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Abstract

We are interested in the question of stability in the field of shape optimization, with focus on the strategy 
using second order shape derivative. More precisely, we identify structural hypotheses on the Hessian of the 
considered shape function, so that critical stable domains (i.e. such that the first order derivative vanishes 
and the second order one is positive) are local minima for smooth perturbations; as we are in an infinite 
dimensional framework, and that in most applications there is a norm-discrepancy phenomenon, this type 
of result require a lot of work. We show that these hypotheses are satisfied by classical functionals, in-
volving the perimeter, the Dirichlet energy or the first Laplace-Dirichlet eigenvalue. We also explain how 
we can easily deal with constraints and/or invariance of the functionals. As an application, we retrieve or 
improve previous results from the existing literature, and provide new local stability results. We finally test 
the sharpness of our results by showing that the local minimality is in general not valid for non-smooth 
perturbations.
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1. Introduction

1.1. Motivation and literature

In this paper, we are interested in the question of stability in the field of shape optimization. 
More precisely, given J : A → R defined on A ⊂ {� smooth enough open sets in Rd}, we con-
sider the optimization problem

min {J (�), � ∈A} , (1)

and we ask the following question:
if �∗ ∈ A is a critical domain satisfying a stability condition (that is to say a strict second 

order optimality condition), can we conclude that �∗ is a strict local minimum for (1) in the 
sense that

J (�) − J (�∗) ≥ cd1(�,�∗)2, for every � ∈ V(�∗) (2)

where c ∈ (0, ∞), d1 is a distance among sets, and V(�∗) = {� ∈A, d2(�, �∗) < η} is a neigh-
borhood of �∗, relying on a (possibly different) distance d2?

Note first that the word distance is used here and in the rest of the paper as an intuitive notion, 
asserting that � is far or close from the fixed shape �∗, and does not refer in general to the 
formal mathematical notion of distance. Note also that in the case where solving (1) is still an 
open problem, obtaining (2) with c = 0 is already an interesting achievement, nevertheless the 
method used in this paper will always provide a result with c > 0.

During the last decade, starting with [21], this type of question gained interest in the com-
munity of isoperimetric inequalities and shape optimization, in particular three main methods 
were developed in a quite extensive literature, in order to get a stability result of the form (2) for 
the most classical problems (1): symmetrization technique, mass transportation approach, sec-
ond order shape derivative approach. In this paper, we focus on the third strategy, which recently 
received even more attention as in some examples, the other techniques could not be applied, see 
for example [7].

One specific difficulty for this strategy is that differential calculus within shapes is available 
only for rather smooth deformations of the initial shape. Nevertheless, as it is shown for example 
in [2], the strategy can also provide results for very weak distances (as the Fraenkel asymmetry 
which can be seen as the L1-‘distance’ to the ball, up to translations, see [21,2]), when it is 
combined with a regularization procedure. For the perimeter functional, the stability result for 
smooth perturbations goes back to [20], and the regularization step is inspired by results in [43,
32], though the complete result was achieved in [11]. These two steps rely on very different 
arguments.

The aim of this paper is to describe a general framework so that the first step of the above 
strategy applies: while this has been done in a few places in the literature, every time specifically 
for the functional that was under study, we aim at giving some general statements, and then show 
that these statements both apply to the examples already handled in the literature, and also to 
new examples. Despite getting a wider degree of generality, we also simplify many proofs and 
strategies found in the previous literature, as we describe in the rest of this introduction. We also 
show that the second step of the above strategy does not work with a similar degree of generality.

In order to tackle this question, we have to face two main difficulties:
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• The first difficulty for this strategy is to define a suitable framework of differential calculus 
within shapes. This can be done for example with the notion of shape derivatives, but one 
can not expect positivity of the second order derivative with this tool (see Section 2 for 
more details). We can restrict to normal deformations, but this may lead to difficulties when 
dealing with the next point, see the proof of Theorem 1.4.

• The second difficulty is the classical two-norm discrepancy phenomenon in optimization in 
infinite dimension. The studied function J is twice differentiable with respect to one norm 
but the coercivity inequality J ′′(u)(h, h) ≥ c‖h‖2

w holds only for a strictly weaker norm. 
Hence the usual theorem on sufficient conditions for local optimality does not apply. This 
has been studied for example in [28], and mainly applied in the framework of optimal control, 
see for example [31,8]. In this paper we discuss an adaptation of these results to the context 
of shape optimization.
In the context of shapes, this norm-discrepancy issue was noticed for the perimeter functional 
by Fuglede in [20] (studying the case of the Euclidian ball) and in [25, Proof of Theorem 
6], [6, Equation 3.23], [43, Equation (1)] in the more general framework of constant mean 
curvature surfaces. Various geometric examples have been handled in the literature since 
these first examples, see [15,17,5,33]. In the specific context of shape optimization involving 
PDE, the issue was first overcome in [14,12]. More recently a very similar approach can be 
found in [2], see also Section 5.1.

1.2. Main results

1.2.1. Stability results
Our first results provide an answer to the main goal of the paper: it gives the suitable as-

sumptions on the functional so that linear stability implies non-linear stability. In other words if 
�∗ ∈ A is a critical domain satisfying a strict second order optimality condition, then �∗ is a 
strict local minimum for (1). Before giving the main statements, we precise the notations and the 
assumptions.

Definition of derivatives: for the sake of simplicity, we define everything here using normal 
deformations, which is enough to give the main statements. We refer to Section 2 for more 
details. Assuming that � is C1 and n = n∂� is its outer unit normal vector we can consider 
“normal graphs” on ∂�, that is �h such that

∂�h = {x + h(x)n(x), x ∈ ∂�}, (3)

where h ∈ X, and X is a Banach space of scalar functions on ∂�. If J is a shape functional, 
then we can define j�(h) = J (�h) for h ∈ X close to 0, and if j� is twice Fréchet differentiable 
around 0 in X, we can define

J ′(�).h = j′�(0).h and J ′′(�).(h,h) = j′′�(0).(h,h). (4)

The first assumption will help to deal with the coercivity of the second derivative, and also to 
identify which distance d1 may be expected in (2). To that end, we formulate

Assumption (CHs2 ): for s2 ∈ (0, 1], we say that the bilinear form � acting on C∞(∂�) satisfies 
condition (CHs2 ) (and by extension we say that J satisfies the condition at � if j′′ (0) does) if:
�
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(CHs2 ) there exists s1 ∈ [0, s2) and c1 > 0 such that � = �m + �r with

{
�m is lower semi-continuous in Hs2(∂�) and �m(h,h) ≥ c1|h|2Hs2 (∂�)

, ∀h ∈ C∞(∂�),

�r continuous in Hs1(∂�),

where | · |Hs2 (∂�) denote the Hs2(∂�) semi-norm. In that case, � is extended by density to the 
space Hs2(∂�).

Second, as we face the two-norm discrepancy problem, we need to precise the estimation of 
the Taylor remainder. This is the goal of the following improved Taylor condition:

Assumption (ITHs ,X): given �, s ∈ [0, 1] and X ⊂ W 1,∞(∂�) a Banach space, and assuming 
that j� is twice Fréchet differentiable at 0 in X, we say that J satisfies condition (ITHs ,X) at �
if:

(ITHs ,X) there exist η > 0 and a modulus of continuity ω such that for every domain �h with 
‖h‖X ≤ η,

∣∣∣∣J (�h) − J (�) − J ′(�).h − 1

2
J ′′(�).(h,h)

∣∣∣∣≤ ω(‖h‖X)‖h‖2
Hs (∂�).

We are now in position to give our first stability result in the framework of shape optimization:

Theorem 1.1. Let �∗ be a domain of class C1, and J a shape functional such that j� is twice 
Fréchet differentiable at 0 in a Banach space X such that C∞(∂�∗) ⊂ X ⊂ W1,∞(∂�∗). We 
assume that J satisfies (CHs2 ) and (ITHs2 ,X) at �∗ for some s2 ∈ (0, 1]. Then if �∗ is a critical 
and strictly stable shape for J , that is to say1:

J ′(�) = 0, and J ′′(�) > 0 on Hs2(∂�∗) \ {0}, (5)

then there exist η > 0 and c = c(η) > 0 such that

∀ � = �∗
h with ‖h‖X ≤ η, J (�) ≥ J (�∗) + c‖h‖2

Hs2 (∂�∗).

The reader can compare to classical results dealing with the two-norm discrepancy problem, 
see for example [28]. We give a proof of this result in Section 3.2.

Remark 1.2. Usually, when dealing with sufficient condition for local optimality in an infinite 
dimensional setting, (5) is replaced by a coercivity assumption. In fact we will prove in Sec-
tion 3.1 that both conditions are equivalent under condition (CHs2 ). In practice, this improvement
is rather secondary as in most applications, we directly prove coercivity, see Section 5. Our main 
interest in this new formulation is that it is an easy way to identify the value of s2, which does not 
require to diagonalize the second order derivative. Also, assumption (CHs2 ) will be useful when 
dealing with constraints/invariances as explained just below.

1 Here J ′′(�) is a quadratic form, so J ′′(�∗) > 0 on X \ {0} means J ′′(�∗)(h, h) > 0 for any h ∈ X \ {0}.
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Constraints and invariance: In many shape optimization problems, we have to handle two 
extra difficulties: the functional is translation invariant, and there is a volume constraint (we 
denote Vol(�) the volume of �, see Section 2 for the computation of its derivatives). Therefore 
one cannot expect (5) to be satisfied. Here is the statement adapted to this case:

Theorem 1.3. Let �∗ of class C1, and J a shape functional, translation invariant and such that j�
is twice Fréchet differentiable at 0 in a Banach space X such that C∞(∂�∗) ⊂ X ⊂ W1,∞(∂�∗). 
We assume:

• Structural hypotheses: there exists s2 ∈ (0, 1] and X a Banach space with

C∞(∂�∗) ⊂ X ⊂ W1,∞(∂�∗)

such that J satisfies (CHs2 ) and (ITHs2 ,X) at �∗,
• Necessary optimality conditions:

– �∗ is a critical shape under volume constraint for J , that is to say there exists μ ∈ R a 
Lagrange multiplier such that

(J − μVol)′(�∗) = 0,

– �∗ is a strictly stable shape for J under volume constraint and up to translations, that is 
to say

∀h ∈ T (∂�∗) \ {0}, (J − μVol)′′(�∗).(h,h) > 0 (6)

where

T (∂�∗) :=
⎧⎨⎩h ∈ Hs(∂�∗),

∫
∂�∗

h = 0,

∫
∂�∗

h
−→
x = −→

0

⎫⎬⎭ . (7)

Then there exists η > 0 and c = c(η) > 0 such that:

∀ � = �∗
h such that ‖h‖X ≤ η and |�| = |�∗|, J (�) ≥ J (�∗) + cdX(�,�∗)2,

where

dX(�,�∗) = inf{‖g‖Hs2 (∂�∗), g such that ∃τ ∈ Rd, � + τ = �∗
g} (8)

The proof is given in Section 3.3. In some particular cases for the functional J , similar results 
were already obtained but with a different strategy: in [14,12] the authors carefully handle the 
volume constraint by building a path preserving the volume and being almost normal, and prove 
that an estimate like (ITHs2 ,X) is valid for this more involved path. Similarly in [2] the authors 
also handle the translation-invariance of the functional (which is not there in the example of [14,
12]) using the same path, which implies a lot technicalities.

We drastically simplify the presentation of [14,12,2] by using an exact penalization method. 
More precisely we prove that under assumption (CHs2 ), (6) implies the unconstrained condition 
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(5) when J is replaced by

Jμ,C = J − μVol + C (Vol − V0)
2 + C

∥∥Bar − Bar(�∗)
∥∥2

,

where C ∈ (0, ∞) is large enough, and Bar is the barycenter functional. We then apply Theo-
rem 1.1 to Jμ,C which implies the constrained local minimality. It is clear, looking at the proofs 
of our results, that the method we describe in this paper is general and can be applied to other 
constraints or invariance.

Theorem 1.1 is relevant only if one provides explanations on how to show assumptions (CHs2 )
and (ITHs ,X) on concrete examples: Theorem 1.4 below is dedicated to this issue, and in Sec-
tions 2.2 and 4 we provide several other examples.

1.2.2. Condition (ITHs ,X) for Dirichlet energy and first eigenvalue when X is a Sobolev space
The situation of a shape functional involving a PDE is much more involved than for geometric 

functionals, as it is much harder to write the remainder term in order to show condition (ITHs ,X)
for suitable spaces.

In this case, it is more convenient to define a slightly different condition: given �, s ∈ [0, 1]
and X ⊂ W 1,∞(∂�) a Banach space, assuming that j� is C2 in a neighborhood of 0 in X, we say 
that J satisfies condition (ICHs ,X) (for “improved continuity” in h) at � if:

(ICHs ,X) there exist η > 0 and a modulus of continuity ω such that for every domain �h with 
‖h‖X ≤ η, and all t ∈ [0, 1]:∣∣j ′′(t) − j ′′(0)

∣∣≤ ω(‖h‖X)‖h‖2
Hs ,

where j : t ∈ [0, 1] 
→ J (�t ) for the path (�t )t∈[0,1] connecting � to �h, and defined through 
its boundary

∂�t = {x + th(x)n(x), x ∈ ∂�}. (9)

Using the Taylor formula with integral remainder:

J (�h) − J (�) = J ′(�).h + 1

2
J ′′(�).(h,h) +

1∫
0

[j ′′(t) − j ′′(0)](1 − t)dt,

it is easy to see that condition (ICHs ,X) implies (ITHs ,X).
We now recall the definition of two classical PDE functionals, E the Dirichlet energy and λ1

the first Dirichlet-eigenvalue:

E(�) = min

⎧⎨⎩1

2

∫
�

|∇u|2 −
∫
�

u, u ∈ H1
0(�)

⎫⎬⎭ , λ1(�) = min

{∫
�

|∇u|2∫
�

u2
, u ∈ H1

0(�)

}
(10)

In this paper, we prove the new following result:
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Theorem 1.4. Let � be a bounded C3 domain. Then E and λ1 satisfy (ICH1/2,W2,p ) for p > d .

This result is an improvement of the previous literature in several ways: first in [14,12] the 
authors prove (ICH1/2,C2,α ) for functionals similar to E, which is weaker. In [2] the authors ob-
tain a condition similar to (ICH1/2,W2,p ) for p > d , but for a PDE functional which provides more 
regularity (see (30)). Finally, as far as we know, the case of λ1 was not known in the literature. 
Note that this improvement about spaces is not just a technical issue, as in [2] the choice of 
W2,p rather than C2,α is relevant for the second step of the strategy when proving stability in an 
L1-neighborhood ([2, Section 4]): indeed their regularization procedure needs to allow disconti-
nuities of the mean curvature, see equation (4.9) in the proof of [2, Theorem 4.3].

1.3. Old and new applications

In order to justify the interest of our general statements, we provide several examples of 
functionals for which Theorems 1.1 or 1.3 apply. We give here a short list, see Section 5 for more 
details.

• First, we retrieve with our results classical statements already existing in the literature: this 
relies on the computation of the first and second derivatives of the functionals, and the fact 
that they satisfy conditions (CHs2 ) and (ITHs2 ,X) (for suitable s2 and X). This includes the 
examples of [14,12,2,7]. We believe that despite the degree of generality of our approach, 
the proofs are less technical and more straightforward.

• Second, we apply our result to cases where only linear stability was studied: this includes 
the result in [34] (see Proposition 5.1).

• We finally provide new examples, which come with minor cost thanks to our results. One 
generic example we have in mind is the following: if �∗ = B is a ball of volume V0 ∈ (0, ∞), 
then the conditions of Theorem 1.3 are fulfilled for the functional J = P + γE (P is the 
perimeter and E is the Dirichlet energy) when γ ≥ γ0 and γ0 ∈ (−∞, 0) (whose optimal 
value is given in Proposition 5.5), and we can conclude from our strategy that the ball is a 
local minimizer (in a W2,p neighborhood for p > d) of the following optimization problem

min {P(�) + γE(�), |�| = V0} . (11)

For γ ≥ 0 this result is not surprising, since the ball minimizes both the perimeter and 
the Dirichlet energy. But this result is new and surprising when γ is nonpositive: there is a 
competition between minimizing the perimeter and maximizing the Dirichlet energy. Another 
way to state the result is to say that

P(�) − P(B)

E(�) − E(B)
≥ |γ0|, ∀� ∈ V(B),

where V(B) = {� = Bh, |�| = |B| and ‖h‖W2,p < η}, for some η > 0.

For a problem related to (11) when γ < 0, see also [24]. We also notice that local optimality 
of the ball is no longer valid when one considers a neighborhood of �∗ for a weak distance, 
for example the Frankel asymmetry, see Section 6. Especially it means that the second step 
of the strategy described in Section 1.1 does not apply to (11) if γ < 0, despite the fact that 
sets are minimizing the perimeter, and it shows in what way the two steps of this strategy 
have different degree of generality.
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In addition to this example, we obtain several new local isoperimetric inequalities, see
Proposition 5.1 in Section 5.2.

In Section 2, we give a review of classical results and computations for shape derivatives that 
will be useful for applications. We show in particular a new proof of the Structure Theorem for 
second order shape derivatives. In Section 3, we discuss the coercivity assumptions and we prove 
Theorems 1.1 and 1.3. In Section 4 we discuss assumption (ITHs2 ,X), in particular we recall and 
improve existing results, and show Theorem 1.4. In Section 5, we focus on applications of our 
results. In the last Section, we show that similar results in non-smooth neighborhoods cannot be 
achieved with the same degree of generality.

2. On second order shape derivatives

In this section, we review classical results and computations about first and second order 
shape derivatives. On one hand, we will recall the values of J ′(�) and J ′′(�) as defined in 
(4), for classical functionals J : they will be needed in Section 5. On the other hand, we give 
useful facts that will help to deal with Assumption (ICHs2 ,X) in Section 4.2, where we prove 
Theorem 1.4: this requires indeed to work with non-normal deformations. We start recalling 
the Structure Theorem from [35] which generalizes to the second order the classical Hadamard’s 
result about shape derivatives. Even though this is not a mandatory tool to obtain stability results, 
this will help to guide and shorten the computations.

2.1. Structure Theorem

If J is a shape functional, and � = W1,∞(Rd , Rd) (see Remark 2.5 for a discussion about 
other functional spaces) one can define θ ∈ � 
→ J�(θ) = J [(Id + θ)(�)], and the derivatives 
J ′

�(0) and J ′′
�(0) (when they exist) are called first and second order shape derivatives of J at �, 

see for example [41,26].
It is well-known since Hadamard’s work that the first shape derivative is a distribution sup-

ported on the moving boundary and acting on the normal component of the deformation field. 
The second order shape derivative also has a specific structure as stated by A. Novruzi and M. 
Pierre in [35]. We quote their result, and provide a new proof that we think is more natural. The 
proof can be skipped in a first lecture.

Theorem 2.1 (Structure Theorem of first and second shape derivatives). Let � = W1,∞(Rd , Rd), 
� an open bounded domain of Rd and J a real-valued shape function defined on
V(�) = {(Id + θ)(�), ‖θ‖� < 1}. Let us define the function J� on {θ ∈ �, ‖θ‖� < 1} by

J�(θ) = J [(Id + θ)(�)].

(i) If J� is differentiable at 0 and � is C2, then there exists a continuous linear form �1 on 
C1(∂�) such that J ′

�(0)ξ = �1(ξ|∂� · n) for all ξ ∈ C∞(Rd , Rd), where n denotes the unit 
exterior normal vector on ∂�.

(ii) If moreover J� is twice differentiable at 0 and � is C3, then there exists a continuous 
symmetric bilinear form �2 on C2(∂�) × C2(∂�) such that for all (ξ, ζ ) ∈ C∞(Rd , Rd)2

J ′′(0)(ξ, ζ ) = �2(ξ · n, ζ · n) + �1(B(ζτ , ξτ ) − ∇τ (ζ · n) · ξτ − ∇τ (ξ · n) · ζτ ),
�
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where ∇τ is the tangential gradient, ξτ and ζτ stands for the tangential components of ξ and 
ζ , and B = Dτn is the second fundamental form of ∂�.

With respect to this work, it is important to notice that at a critical domain for J , the shape 
Hessian is reduced to �2 and hence does not see the tangential components of the deformation 
fields.

Remark 2.2. In particular, if θ is such that θ = hn on ∂�, then (Id + θ)(�) = �h as defined in 
(3). Therefore

J ′(�).h = �1(h) and J ′′(�).(h,h) = �2(h,h)

where J ′, J ′′ are defined in (4), and �1, �2 are obtained with Theorem 2.1. We will call these 
objects ‘shape gradient’ and ‘shape Hessian’ respectively. The most interesting part here is 
that knowing only J ′(�) and J ′′(�) (that is using only normal deformations), one can retrieve 
J ′′

�(0).(ξ, ζ ) for any (ξ, ζ ), see also Section 4.

Remark 2.3. The requirement that � is bounded is made only to simplify the presentation: the 
result remains valid replacing C1(∂�) with C1

c(∂�) and localizing the test functions.

Remark 2.4. As noticed in [26, p. 225], with this degree of generality, the regularity assumption 
on � are sharp. We could indeed wonder if �1 can be extended as a continuous linear form on 
C0(∂�); this is not true in general if � is only assumed to be C1, as the example of the perimeter 
shows (it would mean that the mean curvature is a Radon measure, which is not true for a C1

domain). Our strategy provides �2 being continuous for the C2(∂�)-norm, while [35] gives a 
better result with �2 being continuous for the C1(∂�)-norm. However, if we assume that �1 can 
be extended as a continuous linear form on C0(∂�), then point (ii) is valid assuming � of class 
C2 only, and �2 is then continuous for the C1-norm; it is easy to see how the proof adapts to this 
case, and we retrieve then an optimal result, see also [35, Remark 2.8, Corollary 2.9].

Remark 2.5. Compare to the result in [35], we restricted ourself to the space � = W1,∞ (or 
similarly C1,∞ := W1,∞ ∩ C1, see the proof below), as all the functionals of this paper are 
differentiable in this space. The same proof can be adapted to spaces like Wk,∞ for k ≥ 2, which 
is important to handle higher order geometric or PDE functional.

Remark 2.6. When ξ = ζ , we get

J ′′
�(0).(ξ, ξ) = �2(ξ · n, ξ · n) + �1(Zξ ), where Zξ = B(ξτ , ξτ ) − 2∇τ (ξ · n) · ξτ .

As noticed in [2, Equation (7.5)], the term Zξ can have be written in a different way:

Zξ = (ξ · n)div(ξ) − divτ (ξτ (ξ · n)) − H(ξ.n)2.

The advantage of Zξ is that it clearly vanishes when ξτ = 0, but this second formulation can also 
have advantages, especially when ξ has a vanishing divergence (as it is the case in [2]) or when 
there are simplifications as it is the case for the volume (see Lemma 2.8 for the first equality):
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Vol′′(�).(ξ, ξ) =
∫
∂�

H(ξ · n)2 +
∫
∂�

Zξ =
∫
∂�

(ξ · n)div(ξ). (12)

Remark 2.7. It is sometimes considered that first and second order derivatives described in the 
previous theorem cannot handle the differentiation of t 
→ J (Tt (�)) where T ∈ C2([0, α[, �)

is not of the form Tt = Id + tξ . This is not true, as the chain rule formula easily gives (and is 
allowed when we have proven the Fréchet-differentiability of the functionals, which is valid for 
all the functionals of this paper):

d2

dt2 J (Tt (�)) = J ′′
�(Tt − Id).

(
d

dt
Tt ,

d

dt
Tt

)
+J ′

�(Tt − Id).

(
d2

dt2 Tt

)
and the structure result can then be applied. For example, if Tt is the flow of the vector field ξ as 
it is usually done in the speed method, we obtain:

d2

dt2 J (Tt (�))|t=0 = J ′′
�(0). (ξ, ξ) +J ′

�(0). ((Dξ) · ξ) .

Another interesting case is that if � is a critical shape for J , namely J ′
�(0) ≡ 0, and if

Tt = Id + tξ + t2

2 η + o(t2) where o(t2) has to be understood with the norm ‖ · ‖�, then we 
always have

d2

dt2 J (Tt (�))|t=0 = �2(ξ · n, ξ · n).

Proof of Theorem 2.1. We only focus on the second order derivative, as the first order one 
is classical (see for example [26,16,30]). For k ∈ N , we define Ck,∞ := Ck ∩ Wk,∞(Rd , Rd)

equipped with the same norm as Wk,∞, which is also a Banach space and is more adapted to 
approximation by smooth functions. Let ξ, ζ ∈ C∞ compactly supported, and denote γ, δ their 
respective flow, namely{

d
dt

γt (x) = ξ(γt (x))

γ0(x) = x

{
d
dt

δt (x) = ζ(δt (x))

δ0(x) = x

Thanks to our assumption on ξ , we easily check that the function T ∈ � 
→ ξ ◦ (T + Id) ∈ �

is locally Lipschitz and C2, and therefore these ODE admits solutions defined on (−t0, t0) and 
such that [t 
→ γt − Id, t 
→ δt − Id] are in C2((−t0, t0), �). As a consequence,

(t, s) 
→ γs ◦ δt − Id ∈ �

is well-defined in a neighborhood of (0, 0) and C2.
Let now assume that ζ ·n = 0. Then from classical criterion of invariance of sets with the flow, 

we have δt (�) = � for every t small enough, so J (γs ◦ δt (�)) = J�(γs ◦ δt − Id) is independent 
of t . Differentiating successively with respect to t and s at (0, 0), we obtain:

J ′′
�(0).(ξ, ζ ) +J ′

�(0).(Dξ · ζ ) = 0, ∀ξ ∈ C∞
c , ∀ζ ∈ K ∩ C∞

c ,

where K = Ker(�) and � : ξ ∈ � 
→ ξ|∂� · n.



M. Dambrine, J. Lamboley / J. Differential Equations 267 (2019) 3009–3045 3019
We define b : (ξ, ζ ) ∈ C2,∞ × C1,∞ 
→ J ′′
�(0).(ξ, ζ ) +J ′

�(0).(Dξ · ζ ) which is a continuous 
bilinear functional that vanishes for ζ ∈ K , for any fixed ξ . Therefore we can write, using quo-
tient properties, b(ξ, ζ ) = b̃(ξ, ζ|∂� · n) where b̃ : C2,∞ × C1(∂�) → R is continuous (a priori 
we only get that ̃b is separately continuous but with Banach-Steinhaus Theorem, it implies conti-
nuity), as � induces an isomorphism between �/K and �(�) = C1(∂�) equipped with the C1

norm (using that � is of class C2). Moreover by construction we have:

J ′′
�(0).(ξ, ζ ) +J ′

�(0).(Dξ · ζ ) = b̃(ξ, ζ|∂� · n), ∀ ξ, ζ ∈ C2,∞ × C1,∞.

Using the symmetry of J ′′
�(0), we can write, for every (ξ, ζ ) ∈ C2,∞:

b̃(ζ, ξ|∂� · n) − b̃(ξ, ζ|∂� · n) = J ′
�(0).(Dζ · ξ − Dξ · ζ ) (13)

Our goal is now to apply this formula to ζn the normal component of ζ , which needs to be 
extended as a vector field on Rd . To that end, we introduce π∂� the projection on ∂�, which is 
well-defined and C2 in a neighborhood of ∂�, as � is assumed to be C3 (see for example [16]). 
Then if ϕ is defined on ∂�, we set ϕ̃(x) = ϕ(π∂�x)χ(x) where χ is a smooth function with 
χ = 1 in a neighborhood of ∂�, and χ = 0 outside a compact set (in other words, ϕ is extended 
so that it is constant in the normal direction). This operator ϕ 
→ ϕ̃ is continuous from C2(∂�)

to C2,∞. Let us define then ζn := ˜(ζ · n)n the extension of the normal component of ζ . Defining 
the bilinear form �0(ϕ1, ϕ2) = b̃(ϕ̃1n, ϕ2), continuous on C2(∂�) × C1(∂�) (and a priori non 
symmetric), we obtain

J ′′
�(0).(ξ, ζ ) = b̃(ξ, ζ · n) −J ′

�(0).(Dξ · ζ )

= b̃(ζn, ξ · n) −J ′
�(0).(Dζn · ξ − Dξ · ζn) −J ′

�(0).(Dξ · ζ ) (using (13))

= �0(ζ · n, ξ · n) −J ′
�(0).(Dζn · ξ − Dξ · ζn + Dξ · ζ )

= �0(ζ · n, ξ · n) −J ′
�(0).(Dζn · ξ + Dξ · ζτ )

where ζτ = ζ − ζn. We now use Dζn = Dτζn, because thanks to our choice of extension op-
erator, ζn is constant in the direction n (by definition, Dτa = Da − (Da · n)n), and therefore
Dζn · ξ = Dτζn · ξτ . Moreover, Dξ · ζτ = Dτξ · ζτ .

Using a symmetrization of the previous formula, we obtain

J ′′
�(0).(ξ, ζ ) = 1

2

[
�0(ζ · n, ξ · n) + �0(ξ · n, ζ · n) −J ′

�(0).(Dτ ζn · ξτ

+Dτξ · ζτ + Dτξn · ζτ + Dτζ · ξτ )
]

= �2(ξ · n, ζ · n) − 1
2J ′

�(0) ·
(

2Dτζ · ξτ + 2Dτξ · ζτ − Dτξτ · ζτ − Dτζτ · ξτ

)
where we defined �2(ξ · n, ζ · n) = 1

2 (�0(ζ · n, ξ · n) + �0(ξ · n, ζ · n)), which is a continuous 
bilinear form on C2(∂�)2.

From the structure of the first order derivative, and using the formula

tDτ ξτ · n + tDτn · ξτ = 0
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(obtained by tangentially differentiating ξτ · n = 0), we finally obtain (using the C3 regularity of 
∂� so that Dτn belongs to the space of definition of �1)

J ′′
�(0).(ξ, ζ ) = �2(ξ · n, ζ · n)

− 1
2�1

(
(2Dτζ · ξτ + 2Dτξ · ζτ ) · n − ζτ · (tDτ ξτ · n) − ξτ · (tDτ ζτ · n)

)
= �2(ξ · n, ζ · n) + �1

(
(Dτn · ζτ ) · ξτ − ∇τ (ζ · n) · ξτ − ∇τ (ξ · n) · ζτ

)
(where we used that Dτn is symmetric), which concludes the proof (a priori, �0 depends on the 
extension operator that has been chosen, but as in the final formula the extension only appears in 
�2 which does not depend of the extension operator). �
2.2. Examples of shapes derivatives

For an open bounded (smooth enough) set � ⊂ Rd , we consider in this section (and in the 
rest of the paper) its volume |�|, its perimeter P(�) = Hd−1(∂�), its Dirichlet energy E(�)

and its first eigenvalue of the Dirichlet Laplace operator λ1(�) (see (10)). The existence and 
computations of the shape derivatives of these functionals are well known, see for example [26, 
Chapter 5]. We denote the mean curvature (understood as the sum of the principal curvatures of 
∂�) by H , B = Dτn is the second fundamental form of ∂�, and ‖B‖2 is the sum of the squares 
of the principal curvatures of ∂�.

Lemma 2.8 (Expression of shape derivatives). If � is C2, one has, for any h ∈ C∞(∂�),

• Vol′(�).h =
∫
∂�

h, Vol′′(�).(h,h) =
∫
∂�

Hh2.

• P ′(�).h =
∫
∂�

Hh, P ′′(�).(h,h) =
∫
∂�

|∇τ h|2 +
∫
∂�

[
H 2 − ‖B‖2

]
h2

• E′(�).h = −1

2

∫
∂�

(∂nu)2h,

E′′(�).(h, h) = 〈∂nu h,�(∂nu h)〉H1/2×H−1/2 +
∫
∂�

[
∂nu + 1

2
H(∂nu)2

]
h2

where u ∈ H1
0(�) is the unique solution to −�u = 1, � : H1/2(∂�) → H−1/2(∂�) is the 

Dirichlet-to-Neumann map defined as �(ψ) = ∂nψ̃ where ψ̃ is the harmonic extension 
operator from H1/2(∂�) into H1(�):

−�ψ̃ = 0 in �, ψ̃ = ψ on ∂�,

• λ′
1(�).h = −

∫
∂�

(∂nv)2h, λ′′
1(�).(h,h) =

∫
∂�

2w(h) ∂nw(h) + H(∂nv)2h2

where v is the normalized eigenfunction (solution in H1
0(�) of −�v = λ1v with v ≥ 0 in �

and ‖v‖L2(�) = 1) and w(h) is the solution of
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−�w(h) = λ1w(h) − v

∫
∂�

(∂nv)2h in �,

w(h) = −h∂nv on ∂�,∫
�

v w(h) = 0.

(14)

A fundamental fact for this work appears here in the expression of the shape Hessians. Even if 
they are derived for regular perturbations, they are naturally defined and continuous on different 
Sobolev spaces on ∂�:

Lemma 2.9 (Continuity of shape Hessians). If � is C2, there is a constant C > 0 such that

|P ′′(�).(h,h)| ≤ C‖h‖2
H1(∂�)

, |Vol′′(�).(h,h)| ≤ C‖h‖2
L2(∂�)

,

|E′′(�).(h,h)| ≤ C‖h‖2
H1/2(∂�),

|λ′′
1(�).(h,h)| ≤ C‖h‖2

H1/2(∂�)
.

Therefore, from this Lemma, it is natural to consider the extension of these bilinear forms to 
their space of continuity.

2.3. The case of balls

In this section, we describe the shape derivatives of the previous functionals when the set �
is a ball. This will be very efficient when studying if one can apply Theorems 1.1 and 1.3 to the 
ball, see Section 5.

Let us focus on the ball B1 of radius 1. For the Dirichlet energy E, we remark that
u(x) = (1 − |x|2)/2d solves −�u = 1 in H1

0(B1) and satisfies ∂nu = − 1
d

on ∂B1. For λ1, we 
recall that the eigenvalue and eigenfunction are

λ1(B1) = j2
d/2−1 associated to v(x) = αd |x|1−d/2 Jd/2−1

(
jd/2−1 |x|) ,

where jd/2−1 is the first zero of Bessel’s function Jd/2−1 and αd a normalization constant. More-
over, from [27, p. 35], the eigenfunction satisfies

∂nv =
√

2

P(B1)
jd/2−1 := βd, so that β2

d = 2λ1(B1)

P (B1)
. (15)

We obtain the shape gradients:

Vol′(B1).h =
∫

∂B1

h, P ′(B1).h = (d − 1)

∫
∂B1

h,

E′(B1).h = − 1

2d2

∫
h, λ′

1(B1).h = − β2
d

∫
h.
∂B1 ∂B1
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Let us notice that these four shape gradients at balls are colinear. As a consequence, the balls 
are critical domains for the perimeter, the Dirichlet energy and λ1 (or any sum of these func-
tionals) under a volume constraint, and these formulas easily provide the value of the Lagrange-
multiplier.

Let us turn our attention to the Hessians. The value of λ′′
1 is a bit more involved, so we deal 

with it in the next lemma. For the other functionals, it is known from Lemma 2.8 that:

Vol′′(B1).(h,h) = (d − 1)

∫
∂B1

h2,

P ′′(B1).(h,h) =
∫

∂B1

|∇τ h|2 + (d − 1)(d − 2)

∫
∂B1

h2,

E′′(B1).(h,h) = 1

d2〈h,�h〉H1/2×H−1/2 − d + 1

2d2

∫
∂B1

h2.

In order to see that the quadratic forms associated to the Lagrangian are coercive on their 
natural spaces, it is useful to study the diagonalized form of these Hessians. To that end, we use 
spherical harmonics defined as the restriction to the unit sphere of harmonic polynomials. We 
recall here facts from [42, pages 139-141]. We let Hk denote the space of spherical harmonics 
of degree k (that is, the restriction to ∂B1 of homogeneous polynomials in Rd , of degree k). It 
is also the eigenspace of the Laplace-Beltrami operator on the unit sphere associated with the 
eigenvalue −k(k + d − 2). Let (Y k,l)1≤l≤dk

be an orthonormal basis of Hk with respect to the 
L2(∂B1) scalar product. The family (Y k,l)k∈N,1≤l≤dk

is a Hilbert basis of L2(∂B1). Hence, any 
function h in L2(∂B1) can be decomposed:

h(x) =
∞∑

k=0

dk∑
l=1

αk,l(h)Y k,l(x), for |x| = 1. (17)

Then, by construction, the function defined by

h̃(x) =
∞∑

k=0

|x|k
dk∑
l=1

αk,l(h)Y k,l

(
x

|x|
)

, for |x| ≤ 1, (18)

is harmonic in B1 and satisfies h̃ = h on ∂B1. Moreover, the sequence of coefficients 
αk,l characterizes the Sobolev regularity of h: indeed h ∈ Hs(∂B1) if and only if the sum∑

k(1 + k2)s
∑

l |αk,l(h)|2 converges. We can now state the following lemma expressing the 
previous shape Hessians are diagonal on this basis.

Lemma 2.10. Using the decomposition (17), we have (βd is the constant defined in (15))

Vol′′(B1).(h,h) =
∞∑ dk∑

(d − 1) αk,l(h)2,
k=0 l=1
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E′′(B1).(h,h) =
∞∑

k=0

dk∑
l=1

[
1

d2 k − d + 1

2d2

]
αk,l(h)2,

P ′′(B1).(h,h) =
∞∑

k=0

dk∑
l=1

[
k2 + (d − 2)k + (d − 1)(d − 2)

]
αk,l(h)2,

λ′′
1(B1)(h,h) = β2

d

⎛⎝3α2
0,1(h) +

∞∑
k=1

dk∑
l=1

2

[
k + d − 1

2
− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2

k,l(h)

⎞⎠ .

Proof. First we check that

∫
∂B1

h2 =
∞∑

k=0

dk∑
l=1

αk,l(h)2,

∫
∂B1

|∇τ h|2 = −
∫

∂B1

h �τh =
∞∑

k=0

k(k + d − 2)

dk∑
l=1

αk,l(h)2.

Then, we precise the term involving the Dirichlet-to-Neumann map that appears in the shape 
Hessian of the Dirichlet energy. Using h defined in (18) and Green formula, we have:

〈h,�h〉H1/2×H−1/2 =
∫

∂B1

h∂nh̃ =
∫
B1

|∇h̃|2

=
1∫

0

⎛⎜⎝∫
∂Br

(
(∂nh̃)2 + |∇τ h̃|2

)
dσ

⎞⎟⎠dr =
1∫

0

⎛⎜⎝∫
∂Br

(
(∂nh̃)2 − h̃�τ h̃

)
dσ

⎞⎟⎠dr

=
∞∑

k=0

dk∑
l=1

1∫
0

rd−1
[
k2r2(k−1) + k(k + d − 2)

r2 r2k

]
dr αk,l(h)2

=
∞∑

k=0

dk∑
l=1

[
k2

2k + d − 2
+ k(k + d − 2)

2k + d − 2

]
αk,l(h)2 =

∞∑
k=0

dk∑
l=1

k αk,l(h)2.

We obtain Vol′′(B1), P ′′(B1) and E′′(B1) by gathering these elementary terms.
Let us now consider the case of the first eigenvalue. We apply [27, p 35] (see also [38] and 

[40]): for a second order volume preserving path, that is t 
→ Tt such that |Tt (�)| = |�| + o(t2)

for small t , we have

(
d2

dt2 λ1(Tt (B1))

)
|t=0

=
∞∑

k=1

dk∑
l=1

2β2
d

[
k + d − 1 − jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2

k,l(h)

where h = ( d
dt

Tt )|t=0 · n and we have used the recursive formula for Bessel function
J ′

ν(z) = (ν/z)Jν(z) −Jν+1(z) to adapt his expression to our notations ([1, section 9.1.27, p 361]).
To deduce λ′′

1(B1) from this computation, we introduce θ a smooth vector field which is 
normal on ∂B1 and denote h = θ · n|∂B . We assume that 

∫
h = α0,1(h) = 0. It is then clear 
1 ∂B1
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that there exists ξ such that Tt := Id + tθ + t2

2 ξ is volume preserving at the second order, that is 
to say

Vol′′(B1)(h,h) + Vol′(B1)(ψ) = 0,

where ψ = ξ · n. Then we observe that for a smooth shape functional J and for such t 
→ Tt ,(
d2

dt2 J (Tt (B1))

)
|t=0

= J ′′(B1)(h,h) + J ′(B1)(ψ),

and therefore, denoting μ the Lagrange multiplier such that [λ1 − μVol]′(B1) = 0, we obtain(
d2

dt2 λ1(Tt (B1))

)
|t=0

= λ′′
1(B1)(h,h) + λ′

1(B1)(ψ) = λ′′
1(B1)(h,h) + μVol′(B1)(ψ)

= λ′′
1(B1)(h,h) − μVol′′(B1)(h,h)

Then, we get, as here μ = −β2
d :

λ′′
1(h,h) =

(
d2

dt2 λ1(Tt (B1))

)
|t=0

+ μVol′′(B1)(h,h),

=
∞∑

k=1

dk∑
l=1

2β2
d

[
k + d − 1 − jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2

k,l(h)

− β2
d

∞∑
k=0

dk∑
l=1

(d − 1)a2
k,l(h),

=
∞∑

k=1

dk∑
l=1

2β2
d

[
k + d − 1

2
− jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
α2

k,l(h).

It remains to compute the coefficient associated to the mode k = 0. It suffices to consider 
the deformations as Tt (x) = x + tx mapping the ball B1 onto the ball B1+t . Here h = 1 and
α0,1(h) = P(B1)

1/2. Since λ1 is homogeneous of degree −2, we get

f (t) := λ1(Tt (B1)) = (1 + t)−2λ1(B1)

so that

f ′′(0) = 6λ1(B1) = 6
λ1(B1)

P (B1)
α0,1(h)2. �

3. Stability theorems

3.1. About coercivity and condition (CHs )

Usually the coercivity property for the second order derivative (of the functional or of the 
Lagrangian) has to be proven by hand on each specific example by studying the lower bound of 
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the spectrum of the bilinear form J ′′(�), typically thanks to Lemma 2.10. Nevertheless, when 
J ′′(�) enjoys some structural property, coercivity is a consequence of the following lemma.

Lemma 3.1. Let M be the boundary of a Lipschitz-domain in Rd , s2 ∈ [0, 1], and V a linear 
subspace of Hs2(M), closed for the weak convergence in Hs2(M). If �, a quadratic form de-
fined on Hs2(M) satisfies condition (CHs2 ) (see page 3011), then the following propositions are 
equivalent:

(i) �(h, h) > 0 for any h ∈ V \ {0}.
(ii) ∃γ > 0, �(h, h) ≥ γ ‖h‖2

Hs2 (M)
for any h ∈ V .

Remark 3.2. In practice, we apply this lemma when V is either Hs2(∂�) or T (∂�) defined in (7).

Proof. The implication (ii) =⇒ (i) is trivial. Assume (i) and let (hk)k a minimizing sequence 
for the problem

inf {�(h,h), h ∈ V,‖h‖Hs2 = 1} .

Up to a subsequence, hk weakly converges in Hs2(M) to some h∞ ∈ V . By the compactness of 
the embedding of Hs2(M) into Hs1(M), hk → h∞ in Hs1(M) so that �r(hk, hk) → �r(h∞, h∞). 
We distinguish two cases: if h∞ �= 0, lim infk �m(hk, hk) ≥ �m(h∞, h∞) by the lower semi conti-
nuity of �m, so that lim infk �(hk, hk) ≥ �(h∞, h∞) > 0 by assumption (i). Now, if h∞ = 0, then 
as the norm ‖ · ‖Hs2 is equivalent to the norm ‖ · ‖Hs1 + | · |Hs2 , we know that |hk|Hs2 is bounded 
from below by a positive constant, and using (CHs2 ),

lim inf
k

�(hk,hk) = lim inf
k

�m(hk,hk) ≥ c1 lim inf
k

|hk|2Hs2 > 0. �
Remark 3.3. The equivalence between coercivity in L2 and H1 was already known in the context 
of stable minimal surface, see [25]. In [2], the previous lemma is proven in the particular case of 
the functional under study (see also Section 5.1).

Remark 3.4. When one applies this lemma to a shape Hessian, assumption (i) may seem unnatu-
ral. Indeed, shape derivatives are usually defined for regular perturbations that are dense subsets 
of Hs(∂�) and one could expect to assume only �(h, h) > 0 for h ∈ V \ {0} smooth enough. But 
this assumption may not be sufficient: indeed the function h∞ in the proof above may not be 
smooth and therefore not admissible to test the positivity property. Therefore, the shape Hessian
� has to be first extended by continuity to the whole Hs(∂�) (see assumption (5) in Theorem 1.1
and (6) for Theorem 1.3), see Lemma 2.8 for such an extension in classical examples. However 
in some cases, we may expect regularity for h∞, see for example [15, Remark 1].

We conclude this section noticing that the shape Hessians of the model functionals from Sec-
tion 2 satisfies (CHs2 ):

• The perimeter satisfies (CH1 ) with

�m[P ](�)(h,h) =
∫
∂�

|∇τ h|2 and

�r [P ](�)(h,h) =
∫ [

H 2 − ‖B‖2
]
h2 (here we can choose s1 = 0).
∂�
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• The Dirichlet energy and λ1 satisfy (CH1/2 ) (again s1 = 0):

�m[E](�)(h,h) = 〈∂nuh,�(∂nuh)〉H1/2×H−1/2 and

�r [E](�)(h,h) =
∫
∂�

[
∂nu + 1

2
H(∂nu)2

]
h2,

�m[λ1](�).(h,h) =
∫
∂�

2w(h) ∂nw(h) and �r [λ1](�)(h,h) =
∫
∂�

H(∂nv)2h2.

Remark 3.5. Let us emphasize that condition (CHs ) may not be valid in some interesting exam-
ples. Shape functionals used for domain reconstruction from boundary measurements provide in 
general non-coercive Hessians. With the examples treated in [3], [4] one can find critical shape 
whose Hessian is positive but is not coercive (for any Hs-norm). For a reconstruction function 
J related to this kind of inverse problem (for example the least square fitting to data), the Riesz 
operator corresponding to the shape Hessian J ′′(�0) at a critical domain is compact. This means, 
that one cannot expect an estimate of the kind J (�t) − J (�0) ≥ ct2 with a constant c uniform 
in the deformation direction. This explains also why regularization is required in the numerical 
treatment of this type of problem. This fact is well-known in the inverse problem community. 
There are also situations where the objective is flat up to fourth order (see [13]).

3.2. Proof of Theorem 1.1

Let �∗ be a domain satisfying the assumption of Theorem 1.1. Let η > 0 and let � = �∗
h with 

‖h‖X < η. Then from (ITHs ,X) we have

J (�) − J (�∗) = J ′(�∗)(h)︸ ︷︷ ︸
=0

+1

2
J ′′(�∗)(h,h) + ω(‖h‖X)‖h‖2

Hs

Using (CHs2 ), we can apply Lemma 3.1 and there is a constant γ > 0 such that

J ′′(�∗).(h,h) ≥ γ ‖h‖2
Hs2 .

Therefore there exists η small enough such that if ‖h‖X ≤ η, then ω(‖h‖X) ≤ γ
4 and then

J (�) − J (�∗) ≥ γ

4
‖h‖2

Hs2 . �
3.3. Proof of Theorem 1.3

We denote μ the Lagrange multiplier associated to J . Therefore we consider Jμ = J − μVol
and �∗ satisfies J ′

μ(�∗) = 0.

Step 1: Stability under volume and barycenter constraint: Under the structural hypotheses 
on J ′′(�∗) = �m + �r and the fact that Vol′′(�∗) is continuous in the L2-norm, we can apply
Lemma 3.1 to J ′′

μ(�∗), so there are constants c1, c2, c3 and c4 > 0 such that
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∀h ∈ Hs2(∂�∗), |�m(h,h)| ≥ c1|h|2Hs1 |�r(h,h)| ≤ c2‖h‖2
Hs1 , |Vol′′(�∗).(h,h)| ≤ c3‖h‖2

L2,

(19)

∀h ∈ T (∂�∗), (J − μVol)′′(�∗).(h,h) ≥ c4‖h‖2
Hs2 . (20)

Step 2: Stability without constraint: We consider

Jμ,C = J − μVol + C (Vol − V0)
2 + C

∥∥Bar − Bar(�∗)
∥∥2

,

where Bar(�) := ∫
�

x and ‖ · ‖ is the Euclidean norm in Rd . The shape �∗ still satisfies 
J ′

μ,C(�∗) = 0. We claim that �∗ is a strictly stable shape for Jμ,C on the entire space Hs2(∂�∗)
when C is big enough, that is to say for all h in Hs2(∂�∗) \ {0},

J ′′
μ,C(�∗).(h,h) > 0. (21)

Indeed, if it was not the case, we would have the existence of hn ∈ Hs2(∂�∗) \ {0} such that

J ′′
μ,n(�

∗).(hn,hn) ≤ 0.

Using (19), this leads to

c1|hn|2Hs2 − c2‖hn‖2
Hs1 − |μ|c3‖hn‖2

L2 + 2n

⎛⎝ ∫
∂�∗

hn

⎞⎠2

+ 2n

∥∥∥∥∥∥
∫

∂�∗
hnx

∥∥∥∥∥∥
2

≤ 0. (22)

Assuming by homogeneity that ‖hn‖Hs1 = 1 for every n, (22) implies that (hn)n is bounded 
in Hs2 and using the compactness of Hs2(∂�∗) in Hs1(∂�∗), we have up to a subsequence 
that hn converges to h weakly in Hs2 and strongly in Hs1 . Therefore (22) implies first that
2n[Vol′(hn)

2 + Bar′(hn)
2] is bounded, then that h ∈ T (∂�∗) and then the semi-lower continuity 

assumption in (CHs2 ) implies

J ′′
μ(�∗).(h,h) ≤ 0, with ‖h‖Hs1 = 1

which contradicts (20).

Step 3: Stability: It is now easy to see that Jμ,C satisfies both (CHs2 ) and (ITHs2 ,X) at �∗ (using 
that Vol and Bar satisfy (ITH0,W1,∞ ), see Section 4.1), and for C large enough we have (21), so 
applying Theorem 1.1, there exists c > 0 and η > 0 such that for every � = �h with ‖h‖X < η,

Jμ,C(�) − Jμ,C(�∗) ≥ c‖h‖2
Hs2 .

We then write this inequality in particular for shapes � having the same volume and barycenter 
as �∗, and conclude the proof using the invariance of J with translations. �
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4. About condition (ITHs ,X)

In this section, we show that our main examples satisfy condition (ITHs ,X) where s is given 
in Section 3.1, and X is hoped to be as large as possible. Let us start with the notations we will 
use in this section.

Given � an open set and h : ∂� → R, we recall that �h is defined so that

∂�h = {x + h(x)n(x), x ∈ ∂�}.

It will be useful to see �h as a deformation with a vector field. To that end, we assume � of 
class C2 so that the projection π∂� on ∂� is well-defined and C1 in a neighborhood of ∂�, and 
we define

h(x) = h(π∂�(x)) and n(x) = n(π∂�(x)),

in order to extend h and n in a neighborhood of ∂�, and then we define ξh(x) = h(x)n(x) in this 
neighborhood. With this construction, ξh is constant in the normal direction, so divξh = div(n)h. 
We can then extend it smoothly to Rd , so that ξh ∈ W1,∞(Rd , Rd). Denoting Th = Id + ξh, we 
have �h = Th(�), and j�(h) = J�(ξh) = J (�h) (where J is the shape functional under study). 
In this section, the notation ŵh stands for wh ◦ Th where wh is defined on �h or ∂�h.

When studying condition (ICHs ,X) (which implies (ITHs ,X)), we focus on the path �t defined 
in (9), and we have �t = (Id + tξh)(�) and j ′′(t) = J ′′

�(tξh).(ξh, ξh) for all t ∈ [0, 1], where 
j (t) = J (�t ). Note that in this case we will notify the dependence of quantities with respect to 
t , but there is also a dependence in h that we will not recall in order to simplify the notations: for 
example nh will denote the exterior normal vector to �h and nt the normal vector to �t while 
we should use nth. Also, as we chose a vector field that is constant along the normal vector in a 
neighborhood of ∂�, we have (if ‖h‖∞ is small enough)

j ′′(t) = J ′′
�t

(0)(ξh, ξh). (23)

4.1. Geometric quantities

• The volume:

Proposition 4.1. If � is C2, then Vol satisfies (ICL2,W1,∞ ) at �.

Remark 4.2. More generally (with a similar proof), we have that � 
→ ∫
�

f also satisfies
(ICL2,W1,∞ ) if f ∈ C1(Rd). This is true in particular for the barycenter functional.

Before proving this result, we give a geometric Lemma, inspired by the results in [12]. We 
recall that Jac∂�(h) := detDTh|(tDT −1

h )n| is the surface Jacobian, appearing when changing 
variables between ∂�h and ∂�.

Lemma 4.3. We have the following Taylor expensions, where O denote a domination uniform in 
x ∈ ∂�,
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• Jac∂�(h)(x) = 1 + �Jac
1 (h(x),∇h(x)) + 1

2�Jac
2 (h(x),∇h(x))

+O
(‖h‖W1,∞(∂�)

(|h(x)|2 + |∇h(x)|2)),
• n̂h(x) = n(x) + �n

1 (h(x),∇h(x)) + 1
2�n

2 (h(x),∇h(x))

+O
(‖h‖W1,∞(∂�)

(|h(x)|2 + |∇h(x)|2)),
where (�Jac

1 , (�n
1 )i∈�1,d�), (�

Jac
2 , (�n

2 )i∈�1,d�) are respectively linear and quadratic forms on 
Rd+1.

Proof of Lemma 4.3. The first part follows simply from the fact that

A ∈ Md(R) 
→ det(A)

∣∣∣(tA−1)n
∣∣∣

is smooth in a neighborhood of Id , and the fact that Dξh = h(Dn) + ∇h ⊗ n.
For the second part, we use a level-set parametrization: there exists φ of class C2 such that 

� = {φ < 0} and ∇φ does not vanish in a neighborhood of ∂�, and then � = {φ ◦ T −1
h < 0}. 

Therefore

n̂h − n = ∇(φ ◦ T −1
h )

|∇(φ ◦ T −1
h )| ◦ Th − ∇φ

|∇φ| =
tDT −1

h .∇φ

|tDT −1
h .∇φ| − ∇φ

|∇φ| ,

and we conclude using the smoothness of A 
→ tA−1 and w ∈Rd 
→ w
|w| in the neighborhood of 

Id and ∇φ respectively. �
Proof of Proposition 4.1. We use (12), (23), and the fact that div(ξh) = hdiv(n) (as h is constant 
in the direction of n). Therefore if v(t) = Vol(�t ), we have:

v′′(t) =
∫

∂�t

ξh · ntdiv(ξh) =
∫

∂�t

div(n)(n · nt )h
2 =

∫
∂�

H(n · n̂t )h
2Jac∂�(t).

With Lemma 4.3, we easily obtain

|v′′(t) − v′′(0)| ≤ Ct‖h‖W1,∞‖h‖2
L2 ≤ C‖h‖W1,∞‖h‖2

L2 . �
Remark 4.4. We could try a direct proof estimating

|�h| − |�| =
∫
�

(
det(Id + Dξh) − 1

)
,

but a priori this only leads to the fact that the volume satisfies (ITH1,W1,∞ ). In the spirit of [33, 
Lemma 4.1], we could also try:

|�| = 1

d

∫
∂�

x · nh = 1

d

∫
∂�

(x + h(x)n(x)) · n̂hJac∂�(h)

but this leads to the same issue (see also Remark 4.6).
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• The perimeter:

Proposition 4.5. If � is C2, then P satisfies (ITH1,W1,∞ ) condition at �.

Proof. We follow exactly the second proof suggested in Remark 4.4 and use Lemma 4.3:

P(�h) =
∫

∂�h

1 =
∫
∂�

Jac∂�(h)

= P(�) + P ′(�)(h) + 1

2
P ′′(�)(h,h) +O(‖h‖W1,∞‖h‖2

H1). �
Remark 4.6. It is interesting to compare the two strategies used for the volume and for the 
perimeter: indeed, for the volume we prefered to use condition (IC), while a similar strategy for 
the perimeter, as it is done in [12] or in [2, Proof of Theorem 3.9] (but for a different path of 
shapes) lead to weaker results, namely (ICH1,C2,α ) and (ICH1,W2,p ) respectively.

4.2. PDE energies

For PDE energies, a condition of the type (ICHs ,X) was studied first in [14] where it is proven 
that in dimension two the Dirichlet energy satisfy (ICH1/2,C2,α ) (for a volume preserving path 
instead of a normal path), then a similar result is proven for general PDE functionals in any 
dimension in [12], either for the path (9) or a volume preserving path. More recently in [2], it 
was proven that the functional described in (30) involving the sum of the perimeter and a PDE 
functional (of a different kind than in [12]) satisfies (ICH1,W2,p ) for p large enough, also for a 
volume preserving path, see also Section 5.1. Finally, condition (ICH1/2,C2,α ) is also established 
for the drag in a Stokes flow in [9]. Thanks to our method to handle the volume constraint (see 
Section 3.3), we only need to deal with the normal path (9).

In this section, we prove Theorem 1.4, which includes the case of λ1 (which seemed not to 
be handled in the literature), and we improve the result from [12] by proving (ICHs ,X) with a 
smaller space X. We give 4 preliminary steps to prove this result. We only give the details for 
λ1, as the case of E is easier and the reader can follow [12] or [7, Appendix] and use the ideas 
below to get X to be W2,p instead of C2,α . We assume � to be C3.

• Step 1: Computing the second derivative along the path.
Denoting vt the first normalized eigenfunction on �t , λ1(t) = λ1(�t ) and applying 

Lemma 2.8 and (23), we get

λ′′
1(t) = 2

∫
∂�t

v′
t ∂nt v

′
t +

∫
∂�t

(∂nt vt )
2
[
Ht(ξh · nt )

2 − B t ((ξh)τt
, (ξh)τt

) + 2∇τt (ξh · nt )(ξh)τt

]
= 2

∫
∂�t

v′
t ∂nt v

′
t

︸ ︷︷ ︸
T1(t)

+
∫

∂�t

(∂nt vt )
2
[
Htα

2
t − B t (βt , βt ) − 2∇τt (αt ) · βt

]
h2

︸ ︷︷ ︸
T2(t)

(24)

− 2
∫

∂�t

(∂nt vt )
2αt

(
βt · ∇τt h

)
h

︸ ︷︷ ︸
T3(t)

where αt = nt · n, βt = αtnt − n.
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• Step 2: Geometric estimates:
Similarly to Section 4.1, we denote ŵh = wh ◦ (Id + ξh) where wh is defined on �h or ∂�h. 

The following Lemma follows easily from Lemma 4.3 (see [12] for more details).

Lemma 4.7. There is a constant C depending on � such that for all h in a neighborhood of 0 in 
W2,p(∂�),

• ‖ ̂Jac∂�(h) − 1‖L∞(∂�) ≤ C‖h‖W1,∞(∂�), ‖ ̂Jac∂�(h) − 1‖W1,p(∂�) ≤ C‖h‖W2,p(∂�),

• ‖Ĥh − H‖Lp(∂�) ≤ C‖h‖W2,p(∂�), ‖B̂h − B‖Lp(∂�) ≤ C‖h‖W2,p(∂�),

• ‖α̂h − 1‖L∞(∂�) ≤ C‖h‖W1,∞(∂�), ‖̂∇τh
αh‖Lp(∂�) ≤ C‖h‖W2,p(∂�),

• ‖β̂h‖L∞(∂�) ≤ C‖h‖W1,∞(∂�), ‖β̂h‖W1,p(∂�) ≤ C‖h‖W2,p(∂�).

• Step 3: Estimate of ‖v̂θ − v‖W2,p : This step is not specific to our chosen deformations ξh

hence we present it for general deformations θ ∈ W1,∞(Rd , Rd), that is vθ is the first Dirichlet 
eigenfunction on (Id + θ)(�).

Lemma 4.8. If p > d , the map θ 
→ v̂θ from W2,p(Rd , Rd) with values in W2,p(�) is C∞ around 
0. As a consequence, there is a neighborhood of 0 in W2,p(Rd , Rd) and C depending on � only 
so that

‖v̂θ − v0‖W2,p(�) ≤ C‖θ − Id‖W2,p .

Proof. We use the same strategy as in [26, Proof of Theorem 5.7.4] and [27] but with different 
functional spaces: precisely, we will apply the implicit function theorem to

F : X × Y ×R→ Z ×R

defined by

F(θ, v,λ) =
⎛⎝−divA(θ)∇v − λJac(θ)v,

∫
�

v2Jac(θ) − 1

⎞⎠
where

{
Jac(θ) = det(Id + Dθ),

A(θ) = Jac(θ)(Id + Dθ)−1(Id + tDθ)−1,

for suitable spaces X, Y, Z. Using that W1,p is an algebra for p > d , we easily obtain that 
the maps Jac and A are C∞ around 0 from W2,p(Rd , Rd) into W1,p(Rd , Rd). As a con-
sequence, by Sobolev’s embedding, the map F is C∞ around (0, v0, λ0 := λ1(�)) from
W2,p(Rd, Rd) × W2,p(�) ∩ H 1

0 (�) × R into Lp(�) × R. Besides F(0, v0, λ0) = (0, 0) and 
the differential

∂v,λF(0, v0, λ0).[w,λ] =
⎛⎝(−� − λ0)w − λv0,2

∫
v0w

⎞⎠

�
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is an isomorphism from W2,p(�) ∩ H 1
0 (�) × R into Lp(�) × R (see [26, Lemma 5.7.3] for 

details) and the conclusion follows. �
• Step 4: estimation of the variation of the shape derivative of the eigenfunction:

The objective of this step is to prove the following estimate:

Lemma 4.9. There is C, η depending only on � such that, if ‖h‖W2,p(∂�) ≤ η, then

‖v̂′
t − v′

0‖H1(�) ≤ C‖h‖H1/2(∂�) ‖h‖W2,p(∂�). (25)

This step is the most involved one when dealing with λ1 instead of the Dirichlet Energy: the 
latter reduces in fact to the second step in the following proof.

Proof. We recall (see (14)) that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−�v′
t = λ1(t)v

′
t + λ′

1(t)vt in �t,

v′
t = −(∂nt vt )ξh · nt on ∂�t ,∫

�

v′
t vt = 0.

1. Splitting. We introduce Ht the harmonic extension on �t of (∂nt vt )ξh · nt . Noticing that

λ′
1(t) = −

∫
∂�t

(∂nt vt )
2ξh · nt = λ1(t)〈vt ,Ht 〉

where 〈·, ·〉 is the scalar product in L2(�t ), we decompose

v′
t = −πtHt + wt

where πt is the orthogonal projection on E(t) := {vt }⊥, and wt solves⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(−� − λ1(t))wt = −λ1(t)πtHt in �t,

wt = 0 on ∂�t ,∫
�t

vtwt = 0.

We will now prove that each term of the splitting satisfies estimates like (25).
2. Estimate of the harmonic extension. Let us define Lt = div(At∇·) where

At = Jact .(Id + tDξh)
−1(Id + t tDξh)

−1 and Jact = det(Id + tDξh),

so that Lt f̂t = �̂ft if ft is defined on �t . Then as �(Ĥt − H0) = −div((At − Id)∇Ĥt ), from 
classical elliptic estimate (see [23, Corollary 8.7 p 183]), we obtain:



M. Dambrine, J. Lamboley / J. Differential Equations 267 (2019) 3009–3045 3033
‖Ĥt − H0‖H1(�) ≤ C‖(At − Id)∇Ĥt‖L2(�) + C‖Ĥt − H0‖H1/2(∂�)

≤ C‖At − Id‖L∞(�)‖∇Ĥt‖L2(�) + C

∥∥∥((̂∂nt vt )α̂t − ∂nv0

)
h

∥∥∥
H1/2(∂�)

≤ C‖h‖W1,∞(∂�)

(‖∇Ĥt − ∇H0‖L2(�) + ‖∇H0‖L2(�)

)
+ C‖̂(∂nt vt )α̂t − ∂nv0‖W1−1/p,p(∂�)‖h‖H1/2(∂�)

≤ C‖h‖W2,p(∂�)

(‖Ĥt − H0‖H1(�) + ‖h‖H1/2(∂�)

)
. (26)

Here we used that ‖∇H0‖L2(�) = ‖H0‖H1/2(∂�) ≤ C‖h‖H1/2(∂�), Lemmas 4.7 and 4.8, and the 
following estimate of a product norm in H1/2:

‖uv‖H1/2(∂�) ≤ C‖u‖Ws,p(∂�)‖v‖H1/2(∂�) (27)

if (d − 1)/p < s ≤ 1. One can find this inequality in [39, Theorem 2 p 177] for functions on 
Rd−1, with the condition (d − 1)/p < s; using smooth maps between ∂� and Rd−1 we obtain 
(27) if in addition s ≤ 1. We apply it here to s = 1 − 1/p which is valid as p > d . Equation (26)
leads to the first estimate

‖Ĥt − H0‖H1(�) ≤ C‖h‖W2,p(∂�)‖h‖H1/2(∂�)

as soon as ‖h‖W2,p(∂�) ≤ 1/(2C).
3. Estimates on the variation of wt . We look at the PDE satisfied by ŵt − w0:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(−� − λ1(0))(ŵt − w0) =
[
(−� − λ1(0)) − (−Lt − λ1(t))

]
(ŵt ) − λ1(t)π̂tHt

+λ1(0)π0H0 in �,

ŵt − w0 = 0 on ∂�,

and we know that (−� − λ1(0)) is an isomorphism on {v0}⊥. Therefore

‖ŵt − w0 − γtv0‖H1(�) ≤ C‖(At − Id)∇ŵt‖L2(�) + |λ1(t) − λ1(0)|‖ŵt‖L2(�)

+ ‖λ1(t)π̂tHt − λ1(0)π0H0‖L2(�)

where γt is chosen so that ŵt − w0 − γtv0 ∈ {v0}⊥. From there and using the previous step, we 
obtain

‖ŵt − w0 − γtv0‖H1(�) ≤ C‖h‖W2,p(∂�)

(‖ŵt‖H1(�) + ‖h‖H1/2(∂�)

)
.

But we have:

|γt | =
∣∣∣∣∣∣
∫
�

(ŵt − w0)v0

∣∣∣∣∣∣=
∣∣∣∣∣∣
∫
�

ŵt

[
v̂t J act − v0

]∣∣∣∣∣∣≤ C‖h‖W2,p(∂�)‖ŵt‖L2(�),

leading to
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‖ŵt − w0‖H1(�) ≤ C‖h‖W2,p(∂�)

(‖ŵt‖H1(�) + ‖h‖H1/2(∂�)

)
≤ C‖h‖W2,p(∂�)

(‖ŵt − w0‖H1(�) + ‖w0‖H1(�) + ‖h‖H1/2(∂�)

)
.

Using now ‖w0‖H1(�) ≤ C‖H0‖L2(�) ≤ C‖h‖H1/2(∂�) and again that ‖h‖W2,p(∂�) is small 
enough, this leads to

‖ŵt − w0‖H1(�) ≤ C‖h‖W2,p(∂�)‖h‖H1/2(∂�)

and concludes the proof of this lemma. �
Proof of Theorem 1.4. We deal separately with the terms of the decomposition (24):
Estimate of T1(t) − T1(0). We first observe that

T1(t) =
∫
�t

|∇v′
t |2 − λ1(t)

∫
�t

v2
t ,

and also that ‖v′
0‖H1(�) ≤ ‖w0‖H1(�) +‖H0‖H1(�) ≤ C‖h‖H1/2(∂�). Therefore using Lemma 4.9, 

we get ∣∣∣∣∣∣∣
∫
�t

|∇v′
t |2 −

∫
�0

|∇v′
0|2
∣∣∣∣∣∣∣=
∣∣∣∣∣∣
∫
�

(At − Id)|∇v̂′
t |2 + ∇(v̂′

t − v′
0) · ∇(v̂′

t + v′
0)

∣∣∣∣∣∣
≤ C‖h‖W2,p(∂�)‖h‖2

H1/2(∂�)

and ∣∣∣∣∣∣∣λ1(t)

∫
�t

|v′
t |2 − λ1(0)

∫
�0

|v′
0|2
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣(λ1(t) − λ1(0))

∫
�t

|v′
t |2 + λ1(0)

∫
�0

(Jact − 1)|v̂′
t |2 + (v̂′

t − v′
0)(v̂

′
t + v′

0)

∣∣∣∣∣∣∣
≤ C‖h‖W2,p(∂�)‖h‖2

H1/2(∂�)
.

Estimate of T2(t) − T2(0). After a change of variable, we have T2(t) =
∫
∂�

σth
2 where

σt = (̂∂nt vt )
2
[
Ĥt α̂t

2 − B̂ t (β̂t , β̂t ) − 2 ̂∇τt (αt ) · β̂t

]
Jac∂�(t)

and from Lemmas 4.7 and 4.8, we easily get ‖σt − σ0‖Lp(∂�) ≤ C‖h‖W2,p(∂�). Notice that the 
control holds only in Lp and not in L∞ as in [12] or [7, Appendix], hence we do not obtain a 
control with the L2 norm of h. However, by Hölder inequality, it comes
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|T2(t) − T2(0)| ≤ ‖σt − σ0‖Lp‖h‖2
Lp̃ for any p̃ ≥ 2p/(p − 1).

Since ‖h‖Lp̃ ≤ C‖h‖H1/2 when p̃ < 2d/(d − 1) by Sobolev embeddings, such a p̃ can be chosen 
provided p > d . Then, it holds

|T2(t) − T2(0)| ≤ ‖σt − σ0‖Lp‖h‖2
H1/2 ≤ C‖h‖W2,p‖h‖2

H1/2 .

Estimate of T3(t) − T3(0). After a change of variable, we have T3(t) =
∫
∂�

ρt · (∇τ̂t h)h where

ρt = (̂∂nt vt )
2α̂t β̂t J ac∂�(t), and ∇τ̂t h = ∇h − (∇h · n̂t )n̂t

and we obtain (recall that ∇h · n = 0):

|T3(t) − T3(0)| ≤
∣∣∣∣∣∣
∫
∂�

ρt · (∇τ̂t h − ∇τ h
)
h

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫
∂�

(ρt − ρ0) · ∇τ h)h

∣∣∣∣∣∣
≤ ‖∇τ̂t h − ∇τ h‖H−1/2‖ρth‖H1/2 + ‖(ρt − ρ0)h‖H1/2‖∇τ h‖H−1/2

≤ ‖∇h · (n̂t − n)‖H−1/2‖ρth‖H1/2 + ‖(ρt − ρ0)h‖H1/2‖h‖H1/2 (28)

In addition to (27), we also have from [39, Theorem 2 p 173] (see the comments on (27)):

‖uv‖H−1/2(∂�) ≤ C‖u‖Ws,p(∂�)‖v‖H−1/2(∂�) (29)

if max{1/2, (d − 1)/p} < s ≤ 1. Using again Lemmas 4.3, 4.7 and 4.8, we get

‖ρt − ρ0‖W1−1/p,p(∂�) ≤ C‖h‖W2,p(∂�), ‖n̂t − n0‖W1,p(∂�) ≤ C‖h‖W2,p(∂�),

which combined with (28), (27) and (29), concludes the estimate of this term and hence the 
proof. �
5. Applications

5.1. Retrieving some examples from the literature

In this paragraph, we apply our results to retrieve previous results from the literature:
Isoperimetric inequalities: According to the previous sections, the perimeter satisfy conditions
(CH1 ) and (ITH1,W1,∞ ) at any smooth enough set, and in particular for the ball. Moreover, as 
shows Section 2.3, we have

P ′(B1) = (d − 1)Vol′(B1), and

[P − (d − 1)Vol]′′(B1)(h,h) =
∞∑

k=0

dk∑
l=1

(k − 1)(k + d − 1) αk,l(h)2.
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Moreover, h ∈ T (∂B1) if and only if α0,1(h) = α1,i (h) = 0 for i ∈ {1, . . . , d}. Therefore B1 is 
a critical and strictly stable shape for P under volume constraint, and up to translations: Theo-
rem 1.3 applies, and we retrieve Fuglede’s result from [20] about nearly spherical domains.

Recently in [33], an improved version (with a better distance than the Fraenkel asymmetry 
for d1 in (2)) of the quantitative isoperimetric inequality has been achieved for the anisotropic 
perimeter

Pf (�) =
∫
∂�

f (n∂�)

where f : Rd → R+ is a convex positively 1-homogeneous function, whose minimizer under 
volume constraint is an homothetic version of the Wulff shape K = {f∗ < 1} where f∗ is the 
gauge function of f . In particular in [33, Theorem 1.3 and Section 4] focused on the case where 
K is assumed to be C2 and uniformly convex, a strategy based on the second variation is used: the 
author proves in [33, Lemma 4.1] that Pf satisfies conditions (CH1 ) and (ITH1,W1,∞ ). Therefore, 
this falls into the hypothesis of our Theorem 1.3, so if we prove that P ′′

f (K) satisfies (6), then 
we retrieve [33, Proposition 1.9]. It is interesting to notice though that in order to show that 
P ′′

f (K) satisfies (6), the author in [33] uses the quantitative Wulff isoperimetric inequality from 
[18] (obtained with optimal transport method). Therefore, up to our knowledge, there is no proof 
“from scratch” of the quantitative anisotropic isoperimetric inequality using a result similar to 
Theorem 1.3.

The Ohta-Kawasaki model: In [2], both steps of the strategy described in Section 1.1 are 
achieved in order to deal with the following functional, formulated in TN = (R/Z)N and which 
includes a non-local term:

J (�) = PTN (�) + γG(�) where G(�) =
∫
TN

|∇w�|2 and

⎧⎪⎪⎨⎪⎪⎩
−�w� = 1� − 1�c − m in TN∫
TN

w� = 0 (30)

where m = |�| − |�c| ∈ (−1, 1) is fixed. Again, there is an invariance with translation and a 
volume constraint.

In order to handle the first step of the strategy, the authors in [2] prove a stability result for 
the W2,p-topology, for p large enough. The strategy is very similar to [12], but in the framework 
of W2,p-spaces rather than C2,α-spaces. Note that this difference in the choice of spaces is not 
just a detail as it is relevant for the second step of the strategy when proving stability in an 
L1-neighborhood as it is done in [2, Section 4]: their regularization procedure needs to allow 
discontinuity of the mean curvature, see equation (4.9) in the proof of [2, Theorem 4.3]. From 
the computations of [10], we obtain

G(�)(h) = 4
∫

w�h,
∂�
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G′′(�)(h,h) = 8
∫
TN

|∇zh|2dx + 4
∫
∂�

(∂nw� + H)h2, where − �zh = hHN−1�∂�

therefore G satisfies (CH1/2 ) and J satisfies (CH1 ), the dominant term being contained in the 
perimeter term. As we have seen that the perimeter satisfies (ITH1,W1,∞ ) condition, it just re-
mains to handle functional G, which is proven to satisfy (ICH1,W2,p ) for p > d in [2]. Therefore 
Theorem 1.3 applies, and we retrieve [2, Theorem 3.9].

The Faber-Krahn inequality: In [7] (see also [22]) a quantitative version of the Faber-Krahn 
inequality is achieved, using again the strategy in two steps described in Section 1.1: in order to 
achieve the first step, they use the Kohler-Jobin inequality ([29]), which implies that the Faber-
Krahn deficit is controlled by the deficit of the Dirichlet energy E. We show here that it is possible 
to achieve this step without this “trick”: we have seen that λ1 satisfies (CH1/2 ) and (ICH1/2,W2,p )
for p > d , and for any h ∈ C∞(∂B1) such that 

∫
∂B1

h = 0, we have

λ′
1(B1) = −β2

dVol′(B1), and [λ1 + β2
dVol]′′(B1)(h,h) = 2β2

d

∞∑
k=0

dk∑
l=1

Qk αk,l(h)2,

where (using [1, Section 9.1.27, p 361])

Qk = jd/2−1
J ′

k+d/2−1(jd/2−1)

Jk+d/2−1(jd/2−1)
+ d

2
= k + d − 1 − jd/2−1

Jk+d/2(jd/2−1)

Jk+d/2−1(jd/2−1)

= jd/2−1
Jk+d/2−2(jd/2−1)

Jk+d/2−1(jd/2−1)
− k + 1.

With the last formula, we easily notice that Q1 = 0. The sign of Qk can be obtained using [37, 
section 6.5 page 133] (done when d = 2, but as noticed in [27], valid for any d): indeed, their 
computations imply

jd/2−1
J ′

k+d/2−1(jd/2−1)

Jk+d/2−1(jd/2−1)
≥ k − d/2 − 1,∀n ∈N∗,

which leads to ∀k ≥ 2, Qk ≥ k − 1. Therefore Theorem 1.3 applies, and we retrieve a Faber-
Krahn quantitative inequality in a W2,p-neighborhood of the ball.

5.2. Examples with competition

In this section, B is a ball, X = W2,p(∂B) for p > d and we denote for η > 0 (see (8) for a 
definition of dX):

Vη = {�,dX(�,B) ≤ η and |�| = |B|}.

Combining Theorem 1.3 to the computations from Section 2.1, we easily obtain the following 
result:
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Proposition 5.1. There exists γ0 ∈ (0, ∞) such that for every γ ∈ [−γ0, ∞), there exists
η = η(γ ) > 0 and c = c(γ ) > 0 such that for every � ∈ Vη ,

(P + γE)(�) ≥ (P + γE)(B) + cdH1(�,B)2,

(P + γ λ1)(�) ≥ (P + γ λ1)(B) + cdH1(�,B)2

(E + γ λ1)(�) ≥ (E + γ λ1)(B) + cdH1/2(�,B)2,

(λ1 + γE)(�) ≥ (λ1 + γE)(B) + cdH1/2(�,B)2.

Proof of Proposition 5.1. We show that we can apply Theorem 1.3 to �∗ = B and

J ∈ {P + γE,P + γ λ1,E + γ λ1, λ1 + γE)}.

It is shown in Sections 3.1 and 4 that (P, E, λ1) satisfy (CHs2 ) and (ITHs2 ,X) for suitable values 
of s2, and with Lemmata 2.10 and 2.9 we easily check that the ball is a critical and strictly stable 
domain for J under volume constraint and up to translations, either if γ ≥ 0 or if γ < 0 is small 
enough. �
Corollary 5.2. With the same notations as in Proposition 5.1, we have, with η0 = η(γ0):

∀� ∈ Vη0,
P (�) − P(B)

E(�) − E(B)
≥ γ0,

P (�) − P(B)

λ1(�) − λ1(B)
≥ γ0

γ0 ≤ λ1(�) − λ1(B)

E(�) − E(B)
≤ γ −1

0 .

Remark 5.3. In [34], the second inequality in Corollary 5.2 is also investigated, but we provide 
here a uniform neighborhood so that this estimate applies. We also refer to [37] for some result 
of this kind.

Remark 5.4. To the contrary to the last two-sided inequality, it is not possible to bound the first 
two ratios from above. Indeed we can observe that for any given γ < 0, the ball is not a local 
minimizer of E + γP or λ1 + γP in X = W 2,p(∂B), under volume constraint. More precisely, 
one obtains from Proposition 4.5 and Theorem 1.4 that for η > 0 small enough, there exists 
c(η) > 0 such that for any h ∈ C∞(∂B) such that ‖h‖X ≤ η,

P(Bh) − P(B)

E(Bh) − E(B)
≥ c(η)

‖h‖2
H 1

‖h‖2
H 1/2

.

Set �n = {x = (r, �) | 0 ≤ r ≤ ρn(θ} with

ρn(θ) =
√

2n8

2n8 + 1

(
1 + sin(nθ)

n4

)
.
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It corresponds to hn = ρn −1. One checks that �n has the volume of the unit disk. We check that 
‖hn‖W 2,p → 0 while ‖hn‖H 1/‖hn‖H 1/2 → +∞. The same argument works also for the ration 
(P (�) − P(B))/(λ1(�) − λ1(B)).

This phenomenon is due to the fact that the functionals P and (E, λ1) satisfy conditions
(CHs2 ) for different values of s2.

Explicit constants: We want to go further and compute explicit numbers γ such that the inequal-
ities of Proposition 5.1 holds. To simplify the expressions, we restrict ourselves to the case of 
the unit ball. In the first two cases, we find the optimal constant, see Remark 5.6 about the other 
cases.

Proposition 5.5. Using notations of Proposition 5.1 and βd defined in (15),

(i) if γ > −(d + 1)d2, then B1 is a local strict minimizer of P + γE. Moreover, when
γ = −(d + 1)d2, the second derivative of the Lagrangian cancels in some directions and 
when γ < −(d + 1)d2, the ball is a saddle shape for P + γE.

(ii) if γ > − 
d(d + 1)

2β2
d (j2

d/2−1 − d)
, then B1 is a local strict minimizer of P + γ λ1. Moreover, when 

γ = − d(d + 1)

2β2
d (j2

d/2−1 − d)
, the second derivative of the Lagrangian cancels in some directions 

and when γ < − d(d + 1)

2β2
d (j2

d/2−1 − d)
, the ball is a saddle shape for P + γ λ1.

(iii) if γ > − 1

d2(d + 1)β2
d

, then B1 is a local strict minimizer of E + γ λ1.

(iv) if γ > −β2
dd2, then B1 is a local strict minimizer of λ1 + γE.

Remark 5.6. In the cases (iii) and (iv), the constants we compute are not optimal, in particular 
we do not claim the ball is a saddle point once we go beyond the computed value. Nevertheless 
computing the optimal value only requires to compute supk≥2 τ ′

k and supk≥2 τ ′′
k (see the notations 

in the proof below) as it is done in the cases (i) and (ii). As it is seen in the second case (ii) handled 
by Nitsch in [34], these computations can be rather technical. Let us notice also that we simplify 
the expression of the optimal constant given by Nitsch.

Proof of Proposition 5.5. (i) We first compute the Lagrange multiplier μ(t) associated to the 
volume constraint at B1: it is defined as [P + tE +μ(t)Vol]′(B1) = 0 that is from the expression 
of the shape gradients of Vol, P and E:

μ(t) = 1

2d2 t − (d − 1).

Let us now turn our attention to Hessian of the function P + tE + μ(t)Vol on the ball B1. As a 
consequence of Lemma 2.10, the shape Hessian of the Lagrangian P + tE + μ(t)Vol at balls is

[P + tE + μ(t)Vol]′′(B1).(h,h) =
∞∑

ck(t)

dk∑
αk,l(h)2
k=0 l=1
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where we have set

ck(t) = k2 +
[
(d − 2) + 1

d2 t

]
k −

[
(d − 1) + 1

d2 t

]
= (k − 1)

[
k + (d − 1) + 1

d2 t

]
.

Therefore, the Hessian of the Lagrangian [P + tE + μ(t)Vol]′′(B1) is coercive in T (∂B1) if and 
only if t solves the inequalities

k + (d − 1) + 1

d2 t > 0

for all k ≥ 2. Of course, it suffices to solve that inequality in the special case k = 2 that provides 
t > −(d + 1)d2.

(ii) With the same notations as in (i) with P + tλ1 + μ(t)Vol, we obtain:

μ(t) = β2
d t − (d − 1),

ck(t) = k2 + (d − 2)k − (d − 1) + 2tβ2
d

[
k + (d − 1) − jd/2−1

Jk+d/2(jd/2−1)

Jk−1+d/2(jd/2−1)

]
. (31)

We introduce the sequences ak = Jk−1+d/2(jd/2−1) and bk = ak+1/ak so that (31) can be written:

ck(t) = k2 + (d − 2)k − (d − 1) + 2tβ2
d

[
k + d − 1 − jd/2−1bk

]
.

For a given integer k ≥ 2, ck(t) > 0 holds when t > τk defined as

τk = − (k − 1)(k + d − 1)

2β2
d (k + d − 1 − jd/2−1bk)

.

In order to find the optimal value of t so that these inequalities are satisfied for every k ≥ 2, we 
need to compute the supremum of {τk, k ≥ 2}. It is proven by Nitsch in [34, proof of Lemma 2.3, 
p 332] that for all k ≥ 2, τk ≤ τ2, so the ball is strictly stable if and only if t > τ2. We describe 
here how one can obtain a more explicit version of τ2: from the recurrence formula for Bessel 
function ([1, section 9.1.27, p 361])

(2ν/z)Jν(z) = Jν−1(z) + Jν+1(z)

applied to ν = k − 1 + d/2 and z = jd/2−1, the sequences ak and bk satisfy the recurrence 
property

ak+1 = 2(k − 1) + d

jd/2−1
ak − ak−1 and bk = 2(k − 1) + d

jd/2−1
− 1

bk−1

with the initial terms a0 = 0 and a1 = Jd/2(jd/2−1) so that b1 = a2/a1 = d/jd/2−1 (which 
explains c1(t) = 0 for any t , as known for the invariance by translations of all the involved 
functions). Therefore, we have:
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b2 = 2 + d

jd/2−1
− jd/2−1

d
= d(d + 2) − j2

d/2−1

djd/2−1

and as a consequence, we obtain that

τ2 = − d(d + 1)

2β2
d (j2

d/2−1 − d)
.

(iii) With the same notions as in (i) with E + tλ1 + μ(t)Vol, we obtain:

μ(t) = (1/d2) + tβ2
d , ck(t) =

(
1

d2 + tβ2
d

)
k − 1

d2 + tβ2
d

[
d − 1 − jd/2−1bk

]
.

Again c1(t) = 0 and ck(t) > 0 if and only if

t > τ ′
k = − k − 1

d2β2
d (k + d − 1 − jd/2−1bk)

.

Using that b1 ≥ bk > 0, we obtain

τ ′
k < − 1

d2β2
d

k − 1

k + d − 1
= − 1

d2β2
d

(
1 − d

k + d − 1

)
≤ − 1

d2(d + 1)β2
d

.

Therefore, if t > − 1

d2(d + 1)β2
d

then for any k ≥ 2, t > τ ′
k , which leads to the result.

(iv) With the same notions as in (i) with λ1 + tE + μ(t)Vol, we obtain:

μ(t) = (t/d2) + β2
d , ck(t) =

(
t

d2 + β2
d

)
k − t

d2 + β2
d

[
d − 1 − jd/2−1bk

]
.

We check c1(t) = 0, and ck(t) > 0 if and only if

t > τ ′′
k = −β2

dd2

(
1 + d − jd/2−1bk

k − 1

)
.

Using that b1 ≥ bk > 0, we obtain τ ′′
k ≤ −β2

dd2, and therefore, if t > −β2
dd2 then for any k ≥ 2, 

t > τ ′′
k , which leads to the result. �
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6. Counterexample for non smooth perturbations

We show in this section that even if the ball is a local minimum in a smooth neighborhood, it 
may not be a local minimum in a non-smooth neighborhood. Consider �∗ = B a ball of volume 
V0. We have seen in Proposition 5.1 that there is a real number γ0 ∈ (0, ∞) such that for every
γ ∈ (−γ0, ∞), B is a stable local minimum for P + γE. For γ ≥ 0 this is not surprising. How-
ever, for γ < 0, the fact that the ball is a local minimizer is no longer trivial: there is a competition 
between the minimization of the perimeter and maximization of the Dirichlet energy. If γ is small 
enough, our result shows that B is still a local minimizer in a W2,p-neighborhood. Nevertheless, 
in that case B is no longer a local minimizer in a L1-neighborhood:

Proposition 6.1. Let B be a ball. For every γ < 0 and any ε > 0 one can find �ε such that

|�ε�B| < ε, |�ε| = |B|, and (P + γE)(�ε) < (P + γE)(B).

To prove this result, we use the idea of topological derivative: it is well known that if one 
considers a small hole of size ε in the interior of a fixed shape, the energy will change at order 
εd−2 if d ≥ 3 and 1/log(ε) if d = 2, which is strictly bigger than the change of perimeter which 
is of order εd−1, and therefore will strictly decrease the energy P + γE when γ < 0. For the 
sake of completeness, we provide a proof of this fact for a centered hole.

Proof. We can assume without loss of generality (using translation and scaling properties) 
that B = B1 is the centered ball of radius 1, and we define �ε = B1 \ B(0, ε). Using that
�u = ∂rru + d−1

r
∂ru when u is radial, the state function is:

u�ε(r) = (εd−2 − εd)r2−d + εd − 1

2d(εd−2 − 1)
− r2

2d
, if d ≥ 3

u�ε(r) = 1 − ε2

−4 log(ε)
log(r) + 1 − r2

4
, if d = 2

and therefore

if d ≥ 3, E(�ε) = −1

2

∫
�ε

u�ε =
[
d(1 − ε2)2εd−2 − 2(1 − εd)2

8d2(1 − εd−2)
+ 1 − εd+2

4d(d + 2)

]
P(B1)

=
[
− 1

2d2(d + 2)
+ d − 2

8d2 εd−2 + o(εd−2)

]
P(B1),

if d = 2, E(�ε) = −1

2

∫
�ε

u�ε =
[

(1 − ε2)

−8 log(ε)
(1 − ε2(1 − 2 log(ε))) − 1

16
(1 − ε2 + ε4

2
)

]
P(B1)

=
[
− 1

16
− 1

8 log(ε)
+ o

(
1

log(ε)

)]
P(B1).

We now define �̃ε = με�ε where με = (1 − εd)−1/d so that
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|�̃ε| = |B1|, P (�̃ε) − P(B1) =
[
μd−1

ε (1 + εd−1) − 1
]
P(B1) ∼ε→0 εd−1P(B1)

E(�̃ε) − E(B1) ∼ε→0
(d − 2)P (B1)

8d2 εd−2 > 0, if d ≥ 3,

E(�̃ε) − E(B1) ∼ε→0
P(B1)

−8 log(ε)
> 0, if d = 2

so that in both cases, for any negative γ , (P + γE)(�ε) − (P + γE)(B1) < 0 for small ε. �
Remark 6.2. In the proof of Proposition 6.1, the domains we consider are no longer home-
omorphic to the ball. One could wonder if the ball is a local minimizer for P + γE in an 
L1-neighborhood if we restrict to domains homeomorphic to the ball. The answer depends on 
the dimension:

• In dimension 2, it is proven in [36] that for every smooth simply connected domain � ⊂R2,

E(�) ≤ |�|2
16π

[
−1 + 2�2

1 − �2 + 4�4

1 − �2 log�

]
where � := 1 − 4π |�|

P(�)2 ∈ [0, 1], which leads to

E(�) − E(B) ≤ |�|
32π

(
P(�)2 − P(B)2)

where B is the ball such that |�| = |B|. Since we also have the trivial inequality

E(�) − E(B) ≤ −E(B) = |�|2
16π

, this leads to

E(�) − E(B) ≤ C|�|3/2(P (�) − P(B))

for C large enough (for example, one can take C = 1
8
√

π
, but this is not sharp).

• however, in dimension d ≥ 3, the domains from the proof of Proposition 6.1 can be slightly 
modified into domains homeomorphic to the ball, by removing a very thin tube (see [19] for 
a similar idea applied to a Steklov eigenvalue problem). Using the notations from the proof 
of Proposition 6.1, we have proved that for some positive constant cd , one has

(P + γE)(�ε) − (P + γE)(B1) = γ cdεd−2 + o(εd−2).

Set N = (1, 0, . . . , 0) ∈ Rd and let C(η) denote the set {x, d(x, [0, N ]) ≤ η} for η very small 
compare to ε, say η = ε2. Then �ε,η = �ε \ C(η) is homeomorphic to the Euclidian ball, 
and one easily gets

|�ε,η| = |�ε| + O(ηd−1) = |�ε| + o(εd),

P (�ε,η) = P(�ε) + O(ηd−2) = P(�ε) + o(εd−1), E(�ε,η) ≥ E(�ε),

the last inequality following from the monotonicity of E. Then denoting
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με,η :=
( |B1|

|�ε,η|
)1/d

= 1 + O(εd)

and �̃ε,η = με,η�ε,η , we get |�ε,η| = |B1| and

(P + γE)(�ε,η) = μd−1
ε,η P (�ε,η) + γμd+2

ε,η E(�ε,η)

= P(�ε,η) + γE(�ε,η) + o(εd−1)

= P(�ε) + γE(�ε) + o(εd−1)

= P(B1) + γE(B1) + γ cdεd−2 + o(εd−2),

hence we obtain the same result as in Proposition 6.1 with domains homeomorphic to the 
ball.
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