds (6.6)

for all t > 0. Here by boundedness of ∇φ on � and the continuity of the Helmholtz projection 
when acting as an operator in Lp(�; R3) ([14]), we see that with some C3 > 0 we have∥∥∥P[nε(·, s)∇φ]

∥∥∥
Lp(�)

≤ C3‖nε(·, s)‖Lp(�) ≤ C3K
1
p for all s > 0

according to (6.1). Therefore, (6.6) entails that

t∫
0

∥∥∥e−(t−s)AP[nε(·, s)∇φ]
∥∥∥

Lq(�)
ds ≤ C2C3K

1
p

t∫
0

(
1 + (t − s)

− 3
2 ( 1

p
− 1

q
)
)
e−λ(t−s)ds

≤ C2C3C4K
1
p for all t > 0

with C4 := ∫ ∞
0 (1 + σ

− 3
2 ( 1

p
− 1

q
)
)e−λσ dσ being finite thanks to (6.3). When combined with (6.5)

and (6.4), in view of our choice of q this establishes (6.2). �
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As a second preliminary for Lemma 6.3, let us note how a pair of hypotheses in the flavor of 
(4.1) influences space-time integrability of nε by means of straightforward interpolation.

Lemma 6.2. Let m > 1. Then for all p ≥ 1 and any K > 0 there exists C(p, K) > 0 such that if 
for some ε ∈ (0, 1) we have ∫

�

np
ε (·, t) ≤ K for all t ≥ 0 (6.7)

and

t+1∫
t

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 ≤ K for all t ≥ 0, (6.8)

then

t+1∫
t

∫
�

n
5p+3m−3

3
ε ≤ C(p,K) for all t ≥ 0. (6.9)

Proof. Using that p > 0 and m ≥ 1 imply that

2p

p + m − 1
≤ 2(5p + 3m − 3)

3(p + m − 1)
≤ 6

and hence W 1,2(�) ↪→ L
2(5p+3m−3)
3(p+m−1) (�) ↪→ L

2p
p+m−1 (�), from the Gagliardo–Nirenberg inequality 

we obtain C1 > 0 such that∫
�

n
5p+3m−3

3
ε =

∥∥∥n
p+m−1

2
ε

∥∥∥ 2(5p+3m−3)
3(p+m−1)

L
2(5p+3m−3)

3(p+m−1) (�)

≤ C1

∥∥∥∇n
p+m−1

2
ε

∥∥∥2

L2(�)

∥∥∥n
p+m−1

2
ε

∥∥∥ 4p
3(p+m−1)

L
2p

p+m−1 (�)

+ C1

∥∥∥n
p+m−1

2
ε

∥∥∥ 2(5p+3m−3)
3(p+m−1)

L
2p

p+m−1 (�)

for all t > 0.

Noting that ‖n
p+m−1

2
ε ‖

2p
p+m−1

L
2p

p+m−1 (�)

≤ K for all t > 0 by (6.7), on integrating in time we thus infer 

that

t+1∫
t

∫
�

n
5p+3m−3

3
ε ≤ C1K

2
3

t+1∫
t

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 + C1K
5p+3m−3

3p

≤ C1K
5
3 + C1K

5p+3m−3
3p

for all t ≥ 0. �
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We can now proceed to the main result of this section which, on the basis of a maximal 
regularity property of scalar parabolic equations, asserts that bounds of the flavor in (4.1) entail 
an estimate for ∇cε in a spatio-temporal L2q space with some positive q which indeed satisfies 
q > 2 if p ≥ 1 is suitably large.

Lemma 6.3. Let m > 215
192 , and let δ1(m) > 0 be as in Lemma 6.1. Then for all p > 9(m − 1) −

δ1(m) and each K > 0 one can find C(p, K) > 0 with the property that if for some ε ∈ (0, 1),∫
�

np
ε (·, t) ≤ K for all ≥ 0 (6.10)

and

t+1∫
t

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 ≤ K for all t ≥ 0, (6.11)

then

t+1∫
t

∫
�

|∇cε| 2(5p+3m−3)
3 ≤ C(p,K) for all t ≥ 0. (6.12)

Proof. We abbreviate q := 5p+3m−3
3 and apply a standard result on maximal Sobolev regular-

ity in scalar parabolic equations ([17]) to find C1 > 0, as all subsequently appearing constants 
C2, C3, ... possibly depending on p, with the property that whenever t� ∈ R, z ∈ C2,1(� ×
[t�, t� + 2]) and f ∈ C0(� × [t�, t� + 2]) are such that⎧⎪⎨⎪⎩

zt = �z + f (x, t), x ∈ �, t ∈ (t�, t� + 2),

∂z
∂ν

= 0, x ∈ ∂�, t ∈ (t�, t� + 2),

z(x, t�) = 0, x ∈ �,

then

t�+2∫
t�

‖z(·, t)‖q

W 2,q (�)
dt ≤ C1

t�+2∫
t�

‖f (·, t)‖q

Lq(�)dt. (6.13)

Furthermore, let us fix C2 > 0 and C3 > 0 such that in accordance with a well-known regulariza-
tion feature of the Neumann heat semigroup ([41]) and the Gagliardo–Nirenberg inequality we 
have

‖∇et�ϕ‖L2q (�) ≤ C2‖ϕ‖W 1,2q (�) for all ϕ ∈ W 1,2q(�) and any t > 0 (6.14)

as well as
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‖∇ϕ‖2q

L2q (�)
≤ C3‖ϕ‖q

W 2,q (�)
‖ϕ‖q

L∞(�) for all ϕ ∈ W 2,q(�), (6.15)

where in establishing the latter we note that W 2,q(�) ↪→ W 1,2q(�) ↪→ L∞(�) due to the fact 
that q ≥ 5

3 > 3
2 .

As a final preparation, let us observe that according to Lemma 6.2 and Lemma 6.1, our as-
sumptions (6.10) and (6.11) ensure that we can choose C4(K) > 0 and C5(K) > 0 such that

t+2∫
t

‖nε(·, s)‖q

Lq(�)ds ≤ C4(K) for all t ≥ 0 (6.16)

and

‖uε(·, t)‖L2q (�) ≤ C5(K) for all t ≥ 0, (6.17)

the latter conclusion relying on our hypothesis on p.
In order to make appropriate use of these preliminaries in the present context, we pick a 

nondecreasing ζ0 ∈ C∞(R) such that ζ0 ≡ 0 in (−∞, −1] and ζ0 ≡ 1 in [1, ∞), and for fixed 
t0 ≥ 0 we let ζ(t) ≡ ζ (t0)(t) := ζ0(t − t0), t ≥ 0, and

z(·, t) := ζ(t) ·
{
cε(·, t) − et�c0

}
, t ≥ (t0 − 1)+.

Then by (2.6) and the identity ∂te
t�c0 = �et�c0,

zt = ζ(t) ·
{
�cε − Fε(nε)cε − uε · ∇cε

}
− ζ(t)�et�c0 + ζ ′(t) ·

{
cε − et�c0

}
= �z − ζ(t)Fε(nε)cε − uε · ∇z

−ζ(t)uε · ∇et�c0 + ζ ′(t)cε − ζ ′(t)et�c0 in � × ((t0 − 1)+,∞), (6.18)

and clearly

∂z

∂ν
= 0 on ∂� × ((t0 − 1)+,∞). (6.19)

Moreover, at the respective initial time we have

z
(
·, (t0 − 1)+

)
≡ 0 in �, (6.20)

because if t0 ≥ 1 then ζ(t0 − 1) = 0 and hence

z
(
·, (t0 − 1)+

)
= z(·, t0 − 1) = ζ(t0 − 1) ·

{
cε(·, t0 − 1) − e(t0−1)�c0

}
= 0 in �,

whereas if t0 ∈ [0, 1) then

z
(
·, (t0 − 1)+

)
= z(·,0) = ζ(0) ·

{
cε(·,0) − c0

}
= 0 in �

by (2.6).
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As a consequence of (6.18)–(6.20), we may now invoke (6.13) which along with (6.15) and 
(2.9) shows that abbreviating t� := (t0 − 1)+ and noting that (ξ1 + ξ2 + ξ3 + ξ4 + ξ5)

q ≤ 5q(ξ
q

1 +
ξ

q
2 + ξ

q
3 + ξ

q
4 + ξ

q

5 ) for all nonnegative ξ1, ξ2, ξ3, ξ4 and ξ5, we have

t�+2∫
t�

‖∇z(·, t)‖2q

L2q (�)
dt ≤ C3‖c0‖q

L∞(�)

t�+2∫
t�

‖z(·, t)‖q

W 2,q (�)
dt

≤ 5qC1C3‖c0‖q

L∞(�)

t�+2∫
t�

{
‖ζ(t)Fε(nε)cε‖q

Lq(�) + ‖uε · ∇z‖q

Lq(�)

+‖ζ(t)uε · ∇et�c0‖q

Lq(�) + ‖ζ ′(t)cε‖q

Lq(�)

+‖ζ ′(t)et�c0‖q

Lq(�)

}
dt. (6.21)

Here we use that by (2.4) we have 0 ≤ Fε(s) ≤ s for all s ≥ 0 and that 0 ≤ ζ(t) ≤ 1 for all t ∈ R

to see, again by means of (2.9), that

t�+2∫
t�

‖ζ(t)Fε(nε)cε‖q

Lq(�)dt ≤ ‖c0‖q

L∞(�)

t�+2∫
t�

‖nε(·, t)‖q

Lq(�)dt

≤ C4(K)‖c0‖q

L∞(�) (6.22)

according to (6.16), while the Cauchy–Schwarz inequality together with (6.17) and (6.14) shows 
that

t�+2∫
t�

‖ζ(t)uε · ∇et�c0‖q

Lq(�)
dt ≤

t�+2∫
t�

‖uε(·, t)‖q

L2q (�)
‖∇et�c0‖q

L2q (�)
dt

≤ 2C
q

2 C
q

5 (K)‖c0‖q

W 1,2q (�)
. (6.23)

Next, by (2.9) and the contractivity of the semigroup (et�)t≥0 on Lq(�), writing C6 :=
‖ζ ′

0‖L∞(R) we obtain

t�+2∫
t�

‖ζ ′(t)cε‖q

Lq(�)dt ≤ 2C
q

6 |�| · ‖c0‖q

L∞(�) (6.24)

and

t�+2∫
‖ζ ′(t)et�c0‖q

Lq(�)dt ≤ 2C
q

6 ‖c0‖q

Lq(�), (6.25)
t�
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so that it remains to estimate the corresponding integral associated with the second summand in 
brackets on the right of (6.21). For this purpose, after employing the Cauchy–Schwarz inequality 
we additionally make use of Young’s inequality to see, again by means of (6.17), that

5qC1C3‖c0‖q

L∞(�)

t�+2∫
t�

‖uε · ∇z‖q

Lq(�)dt ≤ 5qC1C3‖c0‖q

L∞(�)

t�+2∫
t�

‖uε‖q

L2q (�)
‖∇z‖q

L2q (�)
dt

≤ 1

2

t�+2∫
t�

‖∇z‖2q

L2q (�)
dt

+25qC2
1C2

3‖c0‖2q

L∞(�)

2

t�+2∫
t�

‖uε‖2q

L2q (�)
dt

≤ 1

2

t�+2∫
t�

‖∇z‖2q

L2q (�)
dt + 25qC2

1C2
3C

2q

5 (K)‖c0‖2q

L∞(�).

In conjunction with (6.22)–(6.25), this shows that (6.21) leads to the inequality

1

2

t�+2∫
t�

‖∇z(·, t)‖2q

L2q (�)
dt ≤ C7(K) := 25qC2

1C2
3C

2q

5 (K)‖c0‖2q

L∞(�)

+5qC1C3‖c0‖q

L∞(�) ·
{
C4(K)‖c0‖q

L∞(�) + 2C
q

2 C
q

5 (K)‖c0‖q

W 1,2q (�)

+2C
q

6 ‖c0‖q

L∞(�)
+ 2C

q

6 ‖c0‖q

Lq(�)

}
,

so that since (t0, t0 + 1) ⊂
(
(t0 − 1)+, (t0 − 1)+ + 2

)
and thus ζ ≡ 1 in (t0, t0 + 1), in particular 

we infer that

t0+1∫
t0

∥∥∥∇cε(·, t) − ∇et�c0

∥∥∥2q

L2q (�)
dt ≤ 2C7(K) for all t0 ≥ 0.

Once more recalling (6.14) and using that (ξ + η)2q ≤ 22q−1(ξ2q + η2q) for all ξ ≥ 0 and η ≥ 0, 
we therefore obtain that

t0+1∫
t0

‖∇cε(·, t)‖2q

L2q (�)
dt ≤ 22q−1

t0+1∫
t0

∥∥∥∇cε(·, t) − ∇et�c0

∥∥∥2q

L2q (�)
dt

+ 22q−1

t0+1∫
t0

‖∇et�c0‖2q

L2q (�)
dt

≤ 22qC7(K) + 22q−1C
2q
2 ‖c0‖2q

W 1,2q (�)
for all t≥0,

which in view of our definition of q precisely yields (6.12). �
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7. Arbitrary Lp bounds for nε by a second iteration

Now in light of Lemma 6.3, our general regularity statement from Lemma 4.1 can readily be 
developed to the following basis for a second iterative reasoning.

Lemma 7.1. Let m > 215
192 and p� > 9(m − 1) − δ1(m) with δ1(m) > 0 taken from Lemma 6.1. 

Then for all p > 1 fulfilling

p ≤ 10p2
� + (36m − 42)p� + (m − 1)(18m − 27)

9
, (7.1)

and any choice of K > 0 one can pick C(p, K) > 0 such that if for some ε ∈ (0, 1) we have∫
�

np�
ε (·, t) ≤ K for all t ≥ 0 (7.2)

and

t+1∫
t

∫
�

∣∣∣∇n
p�+m−1

2
ε

∣∣∣2 ≤ K for all t ≥ 0, (7.3)

then ∫
�

np
ε (·, t) ≤ C(p,K) for all t ≥ 0 (7.4)

and

t+1∫
t

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 ≤ C(p,K) for all t ≥ 0. (7.5)

Proof. Since p� > 9(m − 1) − δ1(m), we may invoke Lemma 6.3 to see that writing q :=
5p�+3m−3

3 we can find C1(K) > 0 such that

t+1∫
t

∫
�

|∇cε|2q ≤ C1(K) for all t ≥ 0. (7.6)

Now observing that in our situation the right-hand side of (4.2) can be rewritten according to

2(q − 1)

3
p� + (2q − 1)(m − 1) = 2 · 5p�+3m−6

3

3
· p� + 10p� + 6m − 9

3
· (m − 1)

= 10p2
� + (36m − 42)p� + (m − 1)(18m − 27)

,

9
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given any p > 1 fulfilling (7.1) we may apply Lemma 4.1 to infer that due to (7.2) and (7.6) both 
inequalities in (7.4) and (7.5) hold if we fix C(p, K) > 0 suitably large. �

With regard to the question how far the above lemma through its condition (7.1) indeed allows 
for an improvement in knowledge, let us briefly prove the following elementary observations 
which highlight the role of the restriction m > 9

8 made in Theorem 1.1.

Lemma 7.2. For m > 1, let

ψ(p) := 10p2 + (36m − 42)p + (m − 1)(18m − 27)

9
, p ∈R. (7.7)

Then

ψ
(

9(m − 1)
)

> 9(m − 1) if and only if m >
9

8
, (7.8)

and there exist δ2(m) > 0 and � > 1 such that

ψ(p) ≥ �p for all p > 9(m − 1) − δ2(m). (7.9)

Proof. Computing

ψ(9(m − 1)) − 9(m − 1)

m − 1
= 810(m − 1)2 + 9(36m − 42)(m − 1) + (m − 1)(18m − 27)

9(m − 1)
− 9

= 16(8m − 9)

> 0,

we directly obtain (7.8). To verify (7.9), we let

ψ̃(p) := ψ(p)

p
for p > 0,

so that since (7.8) asserts that C1 := ψ̃(9(m − 1)) − 1 is positive, by continuity we can pick 
δ2 = δ2(m) > 0 such that 9(m − 1) − δ2 > 0 and

ψ̃(p) ≥ � := 1 + C1

2
for all p ∈

(
9(m − 1) − δ2,9(m − 1)

]
. (7.10)

As

ψ̃ ′(p) = 10

9
− (m − 1)(2m − 3)

p2 for all p > 0, (7.11)

it thus immediately follows that if m ≤ 3
2 then ψ̃ ′ ≥ 10

9 > 0 throughout (0, ∞). If m > 3
2 , then 

for p ≥ 9(m − 1) we can use (7.11) to estimate
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ψ̃ ′(p) ≥ 10

9
− (m − 1)(2m − 3)

81(m − 1)2 = 88m − 87

81(m − 1)
> 0,

because m > 1. In both cases, we thus obtain that ψ̃ ′ > 0 on [9(m − 1), ∞) and hence ψ̃ ≥ � on 
(9(m − 1) − δ2, ∞) by (7.10). �

We are thereby prepared for our second recursive argument, with its outcome being as follows.

Lemma 7.3. Let m > 9
8 . Then for all p > 1 there exists C(p) > 0 such that∫

�

np
ε (·, t) ≤ C(p) for all t ≥ 0 (7.12)

and

t+1∫
t

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 ≤ C(p) for all t ≥ 0. (7.13)

Proof. As m > 9
8 > 215

192 , taking δ1(m) > 0 and δ2(m) > 0 as given by Lemma 6.1 and 
Lemma 7.2, respectively, we may pick p0 ∈ (1, 9(m − 1)) such that

p0 > 9(m − 1) − min{δ1(m), δ2(m)}, (7.14)

and thereupon recursively define

pk := ψ(pk−1), k ∈ N= {1,2,3, ...}, (7.15)

with ψ :R → R taken from Lemma 7.2. Then since p0 > 9(m − 1) − δ2(m) by (7.14), according 
to (7.8) an inductive argument shows that

pk ≥ �kp0 for all k ∈ N (7.16)

with � > 1 as provided by Lemma 7.2, whence in particular pk → ∞ as k → ∞. Now due to 
the boundedness of �, in order to verify the lemma it is sufficient to show that for all k ≥ 0 there 
exists C1(k) > 0 such that for all ε ∈ (0, 1),

∫
�

npk
ε (·, t) ≤ C1(k) and

t+1∫
t

∫
�

∣∣∣∇n
pk+m−1

2
ε

∣∣∣2 ≤ C1(k) for all t ≥ 0, (7.17)

which will again result from an iterative reasoning: Namely, for k = 0 the claimed inequality 
is a direct consequence of Lemma 5.1, because m > 9

8 > 10
9 and p0 ∈ (1, 9(m − 1)). If (7.17)

holds for some k0 ≥ 0 and some C1(k0) > 0, however, then since (7.16) and (7.14) warrant that 
pk ≥ p0 > 9(m − 1) − δ1(m), and again since m > 215 , Lemma 7.1 provides C2 > 0 such that
192



M. Winkler / J. Differential Equations 264 (2018) 6109–6151 6133
∫
�

np
ε (·, t) ≤ C2 and

t+1∫
t

∫
�

∣∣∣∇n
p+m−1

2
ε

∣∣∣2 ≤ C2 for all t ≥ 0

with

p := 10p2
k0

+ (36m − 42)pk0 + (m − 1)(18m − 27)

9
.

As thus p = ψ(pk0) = pk0+1 by (7.15), this asserts (7.17) also for k = k0 + 1 and thereby com-
pletes the proof. �
8. Further regularity properties

With Lemma 7.3 at hand, further regularity properties can now be obtained by essentially 
straightforward arguments: We firstly recall Lemma 6.1 and a standard regularization feature of 
the heat semigroup to obtain the following.

Lemma 8.1. Assume that m > 9
8 , and let p > 1. Then there exists C(p) > 0 such that whenever 

ε ∈ (0, 1), ∫
�

|∇cε(·, t)|p ≤ C(p) for all t ≥ 0 (8.1)

and ∫
�

|uε(·, t)|p ≤ C(p) for all t ≥ 0. (8.2)

Proof. In view of Lemma 7.3, (8.2) is an evident consequence of Lemma 6.1. Thereafter, (8.1)
can be derived from (8.2) and again Lemma 7.3 by well-known results on gradient regularity in 
semilinear heat equations ([21]). �

By means of a Moser iteration, the latter together with Lemma 7.3 entails an ε-independent 
L∞ bound for nε .

Lemma 8.2. If m > 9
8 , then there exists C > 0 such that for arbitrary ε ∈ (0, 1) we have

‖nε(·, t)‖L∞(�) ≤ C for all t ≥ 0. (8.3)

Proof. In view of Lemma 8.1 and Lemma 7.3 when applied to suitably large p > 1, this directly 
follows from a Moser-type iterative procedure (see [31, Lemma A.1] for a version precisely 
covering the present case). �

Again by means of maximal Sobolev regularity properties combined with an appropriate em-
bedding result, the estimates collected above imply Hölder bounds for cε, uε and ∇cε . This will 
be achieved in Lemma 8.4 on the basis of the following lemma in which any influence of the 
respective initial data is faded out.
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Lemma 8.3. Let m > 9
8 . Then there exist θ ∈ (0, 1) and C > 0 such that for all ε ∈ (0, 1),

‖cε − ĉ‖C1+θ,θ (�×[t,t+1]) ≤ C for all t ≥ 0 (8.4)

and

‖uε − û‖C1+θ,θ (�×[t,t+1]) ≤ C for all t ≥ 0, (8.5)

where

ĉ(·, t) := et�c0 and û(·, t) := e−tAu0 for t ≥ 0. (8.6)

Proof. Since ̂ct = �ĉ, it follows from (2.6) that

∂t (cε − ĉ) = �(cε − ĉ) − Fε(nε)cε − uε · ∇cε, x ∈ �, t > 0,

where given p > 1 we may invoke Lemma 8.1, Lemma 8.2 and (2.9) and recall (2.4) to find 
C1 > 0 fulfilling

t+2∫
t

∫
�

∣∣∣ − Fε(nε)cε − uε · ∇cε

∣∣∣p ≤ C1 for all t ≥ 0 and ε ∈ (0,1).

Therefore, by means of maximal Sobolev regularity estimates along with an appropriate time 
localization in the style of the argument from Lemma 6.3, we infer the existence of C2 > 0 such 
that

t+2∫
t

{
‖cε(·, s) − ĉ(·, s)‖p

W 2,p(�)
+ ‖∂t (cε(·, s) − ĉ(·, s))‖p

Lp(�)

}
ds ≤ C2

for all t ≥ 0 and ε ∈ (0,1).

In view of a known embedding property ([1]), an application thereof to suitably large p > 1
establishes (8.4).

Likewise, using that

∂t (uε − û) = −A(uε − û) +P[nε∇φ], x ∈ �, t > 0,

and that herein for p > 1 we can use the boundedness of P on Lp(�; R3) ([14]) together with 
Lemma 8.2 to find C3 > 0 such that

t+2∫
t

∫
�

∣∣∣P[nε(·, s)∇φ]
∣∣∣p ≤ C3 for all t ≥ 0 and ε ∈ (0,1),

we obtain (8.5) from corresponding maximal Sobolev regularity estimates for the Stokes evolu-
tion equation ([17]). �
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Indeed, the latter inter alia implies the following Hölder estimates, which with regard to the 
gradient bound in (8.9) must remain local in time due to possibly lacking appropriate regularity 
and compatibility properties of c0.

Lemma 8.4. Let m > 9
8 . Then there exists θ ∈ (0, 1) with the property that one can find C > 0

such that for all ε ∈ (0, 1),

‖cε‖Cθ (�×[t,t+1]) ≤ C for all t ≥ 0 (8.7)

and

‖uε‖Cθ (�×[t,t+1]) ≤ C for all t ≥ 0, (8.8)

and that for all τ > 0 it is possible to choose C(τ) > 0 fulfilling

‖∇cε‖Cθ (�×[t,t+1]) ≤ C(τ) for all t ≥ τ (8.9)

whenever ε ∈ (0, 1).

Proof. We take ̂c and û from (8.6) and note that since c0 ∈ W 1,∞(�) ↪→ ⋂
θ∈(0,1) C

θ (�) and 
u0 ∈ D(Aα) ↪→ ⋂

θ∈(0,2α− 3
2 )

Cθ (�) ([15], [18]), known smoothing properties of the heat equa-

tion and the Stokes evolution system ensure that there exist θ1 ∈ (0, 1), θ2 ∈ (0, 1), C1 > 0 and 
C2 > 0 such that

‖̂c‖Cθ1 (�×[t,t+1]) ≤ C1 for all t ≥ 0

and

‖û‖Cθ2 (�×[t,t+1]) ≤ C2 for all t ≥ 0,

and that for all τ > 0 we can find C3(τ ) > 0 such that

‖∇ ĉ‖C1(�×[t,t+1]) ≤ C3(τ ) for all t ≥ τ.

Therefore, (8.7)–(8.9) result from Lemma 8.3. �
For strongly degenerate cell diffusion present when e.g. D(s) = sm−1, s ≥ 0, with large val-

ues of m, we do not know whether nε enjoys equicontinuity properties in the classical pointwise 
sense, which may indeed suffer from a possible dominance of the transport terms in the first 
equation of (2.6) at small densities. In order to nevertheless provide some compactness and 
equicontinuity properties of this solution component, let us finally derive two statements on time 
regularity of nε in a straightforward manner.

Lemma 8.5. Suppose that m > 9
8 , and let T > 0. Then there exists C(T ) > 0 such that for all 

ε ∈ (0, 1),
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T∫
0

∥∥∥∂tn
m
ε (·, t)

∥∥∥
(W

1,∞
0 (�))�

dt ≤ C(T ) (8.10)

and

‖nεt (·, t)‖(W
2,2
0 (�))�

≤ C(T ) for all t ∈ (0, T ). (8.11)

Proof. We fix t ∈ (0, T ) and ζ ∈ C∞
0 (�) such that ‖ζ‖W 1,∞(�) ≤ 1, and then obtain from the first 

equation in (2.6) by straightforward manipulations that writing C1 := supε∈(0,1) ‖nε‖L∞(�×(0,∞))

and C2 := ‖D‖L∞((0,c1)) + 2, according to (1.5) we have

∣∣∣∣ 1

m

∫
�

∂tn
m
ε (·, t)ζ

∣∣∣∣
=

∣∣∣∣ ∫
�

nm−1
ε ∇ ·

{
Dε(nε)∇nε − nεF

′
ε(nε)∇cε − nεuε

}
ζ

∣∣∣∣
=

∣∣∣∣ − (m − 1)

∫
�

nm−2
ε Dε(nε)|∇nε|2ζ −

∫
�

nm−1
ε Dε(nε)∇nε · ∇ζ

+(m − 1)

∫
�

nm−1
ε F ′

ε(nε)(∇nε · ∇cε)ζ +
∫
�

nm
ε F ′

ε(nε)∇cε · ∇ζ + 1

m

∫
�

nm
ε uε · ∇ζ

∣∣∣∣
≤ (m − 1)C2

∫
�

nm−2
ε |∇nε|2 + (m − 1)C2

∫
�

nm−1
ε |∇nε|

+(m − 1)

∫
�

nm−1
ε |∇nε| · |∇cε| +

∫
�

nm
ε |∇cε| + 1

m

∫
�

nm
ε |uε|

≤ (m − 1)C2

∫
�

nm−2
ε |∇nε|2 + m − 1

2
C2

∫
�

nm−2
ε |∇nε|2 + m − 1

2
C2

∫
�

nm
ε

+m − 1

2

∫
�

nm−2
ε |∇nε|2 + m − 1

2

∫
�

nm
ε |∇cε|2

+
∫
�

nm
ε |∇cε| + 1

m

∫
�

nm
ε |uε|

≤ (m − 1)
(3C2

2
+ 1

2

)∫
�

nm−2
ε |∇nε|2 + (m − 1)Cm

1 C2|�|
2

+ (m − 1)Cm
1

2

∫
�

|∇cε|2

+Cm
1

∫
|∇cε| + Cm

1

m

∫
|uε| for all ε ∈ (0,1).
� �
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In view of the estimates provided by Lemma 3.2 and Lemma 8.1, (8.10) therefore readily results 
upon integration.

The inequality in (8.11) can similarly be derived from Lemma 8.1 and Lemma 8.2. �
9. Existence of a global bounded weak solution

In the sequel, we shall refer to the following natural concept of weak solvability in (1.1), (1.6), 
(1.7):

Definition 9.1. Let

n ∈ L1
loc(� × [0,∞)),

c ∈ L∞
loc(� × [0,∞)) ∩ L1

loc([0,∞);W 1,1(�)) and

u ∈ L1
loc([0,∞);W 1,1(�;R3)), (9.1)

be such that n ≥ 0 and c ≥ 0 in � × (0, T ) and

D0(n), n|∇c| and n|u| belong to L1
loc(� × [0,∞)), (9.2)

where D0(s) :=
∫ s

0 D(σ)dσ for s ≥ 0. Then (n, c, u) will be called a global weak solution of 
(1.1), (1.6), (1.7) if ∇ · u = 0 in the distributional sense, if

−
∞∫

0

∫
�

nϕt −
∫
�

n0ϕ(·,0) =
∞∫

0

∫
�

D0(n)�ϕ +
∞∫

0

∫
�

n∇c · ∇ϕ +
∞∫

0

∫
�

nu · ∇ϕ (9.3)

for all ϕ ∈ C∞
0 (� × [0, ∞)) fulfilling ∂ϕ

∂ν
= 0 on ∂� × (0, ∞), if

−
∞∫

0

∫
�

cϕt −
∫
�

c0ϕ(·,0) = −
∞∫

0

∫
�

∇c · ∇ϕ −
∞∫

0

∫
�

ncϕ +
∞∫

0

∫
�

cu · ∇ϕ (9.4)

for all ϕ ∈ C∞
0 (� × [0, ∞)), and if moreover

−
∞∫

0

∫
�

u · ϕt −
∫
�

u0 · ϕ(·,0) = −
∞∫

0

∫
�

∇u · ∇ϕ +
∞∫

0

∫
�

n∇φ · ϕ (9.5)

for all ϕ ∈ C∞
0 (� × [0, ∞); R3) such that ∇ · ϕ ≡ 0 in � × (0, ∞).

In this context, a series of standard extraction procedures on the basis of our estimates col-
lected above indeed yields global solvability.
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Lemma 9.1. Let m > 9
8 . Then there exist (εj )j∈N ⊂ (0, 1), a null set N ⊂ (0, ∞) and a triple 

(n, c, u) of functions n : � × (0, ∞) → [0, ∞), c : � × (0, ∞) → [0, ∞) and u : � × (0, ∞) →
R

3 such that εj ↘ 0 as j → ∞ and

nε(·, t) → n(·, t) a.e. in � for all t ∈ (0,∞) \ N, (9.6)

nε
�

⇀ n in L∞(� × (0,∞)), (9.7)

nε → n in C0
loc([0,∞); (W 2,2

0 (�))�), (9.8)

cε → c in C0
loc(� × [0,∞)), (9.9)

cε
�

⇀ c in L∞((0,∞);W 1,p(�)) for all p ∈ (1,∞), (9.10)

∇cε → ∇c in C0
loc(� × [0,∞)), (9.11)

uε → u in C0
loc(� × [0,∞)), (9.12)

uε
�

⇀ u in L∞(� × (0,∞)) and (9.13)

∇uε → ∇u in L2
loc(� × [0,∞)) (9.14)

as ε = εj ↘ 0. Moreover, (n, c, u) forms a global weak solution of (1.1), (1.6), (1.7) in the sense 
of Definition 9.1, and we have∫

�

n(·, t) =
∫
�

n0 for all t ∈ (0,∞) \ N. (9.15)

Proof. Since Lemma 3.2, Lemma 8.2 and Lemma 8.5 guarantee that (nm
ε )ε∈(0,1) is bounded 

in L2
loc([0, ∞; W 1,2(�)) and that (∂tn

m
ε )ε∈(0,1) is bounded in L2

loc([0, ∞); (W 3,2
0 (�))�) due to 

the continuity of the embedding W 3,2
0 (�) ↪→ W

1,∞
0 (�), an Aubin–Lions lemma ([34]) yields 

(εj )j∈N ⊂ (0, 1) such that εj ↘ 0 as j → ∞ and that nm
ε → nm holds a.e. in � × (0, ∞) as 

ε = εj ↘ 0 with some nonnegative function n defined on � × (0, ∞), whence using the Fubini–
Tonelli theorem we readily obtain (9.6). In view of Lemma 8.2, Lemma 3.2 and (8.11), on further 
extraction we may also achieve (9.7) and (9.8), whereas the bounds provided by Lemma 3.2, 
Lemma 8.1 and Lemma 8.4 ensure that we can moreover easily achieve (9.9)–(9.14) upon two 
applications of the Arzelà–Ascoli theorem.

The regularity properties in (9.1) and (9.2) as well as the claimed solenoidality of u are evident 
from (9.6)–(9.14), while the verification of (9.3), (9.4) and (9.5) is thereafter straightforward. �
10. Large time behavior

10.1. Basic decay information

Next addressing the large time asymptotics of our solutions, as in several previous studies 
on qualitative behavior in related chemotaxis-fluid systems with signal absorption ([44], [24], 
[47], [45]) we shall rely on the following elementary information indicating a certain decay of 
the quantities nc and ∇c. Here and throughout the sequel, without further mentioning we shall 
assume that m > 9 and that (n, c, u) denotes the global weak solution constructed in Lemma 9.1.
8
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Lemma 10.1. There exist ε� ∈ (0, 1) and C > 0 such that

∞∫
0

∫
�

nεcε ≤ C for all ε ∈ (0, ε�) (10.1)

and

∞∫
0

∫
�

|∇cε|2 ≤ C for all ε ∈ (0, ε�). (10.2)

Proof. Using Lemma 8.2, we can fix C1 > 0 such that nε ≤ C1 in � × (0, ∞) for all ε ∈ (0, 1), 
and let ε� ∈ (0, 1) be small enough such that 1

ε�
≥ C1. Then (2.3) implies that Fε(nε) ≡ nε

throughout � × (0, ∞) whenever ε ∈ (0, ε�), whence integrating the second equation in (2.6) we 
obtain

∫
�

cε(·, t) +
t∫

0

∫
�

nεcε =
∫
�

c0 for all ε ∈ (0, ε�) and each t > 0,

from which (10.1) follows. Moreover, testing the same equation by cε and recalling (2.4) yields

1

2

∫
�

c2
ε(·, t) +

t∫
0

∫
�

|∇cε|2 = 1

2

∫
�

c2
0 −

t∫
0

∫
�

Fε(nε)c
2
ε ≤ 1

2

∫
�

c2
0 for all ε ∈ (0,1) and t > 0

and thereby verifies (10.2). �
10.2. Decay of c

A first application of Lemma 10.1 shows that thanks to the uniform Hölder estimates from 
Lemma 8.4 the second solution component indeed decays in the sense claimed in Theorem 1.1.

Lemma 10.2. We have

c(·, t) → 0 in W 1,∞(�) as t → ∞. (10.3)

Proof. Following a variant of an approach pursued in [44], we first use (9.15) and the Poincaré 
inequality to see that for all ε ∈ (0, 1),

n0 ·
∫
�

cε =
∫
�

nεcε

=
∫

nεcε −
∫

nε(cε − cε)
� �
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≤
∫
�

nεcε + √|�|C1

{∫
�

(cε − cε)
2
} 1

2

≤
∫
�

nεcε + C2

{∫
�

|∇cε|2
} 1

2

for all t > 0

with C1 := supε∈(0,1) ‖nε‖L∞(�×(0,∞)) < ∞ by Lemma 8.2, and with some C2 > 0. Thus, by 
(2.9),

n0
2 ·

{∫
�

cε

}2

≤ 2

{∫
�

nεcε

}2

+ 2C2
2

∫
�

|∇cε|2

≤ 2C1‖c0‖L∞(�)

∫
�

nεcε + 2C2
2

∫
�

|∇cε|2 for all t > 0,

so that according to Lemma 10.1 we infer that with some ε� ∈ (0, 1) and C3 > 0 we have

∞∫
0

‖cε(·, t)‖2
L1(�)

dt ≤ C3 for all ε ∈ (0, ε�)

and hence

∞∫
0

‖c(·, t)‖2
L1(�)

dt ≤ C3

thanks to Lemma 9.1 and Fatou’s lemma. Since the spatio-temporal Hölder continuity property 
expressed by (8.7) warrants that 0 ≤ t �→ ‖c(·, t)‖L1(�) is uniformly continuous, through a stan-
dard argument this entails that necessarily

c(·, t) → 0 in L1(�) as t → ∞. (10.4)

Since Lemma 8.4 moreover guarantees that with some θ ∈ (0, 1) and C4 > 0 we have

‖c(·, t)‖C1+θ (�) ≤ C4 for all t > 1, (10.5)

a straightforward reasoning based on interpolation and the compactness of the first among the 
continuous embeddings C1+θ (�) ↪→ W 1,∞(�) ↪→ L1(�) shows that (10.4) and (10.5) entail 
(10.3): In fact, given η > 0 we may employ an Ehrling-type lemma to pick C5 > 0 fulfilling

‖ϕ‖W 1,∞(�) ≤ η

2C4
‖ϕ‖C1+θ (�) + C5‖ϕ‖L1(�) for all ϕ ∈ C1+θ (�), (10.6)

and then use (10.4) to choose t0 > 1 satisfying
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‖c(·, t)‖L1(�) ≤ η

2C5
for all t > t0.

Then by (10.6) and (10.5),

‖c(·, t)‖W 1,∞(�) ≤ η

2C4
· C4 + C5 · η

2C5
= η for all t > t0,

as desired. �
10.3. Stabilization of n

Next concerned with the large time behavior of n, in order to circumvent obstacles stemming 
from possibly strong degeneracies of diffusion when m is large, we rely on another quasi-energy 
structure in deriving the following result which can be viewed as asserting a certain short-time 
conservation of smallness of the quantity 

∫
�
(nε −n0)

2, and which, remarkably, beyond the above 
properties and in particular (10.2) does not explicitly require the presence of any diffusion mech-
anism in the first equation in (2.6).

Lemma 10.3. There exists C > 0 such that for each ε ∈ (0, 1) and any choice of t� ≥ 0 we have∫
�

(
nε(·, t) − n0

)2 ≤ C ·
{∫

�

(
nε(·, t�) − n0

)2 +
∫
�

|∇cε(·, t�)|2 + sup
s∈(t�,t�+1)

‖cε(·, s)‖2
L2(�)

}
for all t ∈ (t�, t� + 1). (10.7)

Proof. We start by multiplying the first equation in (2.6) by nε − n0 to obtain

1

2

d

dt

∫
�

(nε − n0)
2 = −

∫
�

Dε(nε)|∇nε|2 +
∫
�

nεF
′
ε(nε)∇nε · ∇cε

≤
∫
�

nεF
′
ε(nε)∇nε · ∇cε for all t > 0. (10.8)

Here in order to appropriately estimate the right-hand side, we introduce

Gε(s) :=
s∫

0

σF ′
ε(σ )dσ, s ≥ 0,

and once more integrate by parts to rewrite∫
�

nεF
′
ε(nε)∇nε · ∇cε =

∫
�

∇Gε(nε) · ∇cε

= −
∫
�

Gε(nε)�cε

= −
∫ (

Gε(nε) − Gε(n0)
)

· �cε for all t > 0, (10.9)
�
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because 
∫
�

�cε(·, t) = 0 for all t > 0. Now since we know from Lemma 8.2 that with some 
C1 > 0 we have

nε ≤ C1 in � × (0,∞) for all ε ∈ (0,1), (10.10)

and since 0 ≤ G′
ε(s) ≤ s thanks to (2.4), by the mean value theorem we can estimate

∣∣∣Gε(nε(x, t)) − Gε(n0)

∣∣∣ ≤ ‖G′
ε‖L∞((0,C1))|nε(x, t) − n0|

≤ C1|nε(x, t) − n0| for all x ∈ �, t > 0 and ε ∈ (0,1).

By means of Young’s inequality, (10.9) therefore implies that

∫
�

nεF
′
ε(nε)∇nε · ∇cε ≤ C1

∫
�

|nε − n0| · |�cε|

≤ 1

2

∫
�

(nε − n0)
2 + C2

1

2

∫
�

|�cε|2 for all t > 0,

and that in view of (10.8) we thus have

d

dt

∫
�

(nε − n0)
2 ≤

∫
�

(nε − n0)
2 + C2

1

∫
�

|�cε|2 for all t > 0. (10.11)

Here an adequate compensation of the rightmost integral can be achieved by using the second 
equation in (2.6), which when tested against −�cε yields

1

2

d

dt

∫
�

|∇cε|2 +
∫
�

|�cε|2 =
∫
�

Fε(nε)cε�cε +
∫
�

(uε · ∇cε)�cε

≤ 1

4

∫
�

|�cε|2 +
∫
�

n2
εc

2
ε

+1

4

∫
�

|�cε|2 +
∫
�

|uε · ∇cε|2

≤ 1

2

∫
�

|�cε|2 + C2
1

∫
�

c2
ε + C2

2

∫
�

|∇cε|2

for all t > 0, (10.12)

where in accordance with Lemma 8.4 we have chosen C2 > 0 large enough fulfilling |uε| ≤ C2
in � × (0, ∞) for all ε ∈ (0, 1).
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In combination, (10.11) and (10.12) now show that

d

dt

{∫
�

(nε − n0)
2 + C2

1

∫
�

|∇cε|2
}

≤
∫
�

(nε − n0)
2 + 2C4

1

∫
�

c2
ε + 2C2

1C2
2

∫
�

|∇cε|2

for all t > 0,

implying that y(t) := ∫
�
(nε(·, t) − n0)

2 + C2
1

∫
�

|∇cε(·, t)|2, t ≥ 0, satisfies

y′(t) ≤ C3y(t) + C4

∫
�

c2
ε for all t > 0

with C3 := max{1, 2C2
2} and C4 := 2C4

1 . By an ODE comparison, this entails that

y(t) ≤ eC3(t−t�)y(t�) + C4

t∫
t�

eC3(t−s) ·
{∫

�

c2
ε(·, s)

}
ds

≤ eC3y(t�) + C4e
C3

C3
· sup
s∈(t�,t�+1)

∫
�

c2
ε(·, s) for all t ∈ (t�, t� + 1)

and thereby establishes (10.7). �
By means of another Lp testing procedure applied to the first equation in (2.6), again relying 

on the estimate (10.2) from Lemma 10.1, the latter implies stabilization of n toward its average, 
at least when yet considered in L2(�) and outside a null set of times.

Lemma 10.4. Let N ⊂ (0, ∞) be as provided by Lemma 9.1. Then

n(·, t) → n0 in L2(�) as (0,∞) \ N � t → ∞. (10.13)

Proof. We first invoke Lemma 10.3 to find C1 > 0 such that for any t� ≥ 0 and ε ∈ (0, 1) we 
have∫
�

(
nε(·, t) − n0

)2 ≤ C1 ·
{∫

�

(
nε(·, t�) − n0

)2 +
∫
�

|∇cε(·, t�)|2 + sup
s∈(t�,t�+1)

‖cε(·, s)‖2
L2(�)

}

for all t ∈ (t�, t� + 1).

Here since cε → c in C0
loc(� × [0, ∞)) and ∇cε → ∇c in C0

loc(� × [1, ∞)) as ε = εj ↘ 0 ac-
cording to Lemma 9.1, and since (nε −n0)ε∈(0,1) is bounded in L∞(� × (0, ∞)) by Lemma 8.2, 
on the basis of (9.6) and the dominated convergence theorem we may let ε = εj ↘ 0 to obtain 
that
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∫
�

(
n(·, t) − n0

)2 ≤ C1 ·
{∫

�

(
n(·, t�) − n0

)2 +
∫
�

|∇c(·, t�)|2 + sup
s∈(t�,t�+1)

‖c(·, s)‖2
L2(�)

}

for all t� ∈ (1,∞) \ N and any t ∈ (t�, t� + 1) \ N. (10.14)

In order to prepare an appropriate control of the right-hand side herein, we fix some γ > 1
satisfying γ ≥ m − 1, and noting that then 2γ − m is positive we use n2γ−m

ε as a test function in 
the first equation from (2.6) to see that for all ε ∈ (0, 1),

1

2γ − m + 1

d

dt

∫
�

n2γ−m+1
ε + (2γ − m)

∫
�

n2γ−m−1
ε Dε(nε)|∇nε|2

= (2γ − m)

∫
�

n2γ−m
ε F ′

ε(nε)∇nε · ∇cε for all t > 0,

which in light of (2.1), (1.5), (2.4) and Young’s inequality implies that

1

2γ − m + 1

∫
�

n2γ−m+1
ε (·, t) + (2γ − m)kD

2

t∫
0

∫
�

n2γ−2
ε |∇nε|2

≤ 1

2γ − m + 1

∫
�

n
2γ−m+1
0 − (2γ − m)kD

2

t∫
0

∫
�

n2γ−2
ε |∇nε|2

+(2γ − m)

t∫
0

∫
�

n2γ−m
ε |∇nε| · |∇cε|

≤ 1

2γ − m + 1

∫
�

n
2γ−m+1
0 + 2γ − m

2kD

t∫
0

∫
�

n2γ−2m+2
ε |∇cε|2

≤ 1

2γ − m + 1

∫
�

n
2γ−m+1
0 + 2γ − m

2kD

‖nε‖2γ−2m+2
L∞(�×(0,∞))

∞∫
0

∫
�

|∇cε|2

for all t > 0,

because 2γ − 2m + 2 ≥ 0. Due to the boundedness properties asserted by Lemma 8.2 and 
Lemma 10.1, we therefore conclude that there exist ε� ∈ (0, 1) and C2 > 0 such that

∞∫
0

∫
�

∣∣∣∇nγ
ε

∣∣∣2 ≤ C2 for all ε ∈ (0, ε�),

and that hence according to the Poincaré inequality we can find C3 > 0 fulfilling
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∞∫
0

∥∥∥nγ
ε (·, t) − μγ

ε (t)

∥∥∥2

L2(�)
dt ≤ C3 for all ε ∈ (0, ε�),

where we have set με(t) :=
{

1
|�|

∫
�

n
γ
ε (·, t)

} 1
γ

for t > 0 and ε ∈ (0, 1). Again using (9.6) along 
with the dominated convergence theorem, from this we readily infer on invoking Fatou’s lemma 
on the time interval (0, ∞) that

∞∫
0

∥∥∥nγ (·, t) − μγ (t)

∥∥∥2

L2(�)
dt ≤ C3 (10.15)

is valid with μ(t) :=
{

1
|�|

∫
�

nγ (·, t)
} 1

γ
, t ∈ (0, ∞) \ N , the latter satisfying μ(t) ≥ n0 for all 

t ∈ (0, ∞) \ N due to the fact that by (9.15) and the Hölder inequality we can estimate

n0|�| =
∫
�

n(·, t) ≤
{∫

�

nγ (·, t)
} 1

γ · |�|1− 1
γ for t ∈ (0,∞) \ N.

As |ξγ − ηγ | ≥ ηγ−1 · |ξ − η| for all ξ ≥ 0 and η ≥ 0, this implies that∣∣∣nγ (·, t) − μγ (t)

∣∣∣2 ≥ μ2γ−2(t) · |n(·, t) − μ(t)|2

≥ n0
2γ−2 · |n(·, t) − μ(t)|2 a.e. in � for all t ∈ (0,∞) \ N,

so that from (10.15) we obtain that

∞∫
0

‖n(·, t) − μ(t)‖2
L2(�)

dt ≤ C4 (10.16)

with C4 := C3 · n0
2−2γ > 0.

Now to derive the desired conclusion from this and (10.14), given η > 0 we use (10.16) to 
find some large t0 > 1 such that

∞∫
t0−1

‖n(·, t) − μ(t)‖2
L2(�)

dt <
η

12C1
, (10.17)

and such that in accordance with Lemma 10.2 we moreover have

c(x, t) <
η

3C1
for all x ∈ � and t > t0 − 1 (10.18)

and well as
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∫
�

|∇c(·, t)|2 <
η

3C1
for all t > t0 − 1. (10.19)

Then for arbitrary t > t0 we may use (10.17) to pick t� = t�(t) ∈ (t − 1, t) \ N such that∫
�

∣∣∣n(·, t�) − μ(t�)

∣∣∣2
<

η

12C1
. (10.20)

Again by (9.15) and the Cauchy–Schwarz inequality, this firstly entails that

|n0 − μ(t�)| · |�| =
∣∣∣∣ ∫
�

(
n(·, t�) − μ(t�)

)∣∣∣∣
≤

{∫
�

(
n(·, t) − μ(t)

)2
} 1

2 · |�| 1
2

≤
√

η|�|
12C1

and hence ∫
�

(
n0 − μ(t�)

)2 ≤ η

12C1
,

so that, secondly, from (10.20) we obtain that∫
�

(
n(·, t�) − n0

)2 ≤ 2
∫
�

(
n(·, t�) − μ(t�)

)2 + 2
∫
�

(
n0 − μ(t�)

)2

<
η

3C1
.

In conjunction with (10.18), (10.19) and (10.14), this means that∫
�

(
n(·, t) − n0

)2
< C1 ·

{ η

3C1
+ η

3C1
+ η

3C1

}
= η,

because t ∈ (t�, t� + 1) \ N . Since η > 0 was arbitrary, this completes the proof. �
By interpolation and approximation, in view of the generalized continuity property of n gained 

in Lemma 9.1 this readily implies convergence in the style claimed in Theorem 1.1.

Corollary 10.5. For all p ≥ 1,

n(·, t) → n0 in Lp(�) as t → ∞. (10.21)
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Proof. By boundedness of �, we only need to consider the case p > 2, in which due to the 
Hölder inequality,

‖n(·, t) − n0‖Lp(�) ≤ ‖n(·, t) − n0‖
p−2
p

L∞(�)‖n(·, t) − n0‖
2
p

L2(�)
≤ C1‖n(·, t) − n0‖

2
p

L2(�)

for all t > 0

with C1 := {‖n‖L∞(�×(0,∞)) + n0
} p−2

p . Therefore, given η > 0 we may invoke Lemma 10.4 to 
fix t0 > 0 such that

‖n(·, t) − n0‖Lp(�) ≤ η for all t ∈ (t0,∞) \ N, (10.22)

and for the proof of (10.21) it will be sufficient to make sure that the inequality herein actually 
remains valid for all t > t0. To verify this, for any such t we can use the density of (t0,∞) \ N

in (t0, ∞) to find (tk)k∈N ⊂ (t0, ∞) \ N such that tk → t as k → ∞. Then (10.22) shows 
that ‖n(·, tk) − n0‖Lp(�) ≤ η for all k ∈ N, whence we may extract a subsequence (tkl

)l∈N of 
(tk)k∈N such that n(·, tkl

) − n0 ⇀ z in Lp(�) as l → ∞. But since this trivially entails that also 
n(·, tkl

) − n0 ⇀ z in (W 2,2
0 (�))�, from the continuity property implied by (9.8) we infer that z

must coincide with n(·, t) − n0 and that thus

‖n(·, t) − n0‖Lp(�) ≤ lim inf
l→∞ ‖n(·, tkl

) − n0‖Lp(�) ≤ η,

as claimed. �
10.4. Decay of u

Finally, uniform decay of u can be achieved on the basis of the following straightforward 
application of standard regularity theory in the forced Stokes evolution system.

Lemma 10.6. There exist λ > 0 and C > 0 such that for any choice of μ ∈ R and arbitrary 
ε ∈ (0, 1) we have

‖uε(·, t)‖L∞(�) ≤ C + C

t∫
0

(t − s)−αe−λ(t−s)
∥∥nε(·, s) − μ

∥∥
L2(�)

ds for all t > 0, (10.23)

where α ∈ ( 3
4 , 1) is taken from (1.8).

Proof. As gradients of functions from W 1,∞(�) belong to the kernel of the Helmholtz projec-
tion P , for arbitrary μ ∈R the third equation in (2.6) can be rewritten according to

uεt + Auε =P
[
(nε(·, t) − μ)∇φ

]
, x ∈ �, t > 0. (10.24)

Now since α > 3
4 , from a known embedding result ([15], [18]) we obtain that D(Aα) ↪→ L∞(�), 

so that invoking well-known smoothing properties of the analytic semigroup (e−tA)t≥0 ([29], 
[13]) we infer from (10.24) that with some C1 > 0, C2 > 0 and λ > 0 we have
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‖uε(·, t)‖L∞(�) ≤ C1‖Aαuε(·, t)‖L2(�)

= C1

∥∥∥∥Aαe−tAu0 +
t∫

0

Aαe−(t−s)AP
[
(nε(·, s) − μ)∇φ

]
ds

∥∥∥∥
L2(�)

≤ C1‖Aαu0‖L2(�) + C2

t∫
0

(t − s)−αe−λ(t−s)
∥∥∥P[

(nε(·, s) − μ)∇φ
]∥∥∥

L2(�)
ds

for all t > 0. Since P is an orthogonal projector and hence∥∥∥P[
(nε(·, s) − μ)∇φ

]∥∥∥
L2(�)

≤
∥∥∥(nε(·, s) − μ)∇φ

∥∥∥
L2(�)

≤ ‖∇φ‖L∞(�)‖nε(·, s) − μ‖L2(�)

for all s > 0,

in view of our regularity assumption u0 ∈ D(Aα) we thereby obtain (10.23). �
Here the integral on the right-hand side can be estimated by using the following elementary 

decay property.

Lemma 10.7. Let β ∈ (0, 1), λ > 0 and h : (0, ∞) → R be measurable and bounded with 
h(t) → 0 as t → ∞. Then

t∫
0

(t − s)−βe−λ(t−s)h(s)ds → 0 as t → ∞. (10.25)

Proof. Given η > 0, we pick t1 > 0 large such that |h(t)| ≤ η
2C1

for all t > t1, where C1 :=∫ ∞
0 σ−βe−λσ dσ is finite since β < 1. Then writing t0 := t1 +

(
2‖h‖L∞((0,∞))

λη

) 1
β

, for arbitrary 
t > t0 we can estimate

∣∣∣∣
t∫

0

(t − s)−βe−λ(t−s)h(s)ds

∣∣∣∣
≤

t1∫
0

(t − s)−βe−λ(t−s)|h(s)|ds +
t∫

t1

(t − s)−βe−λ(t−s)|h(s)|ds

≤ (t − t1)
−β‖h‖L∞((0,∞))

t1∫
0

e−λ(t−s)ds + η

2C1

t∫
t1

(t − s)−βe−λ(t−s)ds

= (t − t1)
−β‖h‖L∞((0,∞)) · 1

λ
(e−λ(t−t1) − e−λt ) + η

2C1

t−t1∫
σ−βe−λσ dσ
0
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≤ (t0 − t1)
−β‖h‖L∞((0,∞)) · 1

λ
+ η

2C1

∞∫
0

σ−βe−λσ dσ

= η

2
+ η

2
= η

and thereby see that indeed (10.25) is valid. �
In view of the stabilization property from Corollary 10.5, Lemma 10.6 thus entails the desired 

decay feature of u.

Lemma 10.8. We have

u(·, t) → 0 in L∞(�) as t → ∞. (10.26)

Proof. With the null set N ⊂ (0, ∞) taken from Lemma 9.1, on combining Lemma 8.2 with 
the dominated convergence theorem we obtain that nε(·, t) − n0 → n(·, t) − n0 in L2(�) as 
ε = εj ↘ 0. Therefore, using the convergence property (9.12) we infer from Lemma 10.6 that 
there exist λ > 0 and C1 > 0 fulfilling

‖u(·, t)‖L∞(�) ≤ C1 + C1

t∫
0

(t − s)−αe−λ(t−s)‖n(·, s) − n0‖L2(�)ds for all t > 0,

where α ∈ ( 3
4 , 1) is as in (1.8). Since ‖n(·, t) − n0‖L2(�) → 0 as t → ∞ by Corollary 10.5, 

Lemma 10.7 therefore yields (10.26). �
10.5. Proof of Theorem 1.1

We finally only need to collect our previous findings to arrive at our main result.

Proof of Theorem 1.1. The statement on global existence of a weak solution with the regularity 
features in (1.10) has been asserted by Lemma 9.1. The convergence properties in (1.11) are 
precisely established by Corollary 10.5, Lemma 10.2 and Lemma 10.8. �
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