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Abstract

We prove the existence of a subsonic axisymmetric weak solution (u, ρ, p) with u = uxex +urer +uθ eθ

to steady Euler system in a three-dimensional infinitely long cylinder N when prescribing the values of the 
entropy (= p

ργ ) and angular momentum density (= ruθ ) at the entrance by piecewise C2 functions with a 
discontinuity on a curve on the entrance of N . Due to the variable entropy and angular momentum density 
(=swirl) conditions with a discontinuity at the entrance, the corresponding solution has a nonzero vorticity, 
nonzero swirl, and contains a contact discontinuity r = gD(x). We construct such a solution via Helmholtz 
decomposition. The key step is to decompose the Rankine-Hugoniot conditions on the contact discontinuity 
via Helmholtz decomposition so that the compactness of approximated solutions can be achieved. Then we 
apply the method of iteration to obtain a solution and analyze the asymptotic behavior of the solution at far 
field.
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1. Introduction

In R3, the steady flow of inviscid compressible gas is governed by the Euler system [13]:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
div(ρu) = 0,

div(ρu ⊗ u + p I3) = 0 (I3 : 3 × 3 identity matrix),

div

(
ρ
(
E + p

ρ

)
u
)

= 0.

(1.1)

In (1.1), the functions ρ = ρ(x), u = (u1e1 + u2e2 + u3e3)(x), p = p(x), and E = E(x) rep-
resent the density, velocity, pressure, and the total energy density of the flow, respectively, at 
x = (x1, x2, x3) ∈ R3. In this paper, we consider an ideal polytropic gas for which E is given by

E = 1

2
|u|2 + p

(γ − 1)ρ
(1.2)

for a constant γ > 1, called the adiabatic exponent. With the aid of (1.2), the system (1.1) is 
closed, and can be rewritten as ⎧⎪⎪⎨⎪⎪⎩

div(ρu) = 0,

div(ρu ⊗ u + p I3) = 0,

div(ρuB) = 0,

(1.3)

for the Bernoulli invariant B given by

B = 1

2
|u|2 + γp

(γ − 1)ρ
= 1

2
|u|2 + γ

γ − 1
Sργ−1. (1.4)

Here, S = p/ργ denotes the entropy.
Let � ⊂ R3 be an open and connected set. Suppose that a non-self-intersecting C1-surface 

� divides � into two disjoint open subsets �± such that � = �− ∪ � ∪ �+. Suppose that 
U = (u, ρ, p) satisfies the following properties:

(w1) U ∈ [L∞
loc(�) ∩ C1

loc(�
±) ∩ C0

loc(�
± ∪ �)]5;

(w2) For any ξ ∈ C∞
0 (�) and k = 1, 2, 3,

ˆ

�

ρu · ∇ξ dx =
ˆ

�

(ρuku + pek) · ∇ξ dx =
ˆ

�

ρuB · ∇ξ dx = 0.

Here, ek is the unit vector in the xk-direction.

By integration by parts, one can directly check that U satisfies the properties (w1) and (w2) if 
and only if

(w∗) U satisfies the property (w1);
1
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Fig. 1.1. Contact discontinuity.

(w∗
2) U is a classical solution to (1.3) in �±, and satisfies the Rankine-Hugoniot conditions

[ρu · n]� = [ρu · nB]� = 0, (1.5)

[ρ(u · n)u + pn]� = 0, (1.6)

for a unit normal vector field n on �, where [F ]� is defined by

[F(x)]� := F(x)|
�− − F(x)|

�+ for x ∈ �.

Let τ 1 and τ 2 be tangent vector fields on � such that they are linearly independent at each 
point on �. Due to [ρu · n]� = 0 in (1.5), the condition (1.6) can be rewritten as

[ρ(u · n)2 + p]� = 0, ρ(u · n)[u · τ k]� = 0 for k = 1,2. (1.7)

Suppose that ρ > 0 in �. Then, the second condition in (1.7) holds if either u · n = 0 holds on 
�, or [u · τ k]� = 0 for all k = 1, 2.

Definition 1.1. We define U = (u, ρ, p) to be a weak solution to (1.3) in � with a contact dis-
continuity � (Fig. 1.1) if the following properties hold:

(i) � is a non-self-intersecting C1-surface dividing � into two open subsets �± such that 
� = �+ ∪ � ∪ �−;

(ii) U satisfies (w1) and (w2), or equivalently (w∗
1) and (w∗

2);
(iii) ρ > 0 in �;
(iv)

(
u|

�−∩�
− u|

�+∩�

)
(x) 
= 0 holds for all x ∈ �;

(v) u · n|
�−∩�

= u · n|
�+∩�

= 0, where n is a unit normal vector field on �.

One can directly check from (1.5) and (1.7) that U = (u, ρ, p) is a weak solution to (1.3) in 
� with a contact discontinuity � if and only if the following properties hold:

(i′) The properties (i)-(iv) stated in Definition 1.1 hold;
(ii′) [p]� = 0 and u · n = 0 on �.

Let (x, r, θ) be the cylindrical coordinates of (x1, x2, x3) ∈ R3, that is,

(x1, x2, x3) = (x, r cos θ, r sin θ), r ≥ 0, θ ∈T ,
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where T is a one dimensional torus with period 2π . Any function f (x) can be represented as 
f (x) = f (x, r, θ), and a vector-valued function F(x) can be represented as

F(x) = Fx(x, r, θ)ex + Fr(x, r, θ)er + Fθ(x, r, θ)eθ ,

where

ex = (1,0,0), er = (0, cos θ, sin θ), eθ = (0,− sin θ, cos θ).

Definition 1.2.

(i) A function f (x) is axially symmetric (=axisymmetric) if its value is independent of θ .
(ii) A vector-valued function F is axially symmetric (=axisymmetric) if each of functions Fx(x), 

Fr(x), and Fθ(x) is axially symmetric.

The goal of this paper is to prove the existence of subsonic axisymmetric weak solutions to 
(1.3) with contact discontinuities in the sense of Definition 1.1 in a three-dimensional infinitely 
long cylinder. In particular, we seek a solution with nonzero vorticity and nonzero angular mo-
mentum (=swirl). Furthermore, we analyze asymptotic behaviors of the contact discontinuities 
at far field.

There are many studies of smooth subsonic solutions to Euler system, see [5,6,14–18,21–23]
and references cited therein. As far as we know, there are few results on the existence of so-
lutions to Euler system with contact discontinuities [1,3,7–12,20]. In [20], supersonic contact 
discontinuities in three-dimensional isentropic steady flows were studied.

In this paper, we prove the existence of a subsonic axisymmetric weak solution (u, ρ, p) with 
u = uxex +urer +uθ eθ to steady Euler system in a three-dimensional infinitely long cylinder N
when prescribing the values of the entropy (= p

ργ ) and angular momentum density (= ruθ ) at the 

entrance by piecewise C2 functions with a discontinuity on a curve on the entrance of N . Due 
to the variable entropy and angular momentum density (=swirl) conditions with a discontinuity 
at the entrance, the corresponding solution has a nonzero vorticity, nonzero swirl, and contains 
a contact discontinuity r = gD(x). We construct such a solution via Helmholtz decomposition. 
By using Helmholtz decomposition, smooth subsonic solutions for the full Euler-Poisson sys-
tem with nonzero vorticity were studied in [2,4]. To construct subsonic solutions with contact 
discontinuities, the challenge is to decompose the Rankine-Hugoniot conditions on contact dis-
continuities via Helmholtz decomposition so that the compactness of approximated solutions can 
be achieved.

The first work to construct subsonic weak solutions with contact discontinuities to steady Eu-
ler system via Helmholtz decomposition is given in [3], in which new formulations of steady 
Euler system and Rankine-Hugoniot conditions via Helmholtz decomposition are introduced, 
and the existence of subsonic weak solutions with contact discontinuities and nonzero vorticity 
is proved in a two-dimensional infinitely long nozzle. Furthermore, it is proved that a two di-
mensional weak solution converges to a constant pressure state at far-field (x = ∞), if one side 
of the contact discontinuity has uniform state with (p, u) = (p0, 0) for a constant p0 > 0. In 
this paper, we consider a three-dimensional infinitely long circular cylinder with the same as-
sumption. Namely, we prescribe boundary condition at the entrance of the cylinder so that the 
resultant subsonic weak solution to steady Euler system contains a contact discontinuity, and its 
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one side has uniform state with (p, u) = (p0, 0) for a constant p0 > 0. Differently from the two 
dimensional case, however, the three dimensional problem that we consider in this paper requires 
a more subtle approach. If we seek a weak solution via Helmholtz decomposition with a contact 
discontinuity so that its inner layer flow has nonzero vorticity and nonzero angular momentum, 
we first need to establish the unique solvability of a singular-coefficient elliptic equation, which 
concerns the angular component of the vorticity in its cylindrical-coordinate representation. Also, 
a careful treatment is needed in analysis of streamlines near the x-axis (r = 0). To resolve these 
difficulties, we employ the method developed in [4], but with more sophisticated computations 
to handle nonlinear boundary conditions on the contact discontinuity, which are derived from the 
Rankine-Hugoniot conditions.

To analyze the asymptotic behavior of the solution, we use the stream function formulation 
and energy estimates. We emphasize that the asymptotic behavior of three dimensional subsonic 
weak solution with a contact discontinuity is completely different from the two dimensional solu-
tion, which are studied in [3]. Due to the non-zero angular momentum generated by the boundary 
condition at the entrance, the asymptotic limit of pressure p of three dimensional subsonic weak 
solution with a contact discontinuity does not converge to a constant p0 at x = ∞. And, this 
is purely three dimensional phenomenon. To our best knowledge, this is the first result on the 
three-dimensional subsonic flows to steady Euler system with contact discontinuities.

The rest of the paper is organized as follows. In Section 2, we formulate the main problem 
of this paper, and state its solvability (Theorem 2.1(a)) and the asymptotic limit of the solution 
(Theorem 2.1(b)) as the main theorem. In Section 3, we reformulate the problem introduced in 
Section 2 by using the method of Helmholtz decomposition, and state its solvability as Theo-
rem 3.1. As we shall see later, the problems given in Section 2 and 3 are free boundary problems 
in an unbounded domain. To construct a solution to the free boundary problems in an unbounded 
domain, free boundary problems in cut-off domains will be formulated and solved in Section 4. 
Based on the results of Section 4, we prove Theorem 3.1 from which Theorem 2.1(a) follows. 
Finally, the asymptotic behavior of the solution at far field is analyzed in Section 5.

2. Main theorems

We define an infinitely long cylinder

N :=
{
(x1, x2, x3) ∈R3 : x1 > 0,

√
x2

2 + x2
3 < 1

}
. (2.1)

As we defined in the previous section, let (x, r, θ) be the cylindrical coordinates of (x1, x2, x3) ∈
R3, that is,

(x1, x2, x3) = (x, r cos θ, r sin θ), r ≥ 0, θ ∈T ,

where T is a one dimensional torus with period 2π . Then, the wall �w and the entrance �en of 
N are defined as

�w := ∂N ∩ {r = 1}, �en := ∂N ∩ {x1 = 0}.

To prescribe a boundary condition which causes an occurrence of a contact discontinuity, we 
define an inner layer of the entrance �−

en by
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�−
en := �en ∩

{
r ≤ 1

2

}
.

Let us consider two layers of flow in N separated by the cylindrical surface r = 1
2 with 

satisfying the following properties (Fig. 2.1):

(i) For fixed ρ±
0 > 0 and u0 > 0, the velocity and density of outer and inner layers are given by 

(0, 0, 0), ρ+
0 and (u0, 0, 0), ρ−

0 respectively;
(ii) The pressure of both outer and inner layers is given by a constant p0 > 0;

(iii) The outer and inner layers are subsonic flows, i.e.,

u0 < c0 for the sound speed c0 =
√

γp0

ρ−
0

.

Then a piecewise constant vector

U0(x1, x2, x3) :=

⎧⎪⎪⎨⎪⎪⎩
(0,0,0, ρ+

0 ,p0) for r >
1

2
,

(u0,0,0, ρ−
0 ,p0) for r <

1

2

is a weak solution of the Euler system (1.3) in N with a contact discontinuity N ∩ {r = 1
2 }. In 

this case, the entropy S0 and Bernoulli function B0 are piecewise constant functions with

S0(x1, x2, x3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p0

(ρ+
0 )γ

=: S+
0 for

1

2
< r < 1,

p0

(ρ−
0 )γ

=: S−
0 for 0 ≤ r <

1

2
,

B0(x1, x2, x3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γp0

(γ − 1)ρ+
0

=: B+
0 for

1

2
< r < 1,

1

2
u2

0 + γp0

(γ − 1)ρ−
0

=: B−
0 for 0 ≤ r <

1

2
.

(2.2)

Fig. 2.1. Background state.
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Our main goal is to solve the following problem.

Problem 2.1. Fix ε ∈ (0, 1/10) and α ∈ (0, 1). For given radial functions Sen(r), νen(r) and 
uen

r (r), define

σ(Sen, νen, u
en
r ) := ‖Sen − S0‖2,α,�−

en
+ ‖νen‖2,α,�−

en
+ ‖uen

r ‖1,α,�−
en

. (2.3)

Assume that

(Sen, νen) ≡ (S+
0 ,0) on �en \ �−

en = �en ∩
{
r ≥ 1

2

}
,

uen
r ≡ 0 on �en ∩

{
r ≥ 1

2
− ε

}
,

(2.4)

and

σ(Sen, νen, u
en
r ) ≤ σ0 (2.5)

with sufficiently small σ0 > 0 to be specified later.
Find a weak solution U = (u, ρ, p) to (1.3) with a contact discontinuity

�gD
: r = gD(x1)

in the sense of Definition 1.1 in N such that

(a) gD(0) = 1
2 .

(b) Subsonicity:

|u| < c for the sound speed c =
√

γp

ρ
in N .

(c) Positivity of density: ρ > 0 in N .
(d) At the entrance �en, U satisfies the boundary conditions:

p

ργ
= Sen, u · eθ = νen, u · er = uen

r on �en.

(e) On �gD
, U satisfies the Rankine-Hugoniot conditions, i.e.,

[p]�gD
= 0, u · ngD

= 0 on �gD
,

where ngD
denotes a unit normal vector field on �gD

.
(f) On the wall �w, U satisfies the slip boundary condition, i.e.,

u · er = 0 on �w.
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(g) The Bernoulli function B is a piecewise constant function,

B(x1, x2, x3) =
{

B+
0 for r > gD(x1),

B−
0 for r < gD(x1),

where B±
0 are given by (2.2).

Remark 2.1 (Compatibility conditions). If an axisymmetric vector field

V(x) = Vx(x, r)ex + Vr(x, r)er + Vθ(x, r)eθ is C1,

then it must satisfy

Vr(x,0) = Vθ(x,0) ≡ 0.

Since it is assumed in (2.5) that the axisymmetric functions (Sen, νen)(r) are C1 on �en, the 
compatibility conditions

∂r (Sen, νen)(0) = 0 (2.6)

are naturally imposed.

One can easily see that u = 0, ρ = ρ+
0 , p = p0 satisfy the following properties:

(i) (Subsonicity) |u| = 0 <
√

γp/ρ =
√

(γp0)/ρ
+
0 ;

(ii) (Positivity of density) ρ+
0 > 0;

(iii) As in (2.2),

p0

(ρ+
0 )γ

= S+
0 ,

γp0

(γ − 1)ρ+
0

= B+
0 ;

(iv) u · v = 0 for any vector v ∈R3.

From this observation, we fix u = 0, ρ = ρ+
0 , p = p0 in N ∩ {r > gD(x)}, and we solve the 

following free boundary problem to find a solution to Problem 2.1;

Problem 2.2. Under the same assumptions of Problem 2.1, find gD : R+ −→ (0, 1) and a C1

solution U = (u, ρ, p) to (1.3) in N−
gD

:= N ∩ {r < gD(x)} such that (Fig. 2.2)

(a)

gD(0) = 1

2
. (2.7)
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Fig. 2.2. Problem 2.2.

(b) Subsonicity:

|u| < c for the sound speed c =
√

γp

ρ
in N−

gD
.

(c) Positivity of density: ρ > 0 in N−
gD

.
(d) At the entrance �−

en, U satisfies the boundary conditions:

p

ργ
= Sen, u · eθ = νen, u · er = uen

r on �−
en. (2.8)

(e) On �gD
: r = gD(x), U satisfies the boundary conditions

p = p0, u · ngD
= 0 on �gD

, (2.9)

where ngD
denotes a unit normal vector field on �gD

.
(f) The Bernoulli function B is a constant function,

B(x1, x2, x3) ≡ B−
0 in N−

gD
,

where B−
0 is given by (2.2).

Since p = Sργ , we can regard Problem 2.2 as a problem for (u, p, S). Assume that the smooth 
solution (u, ρ, S) of (1.3) is axially symmetric, i.e.,

u = ux(x, r)ex + ur(x, r)er + uθ (x, r)eθ , ρ = ρ(x, r), S = S(x, r).

Define the angular momentum density � as follows

�(x, r) := ruθ (x, r). (2.10)

Then one can directly check that (1.3) is equivalent to the following system:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂x(ρux) + ∂r (ρur) + ρur

r
= 0,

ρ(ux∂x + ur∂r )ur − ρu2
θ

r
+ ∂rp = 0,

ρ(ux∂x + ur∂r )S = 0,

ρ(ux∂x + ur∂r )� = 0.

(2.11)

Now we state the main results in this paper.

Theorem 2.1. For given radial functions Sen(r), νen(r) and uen
r (r) on �en, assume that they 

satisfy (2.4), and let σ(Sen, νen, uen
r ) be given by (2.3). For simplicity of notations, let σ denote 

σ(Sen, νen, uen
r ).

(a) (Existence) For any fixed α ∈ (0, 1), there exists a small constant σ1 > 0 depending only on 
(u0, ρ

−
0 , p0, S

−
0 ) and α so that if

σ ≤ σ1,

then there exists an axially symmetric solution U = (u, ρ, p) of Problem 2.2 with a contact 
discontinuity r = gD(x) satisfying

‖gD − 1

2
‖2,α,R+ + ‖(u, ρ,p) − (u0, ρ

−
0 ,p0)‖1,α,N−

gD
≤ Cσ for u0 := u0ex, (2.12)

where the constant C > 0 depends only on (u0, ρ
−
0 , p0, S

−
0 ) and α.

(b) (Asymptotic state) There exists a constant σ2 ∈ (0, σ1] depending only on (u0, ρ
−
0 , p0, S

−
0 )

and α so that if

σ ≤ σ2,

then the solution U = (u, ρ, p) in (a) satisfies

lim
L→∞‖u · er (x, ·)‖

C1(N−
gD

∩{x>L}) = 0,

lim
L→∞‖∂rp(x, ·) − ρ(u · eθ )

2

r
(x, ·)‖

C0(N−
gD

∩{x>L}) = 0.

Remark 2.2 (Zero swirl case). As we shall see later, the constant σ1 in Theorem 2.1(a) will be 
chosen sufficiently small so that the estimate (2.12) yields that

u · ex ≥ 1

2
u0 in N−

gD
. (2.13)

If νen = 0 on �en, by the definition of � given by (2.10), then it follows from (2.6), the trans-

port equation ρ(ux∂x + ur∂r )� = 0 given in (2.11), and the estimate (2.13) that � ≡ 0 in N−
g . 

D
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Fig. 2.3. Remark 2.3.

And, this implies that 
ρ(u · eθ )

2

r
≡ 0 in N−

gD
. (See (5.2) for further details.) In this case, Theo-

rem 2.1(b) yields that

lim
L→∞‖p(x, ·) − p0‖C0(N∩{x>L}) = 0,

where we extend the definition of p onto N \ N−
gD

by p = p0 in N \ N−
gD

. And, this coincides 
with the result obtained from [3]. From this perspective, the two dimensional subsonic weak 
solution with a contact discontinuity, constructed in [3], can be considered as a three-dimensional 
subsonic weak solution with the zero-swirl boundary condition for νen at the entrance of the 
cylinder N .

Remark 2.3. In Problem 2.2, we seek a subsonic weak solution to steady Euler system with a 
contact discontinuity r = gD(x) by fixing the outer-layer flow in N ∩ {r > gD(x)} as a uniform 
state (u, ρ, p) = (0, ρ+

0 , p0). One can also consider a problem to seek a subsonic weak solution 
to steady Euler system with a contact discontinuity r = g̃D(x) by fixing the inner-layer flow in 
N ∩ {r < g̃D(x)} as a uniform state (u, ρ, p) = (0, ρ−

0 , p0) (see Fig. 2.3). Actually, this problem 
is even simpler than Problem 2.2 for the following reason: In order to solve Problem 2.2, we 
use Helmholtz decomposition u = ∇ϕ + curlV(x) with V(x) = h(x, r)er + ψ(x, r)eθ . With this 
representation, (1.3) is decomposed as a system of second order elliptic equations for (ϕ, ψ), 
and transport equations for (S, �). In this reformulation, one of the difficulties rises. Namely, 
the equation for ψ becomes a singular-coefficient elliptic equation, with a coefficient blow-up on 
the x-axis (r = 0). If the inner-layer flow is fixed as a uniform state with (u, ρ, p) = (0, ρ−

0 , p0), 
however, such a singularity issue is not needed to be considered, as the inner-layer flow is fixed, 
and the outer-layer flow state is to be determined by solving nonlinear system of equations for 
(ϕ, ψ, S, �). In particular, the outer-layer of N is away from the x-axis, therefore coefficients of 
all the equations are regular.

3. Reformulation of Problem 2.2 via Helmholtz decomposition

For a function gD : R+ −→ (0, 1) to be determined along with (u, ρ, p) in N−
gD

, we express 
the velocity vector field u = ux(x, r)ex + ur(x, r)er + uθ (x, r)eθ as

u(x) = ∇ϕ(x) + curl V(x) in N−

gD
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for axially symmetric functions

ϕ(x) = ϕ(x, r), V(x) = h(x, r)er + ψ(x, r)eθ .

If (ϕ, V) are C2 in N−
gD

, then a direct computation yields

u =
(

∂xϕ + 1

r
∂r (rψ)

)
ex + (∂rϕ − ∂xψ)er + (∂xh)eθ , (3.1)

from which we derive that

ux = ∂xϕ + 1

r
∂r (rψ), ur = ∂rϕ − ∂xψ, uθ = �

r
= ∂xh.

Hereafter, we denote the velocity field u as

u = q(r,ψ,Dψ,Dϕ,�) for D = (∂x, ∂r ). (3.2)

For such q(r, ψ, Dψ, Dϕ, �), set

t(r,ψ,Dψ,�) := q(r,ψ,Dψ,Dϕ,�) − ∇ϕ (= curlV) . (3.3)

By a simple adjustment of computations given in [4], we can rewrite the system (2.11) as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

div (H(S,q)q) = 0,

− �(ψeθ ) = G(S,�,∂rS, ∂r�, t,∇ϕ)eθ ,

H(S,q)q · ∇S = 0,

H(S,q)q · ∇� = 0,

(3.4)

with

q = q(r,ψ,Dψ,Dϕ,�), and t = t(r,ψ,Dψ,�),

for (H, G) defined by

H(η,q) :=
[
γ − 1

γ η

(
B−

0 − 1

2
|q|2

)]1/(γ−1)

,

G(η1, η2, η3, η4, t,v) := 1

(t + v) · ex

(
Hγ−1(η1, t + v)

γ − 1
η3 + η2

r2 η4

)
,

(3.5)

for η ∈R, q ∈R3, η1, η2, η3, η4 ∈R, and t, v ∈R3.
Next, we derive boundary conditions for (gD, S, �, ϕ, ψ) to satisfy the physical boundary 

conditions (2.8)-(2.9). We intend to derive the boundary conditions so that a compactness of 
approximated solutions to Problem 2.2 can be established.
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(i) Boundary conditions on �−
en: We require (S, �, ϕ, ψ) to satisfy⎧⎪⎨⎪⎩

(S,�)(0, r) = (Sen, rνen)

ϕ(0, r) = ´ r

1/2 uen
r (t)dt =: ϕen

∂xψ(0, r) = 0

on �−
en (3.6)

so that the boundary conditions given in (2.8) hold on �−
en for

(u, ρ,p) = (q,H(S,q), SHγ (S,q)) with q = q(r,ψ,Dψ,Dϕ,�). (3.7)

(ii) The Rankine-Hugoniot conditions (2.9) on �gD
: If a contact discontinuity �gD

is rep-
resented as �gD

= {x ∈ N : r = gD(x)}, then the unit normal ngD
of �gD

pointing toward 
{r > gD(x)} is given by

ngD
= −g′

D(x)ex + er√
1 + |g′

D(x)|2
.

Therefore, if gD : R+ −→ (0, 1) solves the initial value problem⎧⎪⎪⎨⎪⎪⎩
g′

D(x) = q(r,ψ,Dψ,Dϕ,�) · er

q(r,ψ,Dψ,Dϕ,�) · ex

(x, gD(x),0) for x > 0,

gD(0) = 1

2
,

(3.8)

then the condition u · ngD
= 0 holds on �gD

for u given by (3.7). We use (3.8) to find the location 
of the contact discontinuity r = gD(x).

Due to axi-symmetry of �gD
, an orthonormal basis of �gD

can be given as

{
τ gD

, eθ

}
for τ gD

:= ex + g′
D(x)er√

1 + |g′
D(x)|2

.

Then, it follows from the condition u · ngD
= 0 on �gD

that

|u|2 = |u · τgD
|2 + |u · eθ |2 on �gD

. (3.9)

By substituting the expression (3.1) into (3.9), we get

|u|2 =
∣∣∣∣[(∂xϕ + 1

r
∂r (rψ)

)
ex + (∂rϕ − ∂xψ)er

]
· τ gD

∣∣∣∣2 +
∣∣∣∣�r

∣∣∣∣2 on �gD
. (3.10)

On the other hand, to satisfy the condition (f) stated in Problem 2.2, u should satisfy

|u|2 = 2

(
B−

0 − γp1−1/γ S1/γ
)

on �gD
. (3.11)
γ − 1
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Therefore, if (ϕ, ψ) satisfy

∇ϕ · τ gD
= ∇ϕ0 · τ gD

and
1

r
∇(rψ) · ngD

= B(gD,g′
D,S,�) (3.12)

for ϕ0 and B defined by

ϕ0(x) := u0x1 for x = (x1, x2, x3) ∈ N−
gD

,

B(gD,g′
D,S,�) :=

√√√√2

(
B−

0 − γp
1−1/γ

0 S1/γ

γ − 1

)
−
(

�

gD

)2

− ∇ϕ0 · τ gD
,

(3.13)

then one can directly check from (3.9)–(3.11) that the condition p = p0 on �gD
given in (2.9)

holds for (u, p) given by (3.7).
We collect all the boundary conditions for (gD, S, �, ϕ, ψ) with (3.8) as follows:⎧⎨⎩

(S,�) = (Sen, rνen), ϕ = ϕen, ∂xψ = 0 on �−
en,

∇ϕ · τ gD
= ∇ϕ0 · τ gD

,
1

r
∇(rψ) · ngD

= B(gD,g′
D,S,�) on �gD

.
(3.14)

Theorem 3.1. For given radial functions Sen(r), νen(r) and uen
r (r) on �en, assume that they 

satisfy (2.4), and let σ(Sen, νen, uen
r ) be given by (2.3). For simplicity of notations, let σ denote 

σ(Sen, νen, uen
r ).

For any fixed α ∈ (0, 1), there exists a small constant σ3 > 0 depending only on (u0, ρ
−
0 , p0,

S−
0 ) and α so that if

σ ≤ σ3, (3.15)

then the free boundary problem (3.4) with boundary conditions (3.8) and (3.14) has a solution 
(gD, S, �, ϕ, ψ) that satisfies

‖gD − 1

2
‖2,α,R+ ≤ Cσ,

‖ϕ − ϕ0‖2,α,N−
gD

+ ‖ψeθ‖2,α,N−
gD

+ ‖(S,�) − (S−
0 ,0)‖1,α,N−

gD
≤ Cσ,

(3.16)

where the constant C > 0 depends only on (u0, ρ
−
0 , p0, S

−
0 ) and α.

Hereafter, a constant C is said to be chosen depending only on the data if C is chosen depend-
ing only on (u0, ρ

−
0 , p0, S

−
0 ).

We first prove Theorem 3.1, then apply this theorem to prove Theorem 2.1. We will prove 
Theorem 3.1 by a limiting argument. So we introduce a free boundary problem in a cut-off do-
main of the finite length L, and solve it by the method of iteration in Section 4. And, uniform 
estimates of the solutions to the free boundary problems in cut-off domains are established in-
dependently of the length L. In Section 5.1, we prove Theorem 3.1 by taking a sequence of the 
solutions to the free boundary problems in cut-off domains, then passing to the limit L → ∞. 
The limit yields a solution to the free boundary problem (3.4) with boundary conditions (3.8)



2838 M. Bae, H. Park / J. Differential Equations 267 (2019) 2824–2873
and (3.14), then we can prove that (gD, u, ρ, p) for (u, ρ, p) given by (3.7) yields a solution to 
Problem 2.2. This proves Theorem 2.1(a). Finally, Theorem 2.1(b) is proved by using the stream 
function formulation and energy estimates.

4. Free boundary problems in cut-off domains

4.1. Iteration framework

Let N be given by (2.1). For a constant L > 0, define NL by

NL := N ∩ {0 < x < L}.

For a function f : [0, L] → (0, 1), we set

N−
L,f := NL ∩ {r < f (x)},

�
L,f
ex := ∂N−

L,f ∩ {x = L}, �
L,f

cd := ∂N−
L,f ∩ {r = f (x)}.

Problem 4.1. Find a solution (f, S, �, ϕ, ψ) of the following free boundary problem:

(3.4) in N−
L,f

with boundary conditions⎧⎪⎪⎪⎨⎪⎪⎪⎩
(S,�) = (Sen, rνen), ϕ = ϕen, ∂xψ = 0 on �−

en,

∂rϕ = 0, ∂xψ = 0 on �
L,f
ex ,

∇ϕ · τf = ∇ϕ0 · τf ,
1

r
∇(rψ) · nf = B(f,f ′, S,�) on �

L,f

cd ,

(4.1)

and ⎧⎪⎪⎨⎪⎪⎩
f ′(x) = q(r,ψ,Dψ,Dϕ,�) · er

q(r,ψ,Dψ,Dϕ,�) · ex

(x, f (x),0) for x > 0,

f (0) = 1

2
,

(4.2)

where

τf := ex + f ′(x)er√
1 + |f ′(x)|2 , nf := −f ′(x)ex + er√

1 + |f ′(x)|2 .

Proposition 4.1. For given radial functions Sen(r), νen(r) and uen
r (r) on �en, assume that they 

satisfy (2.4), and let σ(Sen, νen, uen
r ) be given by (2.3). For simplicity of notations, let σ denote 

σ(Sen, νen, uen
r ).

For a fixed α ∈ (0, 1), there exists a small constant σ4 > 0 depending only on the data and α
so that if
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σ ≤ σ4,

then Problem 4.1 has a unique solution (f, S, �, ϕ, ψ) that satisfies

‖f − 1

2
‖2,α,(0,L) ≤ Cσ,

‖ϕ − ϕ0‖2,α,N−
L,f

+ ‖ψeθ‖2,α,N−
L,f

+ ‖(S,�) − (S−
0 ,0)‖1,α,N−

L,f
≤ Cσ,

(4.3)

where the constant C > 0 depends only on the data and α but independent of L.

In order to find (S, �) as a solution to transport equation H(S, q)q ·∇(S, �) = 0 in N−
L,f , we 

first need (f, q) to satisfy the condition (4.2). Furthermore, the vector field H(S, q)q needs to be 
divergence free (see [4, Proposition 3.5]). Therefore, we need to solve a free boundary problem 
for (f, ϕ, ψ) by fixing approximated entropy and angular momentum density (S̃, �̃), then solve 
H(S̃, q̃)q̃ · ∇(S, �) = 0 in N−

L,f to update (S, �), where q̃ is given by q̃ = q(r, ψ, Dψ, Dϕ, �̃). 
This procedure yields an iteration map in the iterations sets defined below.

For fixed constants ε ∈ (0, 1/10), α ∈ (0, 1) and M1 > 0 to be determined later, we define an 
iteration set

P(M1) := P1(M1) ×P2(M1)

for

P1(M1) :=
⎧⎨⎩S = S(x, r) ∈ C1,α/2(N−

L,3/4) :
‖S − S−

0 ‖1,α,N−
L,3/4

≤ M1σ,

∂xS ≡ 0 on (�−
en ∩ {r ≥ 1

2
− ε}) ∪ �

L,3/4
ex

⎫⎬⎭ ,

P2(M1) :=

⎧⎪⎪⎨⎪⎪⎩� = rV(x, r) ∈ C1,α/2(N−
L,3/4) :

‖V‖1,α,�−
L,3/4

≤ M1σ,

V(x,0) = 0, ∀x ∈ [0,L],
∂x� ≡ 0 on (�−

en ∩ {r ≥ 1

2
− ε}) ∪ �

L,3/4
ex

⎫⎪⎪⎬⎪⎪⎭ ,

(4.4)

for a two dimensional rectangular domain �−
L,3/4 given by

�−
L,3/4 :=

{
(x, r) ∈ R2 : 0 < x < L, 0 < r <

3

4

}
.

Problem 4.2. For each W∗ := (S∗, �∗) ∈ P(M1), set

q∗ := q(r,ψ,Dψ,Dϕ,�∗), t∗ := t(r,ψ,Dψ,�∗)

for (q, t) given by (3.2) and (3.3). Then, find (f, ϕ, ψ) satisfying (4.2) and
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div (H(S∗,q∗)q∗) = 0

− �(ψeθ ) = G(S∗,�∗, ∂rS∗, ∂r�∗, t∗,Dϕ)eθ

in N−
L,f ,

ϕ = ϕen, ∂xψ = 0 on �−
en,

∂rϕ = 0, ∂xψ = 0 on �
L,f
ex ,

∇ϕ · τf = ∇ϕ0 · τf ,
1

r
∇(rψ) · nf = B(f,f ′, S∗,�∗) on �

L,f

cd ,

(4.5)

where H , G, and B are given by (3.5) and (3.13).

Lemma 4.2. Under the same assumptions on (Sen, νen, uen
r ) as in Proposition 4.1, there exists a 

small constant σ5 > 0 depending only on the data and (α, M1) so that if

σ ≤ σ5,

then, for each W∗ ∈P(M1), Problem 4.2 has a unique solution (f, ϕ, ψ) satisfying

‖f − 1

2
‖2,α,(0,L) + ‖ϕ − ϕ0‖2,α,N−

L,f
+ ‖ψeθ‖2,α,N−

L,f
≤ C (M1 + 1) σ, (4.6)

where the constant C > 0 depends only on the data and α but independent of L.

We will prove this lemma in Section 4.2. Once Lemma 4.2 is proved, we prove Proposition 4.1
by the following approach: Let (f, ϕ, ψ) be the unique solution of Problem 4.2 for a fixed W∗ =
(S∗, �∗) ∈ P(M1). For such a solution, we find a unique solution W = (S, �) of the following 
initial value problem:⎧⎪⎪⎨⎪⎪⎩

H(S∗,q(r,ψ,Dψ,Dϕ,�∗))q(r,ψ,Dψ,Dϕ,�∗) · ∇S = 0

H(S∗,q(r,ψ,Dψ,Dϕ,�∗))q(r,ψ,Dψ,Dϕ,�∗) · ∇� = 0
in N−

L,f ,

(S,�) = (Sen, rνen) on �−
en.

(4.7)

We take suitable extensions Ef (S, �) ∈ [C1,α/2(N−
L,3/4)]2 of (S, �). For such Ef (S, �), we 

define an iteration mapping J : P(M1) → [C1,α/2(N−
L,3/4)]2 by

J (S∗,�∗) = Ef (S,�).

Then we choose M1 and σ so that the mapping J maps P(M1) into itself, and has a unique fixed 
point (S�, ��) ∈ P(M1) of J . This will prove Proposition 4.1. A detailed proof of Proposition 4.1
is given in Section 4.3.

4.2. Proof of Lemma 4.2

For a constant M2 > 0 to be determined later with satisfying M2σ ≤ 1
8 , we define an iteration 

set



M. Bae, H. Park / J. Differential Equations 267 (2019) 2824–2873 2841
F(M2) :=

⎧⎪⎪⎨⎪⎪⎩f ∈ C2,α([0,L]) :
‖f − 1

2
‖2,α,(0,L) ≤ M2σ,

f (0) = 1

2
, f ′(0) = f ′(L) = 0

⎫⎪⎪⎬⎪⎪⎭ . (4.8)

We fix f∗ ∈F(M2), and solve the following boundary value problem in N−
L,f∗ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div (H(S∗,q(r,ψ,Dψ,Dϕ,�∗))q(r,ψ,Dψ,Dϕ,�∗)) = 0

− �(ψeθ ) = G(S∗,�∗, ∂rS∗, ∂r�∗, t(r,ψ,Dψ,�∗),Dϕ)eθ

in N−
L,f∗ ,

ϕ = ϕen, ∂xψ = 0 on �−
en,

∂rϕ = 0, ∂xψ = 0 on �
L,f∗
ex ,

∇ϕ · τf∗ = ∇ϕ0 · τf∗ ,
1

r
∇(rψ) · nf∗ = B(f∗, f ′∗, S∗,�∗) on �

L,f∗
cd ,

(4.9)

where H , G, and B are given by (3.5) and (3.13).

Lemma 4.3. Under the same assumptions on (Sen, νen, uen
r ) as in Proposition 4.1, there exists a 

small constant σ6 > 0 depending only on the data and (α, M1, M2) so that if

σ ≤ σ6,

then the nonlinear boundary value problem (4.9) has a unique solution (ϕ, ψ) satisfying

‖ϕ − ϕ0‖2,α,N−
L,f∗

+ ‖ψeθ‖2,α,N−
L,f∗

≤ C (M1 + 1) σ, (4.10)

where the constant C > 0 depends only on the data and α but independent of L.

Hereafter, we regard any estimate constant C to be chosen depending only on the data and α
but independent of L unless specified otherwise.

Proof. 1. (Iteration set) For two constants M3, M4 > 0 to be determined later, let us define

Kf∗
1 (M3) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
φ(x, r) ∈ C2,α(N−

L,f∗) :

‖φ‖2,α,N−
L,f∗

≤ M3σ,

∂k
xφ ≡ 0 on (�−

en ∩ {r ≥ 1

2
− ε}) ∪ �

L,f∗
ex

for k = 0,2,

φ(x,0) = 0,∀x ∈ [0,L]

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
,

Kf∗
2 (M4) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ψ(x, r) ∈ C2,α(�−
L,f∗) :

‖ψ‖2,α,�−
L,f∗

≤ M4σ,

∂xψ ≡ 0 on �−
en ∪ �

L,f∗
ex ,

∂k
r ψ(x,0) = 0 for k = 0,2,∀x ∈ [0,L]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

for a two dimensional set �− given by
L,f∗
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�−
L,f∗ :=

{
(x, r) ∈R2 : 0 < x < L, 0 < r < f∗(x)

}
.

Then, we define an iteration set of (φ, ψ) as

Kf∗(M3,M4) := Kf∗
1 (M3) ×Kf∗

2 (M4). (4.11)

Note that the iteration set Kf∗
2 (M4) is defined through the norm ‖ · ‖2,α,�−

L,f∗
. This is to find an 

axisymmetric solution ψ(x, r) to the equation −�(ψeθ ) = Geθ given in (4.9), and to make the 
function ψ(x, r)eθ become C2 in N−

L,f∗ .

2. (Linearized boundary value problem for ψeθ ) For a fixed (φ̃, ψ̃) ∈ Kf∗(M3, M4), set

G̃ := G(W∗, ∂rW∗, t(r, ψ̃,Dψ̃,�∗),Dφ̃ + Dϕ0), B̃ := B(f∗, f ′∗,W∗), (4.12)

where G and B are given by (3.5) and (3.13), respectively. The compatibility condition ∂rW∗ ≡ 0
on N−

L,f∗ ∩ {r = 0} implies that G̃ ≡ 0 on N−
L,f∗ ∩ {r = 0} and G̃eθ ∈ Cα(N−

L,f∗). Since f∗ ≥
3
8 > 0, eθ is smooth on �L,f∗

cd and B̃eθ ∈ C1,α(�
L,f∗
cd ). Then the standard elliptic theory yields 

that the linear boundary value problem⎧⎪⎪⎨⎪⎪⎩
−�W = G̃eθ in N−

L,f∗ ,

∂xW = 0 on �−
en ∪ �

L,f∗
ex ,

∇W · nf∗ − μ(x)W = B̃eθ on �
L,f∗
cd ,

(4.13)

for μ defined by

μ(x) := −1

f∗(x)
√

1 + |f ′∗(x)|2 ,

has a unique solution W ∈ C1,α(N−
L,f∗) ∩ C2,α(N−

L,f∗). By adjusting the proof of [4, Proposi-
tion 3.3], one can show that W is represented as

W = ψ(x, r)eθ in N−
L,f∗ ,

where ψ solves the boundary value problem

−
(

∂xx + 1

r
∂r (r∂r ) − 1

r2

)
ψ = G̃ in N−

L,f∗ (4.14)

with boundary conditions⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−∂xψ = 0 on �−
en,

∂xψ = 0 on �
L,f∗
ex ,

1

r
∇(rψ) · nf∗ = B̃ on �

L,f∗
cd ,

ψ = 0 on N− ∩ {r = 0}.

(4.15)
L,f∗
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By taking the limit r → 0+ to the equation (4.14) and using L’Hospital’s rule, one can also check 
that

∂rrψ ≡ 0 on N−
L,f∗ ∩ {r = 0}.

Claim: Regarding ψ as a function of (x, r) ∈ �−
L,f∗ , we have

‖ψ‖k,α,�−
L,f∗

≤ C
(
‖G̃‖α,N−

L,f∗
+ ‖B̃‖

k−1,α,�
L,f∗
cd

)
for k = 1,2. (4.16)

Proof of Claim. Since ψ = W · eθ , and eθ is smooth with respect to (x, r, θ), we have

‖ψ‖k,α,�−
L,f∗

≤ C‖W‖k,α,N−
L,f∗

for k = 1,2. (4.17)

Now we show that W satisfies

‖W‖k,α,N−
L,f∗

≤ C
(
‖G̃eθ‖α,N−

L,f∗
+ ‖B̃eθ‖k−1,α,�

L,f∗
cd

)
for k = 1,2.

Define a function N :N−
L,f∗ →R+ by

N(x1, x2, x3) := 2a
(
−x2

2 + 5
)

for a := ‖G̃eθ‖0,N−
L,f∗

+ ‖B̃eθ‖0,�
L,f∗
cd

.

Since ‖f∗ − 1
2‖2,α,(0,L) ≤ 1

8 , we have

∇N · nf∗ − μ(x)N = 2a√
1 + |f ′∗(x1)|2

(
−2x2 cos θ + −x2

2 + 5

f∗(x1)

)

≥ 2a

2
(−2 + 4) = 2a on �

L,f∗
cd .

(4.18)

Set

Wj := W · ej , Gj := G̃eθ · ej , Bj := B̃eθ · ej for j = 1,2,3.

Here, each ej for j = 1, 2, 3 denotes the unit vector in the positive direction of xj -axis for 

x = (x1, x2, x3) ∈ N−
L,f∗ . Then straightforward computations and (4.18) yield that

⎧⎪⎪⎨⎪⎪⎩
�(N± Wj) = −4a± Gj ≤ 0 in N−

L,f∗ ,

∂x(N± Wj) = 0 on �−
en ∪ �

L,f∗
ex ,

∇(N± Wj) · nf∗ − μ(x)(N± Wj) ≥ 2a± Bj ≥ 0 on �
L,f∗
cd .

By the comparison principle and Hopf’s lemma, we have

−N ≤ Wj ≤ N for j = 1,2,3 in N− .
L,f∗
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Therefore we get the estimate

‖W‖0,N−
L,f∗

≤ C
(
‖G̃eθ‖0,N−

L,f∗
+ ‖B̃eθ‖0,�

L,f∗
cd

)
. (4.19)

By adjusting the proof of [19, Theorem 3.13] with using the C0-estimate given right above, we 
obtain the estimate

‖W‖1,α,N−
L,f∗

≤ C
(
‖G̃eθ‖α,N−

L,f∗
+ ‖B̃eθ‖α,�

L,f∗
cd

)
. (4.20)

To obtain C2,α-estimate of W up to the boundary, we use the method of reflection. Define an 
extension of f∗ ∈F(M2) into −1 ≤ x ≤ L + 1 by

f e∗ (x) :=

⎧⎪⎪⎨⎪⎪⎩
f∗(−x) for − 1 ≤ x < 0,

f∗(x) for 0 ≤ x ≤ L,

f∗(2L − x) for L < x ≤ L + 1.

Since f ′∗(0) = f ′∗(L) = 0, we have the estimate

‖f e∗ ‖2,α,(−1,L+1) ≤ C‖f∗‖2,α,(0,L).

We define an extended domain

Next :=
{
(x1, x2, x3) ∈R3 : −1 < x1 < L + 1, 0 ≤

√
x2

2 + x2
3 < f e∗ (x1)

}
and

�ext := ∂Next ∩
{√

x2
2 + x2

3 = f e∗ (x1)

}
.

We also define extensions of (W, G̃, B̃) into Next as follows:

(Wext,Gext,Bext) (x) :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
W, G̃, B̃

)
(−x1, x2, x3) for − 1 ≤ x1 < 0,(

W, G̃, B̃
)

(x1, x2, x3) for 0 ≤ x1 ≤ L,(
W, G̃, B̃

)
(2L − x1, x2, x3) for L < x1 ≤ L + 1.

Then Gexteθ ∈ Cα(Next) and

‖Gexteθ‖α,Next ≤ C‖G̃eθ‖α,N−
L,f∗

.

By the compatibility conditions of (W∗, f∗) given in (4.4) and (4.8),

∇Bext · τf∗ ≡ 0 on �ext ∩ {x1 = 0,L}.
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From this and the definition of Bext, we have the estimate

‖Bexteθ‖1,α,�ext ≤ C‖B̃eθ‖1,α,�
L,f∗
cd

.

Consider a connected subdomain Nl of Next such that

Next ∩
{
−1

2
≤ x1 ≤ 1

2

}
⊂Nl ⊂Next ∩ {−1 ≤ x1 ≤ 1}

and the boundary ∂Nl is smooth. By the standard elliptic theory, the boundary value problem⎧⎪⎪⎨⎪⎪⎩
−�W=Gexteθ in Nl ,

∇W · nf e∗ − μext(x)W =Bexteθ on ∂Nl ∩ {r = f e∗ (x)},
W = Wext on ∂Nl\{r = f e∗ (x)},

(4.21)

for

nf e∗ := −(f e∗ )′(x)ex + er√
1 + |(f e∗ )′(x)|2 , μext(x) := −1

f e∗ (x)
√

1 + |(f e∗ )′(x)|2 ,

has a unique solution W ∈ C2,α(Nl) that satisfies

‖W‖
2,α,Next∩

{
− 1

2 ≤x1≤ 1
2

} ≤ C

(
‖Gexteθ‖α,Nl

+ ‖Bexteθ‖1,α,∂Nl∩{r=f e∗ (x)} + ‖W‖
C0(N−

L,f∗ )

)
.

By the definitions of (Gext, Bext, Wext) and the uniqueness of a solution to (4.21), we have 
W(x1, x2, x3) = W(−x1, x2, x3) and ∂x1W(0, x2, x3) = 0. The uniqueness of a solution to (4.13)
yields that W = W in Nl ∩{x1 ≥ 0}. By combining (4.19) and the C2,α-estimate of W given right 
above, we obtain that

‖W‖
2,α,N−

L,f∗∩
{

0≤x1≤ 1
2

} ≤ C
(
‖G̃eθ‖α,N−

L,f∗
+ ‖B̃eθ‖1,α,�

L,f∗
cd

)
. (4.22)

One can also similarly check that

‖W‖
2,α,N−

L,f∗∩
{
L− 1

2 ≤x1≤L
} ≤ C

(
‖G̃eθ‖α,N−

L,f∗
+ ‖B̃eθ‖1,α,�

L,f∗
cd

)
. (4.23)

It follows from (4.22)-(4.23) that

‖W‖2,α,N−
L,f∗

≤ C
(
‖G̃eθ‖α,N−

L,f∗
+ ‖B̃eθ‖1,α,�

L,f∗
cd

)
. (4.24)

Fix x = (x, ξ), x′ = (x′, ξ ′) ∈ N−
L,f∗ with x, x′ ∈ (0, L) and ξ , ξ ′ ∈ B1(0)(⊂ R2). Without 

loss of generality, we assume that |ξ ′| ≤ |ξ |. Since eθ depends only on the unit vector lying on 
∂B1(0) ⊂ R2, we have
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|G̃eθ (x) − G̃eθ (x′)|
|x − x′|α ≤ |G̃(x) − G̃(x′)|

|x − x′|α +
|G̃(x′)||eθ (

ξ
|ξ | ) − eθ (

ξ ′
|ξ ′| )|

|ξ − ξ ′|α

≤ ‖G̃‖α,N−
L,f∗

+ |G̃(x′, ξ ′)|
|ξ ′|α

|eθ (
ξ
|ξ | ) − eθ (

ξ ′
|ξ ′| )|∣∣∣ ξ

|ξ | − ξ ′
|ξ ′|

∣∣∣α .

Due to the compatibility condition ∂rW∗ ≡ 0 on N−
L,f∗ ∩ {r = 0}, we have G̃(x′, 0) = 0, and this 

yields that

|G̃(x′, ξ ′)|
|ξ ′|α = |G̃(x′, ξ ′) − G̃(x′,0)|

|ξ ′|α ≤ ‖G̃‖α,N−
L,f∗

.

So we get

|G̃eθ (x) − G̃eθ (x′)|
|x − x′|α ≤ C‖G̃‖α,N−

L,f∗
,

from which it is obtained that

‖G̃eθ‖α,N−
L,f∗

≤ C‖G̃‖α,N−
L,f∗

. (4.25)

Since f∗(x) ≥ 3
8 > 0, eθ is smooth on �L,f∗

cd , and we have

‖B̃eθ‖k−1,α,�
L,f∗
cd

≤ C‖B̃‖
k−1,α,�

L,f∗
cd

for k = 1,2. (4.26)

It follows from (4.17), (4.20), and (4.24)-(4.26) that

‖ψ‖k,α,�−
L,f∗

≤ C
(
‖G̃‖α,N−

L,f∗
+ ‖B̃‖

k−1,α,�
L,f∗
cd

)
for k = 1,2.

The claim is verified. �
3. (Linearized boundary value problem for ϕ) For ξ ∈ R, s = (s1, s2, s3), and v =

(v1, v2, v3) ∈ R3, define H̃ and A = (A1, A2, A3) by

H̃ (ξ, s,v) := H(ξ, s + v), Aj (ξ, s,v) := H̃ (ξ, s,v)sj for j = 1,2,3,

where H is defined by (3.5). Then the equation

div (H(S,q(r,ψ,Dψ,Dϕ,�))q(r,ψ,Dψ,Dϕ,�)) = 0

can be rewritten as

div (A(S,Dϕ, t(r,ψ,Dψ,�))) = −div
(
H̃ (S,Dϕ, t(r,ψ,Dψ,�))t(r,ψ,Dψ,�)

)
. (4.27)

For ϕ0 given by (3.13), denote V0 := (S−, Dϕ0, 0) and set
0
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aij := ∂sj Ai(V0) for i, j = 1,2,3. (4.28)

Then the constant matrix [aij ]3
i,j=1 is strictly positive and diagonal, and there exists a constant 

ν ∈ (0, 1/10] satisfying

ν < aii <
1

ν
for all i = 1,2,3. (4.29)

Set φ := ϕ − ϕ0. Then (4.27) can be rewritten as

L(φ) = divF(S − S−
0 ,Dφ, t(r,ψ,Dψ,�)),

where L and F = (F1, F2, F3) are defined as follows:

L(φ) :=
3∑

i=1

aii∂iiφ,

Fi(Q) := − H̃ (V0 + Q)vi −
1ˆ

0

Dξ,vAi(V0 + tQ)dt · (ξ,v)

− s ·
1ˆ

0

DsAi(V0 + tQ) − DsAi(V0)dt,

(4.30)

with Q = (ξ, s, v) ∈ R × (R3)2. Here, ∂xi
is abbreviated as ∂i .

By the boundary conditions for ϕ given in (4.9) and the definition of ϕ0, the boundary condi-
tions for φ on ∂N−

L,f∗\�
L,f∗
cd become

φ = ϕen on �−
en and φ = 0 on �

L,f∗
ex .

On �L,f∗
cd , the boundary condition for ϕ given in (4.9) implies that φ should be a constant along 

�
L,f∗
cd . Since we seek a solution φ to be continuous up to the boundary, and since ϕen(0, 12 ) = 0

by the definition (3.6), we prescribe the boundary condition for φ on �L,f∗
cd as

φ = 0 on �
L,f∗
cd .

For a fixed (φ̃, ψ̃) ∈ Kf∗(M3, M4), let ψ ∈ C2,α(�−
L,f∗) be the unique solution to the linear 

boundary value problem (4.13) associated with (φ̃, ψ̃) ∈ Kf∗(M3, M4). For such ψ , we set

F := F(S∗ − S−
0 ,Dφ̃, t(r,ψ,Dψ,�∗)), (4.31)

where F is given by (4.30). And, we consider the following linear boundary value problem
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⎧⎪⎪⎨⎪⎪⎩
L(φ) = divF in N−

L,f∗ ,

φ = ϕen on �−
en,

φ = 0 on �
L,f∗
cd ∪ �

L,f∗
ex .

(4.32)

In the next step, we prove the well-posedness of (4.32).
4. (The well-posedness of (4.32)) Claim: For each (φ̃, ψ̃) ∈ Kf∗(M3, M4), the linear boundary 

value problem (4.32) associated with (φ̃, ψ̃) has a unique solution φ ∈ C2,α(N−
L,f∗), and the 

solution satisfies

‖φ‖k,α,N−
L,f∗

≤ C
(
‖F‖k−1,α,N−

L,f∗
+ ‖ϕen‖k,α,�−

en

)
for k = 1,2. (4.33)

Moreover, the solution φ is axially symmetric, and it satisfies

∂xxφ ≡ 0 on (�−
en ∩ {r ≥ 1

2
− ε}) ∪ �

L,f∗
ex .

Proof of Claim. For ϕen given by (3.6), define a function ϕ∗
en by

ϕ∗
en(x) := η(x1)ϕen

⎛⎜⎝
√

x2
2 + x2

3

f∗(x1)

⎞⎟⎠ for x = (x1, x2, x3) ∈N−
L,f∗ , (4.34)

where η is a C∞-function satisfying

η = 1 for x1 <
L

10
, η = 0 for x1 >

9L

10
, |η′(x1)| ≤ 2, |η′′(x1)| ≤ 2. (4.35)

Set φhom := φ − ϕ∗
en. Then the linear boundary value problem (4.32) can be rewritten as{

L(φhom) = F∗ in N−
L,f∗ ,

φhom = 0 on ∂N−
L,f∗ ,

(4.36)

for F∗ defined by

F∗ := divF−
3∑

i=1

aii∂iiϕ
∗
en, (4.37)

where aii (i = 1, 2, 3) are given by (4.28). By the standard elliptic theory, the linear boundary 
value problem (4.36) has a unique solution φhom ∈ C1,α(N−

L,f∗) ∩ C2,α(N−
L,f∗).

To obtain a uniform C0-estimate of φhom for all L, we define a function M by

M(x) := −3

2

(‖F∗‖α,N−
L,f∗

a22

)
x2

2 +
2‖F∗‖α,N−

L,f∗
a22

.
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Since a22 > ν > 0 in N−
L,f∗ by (4.29), M is well-defined. A direct computation yields⎧⎨⎩L(M± φhom) = −3‖F∗‖α,N−

L,f∗
±L(φhom) ≤ 0 in N−

L,f∗ ,

M± φhom =M ≥ 0 on ∂N−
L,f∗ .

Since L is uniformly elliptic, the comparison principle implies −M ≤ φhom ≤M in N−
L,f∗ , from 

which it follows that

‖φhom‖0,N−
L,f∗

≤ C‖F∗‖α,N−
L,f∗

.

Then we obtain the estimate

‖φhom‖1,α,N−
L,f∗

≤ C‖F∗‖α,N−
L,f∗

.

To obtain C2,α-estimate of φhom up to the boundary, we use the method of reflection. By the 
compatibility conditions of (S∗, �∗, φ̃) given in (4.4) and (4.11), and ∂xψ ≡ 0 on (�−

en ∩ {r ≥
1
2 − ε}) ∪ �

L,f∗
ex given from (4.15), we have

divF = divF(S∗ − S−
0 ,Dφ̃, t(r,ψ,Dψ,�∗)) ≡ 0 on (�−

en ∩ {r ≥ 1

2
− ε}) ∪ �

L,f∗
ex . (4.38)

From the definition of ϕ∗
en given in (4.34), the compatibility conditions of f∗ given in (4.8), and 

the definition of η given in (4.35), it can be directly checked that

∂iiϕ
∗
en ≡ 0 on (�−

en ∩ {r ≥ 1

2
− ε}) ∪ �

L,f∗
ex , i = 1,2,3. (4.39)

It follows from (4.38)-(4.39) and the definition of F∗ given in (4.37) that

F∗ ≡ 0 on (�−
en ∩ {r ≥ 1

2
− ε}) ∪ �

L,f∗
ex .

Then we can apply the method of reflection to obtain the estimate

‖φhom‖2,α,N−
L,f∗

≤ C‖F∗‖α,N−
L,f∗

,

and this implies that the linear boundary value problem (4.32) has a unique solution φ = φhom +
ϕ∗

en ∈ C2,α(N−
L,f∗) that satisfies

‖φ‖k,α,N−
L,f∗

≤ C
(
‖F‖k−1,α,N−

L,f∗
+ ‖ϕen‖k,α,�−

en

)
for k = 1,2.

For any θ ∈ [0, 2π), define a function φθ
hom by

φθ (x) := φhom(x1, x2 cos θ − x3 sin θ, x2 sin θ + x3 cos θ).
hom
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Then, we have φθ
hom = φhom on ∂N−

L,f∗ . By using (4.28), it can be directly checked that a22 = a33. 

Therefore, L(φθ
hom) = L(φhom) holds in N−

L,f∗ . This implies that φθ
hom is a solution to (4.36). By 

the uniqueness of a solution to (4.36), we conclude that φhom = φθ
hom. Therefore φhom is axially 

symmetric, and this implies that φ is axially symmetric.
Since φhom ≡ 0 and 

∑3
i=1 aii∂iiϕ

∗
en ≡ 0 on (�−

en ∩ {r ≥ 1
2 − ε}) ∪ �

L,f∗
ex , we have

∂iiφ ≡ 0 on (�−
en ∩ {r ≥ 1

2
− ε}) ∪ �

L,f∗
ex for i = 2,3. (4.40)

It follows from (4.38) and (4.40) that L(φ) = a11∂xxφ ≡ 0 on (�−
en ∩ {r ≥ 1

2 − ε}) ∪ �
L,f∗
ex . 

Since a11 > 0, we conclude that ∂xxφ ≡ 0 on (�−
en ∩ {r ≥ 1

2 − ε}) ∪ �
L,f∗
ex . The proof of claim is 

completed. �
5. (The well-posedness of nonlinear boundary value problem (4.9)) For fixed (W∗, f∗) ∈

P(M1) × F(M2), define an iteration mapping If∗,W∗ : Kf∗(M3, M4) → C2,α(N−
L,f∗) ×

C2,α(�−
L,f∗) by

If∗,W∗(φ̃, ψ̃) = (φ,ψ),

where (φ, ψ) is the solution to (4.13) and (4.32) associated with (φ̃, ψ̃).
By straightforward computations, one can easily check that there exists a constant ε1 ∈ (0, 18 )

depending only on the data so that if

M1σ + M2σ + M3σ + M4σ ≤ ε1, (4.41)

then we have

‖F‖1,α,N−
L,f∗

≤ C
(
M1σ + (M3σ)2 + M4σ

)
,

‖B̃‖
1,α,�

L,f∗
cd

≤ C
(
M1σ + (M2σ)2

)
,

‖G̃‖α,N−
L,f∗

≤ CM1σ,

(4.42)

where F, B̃, and G̃ are given by (4.31), and (4.12). It follows from (4.16), (4.33), and (4.42) that

‖φ‖2,α,N−
L,f∗

≤ C
�
1

(
M1σ + (M3σ)2 + M4σ + σ

)
,

‖ψ‖2,α,�−
L,f∗

≤ C
�
1

(
M1σ + (M2σ)2

)
,

(4.43)

for a constant C�
1 > 0 depending on the data and α but independent of L. We choose M3, M4, 

and σ ∗ as
6
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M3 = 4C
�
1(1 + M1 + M4), M4 = 2C

�
1M1,

and σ ∗
6 = min

{
ε1

M1 + M2 + M3 + M4
,

M4

2C
�
1M

2
2

,
1

4C
�
1M3

}
,

(4.44)

where ε1 is given in (4.41), so that (4.43) implies that (φ, ψ) ∈Kf∗(M3, M4) for σ ≤ σ ∗
6 . Under 

such choices of (M3, M4, σ ∗
6 ), the iteration mapping If∗,W∗ maps Kf∗(M3, M4) into itself if 

σ ≤ σ ∗
6 . Furthermore, (φ, ψ) satisfies the estimate

‖φ‖2,α,N−
L,f∗

+ ‖ψ‖2,α,�−
L,f∗

≤ (M3 + M4)σ ≤ C(M1 + 1)σ.

Now we show that If∗,W∗ is a contraction mapping if σ is a small constant depending only 
on the data and (α, M1, M2).

For each j = 1, 2, let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φ(j),ψ(j)) := If∗,W∗(φ̃(j), ψ̃(j)) for (φ̃(j), ψ̃(j)) ∈Kf∗(M3,M4),

F∗ := F(S∗ − S−
0 ,Dφ̃(1), t(r,ψ(1),Dψ(1),�∗))

− F(S∗ − S−
0 ,Dφ̃(2), t(r,ψ(2),Dψ(2),�∗)),

G∗ := G(W∗, ∂rW∗, t(r, ψ̃(1),Dψ̃(1),�∗),Dφ̃(1) + Dϕ0)

− G(W∗, ∂rW∗, t(r, ψ̃(2),Dψ̃(2),�∗),Dφ̃(2) + Dϕ0),

where F and G are given by (4.30) and (3.5), respectively. By a direct computation, it can be 
checked that there exists a constant ε2 ∈ (0, ε1] depending only on the data so that if

M1σ + M2σ + M3σ + M4σ ≤ ε2,

then we have

‖F∗‖1,α,N−
L,f∗

≤ C‖ψ(1) − ψ(2)‖2,α,�−
L,f∗

+ C(M1 + 1)σ‖φ̃(1) − φ̃(2)‖2,α,N−
L,f∗

,

‖G∗‖α,N−
L,f∗

≤ CM1σ
(
‖ψ̃(1) − ψ̃(2)‖2,α,�−

L,f∗
+ ‖φ̃(1) − φ̃(2)‖2,α,N−

L,f∗

)
.

(4.45)

Then it follows from (4.16), (4.33), and (4.45) that

‖φ(1) − φ(2)‖2,α,N−
L,f∗

+ ‖ψ(1) − ψ(2)‖2,α,�−
L,f∗

≤ C
�
2(M1 + 1)σ

(
‖ψ̃(1) − ψ̃(2)‖2,α,�−

L,f∗
+ ‖φ̃(1) − φ̃(2)‖2,α,N−

L,f∗

)
for a constant C�

2 > 0 depending only on the data and α but independent of L. Choose σ6 as

σ6 = min

{
σ ∗

6 ,
1

�
,

ε2

M1 + M2 + M3 + M4

}
(4.46)
2C2(M1 + 1)
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with σ ∗
6 defined in (4.44). Thus if σ ≤ σ6, then the mapping If∗,W∗ is a contraction mapping 

so that If∗,W∗ has a unique fixed point in Kf∗(M3, M4). This gives the unique existence of a 
solution to (4.9). The proof of Lemma 4.3 is completed. �

Next, we prove the unique solvability of Problem 4.2, which is a free boundary problem.

Proof of Lemma 4.2. 1. Now we choose M2 from (4.8), and adjust σ to find a solution of Prob-
lem 4.2 by the method of iteration.

Given f∗ ∈ F(M2) and (S∗, �∗) ∈ P(M1), let (ϕ, ψ) ∈ C2,α(N−
L,f∗) × C2,α(�−

L,f∗) be the 
unique solution to the boundary value problem (4.9). Note that (ϕ, ψ) satisfies the estimate (4.10)
given in Lemma 4.3. For simplicity, we set

ρ∗ := H(S∗,q(r,ψ,Dψ,Dϕ,�∗)),

u∗ :=
(

∂xϕ + 1

r
∂r (rψ)

)
ex + (∂rϕ − ∂xψ) er ,

where H is given in (3.5). From the first equation in (4.9), we have

∂x(rρ
∗u∗ · ex) + ∂r (rρ

∗u∗ · er )

r
= 0. (4.47)

As in the proof of Lemma 4.3, there exists a constant ε3 ∈ (0, 1] depending only on the data and 
α so that if

M1σ + M2σ + σ ≤ ε3,

then we have

‖ρ∗u∗ − ρ−
0 u0ex‖1,α,N−

L,f∗
≤ C�(M1 + 1)σ, (4.48)

where the constant C� > 0 depends only on the data and α but independent of L. If σ ∈ (0, σ6]
satisfies

σ ≤ ρ−
0 u0

2C�(M1 + 1)
,

then we obtain from (4.48) that

‖ρ∗u∗ − ρ−
0 u0ex‖1,α,N−

L,f∗
≤ ρ−

0 u0

2
. (4.49)

For each x ∈ [0, L], we choose f (x) ∈ R+ to satisfy

f (x)ˆ
tρ−

0 u0dt =
1/2ˆ

tρ∗u∗ · ex(0, t)dt −
f∗(x)ˆ

tρ∗u∗ · ex(x, t)dt. (4.50)
f∗(x) 0 0
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If f ≡ f∗, then (4.50) yields that

1/2ˆ

0

tρ∗u∗ · ex(0, t)dt =
f (x)ˆ

0

tρ∗u∗ · ex(x, t)dt. (4.51)

Differentiating (4.51) with respect to x, and using the equation (4.47), we have

f ′(x) = u∗ · er

u∗ · ex

(x, f (x)) = ∂rϕ − ∂xψ

∂xϕ + 1
r
∂r (rψ)

(x,f (x)).

Also, we have f (0) = 1
2 . Thus f satisfies the free boundary condition (4.2) for 0 < x < L.

Since ρ−
0 u0 > 0, (4.50) is equivalent to

f 2(x) = f 2∗ (x) + 2

ρ−
0 u0

1/2ˆ

0

tρ∗u∗ · ex(0, t)dt − 2

ρ−
0 u0

f∗(x)ˆ

0

tρ∗u∗ · ex(x, t)dt. (4.52)

By (4.48) and (4.49),

RHS of (4.52) ≥ 1

16
> 0 if σ ≤ min

{
ε3

M1 + M2 + 1
,

ρ−
0 u0

16C�(M1 + 1)

}
=: σ ′

5. (4.53)

Then the function f : [0, L] → R+ given by

f (x) :=

√√√√√f 2∗ (x) + 2

ρ−
0 u0

1/2ˆ

0

tρ∗u∗ · ex(0, t)dt − 2

ρ−
0 u0

f∗(x)ˆ

0

tρ∗u∗ · ex(x, t)dt (4.54)

is well-defined, and satisfies (4.50). And, f (0) = 1
2 , f ′(0) = f ′(L) = 0. Moreover, by a direct 

computation, we have the estimate

‖f − 1

2
‖2,α,(0,L) ≤ C��(M1 + 1)σ (4.55)

for a constant C�� > 0 depending only on the data and α but independent of L.
We define an iteration mapping IW∗ :F(M2) → C2,α([0, L]) by

IW∗(f∗) = f

for f given by (4.54). Choose M2 and σ ∗
5 as

M2 = C��(M1 + 1) and σ ∗
5 = min

{
σ6, σ

′
5

}
(4.56)

for σ6 and σ ′
5 defined by (4.46) and (4.53), respectively. Under such choices of (M2, σ ∗

5 ), the 
iteration mapping IW∗ maps F(M2) into itself if σ ≤ σ ∗.
5
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2. The iteration set F(M2) given by (4.8) is a convex and compact subset of C2,α/2([0, L]). 
For each fixed W∗ ∈P(M1), the iteration map IW∗ maps F(M2) into itself where M2 is chosen 
by (4.56), and σ ≤ σ ∗

5 for σ ∗
5 from (4.56).

Suppose that a sequence {f (k)∗ }∞k=1 ⊂ F(M2) converges in C2,α/2([0, L]) to f (∞)∗ ∈ F(M2). 
For each k ∈ N ∪ {∞}, set

f (k) := IW∗(f (k)∗ ).

And, let U (k) := (ϕ(k), ψ(k)) ∈ C2,α(N−
L,f

(k)∗
) × C2,α(�−

L,f
(k)∗

) be the unique solution of (4.9)

associated with f∗ = f
(k)∗ . Define a transformation T (k) : N−

L,f
(∞)∗

→N−
L,f

(k)∗
by

T (k)(x1, x2, x3) =
⎛⎝x1,

√√√√ f
(k)∗ (x1)

f
(∞)∗ (x1)

x2,

√√√√ f
(k)∗ (x1)

f
(∞)∗ (x1)

x3

⎞⎠ .

Then {U (k) ◦ T (k)}∞k=1 is sequentially compact in C2,α/2(N−
L,f

(∞)∗
) × C2,α/2(�−

L,f
(∞)∗

) and the 

limit of each convergent subsequence of {U (k) ◦ T (k)}∞k=1 in C2,α/2(N−
L,f

(∞)∗
) × C2,α/2(�−

L,f
(∞)∗

)

solves (4.9) associated with f∗ = f
(∞)∗ . By the uniqueness of a solution for the problem 

(4.9), {U (k) ◦ T (k)}∞k=1 is convergent in C2,α/2(N−
L,f

(∞)∗
) × C2,α/2(�−

L,f
(∞)∗

). It follows from 

(4.54)-(4.55) that f (k) converges to f (∞) in C2,α/2([0, L]). This implies that IW∗(f (k)∗ ) con-
verges to IW∗(f (∞)∗ ) in C2,α/2([0, L]). Thus IW∗ is a continuous map in C2,α/2([0, L]). Ap-
plying the Schauder fixed point theorem yields that IW∗ has a fixed point f ∈ F(M2). For such 
f , let (ϕ, ψ) ∈ C2,α(N−

L,f ) × C2,α(�−
L,f ) be the unique solution to the fixed boundary problem 

(4.9) associated with f∗ = f . Then (f, ϕ, ψ) is a solution to Problem 4.2. It follows from (4.10)
and (4.55) that

‖f − 1

2
‖2,α,(0,L) + ‖ϕ − ϕ0‖2,α,N−

L,f
+ ‖ψeθ‖2,α,N−

L,f
≤ C (M1 + 1) σ.

3. Finally, it remains to prove the uniqueness of a solution to Problem 4.2. For a fixed W∗ ∈
P(M1), let (f (1), ϕ(1), ψ(1)) and (f (2), ϕ(2), ψ(2)) be two solutions to Problem 4.2, and suppose 
that each solution satisfies the estimate given in (4.6) of Lemma 4.2. Define a transformation 
T : N−

L,f (1) → N−
L,f (2) by

T(x1, x2, x3) =
⎛⎝x1,

√
f (2)(x1)

f (1)(x1)
x2,

√
f (2)(x1)

f (1)(x1)
x3

⎞⎠ . (4.57)

Since f (j) ≥ 3
8 > 0 (j = 1, 2), the transformation T is invertible and

T−1(y1, y2, y3) =
⎛⎝y1,

√
f (1)(y1)

f (2)(y1)
y2,

√
f (1)(y1)

f (2)(y1)
y3

⎞⎠ .
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Set ⎧⎨⎩ φ̃ := ϕ(1) −
(
ϕ(2) ◦T

)
, ψ̃ := ψ(1) −

(
ψ(2) ◦T

)
,

f̃ := f (1) − f (2), W̃ := W∗ − (W∗ ◦T) .

We first rewrite the nonlinear boundary value problem (4.5) for (ϕ(2), ψ(2)eθ ) in N−
L,f (2) as a 

nonlinear boundary value problem for (ϕ(2) ◦ T, ψ(2)eθ ◦ T) in N−
L,f (1) , and subtract the re-

sultant equations and boundary conditions from the nonlinear boundary value problem (4.5)
for (ϕ(1), ψ(1)eθ ) in N−

L,f (1) . Then we get a nonlinear boundary value problem for (φ̃, ̃ψeθ )

in N−
L,f (1) . By adjusting the proof of Lemma 4.3 with using

‖W̃‖α,N−
L,f (1)

≤ CM1σ‖f̃ ‖1,α,(0,L) and ‖∂rW̃‖α,N−
L,f (1)

≤ CM1σ‖f̃ ‖1,α,(0,L),

we obtain

‖φ̃‖1,α,N−
L,f (1)

+ ‖ψ̃‖1,α,�−
L,f (1)

≤C∗
1 (M1 + 1)σ

(
‖φ̃‖1,α,N−

L,f (1)
+ ‖ψ̃‖1,α,�−

L,f (1)

)
+ C(M1 + 1)σ‖f̃ ‖1,α,(0,L)

for a constant C∗
1 > 0 depending only on the data and α but independent of L. In the above, 

�−
L,f (1) := {

(x, r) ∈R2 : 0 < x < L, 0 < r < f (1)(x)
}

is a two dimensional set. If it holds that

σ ≤ 1

2C∗
1 (M1 + 1)

,

then we obtain from the previous estimate that

‖φ̃‖1,α,N−
L,f (1)

+ ‖ψ̃‖1,α,�−
L,f (1)

≤ C(M1 + 1)σ‖f̃ ‖1,α,(0,L). (4.58)

By using the free boundary condition (4.2), we can express (f̃ )′ in terms of (φ̃, ̃ψ, T, DT). Then 
we apply (4.58) to obtain the estimate

‖(f̃ )′‖α,(0,L) ≤ C(M1 + 1)σ‖f̃ ‖1,α,(0,L). (4.59)

To complete the estimate of ‖f̃ ‖1,α,(0,L) = ‖f̃ ‖0,(0,L) + ‖(f̃ )′‖α,(0,L), we now estimate 
‖f̃ ‖0,(0,L). Define ρ(1), u(1)

x , ρ(2), and u(2)
x by

ρ(k) := H(S∗,q(r,ψ(k),Dψ(k),Dϕ(k),�∗)),

u(k)
x := ∂xϕ

(k) + 1

r
∂r (rψ

(k)) for k = 1,2,

where H is given by (3.5). By using (4.51), we get
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1/2ˆ

0

r
(
ρ(1)u(1)

x − ρ(2)u(2)
x

)
(0, r)dr

=
f (1)(x)ˆ

0

rρ(1)u(1)
x (x, r)dr −

f (2)(x)ˆ

0

rρ(2)u(2)
x (x, r)dr.

(4.60)

Fix x0 ∈ [0, L]. Without loss of generality, we may assume that

f (1)(x0) < f (2)(x0).

Then (4.60) can be rewritten as

1/2ˆ

0

r
(
ρ(1)u(1)

x − ρ(2)u(2)
x

)
(0, r)dr

=
f (1)(x0)ˆ

0

r
(
ρ(1)u(1)

x − ρ(2)u(2)
x

)
(x0, r)dr −

f (2)(x0)ˆ

f (1)(x0)

rρ(2)u(2)
x (x0, r)dr.

By applying (4.58), we have

0 ≤ f (2)(x0) − f (1)(x0) ≤ C(M1 + 1)σ‖f̃ ‖1,α,(0,L).

Combining this with (4.59), we finally get

‖f̃ ‖1,α,(0,L) ≤ C∗
2 (M1 + 1)σ‖f̃ ‖1,α,(0,L), (4.61)

where the constant C∗
2 > 0 depends only on the data and α but independent of L. We choose σ5

as

σ5 = min

{
σ ∗

5 ,
1

2C∗
1 (M1 + 1)

,
1

2C∗
2 (M1 + 1)

}
(4.62)

for σ ∗
5 defined in (4.56), so that (4.61) implies that f (1) = f (2) for σ ≤ σ5. By Lemma 4.3, 

(ϕ(1), ψ(1)) = (ϕ(2), ψ(2)). The proof of Lemma 4.2 is completed. �
4.3. Proof of Proposition 4.1

The proof of Proposition 4.1 is divided into four steps.

1. For a fixed W∗ = (S∗, �∗) ∈ P(M1), let (f, ϕ, ψ) ∈ C2,α([0, L]) × C2,α(N−
L,f ) ×

C2,α(�−
L,f ) be a solution to Problem 4.2. By Lemma 4.2, if σ ≤ σ5 for σ5 given in (4.62), 

then there exists a unique solution (f, ϕ, ψ) that satisfies the estimate (4.6).
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Lemma 4.4. Under the same assumptions on (Sen, νen, uen
r ) as in Proposition 4.1, there exists a 

small constant σ ∗∗
4 ∈ (0, σ5] depending only on the data and α so that if

σ = ‖Sen − S0‖2,α,�−
en

+ ‖νen‖2,α,�−
en

+ ‖uen
r ‖1,α,�−

en
≤ σ ∗∗

4 ,

then the initial value problem (4.7) has a unique solution W = (S, �) satisfying

‖(S,�) − (S−
0 ,0)‖1,α,N−

L,f
≤ C∗‖(Sen, rνen) − (S0,0)‖1,α,�−

en

for a constant C∗ > 0 depending only on the data and α but independent of L. Furthermore, 
regarding (S, �) as functions of (x, r) ∈ �−

L,f , we have

‖(S,�) − (S−
0 ,0)‖2,α,�−

L,f
≤ C∗∗‖(Sen, rνen) − (S0,0)‖2,α,∂�−

L,f ∩{x=0} (4.63)

for a constant C∗∗ > 0 depending only on the data and α but independent of L.

Remark 4.5. The estimate (4.63) is needed in (4.75) to prove the uniqueness of solutions.

Proof of Lemma 4.4. Define a function w : �−
L,f → R by

w(x, r) :=
rˆ

0

sM · ex(x, s)ds for (x, r) ∈ �−
L,f (4.64)

for

M = H(S∗,∇ϕ + t(r,ψ,Dψ,�∗))
(

∇ϕ + 1

r
∂r (rψ)ex − (∂xψ)er

)
,

where t and H are given by (3.3) and (3.5), respectively. For such w, we consider an invertible 
function G : [0, 1/2] → [w(0, 0), w(0, 1/2)] satisfying

G(r) = w(0, r), (4.65)

and define a function R0 : �−
L,f → [0, 1/2] by

R0(x, r) := G−1 ◦ w(x, r). (4.66)

By adjusting the proof of [4, Proposition 3.5], we can obtain a unique solution W of (4.7) repre-
sented in

W(x, r) =Wen(R0(x, r)) for Wen := (Sen, rνen), (4.67)

and the estimate

‖W −W−
0 ‖1,α,N− ≤ C∗‖Wen −W−

0 ‖1,α,�− for W−
0 := (S−

0 ,0),

L,f en
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where the constant C∗ > 0 depends only on the data and α but independent of L.
Since R0 satisfies

‖R0‖2,α,�−
L,f

≤ C‖M‖1,α,�−
L,f

,

we also have

‖W −W−
0 ‖2,α,�−

L,f
= ‖Wen ◦R0 −W−

0 ‖2,α,�−
L,f

≤ C∗∗‖Wen −W−
0 ‖2,α,∂�−

L,f ∩{x=0}

for a constant C∗∗ > 0 depending only on the data and α but independent of L. The proof of 
Lemma 4.4 is completed. �

2. (Extension of (S, �) onto N−
L,3/4) For N−

L,2f := NL ∩{r < 2f (x)} and N−
L,2 := NL ∩{r <

2}, consider a transformation Pf :N−
L,2f →N−

L,2 defined by

Pf (x1, x2, x3) =
(

x1,
x2

f (x1)
,

x3

f (x1)

)
.

Note that we have shown that f ∈ F(M2) for F(M2) given by (4.8) therefore we have f (x1) ≥ 3
8

on [0, L], thus the mapping Pf is well defined. And, Pf is invertible with

P
−1
f (y1, y2, y3) = (y1, f (y1)y2, f (y1)y3) for (y1, y2, y3) ∈ N−

L,2.

For the unique solution W of the initial-value problem (4.7), define We by

We(y1, y2, y3) :=
3∑

i=1

ci

(
W ◦P−1

f

)(
y1,

re(y2, y3)y2

i
,
re(y2, y3)y3

i

)

for 1 <
√

y2
2 + y3

3 ≤ 2, where re is defined by

re(y2, y3) :=
2 −

√
y2

2 + y3
3√

y2
2 + y3

3

.

Here, c1 = 6, c2 = −32, and c3 = 27, which are constants determined by the system of equations

3∑
i=1

ci

(
−1

i

)m

= 1, m = 0,1,2.

For such We, define an extension of W into N− as follows:
L,4/3
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Ef (W)(x1, x2, x3) :=

⎧⎪⎨⎪⎩
W(x1, x2, x3) for

√
x2

2 + x2
3 ≤ f (x1),

We ◦Pf (x1, x2, x3) for f (x1) <

√
x2

2 + x3
3 <

3

4
.

(4.68)

Since f (x1) ≥ 3
8 on [0, L], Ef is well defined by (4.68), and it satisfies

‖Ef (W) −W−
0 ‖1,α,N−

L,3/4
≤ C‖W −W−

0 ‖1,α,N−
L,f

. (4.69)

We define an iteration mapping J : P(M1) →
[
C1,α/2(N−

L,3/4)
]2

by

J (W∗) = Ef (W).

By (4.69) and Lemma 4.4, we have the estimate

‖Ef (W) −W−
0 ‖1,α,N−

L,3/4
≤ C‖W −W−

0 ‖1,α,N−
L,f

≤ C�
1σ

for a constant C�
1 > 0 depending only on the data and α but independent of L.

3. (Further estimate of �
r
(= V)) By (4.1) and (4.67), � is represented as

�(x, r) =R0(x, r)νen(R0(x, r)) for (x, r) ∈ �−
L,f ,

where R0 is given by (4.66). Set V as

V(x, r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ef (�)(x, r)

r
for (x, r) ∈ [0,L] × (f (x),

3

4
),

R0(x, r)

r
νen(R0(x, r)) for (x, r) ∈ [0,L] × (0, f (x)],

0 for (x, r) ∈ [0,L] × {0}.

(4.70)

By the compatibility condition ν′
en(0) = 0 and the representation

∂rV(x, r) = R0(x, r)

r
ν′

en(R0(x, r))∂rR0(x, r)

+
(

∂rR0(x, r)

r
− R0(x, r)

r2

)
νen(R0(x, r)),

we get

lim
r→0+∂rV(x, r) = (∂rR0(x,0))2 ν′

en(0) = 0.

With using this observation, it can be directly checked that

‖V‖1,α,�− ≤ Cσ. (4.71)

L,f
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By (4.70)-(4.71) and the definition of Ef (�), we have the estimate

‖V‖1,α,�−
L,3/4

≤ C�
2σ

for a constant C�
2 > 0 depending only on the data and α but independent of L.

4. In this step, we finally choose (M1, σ4) so that J has a unique fixed point in P(M1).
By a direct computation, one can easily check that there exists a constant ε4 > 0 depending 

only on the data and α so that if

(M1 + 1)σ ≤ ε4,

then

‖H(S∗,q(r,ψ,Dψ,Dϕ,�∗))q(r,ψ,Dψ,Dϕ,�∗) − ρ−
0 u0ex‖0,N−

L,f
≤ C�

3(M1 + 1)σ

for a constant C�
3 > 0 depending only on the data and α but independent of L. If it holds that

σ ≤ 1

2C�
3(M1 + 1)

,

then we obtain from the previous estimate that

‖H(S∗,q(r,ψ,Dψ,Dϕ,�∗))q(r,ψ,Dψ,Dϕ,�∗) − ρ−
0 u0ex‖0,N−

L,f
≤ ρ−

0 u0

2
. (4.72)

Also, by the boundary conditions in (4.5) for (ϕ, ψ) and the definition of ϕen given in (3.6), we 
have

∂rϕ − ∂xψ ≡ 0 on (�−
en ∩ {r ≥ 1

2
− ε}) ∪ �

L,f
ex . (4.73)

It follows from (4.7) and (4.72)-(4.73) that

(
∂xEf (S), ∂xEf (�)

)≡ 0 on (�−
en ∩ {r ≥ 1

2
− ε}) ∪ �

L,3/4
ex .

Choose M1 and σ ∗
4 as

M1 = 2
(
C�

1 + C�
2

)
and σ ∗

4 = min

{
σ5, σ

∗∗
4 ,

ε4

M1 + 1
,

1

2C�
3(M1 + 1)

}
(4.74)

with σ5 defined in (4.62) and σ ∗∗
4 given in Lemma 4.4. Under such choices of (M1, σ ∗

4 ), the 
mapping J maps P(M1) into itself whenever σ ≤ σ ∗

4 .

The iteration set P(M1) given by (4.4) is convex and compact subset in [C1,α/2(N−
L,3/4)]2. 

Suppose that a sequence {W (k)∗ }∞k=1 := {(S(k)∗ , �(k)∗ )}∞k=1 ⊂ P(M1) converges in C1,α/2(N−
L,3/4)

to W(∞)∗ := (S
(∞)∗ , �(∞)∗ ) ∈ P(M1). For each k ∈ N ∪ {∞}, set
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W(k) := J (W(k)∗ ).

And, let (f (k), ϕ(k), ψ(k)) ∈ C2,α([0, L]) ×C2,α(N−
L,f (k) ) ×C2,α(�−

L,f (k) ) be the unique solution 

of Problem 4.2 associated with W∗ = W(k)∗ . By the uniqueness of a solution for Problem 4.2, 
{f (k)}∞k=1 is convergent in C2,α/2([0, L]). Denote its limit by f (∞) and the unique solution of 

(4.9) associated with (f∗, W∗) = (f (∞), W(∞)∗ ) by (ϕ(∞), ψ(∞)). Define a transformation T (k) :
N−

L,f (∞) → N−
L,f (k) by

T (k)(x1, x2, x3) =
⎛⎝x1,

√
f (k)(x)

f (∞)(x)
x2,

√
f (k)(x)

f (∞)(x)
x3

⎞⎠ ,

and set

M(k) := H
(
S(k)∗ ,∇ϕ(k), t(r,ψ(k),Dψ(k),�(k)∗ )

)(
∇ϕ(k) + 1

r
∂r (rψ

(k))ex − (∂xψ
(k))er

)
,

where t and H are given by (3.3) and (3.5), respectively. Then M(k) ◦ T (k) converges to M(∞)

in C1,α/2(N−
L,f (∞) ). By Lemma 4.4, W (k) converges to W(∞) in C1,α/2(N−

L,3/4). This im-

plies that J (W(k)∗ ) converges to J (W(∞)∗ ) in C1,α/2(N−
L,3/4). Thus J is a continuous map 

in [C1,α/2(N−
L,3/4)]2. Applying the Schauder fixed point theorem yields that J has a fixed point 

W = Ef (S, �) ∈ P(M1). For such W , let (f, ϕ, ψ) be the unique solution of Problem 4.2, and let 
us set (S, �) := Ef (S,�)

∣∣
N−

L,f
. Then (f, S, �, ϕ, ψ) solves Problem 4.1 provided that σ ≤ σ ∗

4 .

Finally, we prove the uniqueness of a fixed point of J . Let (f (1), W(1), ϕ(1), ψ(1)) and 
(f (2), W(2), ϕ(2), ψ(2)) be two solutions to Problem 4.1, and suppose that each solution satis-

fies the estimates given in (4.3) of Proposition 4.1. For a transformation T : N−
L,f (1) → N−

L,f (2)

defined in (4.57), set⎧⎪⎨⎪⎩
φ̃ := ϕ(1) −

(
ϕ(2) ◦T

)
, ψ̃ := ψ(1) −

(
ψ(2) ◦T

)
,

W̃ := W(1) −
(
W(2) ◦T

)
, f̃ := f (1) − f (2).

By a direct computation, it can be checked that there exists a constant σ ′
4 > 0 depending only on 

the data and α but independent of L so that if σ ≤ σ ′
4, then

‖W̃‖α,N−
L,f (1)

+ ‖∂rW̃‖α,N−
L,f (1)

≤ Cσ

(
‖φ̃‖1,α,N−

L,f (1)
+ ‖ψ̃‖1,α,�−

L,f (1)
+ ‖f̃ ‖1,α,(0,L)

)
≤ Cσ‖f̃ ‖1,α,(0,L).

(4.75)

By adjusting the proof of Lemma 4.2 with using the estimate (4.75), we have
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‖f̃ ‖1,α,(0,L) ≤ C�
5σ‖f̃ ‖1,α,(0,L) (4.76)

for a constant C�
5 > 0 depending only on the data and α but independent of L. We choose σ4 as

σ4 = min

{
σ ∗

4 , σ ′
4,

1

2C�
5

}

with σ ∗
4 defined in (4.74), so that we obtain from (4.76) that f (1) = f (2) for σ ≤ σ4. Then, by 

(4.75), we have W (1) =W(2). Therefore

(f (1),W(1), ϕ(1),ψ(1)) = (f (2),W(2), ϕ(2),ψ(2))

by Lemma 4.2. The proof of Proposition 4.1 is completed. �
5. Free boundary problem in the infinitely long cylinder N

5.1. Proof of Theorem 3.1

Let σ4 be from Proposition 4.1 and suppose that σ ≤ σ4. By Proposition 4.1, Problem 4.1
has a solution for each L > 0. For each m ∈ N , let (f (m), S(m), �(m), ϕ(m), ψ(m)) be a solution 
of Problem 4.1 in Nm+20 := N ∩ {0 < x < m + 20}, and suppose that the solution satisfies the 
estimates (4.3) given in Proposition 4.1. Then, using the Arzelá-Ascoli theorem and a diagonal 
procedure, we can extract a subsequence, still written as {(f (m), S(m), �(m), ϕ(m), ψ(m))}m∈N so 
that the subsequence converges to functions (f ∗, S∗, �∗, ϕ∗, ψ∗) in the following sense: for any 
L > 0,

(i) f (m) converges to f ∗ in C2 in [0, L].
(ii) (S(m) ◦T (m), �(m) ◦T (m)) converges to (S∗, �∗) in C1 in N−

L,f ∗ , where T (m) :N−
m+20,f ∗ →

N−
m+20,f (m) is defined by

T (m)(x1, x2, x3) =
⎛⎝x1, x2

√
f (m)(x1)

f ∗(x1)
, x3

√
f (m)(x1)

f ∗(x1)

⎞⎠ .

(iii)
(
ϕ(m) ◦ T (m), (ψ(m)eθ ) ◦ T (m)

)
converges to (ϕ∗,ψ∗eθ ) in C2 in N−

L,f ∗ .

(iv) ψ(m) ◦ T (m) converges to ψ∗ in C2 in �−
L,f ∗ .

By a change of variables and passing to the limit m → ∞, one can easily show that 
(f ∗, S∗, �∗, ϕ∗, ψ∗) is a solution to the free boundary problem (3.4) with boundary conditions 
(3.8) and (3.14). Furthermore, it follows from the C2-convergence of {(f (m), ϕ(m), ψ(m)eθ )}m∈N , 
C1-convergence of {(S(m), �(m))}m∈N , and the estimates (4.3) given in Proposition 4.1 that 
(f ∗, S∗, �∗, ϕ∗, ψ∗eθ ) satisfy the estimates (3.16) for a constant C > 0 depending only on the 
data and α. �
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5.2. Proof of Theorem 2.1(a)

Let σ3 be from Theorem 3.1, and suppose that the functions (Sen, νen, uen
r ) satisfy (3.15). 

By Theorem 3.1, the free boundary problem (3.4) with (3.8) and (3.14) has a solution 
(gD, S, �, ϕ, ψ) that satisfies the estimates (3.16). For such a solution, we define (u, ρ, p) by

u :=
(

∂xϕ + 1

r
∂r (rψ)

)
ex + (∂rϕ − ∂xψ)er + �

r
eθ ,

ρ := H (S,u) , p := Sργ in N−
gD

,

where H is given by (3.5). It follows from the estimates (3.16) given in Theorem 3.1 that 
(gD, u, ρ, p) satisfy the estimate (2.12). Then, one can choose a small constant σ1 ∈ (0, σ3] de-
pending only on the data and α such that if σ ≤ σ1, then (gD, u, ρ, p) satisfy ρ ≥ 1

2ρ−
0 > 0 and 

c2 −|u|2 ≥ 1
2

(
(c−

0 )2 − u2
0

)
> 0 in N−

gD
, thus solve Problem 2.2. Here, c−

0 is given by c−
0 =

√
γp0

ρ−
0

. 

The proof of Theorem 2.1(a) is completed. �
5.3. Proof of Theorem 2.1(b)

Let σ1 be from Theorem 2.1(a). By Theorem 2.1(a), if σ ≤ σ1, then there exists a solution 
(gD, u, ρ, p) with u = uxex + urer + uθ eθ of Problem 2.2 satisfying the estimate (2.12).

Set

�−
gD

:=
{
(x, r) ∈ R2 : x > 0,0 < r < gD(x)

}
,

�
gD
en := ∂�−

gD
∩ {x = 0}, �

gD

cd := ∂�−
gD

∩ {r = gD(x)}.

The equation ∂x(ρux) + ∂r(ρur) + ρur

r
= 0 in �−

gD
, stated in (2.11), can be rewritten as

∂x(rρux) + ∂r (rρur)

r
= 0 in �−

gD
.

With using this equation, it can be directly checked that the function h given by

h(x, r) :=
rˆ

0

tρux(x, t)dt for (x, r) ∈ �−
gD

satisfies

∂xh = −rρur , ∂rh = rρux. (5.1)

By (4.64)-(4.67), the entropy S(= p/ργ ) and angular momentum density �(= ruθ ) are repre-
sented as

S(x, r) = Sen ◦ G−1(h(x, r)) =: S(h(x, r)),

�(x, r) = � ◦ G−1(h(x, r)) =: �(h(x, r)) for (x, r) ∈ �− ,
(5.2)
en gD
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where G is given by (4.65) associated with w = h and �en(r) := rνen(r) for r ∈ [0, 1/2]. Since 
Sen, �en, and G−1 are differentiable, S and � are differentiable functions of h. Set

S(h) := γ

γ − 1
S(h).

Then, by the definition of the Bernoulli invariant (1.4), we have

B−
0 r2ρ2 = 1

2

(
|∇h|2 + �(h)2ρ2

)
+ r2S(h)ργ+1 in �−

gD
, (5.3)

where ∇ = (∂x, ∂r). By differentiating the equation (5.3) with respect to x and r , we have

∂xρ = − (∂xh)(∂xxh+ ��′ρ2 + r2S′ργ+1) + (∂rh)(∂rxh)

r2(γ + 1)Sργ − 2r2B−
0 ρ + �2ρ

,

∂rρ = − (∂xh)(∂xrh− ∂xh) + (∂rh)(∂rrh+ ��′ρ2 + r2S′ργ+1 − ∂rh) − �2ρ2

r2(γ + 1)Sργ − 2r2B−
0 ρ + �2ρ

,

(5.4)

where ′ denotes the derivative with respect to h. Using (5.1)-(5.4), the equation

ρ(ux∂x + ur∂r )ur − ρu2
θ

r
+ ∂rp = 0 in �−

gD
(5.5)

in (2.11) can be rewritten as

−
(

∂rh

r

)
∇ ·

(∇h

rρ

)
− (∂rh)S

′ργ

γ
− (∂rh)��′ρ

r2 = 0 in �−
gD

. (5.6)

We multiply (5.6) by r/(∂rh) to get

∇ ·
(∇h

rρ

)
= − r

γ
S′ργ − ��′ρ

r
in �−

gD
. (5.7)

Set

ω := ∂xh

and differentiate (5.7) with respect to x to get the following equation for ω:

∂i

(
qij

rρ2 ∂jω

)
+ ∂i

(
q1∂ih

rρ2 ω

)
= q2ω + q3(∂ih)(∂iω) in �−

gD
, (5.8)

where
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O := r2(γ + 1)Sργ − 2r2B−
0 ρ + �2ρ,

qij := ρδij + (∂ih)(∂jh)

O
,

q1 := ��′ρ2 + r2S′ργ+1

O
,

q2 := − r

γ
S′′ργ − (�′)2ρ

r
− ��′′ρ

r
+ (��′ρ2 + r2S′ργ+1)2

rρ2O
,

q3 := 1

O

(
rS′ργ−1 + ��′

r

)
.

(5.9)

Note that u is represented by (3.1), for (ϕ, ψ, h) solving the equations (3.4). Similarly to 
(4.14), we rewrite the second equation in (3.4) as

−
(

∂xx + 1

r
∂r (r∂r ) − 1

r2

)
ψ = 1

u · ex

(
Hγ−1(S,u)

γ − 1
∂rS + �

r2 ∂r�

)
in �−

gD
.

By Theorem 2.1(a) and Lemma 4.4, the right-hand side of this equation is C1,α in �−
gD

, therefore 
we have ψ ∈ C3,α(�−

gD
). Next, we regard the first equation in (3.4) as a second order quasilinear 

equation for ϕ. By Theorem 2.1(a), this equation is uniformly elliptic. Since ϕ is C2,α in N−
gD

, 
and ψ ∈ C3,α(�−

gD
), we obtain that ϕ is C3,α in �−

gD
. And, this implies that h ∈ C3,α(�−

gD
), thus 

the equation (5.8) is well-defined.
By the boundary conditions (2.8) and the compatibility condition ur = 0 on {r = 0}, ω satis-

fies

ω = −rρuen
r on �

gD
en , ω = 0 on ∂�−

gD
∩ {r = 0}. (5.10)

Next, we compute a conormal boundary condition for (5.8) on �gD

cd .
We consider the expression

(∂xh)
2 + (∂rh)

2 = C1(gD(x))2 − C2 on �
gD

cd = ∂�−
gD

∩ {r = gD(x)} (5.11)

for

C1 := (∂xh)
2 + (∂rh)

2 + �2ρ2

r2 (x, gD(x)), C2 := �2ρ2(x, gD(x)). (5.12)

Since we have

S = Sen

(
1

2

)
, � = �en

(
1

2

)
, p = p0 on �

gD

cd , (5.13)

we obtain that

ρ =
(

p0

S ( 1 )

)1/γ

, (5.14)

en 2
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from which it follows that C2 in (5.12) is given by

C2 = �2
en(

1

2
)p

2/γ

0 S
−2/γ
en (

1

2
).

A direct computation with using (1.4), (5.1), and (5.13)-(5.14) yields that

C1 = 2

(
B−

0 − γ

γ − 1
p

1−1/γ

0 S
1/γ
en (

1

2
)

)
p

2/γ

0 S
−2/γ
en (

1

2
).

By differentiating the equation (5.11) in the tangential direction along �gD

cd , we have

(∂xh)
(
∂xxh+ g′

D(x)∂xrh
)+ (∂rh)

(
∂rxh+ g′

D(x)∂rrh
)= C1gD(x)g′

D(x) on �
gD

cd .

And, we solve this expression for ∂xrh to get

∂xrh = −
(C1gD(x)

∂rh
+ ∂xxh− ∂rrh

)
ω

(∂xh)g
′
D(x) + (∂rh)

on �
gD

cd . (5.15)

Substituting the expression of C1 in (5.12) into (5.15), we have

∂rω = ∂xrh =
( −∂xxh+ gD(x)E

(∂xh)g
′
D(x) + (∂rh)

)
ω on �

gD

cd (5.16)

for

E := 1

∂rh

{
−
(

∂xh

r

)2

−
(

�ρ

r

)2
}

+ ∂r

(
∂rh

r

)
.

By the definition of q21 in (5.9), we also have

q21 = (∂xh)(∂rh)

O
= (∂rh)ω

O
. (5.17)

Finally, a direct computation with using (5.16)-(5.17) yields the following conormal boundary 
condition for (5.8) on �gD

cd :(
q1j

rρ2 ∂jω,
q2j

rρ2 ∂jω

)
· ngD

= μ̃ω on �
gD

cd (5.18)

for μ̃ defined by

μ̃ := q11∂xxh+ q12∂xrh

rρ2(∂rh)

√
1 + |g′

D|2
+ 1

rρ2
√

1 + |g′
D|2

(
(∂rh)(∂xxh)

O

)

+ q22

rρ2
√

1 + |g′ |2
( −∂xxh+ gDE

(∂xh)g
′
D + (∂rh)

)
,

D
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where we represent ngD
as

ngD
= 1√

1 + |g′
D(x)|2

(
ω

∂rh
,1

)
.

Fix a constant L > 0 and let η be a C∞ function satisfying

η = 1 for |x| < L, η = 0 for |x| > L + 1, and |η′(x)| ≤ 2.

Multiply (5.8) by η2ω and integrate over the domain �−
gD

to get

¨

�−
gD

η2|∇ω|2
rρ

drdx =
6∑

i=1

Ii +
2∑

i=1

Bi (5.19)

for

I1 := −
¨

�−
gD

|∇h · ∇ω|2η2

rρ2O
drdx,

I2 := −2
¨

�−
gD

(
qij

rρ2 ∂jω

)
η(∂iη)ωdrdx,

I3 := 2
¨

�−
gD

1

O

(
rS′ργ−1 + ��′

r

)
(∇h · ∇η)ηω2drdx,

I4 := −2
¨

�−
gD

1

O

(
rS′ργ−1 + ��′

r

)
(∂ih)(∂iω)η2ωdrdx,

I5 :=
¨

�−
gD

(
r

γ
S′′ργ + (�′)2ρ

r
+ ��′′ρ

r

)
η2ω2drdx,

I6 := −
¨

�−
gD

(r2S′ργ+1 + ��′ρ2)2

rρ2O
η2ω2drdx,

B1 :=
ˆ

�
gD
cd ∪�

gD
en

(
qij

rρ2 ∂jω

)
η2ω · noutds,

B2 := −
ˆ

�
gD ∪�

gD

∂ih

O

(
rS′ργ−1 + ��′

r

)
η2ω2 · noutds.
cd en
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We will show that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1 + I4 + I6 ≤ 0,

|I2| ≤ C

L+1ˆ

L

gD(x)ˆ

0

(
1 + 1

r2

)
|∇ω|2drdx,

|Ik| ≤ Cσ

L+1ˆ

L

gD(x)ˆ

0

|∇ω|2
r

drdx for k = 3,5,

|B1| ≤ Cσ

L+1ˆ

0

gD(x)ˆ

0

|∇ω|2
r

drdx + E,

|B2| ≤ Cσ

L+1ˆ

0

gD(x)ˆ

0

|∇ω|2drdx + E,

(5.20)

where E ≥ 0 and C > 0 are constants depending only on the data and α. From now on, the 
constant C depends only on the data and α, which may vary from line to line.

First, by the Hölder’s inequality, we have

I4 ≤ 2

⎛⎜⎜⎝¨

�−
gD

|∇h · ∇ω|2η2

rρ2O
drdx

⎞⎟⎟⎠
1/2 ⎛⎜⎜⎝¨

�−
gD

(
r2S′ργ+1 + ��′ρ2

)2

rρ2O
η2ω2drdx

⎞⎟⎟⎠
1/2

= 2
√|I1||I6|,

from which we obtain that

I1 + I4 + I6 ≤ −|I1| + 2
√|I1||I6| − |I6| ≤ 0.

Before we prove the remaining estimates in (5.20), we compute estimates for (ρ, O, S′, S′′,
�′, �′′). By a straightforward computations with using the estimate (2.12) given in Theo-
rem 2.1(a), one can easily check that there exists a constant σ� ∈ (0, σ1] depending only on 
the data and α so that if σ ≤ σ�, then we have

|ρ − ρ−
0 | ≤ ρ−

0

2
and |V0 −V| ≤ V0

2
in �−

gD
(5.21)

for

V0 := c2
0 − u2

0 = γp0

ρ−
0

− u2
0, V := c2 − |u|2.

By (5.21), it holds that
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O= r2(γ + 1)Sργ − 2r2B−

0 ρ + �2ρ = r2ρ
γp

ρ
− |u|2 + �2ρ

= r2ρ

(
c2 − |u|2 +

(
�

r

)2
)

= r2ρ

(
V+

(
�

r

)2
)

≥ r2ρ−
0 V0

4
.

(5.22)

By using the equations in (2.11) and the definition of h, it can be checked that

G−1(h(x,r))ˆ

0

sρux(0, s)ds =
rˆ

0

sρux(x, s)ds in �−
gD

, (5.23)

where G is given in (5.2). One can also check that there exists a constant σ�� ∈ (0, σ�] depending 
only on the data and α so that if σ ≤ σ��, then

|ρux − ρ−
0 u0| ≤ ρ−

0 u0

2
, (5.24)

and it follows from (5.23)-(5.24) that

0 <
1√
3

≤ G−1(h(x, r))

r
≤ √

3 in �−
gD

,

then we get

|S′(h)| ≤ Cσ

r
, |S′′(h)| ≤ Cσ

r3 ,

|�′(h)| ≤ Cσ, |�′′(h)| ≤ Cσ

r2

(5.25)

in �−
gD

.

Now we are ready to estimate for I2. Since ω(∂j ω)

r
≤ C

(
ω2 + |∇ω|2

r2

)
and ρ ≥ ρ−

0
2 in �−

gD
, we 

have

|I2| ≤ C

L+1ˆ

L

gD(x)ˆ

0

(
ω2 + |∇ω|2

r2

)
drdx. (5.26)

By the boundary condition ω ≡ 0 on {r = 0} stated in (5.10), we have

ω(x, t) =
tˆ

0

∂rω(x, r)dr for (x, t) ∈ �−
gD

.

By the Hölder inequality, we have the following estimates:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω2(x, t) ≤ Ct2

tˆ

0

(∂rω)2(x, r)

r
dr,

ω2(x, t) ≤ t

tˆ

0

(∂rω)2(x, r)dr ≤ C

gD(x)ˆ

0

|∇ω|2dr for (x, t) ∈ �−
gD

.

(5.27)

Substituting the second estimate of (5.27) into (5.26) yields

|I2| ≤ C

L+1ˆ

L

gD(x)ˆ

0

(
1 + 1

r2

)
|∇ω|2drdx.

It follows from (5.21)-(5.25) that

|I3| ≤ Cσ

L+1ˆ

L

gD(x)ˆ

0

ω2

r2 drdx, (5.28)

|B2| ≤ Cσ

L+1ˆ

0

ω2(x, gD(x))dx + E2, (5.29)

where the constant E2 ≥ 0 depends only on the data and α. Substituting the first estimate of 
(5.27) into (5.28) gives

|I3| ≤ Cσ

L+1ˆ

L

gD(x)ˆ

0

|∇ω|2
r

drdx.

Similarly, substituting the second estimate of (5.27) into (5.29) gives

|B2| ≤ Cσ

L+1ˆ

0

gD(x)ˆ

0

|∇ω|2drdx + E2.

It follows from (5.18) and (5.21)-(5.25) that

|B1| ≤
L+1ˆ

0

μ̃ω2(x, gD(x))dx + E1 ≤ Cσ

L+1ˆ

0

ω2(x, gD(x))dx + E1, (5.30)

where the constant E1 ≥ 0 depends only on the data and α. Substituting the first estimate of 
(5.27) into (5.30) gives
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|B1| ≤ Cσ

L+1ˆ

0

gD(x)ˆ

0

|∇ω|2
r

drdx + E1.

Also, we obtain from (5.21), (5.25), and the first estimate of (5.27) that

|I5| ≤ Cσ

L+1ˆ

0

gD(x)ˆ

0

ω2

r2 drdx ≤ Cσ

L+1ˆ

0

gD(x)ˆ

0

|∇ω|2
r

drdx.

Now the estimates in (5.20) are all verified.
From (5.19)-(5.20), we have

L̂

0

gD(x)ˆ

0

|∇ω|2
r

drdx

≤C(�)σ

L̂

0

gD(x)ˆ

0

|∇ω|2
r

drdx + C

L+1ˆ

L

gD(x)ˆ

0

(
1 + 1

r2

)
|∇ω|2drdx + E,

where the constants C(�) > 0 and E ≥ 0 depend only on the data and α. If it holds that

σ ≤ 1

2C(�)
,

then we obtain from the previous estimate that

L̂

0

gD(x)ˆ

0

|∇ω|2
r

drdx ≤ C

L+1ˆ

L

gD(x)ˆ

0

(
1 + 1

r2

)
|∇ω|2drdx + CE.

Since |∇ω| ≤ C and |∇ω|2
r2 ≤ C in �−

gD
by (2.12), we have

L̂

0

gD(x)ˆ

0

|∇ω|2
r

drdx ≤ C.

Since 0 < gD(x) < 1, we have

L̂

0

gD(x)ˆ

0

|∇ω|2drdx ≤
L̂

0

gD(x)ˆ

0

|∇ω|2
r

drdx ≤ C

for some constant C > 0 independent of L. Passing to the limit L → ∞ yields
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∞̂

0

gD(x)ˆ

0

|∇ω|2drdx ≤ C.

Hence

L+1ˆ

L

gD(x)ˆ

0

|∇ω|2drdx → 0 as L → ∞.

Since ω ∈ C1,α(N−
gD

), we have

‖∇ω(x, ·)‖
C0(�−

gD
∩{x>L}) → 0 as L → ∞. (5.31)

By (5.31) and the compatibility condition ω ≡ 0 on {r = 0}, we have

‖ω(x, ·)‖
C0(�−

gD
∩{x>L}) → 0 as L → ∞. (5.32)

Since ρ > ρ−
0 /2 in �−

gD
and ω = ∂xh = −rρur , (5.32) implies that

‖rur(x, ·)‖
C0(�−

gD
∩{x>L}) → 0 as L → ∞. (5.33)

By (5.31) and (5.33), we have

‖rur(x, ·)‖
C1(�−

gD
∩{x>L}) → 0 as L → ∞,

from which

‖g′
D(x)‖C1({x≥L}) → 0,

‖ur(x, ·)‖
C1(N−

gD
∩{x>L}) → 0 as L → ∞. (5.34)

It follows from the equation in (5.5) and (5.34) that

‖∂rp(x, ·) − ρu2
θ

r
(x, ·)‖

C0(N−
gD

∩{x>L}) → 0 as L → ∞.

The proof of Theorem 2.1(b) is completed by choosing σ2 as

σ2 = min

{
σ1, σ��,

1

2C(�)

}
. �
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