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Abstract

In this paper, we study a weakly dissipative Dullin–Gottwald–Holm equation from the viewpoint of Lie 
symmetry analysis. We first perform symmetry analysis and the nonlinear self-adjointness of this equation. 
Due to a mixed derivatives term in the equation, we need to rewrite the corresponding form Lagrangian in 
symmetric form to construct conservation laws. From the viewpoint, we present a general procedure of how 
these conserved quantities come about. Based on these conserved quantities, blow-up analysis and global 
existence of strong solutions are presented. Finally, we show that this equation admits a weak peakon-type 
solution.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, Novruzov and the co-author studied the following shallow water equation with dis-
sipation in [26,27]

ut − uxxt + 3uux − 2uxuxx − uuxxx + k(u − uxx)x + λ(u − uxx) = 0, (1)
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where x ∈ R, t > 0 and k ∈ R, λ ≥ 0 are dispersion coefficient and dissipative parameter re-
spectively. Some certain conditions on the initial datum are established to guarantee that the 
solution exists globally or to lead to finite time blow-up of the solution. Also, propagation speed 
for the equation under consideration is investigated. Thereafter, some blow-up results are pre-
sented in [34]. Later, Novruzov studied the blow-up of some related equations with dissipation 
in [28,29].

The equation (1) is a special case of the Dullin–Gottwald–Holm (DGH) equation

ut − α2utxx + kux + 3uux + γ uxxx = α2(2uxuxx + uuxxx), x ∈ R, t > 0,

with weakly dissipative term λ(u − uxx). The DGH equation was derived by Dullin, Gottwald 
and Holm in 2001 [14], using asymptotic expansions directly in the Hamiltonian for Euler’s 
equation in the shallow water regime. It is completely integrable with a bi-Hamiltonian as well 
as a Lax pair in [14]. The equation was also found independently as a model for nonlinear waves 
in cylindrical hyperelastic rods [12,13]. When k = λ = 0, the equation (1) is reduced to the 
well-known CH equation

ut − uxxt + 3uux − 2uxuxx − uuxxx = 0,

which is a model describing the unidirectional propagation of surface waves on a shallow layer of 
water that is at rest at infinity [5,11,22–24]. It also arises in the study of a certain non-Newtonian 
fluids [4] and finite length, small amplitude radial deformation waves in cylindrical hyperelastic 
rods [12]. The novelty of the CH equation is due to its remarkable properties, such as a bi-
Hamiltonian structure, Lax completely integrability, infinitely many conservation laws, peakons, 
wave breaking, etc. [6–10,25]. Lately, Novruzov and Yazar studied the blow-up problem of the 
following generalized equation

ut − uxxt + [f (u)]x − [f (u)]xxx +
[
g(u) + 1

2
f ′′(u)u2

x

]
x

+ λ(u − uxx) = 0, (2)

and improved the earlier related blow-up results to a unified one which is a local-in-space blow-
up criterion in [29].

In the present paper, we would like to study (1) from the viewpoint of Lie symmetry anal-
ysis. Some conservation laws of (1) will be derived and then be used to construct some exact 
solutions and prove that certain initial data develop into blow-up or global solutions. In this di-
rection, the pioneer work due to Sophus Lie, who introduced the notion of Lie group in order 
to study the solutions of ordinary differential equations at the end of the nineteenth century. He 
showed that the order of an ordinary differential equation can be reduced if it is invariant under 
one-parameter Lie group of point transformations. The applications of Lie groups to differential 
systems were mainly established by Lie and Emmy Noether. In 1918, Noether presented the rela-
tionship between a mathematics symmetry and conservation law of a physical system. Noether’s 
(first) theorem states that every differentiable symmetry of the action of a physical system has 
a corresponding conservation law. Application of Noether’s theorem allows physicists to gain 
powerful insights into a general theory in physics, by just analyzing the various transformations 
that would make the form of the laws involved invariant, such as the laws of conservation of 
linear momentum, angular momentum or energy and so on.
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Although Noether’s theorem provides an elegant approach to find conservation laws, it has 
a strong limitation: it can only be applied to equations with variational structure. As we know, 
a large number of differential equations without variational structure admit conservation laws, 
for example, equation (1). Thus, many authors developed some methods which do not rely 
on the knowledge of Lagrangian functions to obtain conservation laws, such as characteristic 
method [31], direct method [1,2] and so on. About a decade ago, Ibragimov proved a result in 
[17] which allows one to construct conservation laws for equations without variational structure. 
Essentially, Ibragimov’s theorem is an extension of Noether’s theorem by introducing formal 
Lagrangian to get rid of the variational limitation. So, we study (1) from the viewpoint of Lie 
symmetry analysis and construct some conservation laws by Ibragimov’s theorem in this paper. 
First, we carry out Lie symmetry analysis, derive some symmetry reductions and invariant solu-
tions for (1). Then, we study the self-adjointness and conservation laws of equation (1) by the 
Ibragimov’s theorem. Based on these conserved quantities, some properties of solutions to (1)
are established. In particular, we show a local-in-space blow-up result (which is the particular 
case of the Theorem 3 (i) in [29]) by an alternative proof and present the estimates of the life 
span and blow-up rate by taking advantage of obtained conserved quantities.

For the sake of completeness, we briefly present the notations, definition of nonlinear self-
adjointness and Ibragimov’s theorem on conservation laws. Consider a s-th order nonlinear 
equation

E(x,u,u(1), u(2), · · · , u(s)) = 0 (3)

with n independent variables x = (x1, x2, · · · , xn) and a dependent variable u = u(x), where 
u(s) = ∂su. Let

E∗(x,u, v,u(1), v(1), · · · , u(s), v(s)) := δL
δu

= 0 (4)

be the adjoint equation of equation (3), where L = vE is called formal Lagrangian, v = v(x) is 
a new dependent variable and

δ

δu
= ∂

∂u
+

s∑
m=1

(−1)mDi1 · · ·Dim

∂

∂ui1···im

denotes the Euler–Lagrange operator.
Now let us state the definition of nonlinear self-adjointness for a equation, see

[15,16,18–20,32] and references therein.

Definition 1. Equation (3) is said to be nonlinearly self-adjoint if the equation obtained from 
the adjoint equation (4) by the substitution v = φ(x, u) with a certain function φ(x, u) �= 0 is 
identical with the original equation (3). In other words, the following equation holds:

E∗|v=φ = λ0E + λ1DtE + λ2DxE + · · · (5)

for some differential functions λi = λi(x, u, u(1), · · ·).
We recall the conservation theorem given by Ibragimov in [17].
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Theorem (Ibragimov [17]). Any Lie point, Lie–Bäcklund and non-local symmetry generated by

X = ξ i ∂

∂xi

+ η
∂

∂u
(6)

of equation (3) provides a conservation law Di(C
i) = 0 for the system comprising equation (3)

and its adjoint equation (4). The conserved vector C = (Ci) is given by

Ci = ξ iL+ W
[

∂L
∂ui

− Dj

(
∂L
∂uij

)
+ DkDj

(
∂L

∂uijk

)
− DlDkDj

(
∂L

∂uijkl

)
+ · · ·

]
+Dj(W)

[
∂L
∂uij

− Dk

(
∂L

∂uijk

)
+ · · ·

]
+DkDj (W)

[
∂L

∂uijk
− Dl

(
∂L

∂uijkl

)
+ · · ·

]
+ · · · ,

(7)

where W = η − ξjuj is the Lie characteristic function and L = vE is the formal Lagrangian.

Now, let us state our results. First, by classical Lie symmetry analysis [30] we know that (1)
admits Lie point symmetry operators.

Proposition 1. Equation (1) admits the following Lie point symmetry operators:

X1 = ∂t , X2 = ∂x and X3 = eλt (∂t + k∂x − λu∂u).

Moreover, the optimal system of one-dimensional subalgebras of the Lie algebra spanned by 
X1, X2, X3 of (1) given by

X1, X2, X1 + aX2 and X2 + bX3,

where a, b are nonzero constants.

From above proposition, we have the following assertion.

Theorem 2. If u = f (t, x) solves the equation (1), then so do

u1 = f (t − ε, x), u2 = f (t, x − ε),

u3 = 1

1 + ελeλt
f

(
t − 1

λ
ln(1 + ελeλt ), x − k

λ
ln(1 + ελeλt )

)
.

Where ε is a constant.

This result shows us that one can gain some new exact solutions of (1) from a seed solution 
f (t, x) by the above expressions.

In order to construct some conservation laws for (1) by Ibragimov’s theorem, we need to 
investigate the self-adjointness of this equation.
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Proposition 3. Equation (1) is nonlinear self-adjoint with substitution functions:

v1 = eλt , v2 = e2λtu and

v3 = e3λt
(
u2

x + 2uuxx + 2λux + 2kuxx + 2uxt − 3u2
)
.

(8)

Note that (1) is a nonlinear equation with higher-order mixed derivatives term uxxt . To apply 
Ibragimov’s theorem to (1), we need to rewrite the corresponding form Lagrangian L = vE of (1)
in symmetric form:

L = v
[
ut − 1

3
(uxxt + uxtx + utxx) + 3uux − 2uxuxx − uuxxx

+ k(u − uxx)x + λ(u − uxx)
]
,

which allows us to successfully apply Ibragimov’s theorem to construct some conservation laws 
for equation (1).

Theorem 4. Equation (1) possesses conservation laws DtC
t + DxC

x = 0 with following local 
components:

Ct
1 = eλt (u − uxx), Cx

1 = 1

2
eλt [3u2 + 2k(u − uxx) − 2uuxx − u2

x]; (9)

{
Ct

2 = e2λtu(u − uxx),

Cx
2 = e2λt (2u3 − 2u2uxx + ku2 − 2kuuxx + ku2

x + uxut − uuxt )
(10)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ct
3 = 3e3λtu(u2 + u2

x),

Cx
3 = 3

4
e3λt

[
4u2

xt + 4uxt (2uuxx + u2
x − 3u2 + 2λux + 2kuxx) − 4u2

t

− 8ut (uux + λu + kux) + 4uxx(u + k)(u2
x − 3u2 + 2λux)

+ 4u2
xx(u + k)2 + u4

x − 2(3u2 + 2ku + 2k2 − 2λ2)u2
x

+ 4λu3
x − 4λuux(2u + 3u + 2k) + u2(9u2 + 4ku − 4λ2)

]
.

(11)

Immediately, from the above theorem, we derive the following conserved quantities for equa-
tion (1).

Corollary 5. Let λ > 0, u be a solution of (1) and y = u − uxx , then the quantities

eλt

∫
R

udx = eλt

∫
R

ydx, e2λt

∫
R

(u2 + u2
x)dx, e3λt

∫
R

u(u2 + u2
x)dx (12)

are conserved.
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The first two conserved quantities obtained in Corollary 5 can be obtained in a simple standard 
way. In fact, multiplying the original equation by functions eλt and e2λtu and integrating the 
resultant equations by parts, we easily get these conserved quantities. However, for the third 
conserved quantity, it seems not easy to arrive at it by this way. In general, in this way one 
may guess which quantity would be conserved and which function could be choose to yield 
this quantity. But it is not always easy to do so. In Theorem 4, we obtain some conservation laws 
of (1) by just analyzing the Lie point symmetries and self-adjointness. Here, we present a general 
procedure of how these conserved quantities come about from the viewpoint of Lie symmetry 
analysis. This method can be apply to other nonlinear differential equations.

Conserved quantities are very useful to show some properties of solutions for nonlinear equa-
tions. As one of applications of the obtained conserved quantities, we can show some blow-up 
and existence results for Equation (1). Our blow-up result is stated as follows.

Theorem 6. Let λ ≥ 0, u0 ∈ Hs(R) with s > 3
2 . Assume that u is the solution of (1) in 

C([0, T ∗), Hs(R)) ∩ C1([0, T ∗), Hs−1(R)) arising from u0. If there exists a point x0 ∈ R such 
that

u0,x(x0) < −|u0(x0)| − 2λ, (13)

then the solution u blows up in finite time, the maximal time T ∗ is estimated by

0 < T ∗ ≤

⎧⎪⎨
⎪⎩

1

λ
log

(√
u2

0,x(x0) − u2
0(x0)

/(√
u2

0,x(x0) − u2
0(x0) − 2λ

))
, if λ > 0;

2
/√

u2
0,x(x0) − u2

0(x0) , if λ = 0.

Moreover, for some x(t) ∈R, the blow-up rate is

ux(t, x(t)) ∼ − 2

T ∗ − t
as t → T ∗. (14)

The condition (13) is local in space, which was improved to a class of nonlinear dispersive 
wave equations with dissipation (2) in [29] recently. Here, we give an alternative proof and 
present the estimates of the life span and blow-up rate by using the conserved quantities obtained 
in Corollary 5.

The other application of conservation laws is a global existence result, if y0 = (1 − ∂2
x )u0

satisfies some additional information on the sign.

Theorem 7. Let λ ≥ 0, u0 ∈ H 3 and y0 = (1 − ∂2
x )u0. Then the solution of the problem (1)

remains regular globally in time provided that one of the following conditions occurs:
(i) y0 doesn’t change sign on R; or
(ii) there exists x0 ∈ R such that y0 ≤ 0 as x ∈ (−∞, 0) and y0 ≥ 0 as x ∈ [x0, ∞).

In fact, (i) can be viewed as a special case of (ii) in Theorem 7, if one taking x0 = −∞ or 
x0 = ∞.

Finally, using the conserved quantities obtained in Corollary 5, we construct some exact solu-
tions of (1), which differ to the unique solution obtained below (see Lemma 9 in Section 3) since 
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they do not belong to the space C([0, T ); Hs) ∩ C1([0, T ); Hs−1) (s > 3/2). Thus, our result 
implies that the uniqueness in Lemma 9 may not be valid if we don’t restrict the initial value u0
in Hs (s > 3/2). Moreover, we also find a peakon-type solution to (1).

We say a function u(t, x) is a weak solution of (1) if u(t, x) satisfies Equation (1) (or (40) in 
Section 4) only in the sense of distribution.

Theorem 8. Equation (1) admits a weak peakon-type solution with the form

u(t, x) = ce−λt−|x−kt+ce−λt /λ+c0|, (15)

where c is a nonzero constant and c0 is an arbitrary constant.

The peakon-type solution (15) is similar to the invariant solution (19) (in Section 2) in terms 
of expressions. So, invariant solutions of a equation maybe give a hint for study on some special 
solutions.

The remainder of this paper is organized as follows. In Section 2, we perform Lie symmetry 
analysis for (1) and derive symmetry reductions and invariant solutions. In Section 3, we discuss 
the nonlinear self-adjointness of equation (1) and establish some conserved quantities based on 
this concept. In Section 4, we show some applications of the conservation laws obtained above. 
More precisely, we present some results on blow-up and global existence of solutions to equa-
tion (1). In the final section, we show that (1) admits some special exact solutions.

2. Symmetry analysis

In this section, we carry out Lie symmetry analysis for the equation (1) and derive symme-
try reductions and invariant solutions. The symmetries of equation (1) can be obtained by the 
classical Lie symmetry analysis [30].

Proof of Proposition 1. Consider the vector field

X = ξ t ∂t + ξx∂x + η∂u, (16)

which has the third-order prolongation, from (1),

X(3) = X + η
(1)
t ∂ut + η(1)

x ∂ux + η(2)
xx ∂uxx + η

(3)
xxt ∂uxxt + η(3)

xxx∂uxxx ,

where the functions η(1)
t , η(1)

x , η(2)
xx , η(3)

xxt and η(3)
xxx can be expressed via the components ξ t , ξx and 

η of the vector field. The invariant condition is

X(3)E = τ(t, x,u)E.

Solving this equation leads to

ξ t = C1 + C2e
λt , ξx = C3 + C2keλt , η = −C2λueλt .
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Table 1
Commutator table.

[Xi,Xj ] X1 X2 X3

X1 0 0 λX3
X2 0 0 0
X3 −λX3 0 0

Table 2
Adjoint representation.

Ad X1 X2 X3

X1 X1 X2 e−λX3
X2 X1 X2 X3
X3 X1 + ελX3 X2 X3

So, the infinitesimal generators of the equation (1) is spanned by the vector fields:

X1 = ∂t , X2 = ∂x and X3 = eλt (∂t + k∂x − λu∂u).

The commutation relations of Lie algebra determined by X1, X2, X3 are given in Table 1 as 
follows.

From the commutator table of this algebra and the Lie series

Ad(exp(εXi))Xj = Xj − ε[Xi,Xj ] + ε2

2! [Xi, [Xi,Xj ]] − ε3

3! [Xi, [Xi, [Xi,Xj ]]] + · · ·

in [30], we derive the adjoint representation in Table 2 as above. Thanks to the adjoint represen-
tation, we infer that the optimal system of one-dimension subalgebras of the Lie algebra spanned 
by X1, X2, X3 of (1) is given by

X1, X2, X1 + aX2, X2 + bX3,

where a, b are nonzero constants. The proof of Proposition 1 is completed. �
Proof of Theorem 2. From the vector fields X1, X2, X3 given in Proposition 1, we see that 
one-parameter symmetry groups fi : (t, x, u) → (t̃ , x̃, ũ) of the infinitesimal generators Xi

(i = 1,2,3) are given as follows:

f1 : (t, x,u) → (t + ε, x,u),

f2 : (t, x,u) → (t, x + ε,u),

f3 : (t, x,u) →
(
t − 1

λ
ln(1 − λεeλt ), x − k

λ
ln(1 − λεeλt ), (1 − λεeλt )u

)
,

where ε is a group parameter such that fi ’s make sense, and f1 is a time translation, f2 is a 
space translation and f3 is a scaling transformation. Consequently, we arrive at the conclusion of 
Theorem 2. �

Now, we derive symmetry reductions and invariant solutions of (1) by using the optimal sys-
tem in Proposition 1.
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Case 1. X1 + aX2 = ∂t + a∂x(a �= 0). It’s easy to see that the corresponding characteristic equa-
tions are given by

dt

1
= dx

a
= du

0
.

This solution of the above equations yields two invariants of the operator X1 + aX2:

ζ = x − at, u = f (ζ ).

Thus the equation (1) is reduced to the following ODE:

a(f ′′′ − f ′) + 3ff ′ − 2f ′f ′′ − ff ′′′ + k(f ′ − f ′′′) + λ(f − f ′′) = 0,

whose nontrivial solution yields a group invariant solution of (1)

u(t, x) = C1e
x−at + C2e

−x+at , (17)

where C1, C2 are arbitrary constants. It is a traveling wave solution of (1).

Case 2. X2 + bX3 = ∂x + beλt (∂t + k∂x −λu∂u)(b �= 0). The corresponding characteristic equa-
tions are

dt

beλt
= dx

1 + kbeλt
= du

−bλeλtu
.

Solving these equations we obtain the following invariants of X2 + bX3:

ζ = x − kt + 1

bλeλt
, eλtu = f (ζ ). (18)

Substitution of (18) into the equation (1) leads to that f (ζ ) satisfies the reduced ODE

b(3ff ′ − ff ′′′ − 2f ′f ′′) + f ′′′ − f ′ = 0.

Hence, the invariant solution of (1), resulting from its invariance under X2 + bX3, is given by

u(t, x) = e−λtf (ζ ) = e−λt (C1e
ζ + C2e

−ζ ), (19)

where ζ = x − kt + 1
bλeλt and C1, C2 are arbitrary constants.

Similarly, for X1 = ∂t and X2 = ∂x we repeat above processes and obtain that

u = C1e
x + C2e

−x and u = C1e
−λt (20)

are the invariant solutions of (1). Here, we omit the details.
To end this section, we point out that one can gain some new exact solutions to (1) by The-

orem 2 with the seed solutions (17), (19) and (20). For example, we take the special solution 
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u = C1e
x−at (C2 = 0 in (17)) as a seed solution, by f3 in Theorem 2 we see that the func-

tion

C1(1 + λεeλt )
a−k
λ

−1ex−at

is also a solution of (1).

3. Nonlinear self-adjointness and conservation laws for (1)

Conserved quantities of nonlinear equations are very important, since they can help us under-
stand motion of the objects and show some properties of solutions to the considered equations, 
such as apriori estimates, global existence and stability of solutions. They are useful tools for 
qualitative analysis. However, it seems not easy to find some useful conserved quantities for 
nonlinear problems. In this section, we will apply the concepts of self-adjointness and the Ibrag-
imov’s theorem on conservation laws to construct some conserved quantities for equation (1), 
which will be served for qualitative analysis of solutions to (1). We begin with the study of 
self-adjointness for (1).

Proof of Proposition 3. We rewrite equation (1) as

E = ut − uxxt + 3uux − 2uxuxx − uuxxx + k(u − uxx)x + λ(u − uxx) = 0. (21)

Computing the variational derivative of the formal Lagrangian L = vE, we obtain the adjoint 
equation of (1) is

E∗ = δL
δu

= −vt + vxxt + 3vux − 3(vu)x + (vxux)x + uvxxx

−k(v − vxx)x + λ(v − vxx) = 0,
(22)

where v = v(t, x) is a new dependent variable. Let λi = λi(t, x, u, ut , ux, · · ·) (i = 0, 1, 2, · · ·)
be differential functions and, by the concept of nonlinear self-adjointness, we have

E∗|v=ψ(t,x,u,ut ,ux,···) = λ0E + λ1Dt(E) + λ2Dx(E) + · · · .

The comparison of the coefficients of the derivatives of u in both sides of the above equation 
yields an algebraic system. Solving this system, we obtain the substitution function v given 
by (8). Consequently, (1) is nonlinear self-adjoint with the substitution functions in (8). There-
fore, we have demonstrated the self-adjointness result. �

Now we construct conservation laws of (1) by the Ibragimov’s theorem on conservation laws.

Proof of Theorem 4. For a general generator X given by (16), the corresponding Lie charac-
teristic function is W = η − ξ tut − ξxux . Form the Ibragimov’s theorem, we obtain that the 
density

Ct = ξ tL+ W
(
v − 1

vxx

)
+ 1

vxDxW − 1
vD2

xW, (23)

3 3 3
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and the flux is

Cx = ξxL+ W
[
3uv − 2uxxv + kv + Dx(2uxv + λv) − D2

x(uv + kv) − 2

3
vxt

]

+ 1

3
vxDtW + DxW

[1

3
vt − 2uxv − λv + Dx(vu + kv)

]
− 2

3
vDxtW

− (uv + kv)D2
xW. (24)

For the symmetries Xi (i = 1, 2, 3), from the formula (23) and (24) we obtain readily some 
conservation laws for equation (1).

Let us construct the conserved vector corresponding to the time translation group with the 
generator X1 = ∂t . For this operator, we have W = −ut . Therefore, from the formula (23) and 
(24) we obtain the conserved vector (Ct, Cx) with components

Ct = L− utv + 1

3
utvxx − 1

3
vxuxt + 1

3
vuxxt

= L− v(ut − uxxt ) + 1

3
Dx(utvx − 2vuxt ),

Cx = −ut

(
3vu − vuxx + kv + λvx − uvxx − kvxx − 2

3
vxt

)
− 1

3
utt vx

+ uxt

(
vux + λv − uvx − kvx − 1

3
vt

)
+ 2

3
vuxtt + uxxt (uv + kv),

which can be reduced to

Ct = v(3uux − 2uxuxx − uuxxx + kux − kuxxx + λu − λuxx),

Cx = ut (vuxx + uvxx − 3uv − kv − λvx + kvxx + vxt )

+ uxt (vux + λv − uvx − kvx − vt ) + uxxt (uv + kv),

(25)

here we have used the equation (1). For the substitution function v1 = eλt , (25) yields

Ct = λeλt (u − uxx) + Dx

[
eλt

(3

2
u2 − 1

2
u2

x − uuxx + ku − kuxx

)]
,

Cx = 1

2
λeλt [3u2 + 2k(u − uxx) − 2uuxx − u2

x]

−Dt

[
eλt

(3

2
u2 − 1

2
u2

x − uuxx + ku − kuxx

)]
,

which can be reduced to the following simple form

Ct = λeλt (u − uxx),

Cx = 1

2
λeλt [3u2 + 2k(u − uxx) − 2uuxx − u2

x].
(26)

Similarly, insetting the substitution functions v2 and v3 into (25) and after some tedious and 
lengthy calculations, we obtain the corresponding conservation laws (10) and (11) respectively.
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Processing as above, for the space and scaling translation operators X2 = ∂x and X3 =
eλt (∂t + k∂x − λu∂u), we also derive some conservation laws. However, for these two infinitesi-
mal generators, the corresponding conservation laws are trivial. For example, substituting v1 into 
the formula (23) and (24) and taking into account equation (1), we have

Ct = 1

3
eλt (uxxx − 3ux) = 1

3
Dx[eλt (uxx − 3u)],

Cx = 1

3
eλt (3λu − λuxx + 3ut − uxxt ) = −1

3
Dt [eλt (uxx − 3u)],

which can be simplified to

Ct = 0, Cx = 0,

that is, this conservation law is trivial. Similarly, we can check that for X2, X3 and the substitu-
tions vi (i = 1, 2, 3) given in (8), the corresponding conservation laws are trivial. �
Proof of Corollary 5. From Theorem 4, integrating DtC

t +DxC
x = 0 over R and applying the 

conditions for u at infinity, it’s easy to find Corollary 5 holds. �
4. Applications: blow-up and global existence of solutions

In this section, we will use the conservation laws obtained in the above section to show some 
blow-up and global existence results of strong solutions to (1) for λ ≥ 0 and any k ∈ R, provided 
the initial data u0, y0 and the parameter λ satisfy suitable conditions.

Let us present and recall several useful results that will be used in the sequel. We set 
G(x) = 1

2e−|x|, x ∈ R and denote � := (1 − ∂2
x )1/2. For f ∈ L2(R), the operator �2 acting 

on f has the representation �−2f (x) = G ∗ f , where ∗ denotes the spatial convolution. It is 
convenient to rewrite the Cauchy problem associated with equation (1) in the following weak 
form: ⎧⎨

⎩ ut + (u + k)ux = −∂xG ∗
(

u2 + 1

2
u2

x

)
− λu, x ∈ R, t > 0,

u0(x) = u(0, x), x ∈ R.

(27)

Let’s recall the local well-posedness and blowup scenario for the Cauchy problem of equa-
tion (1) in Hs(R), s > 3

2 , see [26].

Lemma 9. [26] Suppose that u0 ∈ Hs(R) with s > 3
2 . Then there exists a maximal T =

T (‖u0‖Hs ) > 0 and a unique solution u ∈ C([0, T ); Hs) ∩ C1([0, T ); Hs−1) of (1) with 
u(0, x) = u0. Moreover, the solution u depends continuously on the initial value u0 and the 
maximal time of existence T is independent of s.

Lemma 10 ([26]). Let u0 ∈ Hs(R) with s > 3
2 and T be the maximal existence time of the 

solution u to (1) with the initial data u0. Then the corresponding solution u blows up in finite 
time if and only if

lim lim infux(x, t) = −∞. (28)

t→T x∈R
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The following result for ODE theory will be useful.

Lemma 11 ([33]). Let y ∈ C1(R), a > 0 and b > 0. If y′(t) ≥ ay2(t) − b with y(0) >
√

b
a

. Then 

y(t) → +∞ as t → t∗ ≤ 1
2
√

ab
log

(
y(0)+

√
b
a

y(0)−
√

b
a

)
.

Suppose u(x, t) solves (1). We introduce the standard particle trajectory q(t; x) which satisfies 
the following system

{
qt (t;x) = u(t, q(t;x)) + k, x ∈R, 0 < t < T,

q(0;x) = x, x ∈R,
(29)

where T is the lifespan of the solution u. Then the map q(t; ·) is an increasing diffeomophism of 
the line with

qx(t;x) = exp
( t∫

0

uq(s, q(s;x))ds
)

> 0, for (t, x) ∈ [0, T ) ×R. (30)

Moreover, qx(0; x) = 1.

4.1. A local-in-space blow-up criterion for equation (1)

In this subsection, to show how to use the conservation laws in Corollary 5, we derive wave 
breaking result for the strong solutions to equation (1). An alternative proof of blow-up criterion 
for (1) is given, which differs from the one in [29]. Moreover, we present the estimates of blow-up 
time and rate.

Proof of Theorem 6. In order to discuss the singularities, we differentiate equation (27) with 
respect to x and use the identity ∂2

xG ∗ f = G ∗ f − f to get

utx + (u + k)uxx = u2 − 1

2
u2

x − G ∗
(
u2 + 1

2
u2

x

)
− λux. (31)

Recalling q(t; x0) given in (29) and introducing the following two functions

M(t) = (u − ux)(t, q(t;x0)), N(t) = (u + ux)(t, q(t;x0)),

we study the dynamics of M(t) and N(t) along the characteristics. In view of (29), equations (27)
and (31), we have

M ′ = (
ut + ux(u + k) − [uxt + uxx(u + k)])(t, q(t;x0))

=
[
− u2 + 1

2
u2

x + (G − ∂xG) ∗
(
u2 + 1

2
u2

x

)
+ λux − λu

]
(t, q(t;x0))

≥ −1
MN − λM.

(32)
2
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Here we have used the estimate (G −∂xG) ∗ (u2 + 1
2u2

x) ≥ 1
2u2 (cf. Lemma 3.1 in [3]). Similarly, 

for the derivative of function N(t) we can derive that

N ′ =
[
u2 − 1

2
u2

x − (G + ∂xG) ∗
(
u2 + 1

2
u2

x

)
− λ(u + ux)

]
(t, q(t;x0))

≤ 1

2
MN − λN.

(33)

From (13), we see that the initial data satisfies

u0(x0) + u0,x(x0) < −2λ ≤ 0, u0,x(x0) − u0(x0) < −2λ ≤ 0,

u2
0(x0) − u2

0,x(x0) < −4λ2.

Also, along the characteristics emanating from x0, it follows

M(0) > 2λ ≥ 0, N(0) < −2λ ≤ 0,

M ′(0) ≥ −1

2
M(0)(N(0) + 2λ) > 0, N ′(0) ≤ 1

2
N(0)(M(0) − 2λ) < 0.

(34)

Then, over the time of existence we have

M ′(t) > 0, N ′(t) < 0. (35)

Otherwise, if (35) is not true, then there exists t0 ∈ [0, T ) such that

t0 = min{t ∈ [0, T );M ′(t) = 0 or N ′(t) = 0}.

Then from (34) we see that t0 > 0. The definition of t0 combining with (32) and (33) implies that

0 = M ′(t0) ≥ −1

2
M(t0)

[
N(t0) + 2λ

]
or 0 = N ′(t0) ≤ 1

2
N(t0)

[
M(t0) − 2λ

]
. (36)

However, noting that M(t) is increasing and N(t) is decreasing in the interval [0, t0], due to (34), 
we find that

M(t0) ≥ M(0) > 2λ, N(t0) ≤ N(0) < −2λ.

Hence,

−M(t0)
[
N(t0) + 2λ

]
> 0 and N(t0)

[
M(t0) − 2λ

]
< 0,

which contradict with (36). So, we infer that M ′(t) > 0 and N ′(t) < 0 for all t ∈ [0, T ).
Taking account of (34), we know that

M(t) ≥ M(0) > 2λ ≥ 0 and N(t) ≤ N(0) < −2λ ≤ 0. (37)
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These also imply that MN < −4λ2. Thanks to the fact MN < 0, we consider the quantity H(t) =√−M(t)N(t). The inequalities in (32) and (33) along with (37) imply that

M ′(t) ≥ −1

2
M(N + 2λ) > 0, N ′(t) ≤ 1

2
N(M − 2λ) < 0

for t ∈ [0, T ). So we have M ′N + MN ′ < 1
2 (M − N − 4λ)MN < 0. A simple calculation yields

H ′(t) = −M ′N + MN ′

2
√−MN

≥ λMN√−MN
+ (N − M)MN

4
√−MN

≥ −λH(t) + 1

2
H 2(t). (38)

If λ = 0, (38) is reduced to H ′(t) ≥ 1
2H 2. Solving this inequality, we find that

H(t) ≥
( 1

H(0)
− 1

2
t
)−1

,

which tells us that there exists T ∗ > 0 such that H(t) goes to ∞ as t → T ∗, where T ∗ can be 
estimated as following

T ∗ ≤ 2

H(0)
= 2√

u2
0,x(x0) − u2

0(x0)

.

If λ �= 0, then the inequality (38) becomes

(H − λ)′ ≥ 1

2
(H − λ)2 − 1

2
λ2.

Applying Lemma 11, we see that there exists T ∗ > 0 such that H(t) − λ → ∞, that is, 
H(t) → ∞ as t → T ∗ and T ∗ is controlled by

0 ≤ T ∗ ≤ 1

λ
log

(√
u2

0,x(x0) − u2
0(x0)

/(√
u2

0,x(x0) − u2
0(x0) − 2λ

))
.

Consequently, the fact H(t) ≤ −ux(t, q(t; x0)) shows us the finite time wave breaking 
ux(t, q(t; x0)) → −∞ as t → T ∗.

Now, let us give more insight into the blowup mechanism for the wave breaking solutions to 
equation (1). From (32), in view of Hölder inequality and Corollary 5, we see that

M ′ = −1

2
MN − λM +

[
− 1

2
u2 + (G − ∂xG) ∗

(
u2 + 1

2
u2

x

)]
(t, q(t;x0))

≤ −1

2
MN − λM + ‖G − ∂xG‖L∞

∥∥∥u2 + 1

2
u2

x

∥∥∥
L1

≤ −1
MN − λM + ‖u0‖H 1 .
2
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This, together with the estimate in (32), infers the estimates for M :

−1

2
MN − λM ≤ M ′ ≤ −1

2
MN − λM + ‖u0‖2

H 1 .

Similarly, for the function N , from (33) we have

1

2
MN − λN − ‖u0‖2

H 1 ≤ N ′ ≤ 1

2
MN − λN.

Consequently, we conclude from the above inequalities that

1 + λ
( 1

N
− 1

M

)
≤ N ′ − M ′

MN
≤ 1 + λ

( 1

N
− 1

M

)
− 2‖u0‖2

H 1

MN
. (39)

Observing that ux(t, q(t; x0)) → −∞ as t → T ∗ and u is bounded by ‖u0‖H 1 , we see 1
M

→ 0
and 1

N
→ 0 as t → T ∗. For small ε > 0, we can find t0 ∈ (0, T ∗) such that t0 is close enough to 

T ∗ in a such way that

∣∣∣λ
2

( 1

N
− 1

M

)∣∣∣ ≤ ε and
∣∣∣λ
2

( 1

N
− 1

M

)
− ‖u0‖2

H 1

MN

∣∣∣ ≤ ε

on (t0, T ∗). So, on such interval, one can conclude from (39) that

1

2
− ε ≤ d

dt

( 1

ux(t, q(t;x0))

)
≤ 1

2
+ ε.

Integrating the above inequalities on (t, T ∗
1 ) with t ∈ (t0, T ∗

1 ), we get the blowup rate (14) with 
x(t) = q(t, x0). �
4.2. Global existence of the strong solution

In this subsection, we use the obtained conserved quantities in Corollary 5 to show a global 
existence of the strong solution to (1).

Proof of Theorem 7. With y := u − uxx , equation (1) takes the form of a quasi-linear evolution 
equation of hyperbolic type

yt + (u + k)yx + 2yux + λy = 0. (40)

In view of equation (29), one gets easily that

d

dt
[y(t, q(t, x))qx(t, x)2] = −λy(t, q(t, x))q2

x ,

which means that

eλty(t, q(t;x))qx(t;x)2 = eλty(t, q(t;x))qx(t;x)2|t=0 = y0(x). (41)
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When case (i) occurs, since y0 doesn’t change sign on R, without loss of generality, we can 
assume that y0 ≥ 0. Therefore, the identity (41) ensures that y ≥ 0 for t ∈ [0, T ), x ∈ R. By the 
facts that u = G ∗ y and G is positive, we see that u is nonnegative for t ∈ [0, T ), x ∈ R. On the 
other hand, note that

u(t, x) = 1

2
e−x

x∫
−∞

eξ y(t, ξ)dξ + 1

2
ex

∞∫
x

e−ξ y(t, ξ)dξ,

ux(t, x) = −1

2
e−x

x∫
−∞

eξ y(t, ξ)dξ + 1

2
ex

∞∫
x

e−ξ y(t, ξ)dξ,

(42)

which imply that u +ux ≥ 0 and u −ux ≥ 0. Therefore, the Sobolev’s inequality and Corollary 5
tell us that

|ux(t, x)| ≤ |u(t, x)| ≤ ‖u‖L∞ ≤
√

2

2
‖u‖H 1 ≤

√
2

2
e−λt‖u0‖H 1 .

Hence, we achieve the desired result from Lemma 10.
For case (ii), in view of (30) and (41), it’s easy to get

y(t, x)

{ ≤ 0, x ≤ q(t, x0),

≥ 0, x ≥ q(t, x0).

Similar to (42), applying Corollary 5 again we see that, for x ≤ q(t; x0),

−ux(t, x) = −u(t, x) + e−x

q(t;x0)∫
−∞

eξ y(t, ξ)dξ

≤ −u(t, x) ≤
√

2

2
‖u‖H 1 ≤

√
2

2
e−λt‖u0‖H 1

and, for x ≥ q(t; x0),

−ux(t, x) = u(t, x) − ex

∞∫
q(t;x0)

e−ξ y(t, ξ)dξ

≤ u(t, x) ≤
√

2

2
‖u‖H 1 ≤

√
2

2
e−λt‖u0‖H 1 .

Hence, from (40) and the above inequalities, a direct computation yields

d
dt

‖y‖2
L2 = 2

∫
R

yytdx = −2
∫
R

y[(u + k)yx + 2yux + λy]dx

= 3
∫

(−ux)y
2dx − 2λ

∫
y2dx ≤

(3
√

2

2
e−λt‖u0‖H 1 − 2λ

)
‖y‖2

L2 .
R R
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Solving this inequality, we arrive at

‖y‖2
L2 ≤

⎧⎪⎨
⎪⎩

‖y0‖2
L2 e

3
√

2‖u0‖
H1

2 t , if λ = 0;
‖y0‖2

L2 e
3
√

2
2λ

‖u0‖H1 , if λ > 0.

Note that y = u − uxx and we can represent the function u by G ∗ y. We derive from the expres-
sion of G that

|ux | ≤ ‖∂xG‖L2‖y‖L2 = 1

2
‖y‖L2 . (43)

Thus, it follows that ux is bounded in [0, T ]. Thus, we complete the proof by Lemma 10. �
5. Some special solutions

We construct some special exact solutions in this section.

5.1. Solutions obtained using conservation laws

The method of conservation laws for constructing exact solutions has been proposed in [21]. 
Here we apply this method to construct solutions of (1) and study the asymptotic behavior for 
one of obtained solutions which is the strong solution given by Lemma 9.

For the conservation law DtC
t
1 + DtC

x
1 = 0, according to the method of conservation laws, 

some particular solutions are obtained by letting DtC
t
1 = 0 and DtC

x
1 = 0. Solving the two 

equations, we obtain the functions

u1 = C1e
−λt and u2 = f (t)ex + g(t)e−x,

which are analytical solutions of (1), where f (t) and g(t) are differentiable functions of t . We 
point out that u1 = C1e

−λt is a invariant solution of (1) as shown in Section 2, and u2 = f (t)ex +
g(t)e−x is a self-similar-type solution. However, these solutions do not like as the unique solution 
obtained in Lemma 9 which belongs to the space C([0, T ); Hs) ∩ C1([0, T ); Hs−1) (s > 3/2). 
Thus, these analytical solutions imply that the uniqueness in Lemma 9 is not valid if we don’t 
restrict the initial value u0 in Hs .

5.2. Weak peakon-type solution

In this subsection, we provide a shorter, formal proof of Theorem 8, instead of providing a 
detailed, rigorous proof.

Let f ∈ L1
loc(X), where X is an open set of R. Assume that f ′ exists and is continuous except 

at a single point x0 ∈ X and f ′ ∈ L1
loc(X), then the left-and right-handed limits f (x0±) exist and 

(Tf )′ = Tf ′ + [f (x0+) − f (x0−)]δx0 , where Tf is the distribution associated to the function f
and δx0 is the Dirac delta distribution centered at x = x0.

Proof of Theorem 8. Formally, from (15) we have

ux = −ce−λt−|x−τ |sgn(x − τ) and uxx = u − 2ce−λt δτ
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where τ = kt − ce−λt /λ − c0, sgn(·) is the sign function and δτ is the Dirac delta distribution 
centered at x = τ . The formal computations yield that y = u − uxx = 2ce−λt δτ and

yt + (u + k)yx + 2yux + λy

= −2cλe−λt δτ − 2c(k + ce−λt )e−λt δ′
τ + (ce−λt−|x−τ | + k)(2ce−λt δ′

τ )

+4ce−λt (−ce−λt−|x−τ |sgn(x − τ))δτ + 2λce−λt δτ

= 0.

This completes the proof. �
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