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Abstract

Numerical simulations suggest that average velocity of a biological cell depends largely on attachment 
dynamics and less on the forces exerted by the cell. We determine the relationship between two models 
of cell motion, one based on finite spring constants modeling attachment properties (a randomly switched 
differential equation) and a limiting case (a centroid model-a generalized random walk) where spring con-
stants are infinite. We prove the main result of this paper, the Expected Velocity Relationship theorem. This 
result shows that the expected value of the difference between cell locations in the differential equation 
model at the initial time and at some elapsed time is proportional to the elapsed time. We also show that the 
relationship is time invariant. Numerical results show the model is consistent with experimental data.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical simulations and experimental measurements suggest that the speed at which a 
biological cell moves is far more dependent on the binding dynamics of the adhesion sites the 
cell creates on substrate materials (and other cells) than on the magnitude of force it exerts on 
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those surroundings. Those dynamics are the key to predicting cell speed. In [4] we introduced 
an ordinary differential equation model for cell motion relative to a probability distribution η on 
some outcome space �,

μx′ =
n∑

i=1

−αi(x − ui )ψi(t),

where x is a vector process defining the cell center in “cell space,” and the αi are Hookian (spring) 
constants that model forces exerted by adhesion sites located at ui (also a vector process). This 
model incorporates the nature of adhesion sites using the randomly switched functions ψi which 
take the values 0 or 1 depending on whether the ith site is detached or attached to the substrate.

In [2] we considered a limiting case of this differential equation model—as the spring con-
stants αi increase without bound—which results in a discrete-time centroid model that tracks the 
centroid of the attachments sites of the cell after each site attachment or detachment event. The 
discrete-time centroid model is a Markov chain and is generated by a transition kernel. In that 
paper we also introduced the expected average velocity relationship conjecture (EVR conjecture) 
which states that, in the limiting case, the expected average velocity of the cell is independent of 
the cell forces and dependent on the binding dynamics for the differential equation model.

In [1], we extended our results from the discrete-time centroid model to a continuous-time 
centroid model which tracks the location of the centroid by time instead of event. We showed 
that the continuous-time centroid model is in fact a pure jump-type continuous-time Markov 
process generated by a rate kernel and gave a formula for the velocity of the expected value of 
the centroid.

In this paper we state and prove the EVR conjecture for the differential equation model. The 
EVR conjecture is reasonable because of the saltatory nature of cell adhesion. Effectively motion 
is lost when speeds and velocities are averaged over short periods of time. That average is largely 
independent of cell force and highly dependent on the on-off nature of adhesion. This is the EVR 
conjecture which is stated and proved in Section 4. We begin in Section 2 with a review of 
the differential equation model. Then in Section 3 we review the results of the continuous-time 
centroid model and its relationship to the differential equation model. The proof of the EVR 
theorem is based on a series of lemmas given in Section 4.2 and is completed in Section 4.3. We 
conclude with discussions of numerical techniques, the biological relevance of the results, and 
future mathematical challenges.

2. Differential equation model

The cell is modeled as a nucleus and multiple interaction sites which exert forces on the 
nucleus as illustrated in Fig. 1. These interaction sites are known as integrin based adhesion sites 
(I-sites) [6,7,10]. I-sites attach to an external substrate and once attached remain fixed to that 
substrate location for a period of time. The duration of the attachment is determined by a given 
probability distribution. The same is true for the time the I-site remains unattached, although 
the distributions need not be the same. The differential equation model assumes the I-sites exert 
forces on the nucleus according to Hooke’s law; that is, the force is proportional to distance. Thus 
it is as if the I-sites are attached to the cell center with springs which have a rest length assumed 
to be zero. Moreover there is a drag force (proportional to the velocity) on the cell nucleus which 
is modeled assuming the center (nucleus) is a sphere in a liquid with low Reynolds number. The 
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Fig. 1. The left panel depicts the way a cell is modeled mathematically. The right panel is a fibroblast in a collagen lattice. 
Note the similarity of the model formation with the typical spindal morphology of a fibroblast in a three dimensional 
lattice. The cell is a center location (nucleus) with attached springs. The other end of the springs are attached to sites 
which can interact with the extracellular matrix (membrane bound adhesion sites) depicted by “x”.

cell center x is considered to be a point in RN . Likewise the location of each I-site ui is a point in 
RN , where i ranges from 1 to n. The small scale allows the assumption of low Reynolds number 
and therefore any acceleration term may be neglected [3]. The equation defining the cell center 
as given in the introduction is

μx′ =
n∑

i=1

−αi(x − ui )ψi(t). (1)

Here μ is the drag coefficient for the nucleus. The equation for the location of the ith I-site is

ui (t) = lim
y↗ap,i

x(y) + bp,i for ap,i ≤ t < ap+1,i .

For each i the sequence {ap,i} of random variables are the times when ψi makes the transition 
from 0 to 1, and {dp,i} is the sequence of random variables of the times when ψi makes the 
transition from 1 to 0. Of course, the two sequences are not independent since ap,i < dp∗,i <

ap+1,i where p∗ = p if the initial state starts with the ith I-site detached and p∗ = p + 1 if it 
starts out attached. The vectors bp,i are independent, identically distributed random vectors with 
respect to the assumed distribution η and b has mean b. Although the equations of motion are 
independent of the location of the I-site when it is detached, for convenience we assume the 
location does not change until it reattaches.

3. Centroid model

The differential equation model may be approximated heuristically by a problem that tracks 
the centroid of the attachment sites (or the center if no attachments exist). This new problem is 
motivated by informally considering the limit of the differential equation model as the spring 
constants become very large. In this limit, one expects the smooth motion of the cell nucleus 
to disappear and the centroid to jump from position to position. Let c denote the centroid. It is 
defined by

0 =
n∑

αi(c − ui )ψi
i=1
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which may be written as

c =
n∑

i=1

αi∑n
j=1 αjψj

uiψi .

3.1. Notational conventions

Let � = (ψ1, ψ2, · · · , ψn), |�| = ∑n
i=1 ψi , u = (u1, · · · , un) and ω be the outcome variable. 

The subscript Z indicates variables from the continuous-time centroid model and the subscript 
DE indicates variables from the differential equation model. The variable c is used to denote the 
location of the centroid for either model and the variable x denotes the location of the cell center 
in either model (as indicated by the subscript). We define the cell center in the centroid model to 
be the centroid, that is, xZ = cZ . Let

yDE = (xDE, cDE,uDE) : [0,∞) → RN ×RN × (RN)n

and

yZ = (xZ, cZ,uZ) : [0,∞) → RN ×RN × (RN)n

be, respectively, the differential equation solution and the continuous-time centroid solution cor-
responding to the same initial conditions and same outcome ω. We assume that these solutions 
(and the accompanying �(t)) are right-continuous and have left-hand limits, with the left-hand 
limit at time t being represented by evaluation at t−. Let ‖ · ‖ be the norm on RN ×RN × (RN)n

defined by

‖y‖ = ‖(x, c, (u1,u2, . . . ,un))‖ = max{|x|, |c|, |u1|, |u2|, . . . , |un|},

where | · | is the Euclidean norm on RN .

3.2. Continuity properties of the expectation

We now review important results for the continuous-time centroid model introduced in [1]. 
Assume that the wait time for an attached I-site to detach (ap+1,i − dp∗,i ) is exponentially dis-
tributed with parameter θd (so that the mean time to detach is 1/θd ), and the wait time for a 
detached I-site to attach (dp∗,i − ap,i ) is exponentially distributed with parameter θa . Each of 
these wait times is assumed to be independent of the other wait times and of the model’s other 
random parameters. When an I-site attaches, it does so at a point whose displacement from the 
centroid of attached I-sites is a bounded random quantity with distribution η. In [1], the follow-
ing was shown: for arbitrary initial conditions there is a pure-jump type Markov process that 
obeys this evolution law. There is a corresponding pure-jump type Markov process with finite 
state space {0, 1, . . . , n} that tracks only how many I-sites are attached (|�|). Let’s call the first 
process the “full process” and the second process the “projected process”. The projected process 
has a unique invariant distribution σ , and regardless of the initial distribution of the projected 
process, the distribution of the process at time t will converge to σ as t → ∞. If the full process 
is equipped with an initial distribution that is compatible with σ and such that the locations of 
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Fig. 2. The speed of a single cell is plotted against the mean attach time and strength of the cell. The cell speed is 
remarkably constant with respect to the strength of the cell. The contour lines are plotted over the shading. The plot 
shows the average of 50 random runs for each data point. The mean detach time is 25 seconds with a “continuous Poisson 
distribution” and the attach time is taken from a continuous Poisson distribution. The continuous Poisson distribution is a 
distribution which when rounded to the integers is a Poisson distribution [9]. The speed was calculated in the simulations 
by averaging over a 60 second time interval. The smallest value for α plotted is 0.01.

the I-sites and of the centroid of attached I-sites all have well-defined expected values, then the 
derivative with respect to t of the expected location of the centroid of attached I-sites at time t is

∂

∂t
E(c(t)) = bbbθd

(θd + θa)n

(
(θd + θa)

n − θn
d

)
. (2)

4. The expected average velocity relationship theorem

4.1. EVR theorem

Numerical simulations suggested and helped to formulate the EVR. Assume that αi = α for 
all i. Simulations of a single cell indicate that the speed of the cell is essentially independent of 
the spring constant α (see Fig. 2) for a wide range of relevant values. Of course, when α = 0, the 
cell does not move and for values near zero the speed will approach zero. A precise mathematical 
formulation of this phenomenon is as follows.

Theorem 4.1 (EVR Theorem). Assume the initial configuration for (1) is randomly distributed 
in a way that is compatible with the steady-state distribution σ . Moreover assume αi = α for 
all i and that xDE(0) = xZ(0) (corresponding to the equilibrium position of the deterministic 
problem). For any fixed time t > 0,

lim
α →∞

E[x(t) − x(0)] = ζζζ t,

μ



306 J.C. Dallon et al. / J. Differential Equations 268 (2019) 301–317
where ζζζ is independent of α but depends on the number (n) of I -sites, their mean time to attach 
(1/θa), their mean time to detach (1/θd ), and the mean (b̄bb) of their perturbations when a new 
attachment occurs. More specifically,

ζζζ = bbbθd

(θd + θa)n

(
(θd + θa)

n − θn
d

)
.

4.2. Preliminary lemmas

Prior to the proof of the EVR theorem we need two preliminary lemmas. The first lemma 
bounds the distance between yZ and yDE and thus the distance between xZ and xDE . More 
precisely, given the distance between yZ and yDE at the instant before a binding event occurs 
we find a bound on the distance between yZ and yDE at the instant before the next binding event 
occurs.

Lemma 4.2. Assume that an attachment/detachment event occurs at time t1 > 0, that t2 > t1, and 
that no attachment/detachment events occur on (t1, t2). Define

M := ‖yDE(t−1 )‖,

and let B be such that η(B(0, B)) = 1. Then

‖yDE(t−2 ) − yZ(t−2 )‖ ≤ ‖yDE(t−1 ) − yZ(t−1 )‖

+ (2M + B) exp

(
− (t2 − t1)mini αi

μ

)
a.s.

Proof. Almost surely for small δ > 0, changes (if any) in uDE , uZ , cDE , cZ , and xZ on (t1 −
δ, t2) occur only at t1. On the other hand, xDE is continuous and relaxes towards cDE(t1) during 
the time interval [t1, t2) according to the formula

xDE(t) = cDE(t1) + (xDE(t1) − cDE(t1)) exp

(
− (t − t1)

∑n
i=1 αiψi(t1)

μ

)
. (3)

Without loss of generality, we can assume that the attachment/detachment event at time t1 in-
volves I-site 1. It is convenient to consider 3 cases:

1. ψ1(t1) = 0 and |�(t1)| = 0;
2. ψ1(t1) = 0 and |�(t1)| > 0;
3. ψ1(t1) = 1.

In case 1 (the only attached I-site detaches),

(uZ(t),uDE(t), cZ(t), cDE(t),xZ(t)) = (uZ(t−1 ),uDE(t−1 ), cZ(t−1 ), cDE(t−1 ),xZ(t−1 ))

for every t ∈ [t1, t2), so (3) gives
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xDE(t) = cDE(t−1 ) + (xDE(t−1 ) − cDE(t−1 )) exp

(
− (t − t1)

∑n
i=1 αiψi(t1)

μ

)
= xDE(t−1 ).

Thus,

‖yDE(t−2 ) − yZ(t−2 )‖ = ‖yDE(t−1 ) − yZ(t−1 )‖.

Before proceeding to cases 2 and 3, we derive some estimates that hold in both cases. Let t ∈
[t1, t2) and note that

|cDE(t) − cZ(t)| =
∣∣∣∣∣

n∑
i=1

(
αiψi(t)∑n

j=1 αjψj (t)

)
(uDE)i(t) −

n∑
i=1

(
αiψi(t)∑n

j=1 αjψj (t)

)
(uZ)i(t)

∣∣∣∣∣
≤

n∑
i=1

(
αiψi(t)∑n

j=1 αjψj (t)

)
|(uDE)i(t1) − (uZ)i(t1)|

≤
n∑

i=1

(
αiψi(t)∑n

j=1 αjψj (t)

)
max

j
|(uDE)j (t1) − (uZ)j (t1)|

= max
j

|(uDE)j (t1) − (uZ)j (t1)|. (4)

Similarly,

|cDE(t1)| =
∣∣∣∣∣

n∑
i=1

(
αiψi(t1)∑n

j=1 αjψj (t1)

)
(uDE)i(t1)

∣∣∣∣∣ ≤
n∑

i=1

(
αiψi(t1)∑n

j=1 αjψj (t1)

)
|(uDE)i(t1)|

≤
n∑

i=1

(
αiψi(t1)∑n

j=1 αjψj (t1)

)
max

j
|(uDE)j (t1)| = max

j
|(uDE)j (t1)|. (5)

Using (3), (4), and (5), we have

|xDE(t−2 ) − xZ(t−2 )| =
∣∣∣∣cDE(t1) + (xDE(t1) − cDE(t1)) exp

(
− (t2 − t1)

∑n
i=1 αiψi(t1)

μ

)

−xZ(t−2 )
∣∣

≤ |cDE(t1) − xZ(t−2 )| + (|xDE(t1)| + |cDE(t1)|) exp

(
− (t2 − t1)

∑n
i=1 αiψi(t1)

μ

)

≤ |cDE(t1) − cZ(t1)| + (|xDE(t−1 )| + |cDE(t1)|) exp

(
− (t2 − t1)mini αi

μ

)

≤ max
j

|(uDE)j (t1) − (uZ)j (t1)|

+ (M + max
j

|(uDE)j (t1)|) exp

(
− (t2 − t1)mini αi

μ

)
. (6)
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Now, consider case 2 specifically (an attached I-site detaches leaving other attached sites). Here, 
(uZ(t), uDE(t)) = (uZ(t−1 ), uDE(t−1 )) for every t ∈ [t1, t2), so

|(uDE)i(t
−
2 ) − (uZ)i(t

−
2 )| = |(uDE)i(t1) − (uZ)i(t1)| = |(uDE)i(t

−
1 ) − (uZ)i(t

−
1 )|, (7)

for every i, and combining (4) with (7) gives

|cDE(t−2 ) − cZ(t−2 )| ≤ ‖yDE(t−1 ) − yZ(t−1 )‖. (8)

Combining (6) with (7) and the fact that maxj |(uDE)j (t1)| = maxj |(uDE)j (t
−
1 )| ≤ M gives

|xDE(t−2 ) − xZ(t−2 )| ≤ ‖yDE(t−1 ) − yZ(t−1 )‖ + 2M exp

(
− (t2 − t1)mini αi

μ

)
. (9)

Using (7), (8), and (9), we have

‖yDE(t−2 ) − yZ(t−2 )‖ ≤ ‖yDE(t−1 ) − yZ(t−1 )‖ + 2M exp

(
− (t2 − t1)mini αi

μ

)
.

Finally, consider case 3 specifically (a detached I-site attaches), and let t ∈ [t1, t2). Here,

((uZ)1(t), (uDE)1(t)) = (cZ(t−1 ) + bp,1,xDE(t−1 ) + bp,1)

for some bp,1 ∈ RN satisfying |bp,1| ≤ B , while

((uZ)i(t), (uDE)i(t)) = ((uZ)i(t
−
1 ), (uDE)i(t

−
1 ))

for every i 
= 1 a.s. Thus,

|(uDE)i(t
−
2 ) − (uZ)i(t

−
2 )| =

{ |(uDE)i(t
−
1 ) − (uZ)i(t

−
1 )| if i 
= 1

|xDE(t−1 ) − cZ(t−1 )| if i = 1
(10)

≤ ‖yDE(t−1 ) − yZ(t−1 )‖.

Combining (4) with (10) gives

|cDE(t−2 ) − cZ(t−2 )| ≤ ‖yDE(t−1 ) − yZ(t−1 )‖. (11)

Combining (6) with (10) and the fact that

max
j

|(uDE)j (t1)| ≤ max{max
j 
=1

|(uDE)j (t
−
1 )|, |xDE(t−1 )| + |bp,1|} ≤ M + B

gives

|xDE(t−2 ) − xZ(t−2 )| ≤ ‖yDE(t−1 ) − yZ(t−1 )‖ + (2M + B) exp

(
− (t2 − t1)mini αi

)
. (12)
μ



J.C. Dallon et al. / J. Differential Equations 268 (2019) 301–317 309
Using (10), (11), and (12), we have

‖yDE(t−2 ) − yZ(t−2 )‖ ≤ ‖yDE(t−1 ) − yZ(t−1 )‖ + (2M + B) exp

(
− (t2 − t1)mini αi

μ

)
.

Combining the results of all 3 cases, we see that

‖yDE(t−2 ) − yZ(t−2 )‖ ≤ ‖yDE(t−1 ) − yZ(t−1 )‖ + (2M + B) exp

(
− (t2 − t1)mini αi

μ

)

holds a.s. �
The second lemma bounds the norm of the state variables after k attachment/detachment 

events in terms of the initial state and properties of the distribution η.

Lemma 4.3. Assume that k ≥ 1 attachment/detachment events occur at times 0 < t1 < t2 < · · · <
tk in the interval [0, t) and no other attachment/detachment events occur. Define

Mi := ‖yDE(t−i )‖ for i = 1, . . . , k

and let B be such that η(B(0, B)) = 1. Then

Mi ≤ M1 + (i − 1)B a.s.

Proof. First we find bounds on the location of the cell center x. From (3) the location of the cell 
center for t ∈ [ti , ti+1) is

xDE(t) = cDE(ti)

+ (xDE(ti) − cDE(ti)) exp

(
− (t − ti )

∑n
j=1 αψj (ti)

μ

)
.

Since

|cDE(ti) − xDE(ti)| =
∣∣∣∣∣
∑n

j=1 αj [(uDE)j (ti) − xDE(ti)]ψj (ti)∑n
j=1 αjψj (ti)

∣∣∣∣∣
=

∣∣∣∣∣
∑n

j=1 αj bi,jψj (ti)∑n
j=1 αjψj (ti)

∣∣∣∣∣
< B

a.s., xDE can be bounded by

|xDE(t)| ≤ |cDE(ti) − xDE(ti)| + |cDE(ti)| ≤ B + Mi. (13)
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Next we find bounds on the location of the centroid. Using the bound just found in (13),

|cDE(ti)| =
∣∣∣∣∣
∑n

j=1 αj (uDE)j (ti)ψj (ti)∑n
j=1 αjψj (ti+1)

∣∣∣∣∣
=

∣∣∣∣∣
∑n

j=1 αj (xDE(ti) + bi,j )ψj (ti)∑n
j=1 αjψj (ti)

∣∣∣∣∣
≤ |xDE(ti)| + max

j
|bi+1,j | < B + Mi.

Finally we bound the location of the I-sites in the same manner as above,

|(uDE)j (ti)| = |xDE(ti) + bi,j |
≤ |xDE(ti)| + |bi,j | < B + Mi

Thus we have

Mi+1 = ‖y(t−i+1)‖ < B + Mi a.s. �
4.3. Proof of EVR theorem

With a bound on the “distance” between the centroid model and the differential equation 
model between attach/detach events, we can consider a time interval partitioned by some finite 
number of events to prove the EVR Theorem.

Proof. Lemma 4.2 gives a.s.

‖yDE(t−) − yZ(t−)‖ ≤ ‖yDE(s−) − yZ(s−)‖ + (2‖yDE(s−)‖ + B)e−C(t−s) (14)

if an attachment/detachment event occurs at time s < t , and no such events occur on the interval 
(s, t), where B bounds the support of the perturbation distribution η, and C = α/μ is a measure 
of the spring strength that will eventually be sent to ∞. The quantities yDE and yZ are random, 
but (14) holds along each sample path.

We can choose the initial state of the centroid model, so we let yDE(0) = yZ(0). Recall 
that xDE(0) = xZ(0) since xDE(0) is at equilibrium position. From [1] we know the value of 
E[xZ(t) − xZ(0)] = E[cZ(t) − cZ(0)] in terms of θa , θd , and b (under reasonable restrictions on 
the initial data). We want to show that

lim
C→∞E[xDE(t) − xDE(0)] =E[xZ(t) − xZ(0)]. (15)

Consider

E[xDE(t) − xDE(0)] =E[xDE(t) − xZ(t) + xZ(t) − xZ(0) + xZ(0) − xDE(0)].

Regrouping terms we have
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E[xDE(t) − xDE(0)] =E[xDE(t) − xZ(t)] +E[xZ(0) − xDE(0)] +E[xZ(t) − xZ(0)].

Due to the hypotheses, the middle term is zero and if

lim
C→∞E[xDE(t) − xZ(t)] = 0, (16)

then (15) is valid. By (2) we would then have the desired result

lim
C→∞E[x(t)] −E[x(0)] = bbbθd

(θd + θa)n

(
(θd + θa)

n − θn
d

)
t.

In order to show (16) it suffices to show that the differential equation model and the centroid 
model, when starting at the same state, in the limit evolve to the same state; that is to say

lim
C→∞E‖yDE(t) − yZ(t)‖ = 0. (17)

We show this using the Dominated Convergence Theorem and the results of Lemmas 4.2 and 4.3.
Let f (C, ω) := ‖yDE(t) − yZ(t)‖. For each nonnegative integer i, let Ai be the event that 

there are precisely i attachments and detachments in the time interval from 0 to t , and let A∞ be 
the complement of A0 ∪ A1 ∪ A2 ∪ · · · .

We will show that P (A∞) = 0, that limC→∞ f (C, ω) = 0 for each ω /∈ A∞, and that there is 
an integrable function g of ω alone such that f (C, ω) ≤ g(ω) for every ω /∈ A∞. The Dominated 
Convergence Theorem will then establish (17).

The event Ai is the event that i attachment/detachments occur in the time interval [0, t]. The 
time between the (k − 1)th and kth attachment/detachments is of the form γk/�k , where the γk

are independent standard exponential random variables and the �k are random variables that are 
bounded above by DI := n max{θa, θd}. If the event Ai is realized, then

t ≥
i∑

k=1

γk/�k ≥
∑i

k=1 γk

DI

,

so Ei := ∑i
k=1 γk ≤ DI t . But Ei is Erlang-distributed with shape parameter i and rate param-

eter 1, which means that its distribution function is x 
→ e−x
∑∞

k=i (x
k/k!) [5]. If more than i

events occur in the time interval, the same inequality holds. Thus,

P (A∞ ∪
∞⋃
k=i

Ak) ≤ exp(−DI t)

∞∑
k=i

(DI t)
k

k! .

By the Ratio Test and the Divergence Test, this gives P (A∞) = 0.
For ω ∈ A0, no events happen and all variables of the ODE model and the centroid model 

stay at the same place, since they started at the same state and xDE is at equilibrium. Thus 
f (C, ω) = 0. For ω ∈ Ak where k ≥ 1, k events occur in the interval [0, t]. Thus k events occur 
in the open interval (0, t) a.s. since the wait times are exponentially distributed. Let 0 < t1 < t2 <

· · · < tk , be the times that the events occur, t0 = 0, and tk+1 = t . Since no events occur a.s. at t , 
f (C, ω) = ‖yDE(t−) − yZ(t−)‖, and applying Lemma 4.2
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‖yDE(t−) − yZ(t−)‖ = ‖(yDE(t−k+1) − yZ(t−k+1))‖
≤ ‖yDE(t−k ) − yZ(t−k )‖ + (2Mk + B) exp (−(tk+1 − tk)C) .

Applying Lemma 4.2 recursively gives

‖yDE(t−k+1) − yZ(t−k+1)‖ ≤
k∑

j=1

(2Mj + B) exp
(−(tj+1 − tj )C

)

where Mj = ‖yDE(t−j )‖. Let T (ω) = minj (tj − tj−1) and the above equations give

‖yDE(t−k+1) − yZ(t−k+1)‖ ≤
k∑

j=1

(2Mj + B) exp (−T (ω)C) .

Applying Lemma 4.3 gives for k ≥ 2,

‖yDE(t−k+1) − yZ(t−k+1)‖ ≤ 2k {B(k + 1) + M1} exp (−T (ω)C) .

So for a fixed k ≥ 0, f (C, ω) ≤ 2(B(k + 1) + M1)k a.s. for ω ∈ Ak . Furthermore
limC→∞ f (C, ω) = 0 a.s.

Finally let g(ω) = ∑∞
k=0 2(B(k + 1) + M1)k1Ak(ω) ≥ 0.

E [g] ≤
∞∑

k=0

2(B(k + 1) + M1)k exp(−DI t)

∞∑
j=k

(DI t)
j

j ! .

Stirling’s formula gives j ! ≥ √
2πjj+ 1

2 exp(−j) ≥ jj+ 1
2 exp(−j). Thus

∞∑
j=k

(DI t)
j

j ! ≤
∞∑

j=k

(eDI t)
j

j j+ 1
2

≤
∞∑

j=k

(
eDI t

j

)j

.

Thus

E [g] ≤
∞∑

k=0

2(B(k + 1) + M1)k exp(−DI t)

∞∑
j=k

(
eDI t

j

)j

. (18)

For k ≥ 4eDI t , we have

∞∑
j=k

(DI t)
j

j ! ≤
∞∑

j=k

(
eDI t

j

)j

≤
∞∑

j=k

(
1

4

)j

=
∞∑

j=0

(
1

4

)j+k

= 4

3

(
1

4

)k

.

Applying the ratio test to the series in (18) shows that E [g] < ∞. The conditions for the Domi-
nated Convergence Theorem are met and ((17)) is valid. �
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Due to the time invariance of the processes and distributions, the time interval [0, t] can be 
translated without affecting the results. This is stated in the following corollary

Corollary 4.4. Assume the configuration at time t0 for (1) is randomly distributed in a way that 
is compatible with the steady-state distribution σ . Moreover assume αi = α for all i and that 
xDE(t0) = xZ(t0). For a fixed time t > t0,

lim
α
μ

→∞
E[x(t + t0)] −E[x(t0)] = ζζζ t.

In the case where x(0) is not an equilibrium, the following corollary applies.

Corollary 4.5. Let d0 = xDE(0) − xZ(0). Then

lim
α
μ

→∞
‖E[x(t) − x(0)]‖ ≤ 2‖d0‖ + ‖ζζζ‖t.

Proof. By a simple modification of the proof of the EVR theorem,

E[xDE(t) − xDE(0)] =E[xDE(t) − xZ(t)] +E[xZ(t) − xZ(0)] +E[xZ(0) − xDE(0)]
=E[xDE(t) − xZ(t)] + ζζζ t + d0.

Taking the norm of both sides

‖E[xDE(t) − xDE(0)]‖ = ‖E[xDE(t) − xZ(t)] + ζζζ t + d0‖
≤ E[‖xDE(t) − xZ(t)‖] + ‖ζζζ‖t + ‖d0‖.

The function in the expectation is dominated by g(ω) + ‖d0‖. Taking the limit as α
μ

→ ∞ gives 
the result. �
5. Numerical results

Numerical simulations confirm the theoretical results and suggest a different result for non-
Markov processes. The differential equation is solved using the software CVODE [11], in one 
second intervals. If an attachment event is due or past due, the differential equation with the new 
state is solved. Fig. 3 shows 5 realizations where the cell is starting at (0, 0). The distribution for 
the perturbation vector b is isotropic, so on average there should be no motion. The vector b is 
chosen by randomly choosing an angle from a uniform distribution and a radius from a uniform 
distribution. Wait times are also chosen from a specified distribution.

Fig. 4 shows a graph of the equation for ζ from the EVR theorem in both panels and in 
the left panel simulation results where different values for α

μ
are used and in the right panel 

simulation results with different wait time distributions are shown. In the left panel one can see 
the convergence to the theoretical results. In the right panel the exponential wait times fit fairly 
well with the theory, although the simulation results are consistently slower than the theoretical 
results for more I-sites. This is expected since the differential equation has a viscous drag which 
should slow the cells down. (The drag contribution disappears only in the limit. Thus in the left 
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Fig. 3. Five realizations for cells are shown for simulations of about 35 hours. The random perturbations b are isotropic 
with mean radius 2.5 microns. The wait distributions are exponential with θd = 1

20s
, θa = 1

60s
, αi = 0.2 nN/micron for 

all i, i = 30, and μ = 2.8 × 10−7 kg/s. The initial configuration for each realization was created by running a simulation 
which started with all I-sites attached for at least 1000 hours and translating the resulting position to the origin. Thus the 
projection of the initial state (starting from the 1000 hours) should be converging to the steady state distribution assumed 
in the EVR theorem. The cell location is plotted every 10 minutes.

Fig. 4. Simulations showing the convergence to the theoretical result are shown in the left panel and simulations with 
different wait time distributions are shown on the right. The time derivative of the expected value of the x coordinate of 
the cell center is plotted in microns per hour against the number of I-sites. In both panels the gray line shows ζ as given in 
the EVR theorem. In the left panel expected velocity of simulations are shown with α

μ = 740, 7.4, .074, and 7.4 × 10−4

in units of 1/seconds with circles, *, +, and × respectively. In the right panel simulations with wait time drawn from 
exponential, normal, continuous Poisson, and uniform distributions are shown by boxes, circles, +, and � respectively. 
The simulations were run for 3,333 hours to avoid error due to initial conditions and then the average velocity was taken 
over a time period of 6,666 hours. Due to the time homogeneity this is the same as averaging many simulations. The 
mean time to detachment is 60 seconds and the mean time to attachment is 20 seconds for all the simulations. The normal 
distributions had deviation of 1 second (and were truncated to prevent negative and very long positive times). The random 
vector b has a propensity to be in the x direction.
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Fig. 5. The average x coordinate of the velocity is plotted against the average force the cell exerts on the substrate. 
Each data point is the average of 30 simulations with the same spring constant α. The spring constant was varied from 
2.0 × 10−7 − 0.3 nN/micron. Notice the scale on the x axis is logarithmic. Realistic forces for cells range from 0.1-2000 
nN all forces where the velocity has already reached a constant value for these simulations. For each simulation the 
number of sites is fixed at 20. The other parameters are the same as the previous figure with the continuous Poisson 
distribution. Each simulation was run for 100 hours and then data was collected for the next 200 hours.

panel the lower values of α
μ

are slower than the theoretical results.) The other non-Markovian 
distributions indicate that the Markov property is essential in our current work. In Fig. 5, the x
coordinate of the velocity is plotted against the force. As can be readily seen in the figure the 
velocity is asymptotically constant with respect to the cell force. Realistic forces range from 0.1 
nN to thousands of nanoNewtons which is in the region where the velocity is almost constant. 
These simulations used a continuous Poisson distribution for the wait times and thus do not fit 
into the framework of the theory given in this paper. Yet the qualitative result is similar for the 
exponential wait times, that is, the velocity quickly approaches a constant value at forces much 
lower than experimentally measured values.

Finally, in Fig. 6 we compare experimental data of cell motion vs the model cell motion taken 
from [4]. Results from simulations of the differential equation model (1) are used to calculate 
average cell speed for a range of cell strengths and a range of mean attach times. The mean 
detach time is fixed and the cell forces for each I-site are set to be the same, i.e. α = αi for all 
i. The model cells exhibit speeds and forces which agree with experimental data. The range of 
values for α and for the mean attach time respectively are 0.232-4.44 nN/micron and 810-1210 
seconds for fibroblasts, 1.17-2.33 nN/micron and 28-88 seconds for neutrophils, 0.233-0.614 
nN/micron and 230-408 seconds for murine dendritic cells, 1.17-1.18 nN/micron and 206-408 
for endothelial cells, and 0.116-0.348 nN/micron and 18-70 seconds for Dd cells.

6. Discussion

The models discussed in this paper represent part of a broader approach to cell motion dynam-
ics, advancing the application of probabilistic arguments outside the common core of treatments 
(Brownian motion) for stochastic media [8]. In cell migration, it has been known for some time 
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Fig. 6. The boxes roughly outline the regions where experimental data has been reported for different cells types. The 
scatter plots are simulation results with parameters used to mimic the behavior of the different cells using the differential 
equation model. Red denotes fibroblasts, black denotes murine dendritic cells, cyan denotes neutrophils, green denotes 
endothelial cells, and blue denotes Dd cells. Figure taken from [4] with permission. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

that higher cell force does not correlate in an obvious way with cell velocity. The models analyzed 
here encode this fact in several ways. Our previous work suggested that cell adhesion/binding be-
havior was at the heart of the problem of modeling cell velocity. Cell strength (force exerted on 
a substrate) impacts mechanosensing properties of the cell, but is less important in cell velocity 
[4]. Numerical simulations in [4] led to our conjecture of the EVR, which symbolically models 
the decoupling of cell strength and velocity by considering average cell velocity over a fixed 
time interval, as cell strength increases relative to drag force. In [2], we introduced a limit ver-
sion of the differential equation model (a discrete-time centroid model) of [4], and analyzed this 
centroid model and the EVR using Markov chain theory. A heuristic argument in [2] reinforced 
the idea that the EVR conjecture holds in the case of the original random differential equation 
model. There, the decoupling of force and speed is suggested by the centroid model showing that 
new adhesion sites cause the cell to shift quickly after a cell attachment/detachment event (even 
though between shifts, substrate tension remains high). We formalized the relationship between a 
centroid model and the differential equation model by studying the problem in the framework of 
dynamical systems, first by passing to an intermediate continuous-time centroid model [1]. The 
mathematical formalization of the models allows for a rigorous treatment of the EVR conjecture 
in the differential equation model using our previous work for the discrete models. The present 
work breaks ground in the rigorous study of randomly switched differential equations with the 
proof of the EVR conjecture in Theorem 4.1.

This work provides a rigorous modeling environment for cell motion at the macro level (it does 
not treat the internal biophysical mechanisms in an individual cell). We plan to investigate non-
Markov scenarios in future work. Future work also promises the possibility of rigorously linking 
microcellular processes with macrocellular motion. Moreover, the differential equation model 
may be shown to provide insight into multicellular environments. Future work will demonstrate 
this and provide effective modeling of important macro-cellular processes like cancer metastases, 
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conglomerate cell motion (for example, Dictyostelium discoideum [3]) and other types of cell 
migration. Additionally, this model could have applications in the motion of swarms and schools 
including crowd behavior, aggregate cell motion, and certain types of neural nets. All these sys-
tems have centrally organized motion which could fit into our model framework. Man-made 
centrally controlled or centrally referenced motion occurs in monetary markets, the movement of 
troops or equipment on the battlefield, and the evolution of social networks. These applications 
will be investigated in future work.
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