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Consider the scattering of a time-harmonic electromagnetic plane
wave by an open cavity embedded in a perfect electrically con-
ducting infinite ground plane, where the electromagnetic wave
propagation is governed by the Maxwell equations. The upper half-
space is filled with a lossless homogeneous medium above the flat
ground surface; while the interior of the cavity is assumed to be
filled with a lossy homogeneous medium accounting for the en-
ergy absorption. The inverse problem is to determine the cavity
structure or the shape of the cavity from the tangential trace of
the electric field measured on the aperture of the cavity. In this
paper, results on a global uniqueness and a local stability are es-
tablished for the inverse problem. A crucial step in the proof of
the stability is to obtain the existence and characterization of the
domain derivative of the electric field with respect to the shape of
the cavity.

Published by Elsevier Inc.

1. Introduction

Consider a time-harmonic electromagnetic plane wave incident from the top on an arbitrarily
shaped open cavity embedded in an infinite ground plane. The profile of the cavity wall is assumed to
be sufficiently smooth, for example twice continuously differentiable. The ground plane and the cavity
wall are perfect electric conductors, i.e., the tangential trace of the total electric field vanishes on these
two surfaces. The upper half-space is filled with a homogeneous lossless medium with a fixed posi-
tive wavenumber; while the interior of the cavity is filled with another homogeneous lossy medium
characterized by a fixed wavenumber with positive imaginary part accounting for the energy absorp-
tion. Given the structure or the shape of the cavity and a time-harmonic electromagnetic plane wave
incident on the cavity, the direct scattering problem is to predict the field distributions away from
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the structure. We are interested in studying the inverse problem: what information can we extract
about the structure or the shape of the cavity from the tangential trace of the electric field measured
on the aperture of the cavity? The first result in this paper is a global uniqueness theorem for the
inverse problem. The theorem indicates that any two cavity shapes are identical if they generate the
same tangential trace of the electric fields on the aperture of the cavity. The proof is based on a com-
bination of the Holmgren uniqueness and unique continuation. The second result is concerned with a
local stability for the inverse problem: if S1 and S2 are “close” cavity walls to each other, then for any
δ > 0, the measurements of the two tangential trace of the electric fields being δ-close implies that
the two cavity walls are O (δ)-close. A crucial step in the stability proof is to obtain the existence and
characterization of the domain derivative of the electric field with respect to the shape of the cavity.

There are at least two major applications in terms of the direct and inverse cavity scattering prob-
lems: (1) The radar cross section is a measure of the detectability of a target by a radar system.
Deliberate control in the form of enhancement or reduction of the radar cross section of a target is of
no less importance than many radar applications. The cavity radar cross section caused by jet engine
inlet ducts or cavity-backed antennas can dominate the total radar cross section. A thorough under-
standing of the electromagnetic scattering characteristic of a target, particularly a cavity, is necessary
for successful implementation of any desired control of its radar cross section, and is of high interest
to the scientific and engineering community; (2) The cavity can be used to model cracks or holes in
metallic surfaces such as aircraft wings. These cracks or holes would be invisible to a visual inspec-
tion but may be revealed by understanding the scattering characteristics of the cavity. As an inverse
problem, the mathematical model can serve as a predictor of the scattering of electromagnetic waves
by the cavity for use in non-destructive testing. Besides, this work is also motivated by the study of
the optimal design problems of the cavity, where one wishes to design a cavity structure that reduces
or enhances the radar cross section.

The direct cavity scattering problem has been examined by numerous researchers from both
numerical and mathematical viewpoints, such as Jin and Volakis [24], Liu and Jin [26], Van and
Wood [31], Wood [32], Wood and Wood [33], Bao and Sun [9], Ammari et al. [3–5], and references
cited therein. A good introduction to the problem of cavity scattering, along with some numerical
methods, can be found in Jin [23]. One may consult Monk [28] and Nédélec [29] for recent accounts
of finite element methods and integral equation methods for general direct electromagnetic scattering
problems.

The inverse cavity scattering problem has recently received considerable attention. We refer to
Liu [21], Feng and Ma [17], Bao et al. [8] for results on uniqueness and local stability of the two-
dimensional Helmholtz equation. Although the scalar model problem has been extensively investi-
gated, little is known for the electromagnetic case. This paper is a nontrivial extension of the work
in [8] and considers the vector form of Maxwell’s equations. The proofs are motivated by the tech-
niques in Bao and Zhou [11] for the biperiodic diffraction grating problems, where a main ingredient
was to estimate a quotient difference function due to the perturbation of the grating profile in the
proof of local stability. Noticing that the quotient difference function is an approximation to the do-
main derivative, we directly investigate the domain derivative and provide the proof of the local
stability. The results on uniqueness and stability of the closely related inverse grating problem may
be found in Ammari [2], Bao [6], Bao and Friedman [7], and Bao et al. [10]. We refer to Elschner and
Hu [15], Liu et al. [20], Liu et al. [22], and reference therein, for related work on the uniqueness of the
inverse electromagnetic obstacle scattering problems, which is to determine a closed obstacle surface.
A complete account of the general theory of inverse scattering problems may be found in Colton and
Kress [13].

The outline of the paper is as follows. A model problem and governing equations of the elec-
tromagnetic cavity scattering problems are introduced in Section 2. In Section 3, the variational
formulation for the direct problem is introduced, and some auxiliary results are also presented for
the transparent boundary operator. Section 4 is devoted to the study of the inverse problem: a global
uniqueness theorem is proved; the existence and characterization of the domain derivative are exam-
ined; as a consequence of the domain derivative, a local stability result is established. The paper is
concluded with some general remarks and directions for future research in Section 5.
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Fig. 1. The problem geometry. An open cavity with the wall S is placed on a perfectly conducting ground plane Γg . The aperture
Γ covers the cavity and divides the physical domain into the interior Ω , enclosed by S and Γ , and the upper half-space above
the flat surface Γg ∪ Γ .

2. Maxwell’s equations

We shall introduce a mathematical model problem and define some notation for the direct and
inverse electromagnetic scattering problems by an open cavity. Let the structure or the shape of the
cavity be described by the surface S , known as the cavity wall, which is assumed to be sufficiently
smooth. The cavity is embedded in a perfect electrically conducting infinite ground plane Γg . Denote
by Γ the aperture of the cavity. So the cavity, represented by the finite domain Ω , is enclosed by the
wall S and the aperture Γ , as seen in Fig. 1.

The electromagnetic wave propagation is governed by the time-harmonic Maxwell equations (time
dependence e−iωt ):

∇ × E = iωB, ∇ × H = −iωD + J, (2.1)

where E is the electric field, H is the magnetic field, B is the magnetic flux density, D is the electric
flux density, J is the electric current density, and ω is the angular frequency. The constitutive relations,
describing the macroscopic properties of the medium, are taken as

B = μH, D = εE, and J = σE, (2.2)

where the constitutive parameters μ and ε denoted as the magnetic permeability and the electric
permittivity, which are assumed to be positive constants everywhere in the physical domain, i.e.,
μ = μ0 > 0 and ε = ε0 > 0, and the constitutive parameter σ is the conductivity of the medium,
which is assumed to be a piecewise constant: σ = 0 above the flat surface Γg ∪ Γ and σ = σ0 > 0 in
the interior of the cavity accounting for the energy absorption. Substituting the constitutive relations
(2.2) into (2.1) gives a coupled system for the electric and magnetic fields:

∇ × E = iωμ0H, ∇ × H = (−iωε0 + σ)E. (2.3)

Eliminating the magnetic field from (2.3), we obtain a decoupled equation for the electric field:

∇ × (∇ × E) − κ2E = 0, (2.4)

where κ2 = ω2μ0ε0 + iωμ0σ and κ is called the wavenumber. Due to the perfectly conducting ma-
terial, the following homogeneous Dirichlet boundary condition is satisfied for the tangential trace of
the electric field:

n × E = 0 on Γg ∪ S, (2.5)

where n is the unit outward normal vector.
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Denote κ0 = ω
√

μ0ε0. Let (Einc,Hinc) be the incoming plane wave that are incident upon the
cavity from the above, where

Einc = teiκ0q·x, Hinc = seiκ0q·x, s = q × t

ω0μ0
, t · q = 0.

Here q = (α1,α2,−β)� = (sin θ1 cos θ2, sin θ1 sin θ2,− cos θ1)
� , and θ1, θ2 are incident angles satisfying

0 � θ1 < π/2, 0 � θ2 < 2π . Let q∗ = (α1,α2, β)� and then the total electric and magnetic fields can
be decomposed as follows:

E = Einc − teiκ0q∗·x + Es and H = Hinc − z0t × q∗eiκ0q∗·x + Hs, (2.6)

where z0 = √
μ0/ε0, and Es,Hs are the scattered electric and magnetic fields, respectively. In addition,

the scattered fields are required to satisfy the Silver–Müller radiation condition:

lim|x|→∞
(|x|Es − z0Hs × x

) = 0. (2.7)

There are usually two types of problems posed for the above equations. Given the cavity domain
Ω or the cavity wall S and the incoming wave (Einc,Hinc), the direct problem is to determine the
electromagnetic field (E,H). On the contrary, the inverse problem is to determine the cavity wall S
from the tangential trace of the electric field, nΓ × E, measured on the aperture Γ .

To describe the boundary value problem and present its variational formulation, we introduce
some Sobolev spaces. For u ∈ L2(R2), we denote by û the Fourier transform of u:

û(ξ) = 1

2π

∫
R2

u(ρ)e−iρ·ξ dρ,

where ξ = (ξ1, ξ2) ∈ R
2 and ρ = (x1, x2) ∈ R

2. Using Fourier modes, the norm on the space L2(R2)

can be characterized by

‖u‖L2(R2) =
[∫

R2

|u|2 dρ

]1/2

=
[∫

R2

|û|2 dξ

]1/2

.

For s ∈ R, define

Hs(
R

2) =
{

u ∈ L2(
R

2):
∫
R2

(
1 + |ξ |2)s|û|2 dξ < ∞

}
,

whose norm is characterized by

‖u‖Hs(R2) =
[∫

R2

(
1 + |ξ |2)s|û|2 dξ

]1/2

.

It is clear that the spaces Hs(R2) and H−s(R2) are mutually adjoint with respect to the scalar product
in L2(R2).
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For any vector field u = (u1, u2, u3)
� , denote its tangential component on surface Γ by

uΓ = −nΓ × (nΓ × u) = (
u1(x1, x2,0), u2(x1, x2,0),0

)�
,

where nΓ is the unit outward normal vector on Γ . For any smooth tangential vector u = (u1, u2,0)�
defined on Γ , denote by divΓ u = ∂1u1 + ∂2u2 and curlΓ u = ∂1u2 − ∂2u1 the surface divergence and
the surface scalar curl of the field u, respectively.

Introduce the trace functional spaces:

H1/2(Γ ) = {
u|Γ : u ∈ H1/2(

R
2)},

H1/2
0 (Γ ) = {

u|Γ : u ∈ H1/2(
R

2), supp(u) ⊂ Γ
}
.

Denote by H−1/2(Γ ) and H−1/2
0 (Γ ) the dual spaces of H1/2

0 (Γ ) and H1/2(Γ ), respectively, i.e.,

H−1/2(Γ ) = (
H1/2

0 (Γ )
)′

and H−1/2
0 (Γ ) = (

H1/2(Γ )
)′
.

To study the transparent boundary operator, we introduce

H−1/2
div (Γ ) = {

u ∈ (
H−1/2(Γ )

)3
: u3 = 0, divΓ u ∈ H−1/2(Γ )

}
,

H−1/2
curl (Γ ) = {

u ∈ (
H−1/2(Γ )

)3
: u3 = 0, curlΓ u ∈ H−1/2(Γ )

}
.

Denote by nS the unit outward normal vector on S . We finally introduce

H S(curl,Ω) = {
u ∈ (

L2(Ω)
)3

, ∇ × u ∈ (
L2(Ω)

)3
, nS × u = 0 on S

}
,

which is a Hilbert space for the norm:

‖u‖H(curl,Ω) = (‖u‖2
(L2(Ω))3 + ‖∇ × u‖2

(L2(Ω))3

)1/2
.

This space will be used as the solution space for the weak formulation of the direct scattering prob-
lem.

3. The direct problem

In this section, we present the transparent boundary condition and weak formulation of the direct
problem. The following two lemmas play important roles in the proof of uniqueness and stability
for the inverse problem. The first lemma is concerned with the existence and characterization of the
pseudodifferential operator, and the second lemma concerns its injectivity. The detailed discussions
and proofs may be found in Ammari et al. [5].

Lemma 3.1. There exists a linear continuous boundary operator T : H−1/2
curl (Γ ) → H−1/2

div (Γ ) such that it holds
for any tangential vector u = (u1, u2,0)� on Γ :

T u = (v1, v2,0)�,

where
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v̂1 = 1

ωμ

[
βû1 + ξ1

β
(ξ1û1 + ξ2û2)

]
, v̂2 = 1

ωμ

[
βû2 + ξ2

β
(ξ1û1 + ξ2û2)

]
,

and

β2(ξ) = κ2
0 − |ξ |2.

Lemma 3.2. For any u ∈ H−1/2
curl (Γ ), if Re〈T u,u〉 = 0, then u = 0.

Using the boundary operator, the following transparent boundary condition may be proposed on
the cavity aperture Γ :

T
(
EΓ − Einc

Γ

) = (
H − Hinc) × nΓ ,

which map the tangential component of the scattered electric field to the tangential trace of the
scattered magnetic field. Equivalently, it can be written as

(∇ × E) × nΓ = iωμ0T EΓ + f, (3.1)

where

f = iωμ0
(
Hinc × nΓ − T Einc

Γ

)
.

Multiplying (2.4) by the complex conjugate of a test function v ∈ H S (curl,Ω), integrating over Ω ,
and using integration by parts and the transparent boundary condition (3.1), we arrive at the varia-
tional form for the direct problem: find u ∈ H S(curl,Ω) such that

a(u,v) = 〈f,v〉 for all v ∈ H S(curl,Ω), (3.2)

where the sesquilinear form

a(u,v) =
∫
Ω

∇ × u · ∇ × v̄ − κ2
∫
Ω

u · v̄ − iωμ0

∫
Γ

T uΓ · v̄Γ , (3.3)

and the linear functional

〈f,v〉 =
∫
Γ

f · v̄Γ . (3.4)

For the direct problem, questions on existence and uniqueness are well understood, see for ex-
ample [5]. It has been proved that the variational problem (3.2) admits a unique weak solution u in
H S (curl,Ω).

4. The inverse problem

This section is concerned with the uniqueness and stability questions for the inverse problem.
The uniqueness shows that the shape of the cavity is uniquely determined by the tangential trace
of the electric field measured on the aperture. Based on the domain derivative, a local stability is
established: if the two measurements of the tangential traces of the electric fields are “close” to each
other, then the corresponding two cavities are also “close” to each other.
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4.1. Global uniqueness

The following uniqueness result only requires a single incident field with one polarization, one
frequency, and one incident direction. The proof is based on a combination of Holmgren’s uniqueness
and unique continuation theorems.

Theorem 4.1. Let u j be the solution of the variational problem (3.2) in Ω j enclosed by Γ and S j for j = 1,2.
If nΓ × u1 = nΓ × u2 on Γ , then S1 = S2 .

Proof. Assume that S1 �= S2. Then Ω1 \ (Ω1 ∩ Ω2) or Ω2 \ (Ω1 ∩ Ω2) is a non-empty set. Without
loss of generality, we assume that D = Ω1 \ (Ω1 ∩ Ω2) �= ∅. Denote ∂ D by C1 ∪ C2 with C j ⊂ S j for
j = 1,2.

Since nΓ × u1 − nΓ × u2 = 0 on Γ , it follows from the injectivity, Lemma 3.2, of the boundary
operator T and its definition (2.5) that (∇ × u1) × nΓ − (∇ × u2) × nΓ = 0 on Γ . An application of
Holmgren’s uniqueness theorem [1] yields u1 − u2 = 0 above Γg ∪ Γ . By unique continuation [16],
we get u1 − u2 = 0 in Ω1 ∩ Ω2 and especially n × u1 − n × u2 = 0 on C2. It follows from n × u2 = 0
on C2 that we have n × u1 = 0 on C2 and the problem

∇ × (∇ × u1) − κ2u1 = 0 in D,

n × u1 = 0 on ∂ D.

Recalling the expression of wavenumber, we have from the integration by parts that

∫
D

|∇ × u1|2 − ω2μ0ε0

∫
D

|u1|2 − iωμ0σ0

∫
D

|u1|2 = 0,

which yields u1 = 0 in D . An application of the unique continuation again gives u1 = 0 in Ω1. But
this contradicts the transparent boundary condition (3.1) since f is a nonzero function involving a
downward incoming plane wave. �

In general, the global uniqueness may not be possible when the conductivity σ0 = 0 in the interior
of the cavity. This is evident in the simplest case with a plane wave incident on a flat surface. In this
case, the solution of the cavity scattering problem can be written explicitly:

E = Einc − teiκ0q∗·x = teiκ0q·x − teiκ0q∗·x,

H = Hinc − z0t × q∗eiκ0q∗·x = seiκ0q·x − z0t × q∗eiκ0q∗·x,

i.e., the total fields consist of the plane incident fields and the plane reflected fields; no scattered
fields are present. The nonuniqueness is obvious since the fields will remain the same when the flat
surface is moved up or down in certain multiples of the wavelength.

4.2. Domain derivative

The calculation of domain derivative, or more generally of the Fréchet derivative of the wave field
with respect to the perturbation to the boundary of the medium, is an essential step for inverse
scattering problems, which plays an important role in the stability analysis. The domain derivatives
for related inverse obstacle scattering problems have been discussed by a number of researchers, e.g.,
Haddar and Kress [18], Hettlich [19], Kirsch [25], Meyer et al. [27], and Potthast [30]. Recently, Cagnol
and Eller [12] have considered the shape sensitivity for Maxwell’s equation in the time domain, where
the shape derivative is studied by formulating the Maxwell equation into a hyperbolic system. We
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shall investigate the domain derivative for the time-harmonic Maxwell equation from the variational
approach in the context of the cavity scattering problem.

Introduce a cavity domain Ωh bounded by Sh and Γ , where

Sh = {
x + hp(x): x ∈ S

}
.

Here the cavity wall S is assumed to be in C2, the constant h > 0, and the function p =
(p1(x), p2(x), p3(x))� ∈ C2(S,R

3) satisfying p(x) = 0 on the boundary of the aperture Γ . Obviously,
if h is small enough then Sh ∈ C2 is a small perturbation of S .

According to a standard continuity argument for elliptic boundary value problems, there exists a
unique solution uh to the variational problem (3.2) corresponding to the domain Ωh for any small
enough h. Define a nonlinear map

M : Sh → nΓ × uh|Γ .

The domain derivative of the operator scattering M on the boundary S along the direction p is defined
by

M ′(S,p) := lim
h→0

nΓ × uh|Γ − nΓ × u|Γ
h

.

Obviously, the weak formulation for uh is

ah
(
uh,v

) = 〈f,v〉 for all v ∈ H Sh (curl,Ωh), (4.1)

where ah is the sesquilinear form defined in (3.3) over the perturbed domain Ωh .
Motivated by the technique adopted in Kirsch [25], we make change of variables to convert the

integral in Ωh into Ω . For p ∈ C2(S,R
3), we extend the definition of function p(x) to Ω satis-

fying: p(x) ∈ C2(Ω,R
3) ∩ C(Ω); p(x) = 0 on Γ ; ξh(x) = (ξh

1 (x), ξh
2 (x), ξh

3 (x))� := x + hp(x) maps
Ω → Ωh . In this way, ξh is a diffeomorphism from Ω to Ωh for small enough h. Denote by
ηh(y) = (ηh

1(y), ηh
2(y), ηh

3(y))� : Ωh → Ω the inverse map of ξh .
For y ∈ Ωh , make the change of variable y = ξh(x): x ∈ Ω and define ŭh(x) := uh ◦ ξh . The volume

integrals over Ωh in the sesquilinear form (3.3) can be converted into integrals over the unperturbed
domain Ω:

∫
Ωh

∇ × uh · ∇ × v̄ − κ2
∫
Ωh

uh · v̄

=
∫
Ω

[(∇ηh ⊗ ∇ŭh) · (∇ηh ⊗ ∇ ¯̆v) − κ2ŭh · ¯̆v]
det( Jξh ), (4.2)

where v̆ = v ◦ ξh and Jξh is the Jacobian matrix of the transform ξh . For convenience, given two

vectors w = (w1, w2, w3)
� and v = (v1, v2, v3)

� , the symbol ⊗ is defined as follows:

∇w ⊗ ∇v =
[

∂2w · ∇v3 − ∂3w · ∇v2
∂3w · ∇v1 − ∂1w · ∇v3
∂1w · ∇v2 − ∂2w · ∇v1

]
,

where ∂ jw = (∂ j w1, ∂ j w2, ∂ j w3)
� .
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For an arbitrary test function v in domain Ωh , the function v̆ is a test function for domain Ω

according to the transform. Recalling (4.2), we can rewrite the bilinear form ah in (4.1) as

ah
(
ŭh,v

) =
∫
Ω

[(∇ηh ⊗ ∇ŭh) · (∇ηh ⊗ ∇v̄
) − κ2ŭh · v̄

]
det( Jξh ) − iωμ0

∫
Γ

T ŭh
Γ · v̄Γ , (4.3)

which leads to an equivalent variational formulation to (4.1):

ah(ŭh,v) = 〈f,v〉 for all v ∈ H S(curl,Ω). (4.4)

It follows from (4.3) and (4.4) that

a(ŭh − u,v) = a(ŭh,v) − 〈f,v〉 = a(ŭh,v) − ah(ŭh,v)

=
∫
Ω

[∇ × ŭh · ∇ × v̄ − (∇ηh ⊗ ∇ŭh) · (∇ηh ⊗ ∇v̄
)

det( Jξh )
]

− κ2
∫
Ω

[
1 − det( Jξh )

]
ŭh · v̄. (4.5)

Using the definition of Jacobian matrix, we have

det( Jξh ) = 1 + h∇ · p + O
(
h2).

Let Jηh be the Jacobian matrix of the transform ηh . Denote by Jp = [∂i p j] the 3 × 3 Jacobian matrix
of p. Simple calculation yields

Jηh = J−1
ξh ◦ ηh = I − h Jp + O

(
h2),

which gives after equating two sides

∂iη
h
j = δi j − h∂i p j + O

(
h2).

Here δi j is the Kronecker delta symbol. Recalling the definition for the symbol ⊗ and using the above
explicit expression for the partial derivatives of ηh , we can deduce that

∇ηh ⊗ ∇ŭh = ∇ × ŭh − h∇p ⊗ ∇ŭh + O
(
h2)

and

∇ηh ⊗ ∇v̄ = ∇ × v̄ − h∇p ⊗ ∇v̄ + O
(
h2).

Upon plugging in above identities, we have

(∇ηh ⊗ ∇ŭh) · (∇ηh ⊗ ∇v̄
)

det( Jξh )

= (1 + h∇ · p)∇ × ŭh · ∇ × v̄

− h
[
(∇p ⊗ ∇v̄) · ∇ × ŭh + (∇p ⊗ ∇ŭh) · ∇ × v̄

] + O
(
h2). (4.6)
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Substituting (4.6) into (4.5) and dividing by h yield

a

(
ŭh − u

h
,v

)
=

∫
Ω

[
(∇p ⊗ ∇v̄) · ∇ × ŭh + (∇p ⊗ ∇ŭh) · ∇ × v̄

]

−
∫
Ω

(∇ · p)
(∇ × ŭh · ∇ × v̄ − κ2ŭh · v̄

) + O (h). (4.7)

Based on this variational form, we have the following result for the domain derivative.

Theorem 4.2. Let u be the solution of the variational problem (3.2) in Ω . Given p ∈ C2(S,R
3), the domain

derivative of the scattering operator is M ′(S,p) = nΓ × u′|Γ , where u′ ∈ H(curl,Ω) is the weak solution of
the boundary value problem:

∇ × (∇ × u′) − κ2u′ = 0 in Ω, (4.8)(∇ × u′) × nΓ = iωμT u′
Γ on Γ, (4.9)

nS × u′ = [
(nS · p)∂S uS + (nS · u)∇S(nS · p)

] × nS on S. (4.10)

Here ∇S and ∂S denote the surface gradient and the normal derivative on S, respectively, and uS is the tangen-
tial component of u on S, i.e., uS = −nS × (nS × u).

Proof. The proof consists of two steps: the first step is to show that the domain derivative u′ satisfies
the Maxwell equation (4.8) and the transparent boundary condition (4.9); the second step is to verify
that the tangential trace of the domain derivative nS × u′ satisfies the nonhomogeneous boundary
condition (4.10).

First we prove (4.8) and (4.9). Given p, it follows from the well-posedness of the variational prob-
lem that ŭh → u in H S(curl,Ω) as h → 0. Taking the limit in (4.7) gives

a

(
lim
h→0

ŭh − u

h
,v

)
=

∫
Ω

[
(∇p ⊗ ∇v̄) · ∇ × u + (∇p ⊗ ∇u) · ∇ × v̄

]

−
∫
Ω

(∇ · p)
(∇ × u · ∇ × v̄ − κ2u · v̄

)
. (4.11)

Therefore (ŭh − u)/h is convergent in H S (curl,Ω) as h → 0. Denote by u̇ this limit, which is known
as the material derivative, and rewrite (4.11) as

a(u̇,v) = b1(p)(u,v) + b2(p)(u,v) + b3(p)(u,v) + b4(p)(u,v), (4.12)

where

b1(p)(u,v) =
∫
Ω

(∇p ⊗ ∇v̄) · ∇ × u,

b2(p)(u,v) =
∫

(∇p ⊗ ∇u) · ∇ × v̄,
Ω
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b3(p)(u,v) = −
∫
Ω

(∇ · p)∇ × u · ∇ × v̄,

b4(p)(u,v) = κ2
∫
Ω

(∇ · p)u · v̄.

The goal is to prove

b1 + b2 + b3 + b4 =
∫
Ω

∇ × (p · ∇u) · ∇ × v̄ − κ2
∫
Ω

(p · ∇u) · v̄. (4.13)

In the following, we simplify the integrals of b j to deduce the desired identity (4.13).
Following the identity

(∇p ⊗ ∇u) · ∇ × v̄ = ∇ × (p · ∇u) · ∇ × v̄ − (p · ∇)(∇ × u) · ∇ × v̄,

and the integration by parts, we have

b2 =
∫
Ω

∇ × (p · ∇u) · ∇ × v̄ −
∫
Ω

(p · ∇)(∇ × u) · ∇ × v̄

=
∫
Ω

∇ × (p · ∇u) · ∇ × v̄ −
∫
Ω

[∇ × (p · ∇)(∇ × u)
] · v̄ −

∫
S

v̄ × [
(p · ∇)(∇ × u)

] · nS .

It can be verified that

∇ × (p · ∇)(∇ × u) = ∇p ⊗ ∇(∇ × u) + (p · ∇)∇ × (∇ × u)

= ∇p ⊗ ∇(∇ × u) + κ2(p · ∇)u,

where we have used ∇ × (∇ × u) − κ2u = 0. Hence

b2 =
∫
Ω

∇ × (p · ∇u) · ∇ × v̄ − κ2
∫
Ω

(p · ∇)u · v̄ −
∫
Ω

[∇p ⊗ ∇(∇ × u)
] · v̄

−
∫
S

v̄ × [
(p · ∇)(∇ × u)

] · nS . (4.14)

Using the definition of the symbol ⊗ and rearranging some terms, we get

∫
Ω

[∇p ⊗ ∇(∇ × u)
] · v̄ =

∫
Ω

(v̄1∂2p − v̄2∂1p) · ∇(∂1u2 − ∂2u1)

+
∫
Ω

(v̄3∂1p − v̄1∂3p) · ∇(∂3u1 − ∂1u3)

+
∫

(v̄2∂3p − v̄3∂2p) · ∇(∂2u3 − ∂3u2). (4.15)
Ω
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An application of the triple product gives

∫
S

v̄ × [
(p · ∇)(∇ × u)

] · nS =
∫
S

(nS × v̄) · [(p · ∇)(∇ × u)
] = 0, (4.16)

since v ∈ H S(curl,Ω).
Using the identity

∇ × (∇ · p∇ × u) = ∇(∇ · p) × (∇ × u) + (∇ · p)∇ × (∇ × u)

and the integration by parts, we obtain

b3 = −
∫
Ω

[∇ × (∇ · p∇ × u)
] · v̄ −

∫
S

(∇ · p)
[
v̄ × (∇ × u)

] · nS

= −
∫
Ω

[∇(∇ · p) × (∇ × u)
] · v̄ −

∫
Ω

(∇ · p)
[∇ × (∇ × u)

] · v̄

−
∫
S

(∇ · p)
[
v̄ × (∇ × u)

] · nS

= −
∫
Ω

[
v̄ × ∇(∇ · p)

] · (∇ × u) −
∫
Ω

(∇ · p)
[∇ × (∇ × u)

] · v̄

−
∫
S

(∇ · p)
[
v̄ × (∇ × u)

] · nS .

Noticing ∇ × (∇ × u) − κ2u = 0 in Ω and nS × v = 0 on S , we have

b3 + b4 = −
∫
Ω

[
v̄ × ∇(∇ · p)

] · (∇ × u) −
∫
Ω

(∇ · p)
[∇ × (∇ × u) − κ2u

] · v̄

−
∫
S

(∇ · p)
[
v̄ × (∇ × u)

] · nS

= −
∫
Ω

[
v̄ × ∇(∇ · p)

] · (∇ × u) −
∫
S

(∇ · p)(nS × v̄) · (∇ × u)

= −
∫
Ω

[
v̄ × ∇(∇ · p)

] · (∇ × u).

A simple calculation yields

v̄ × ∇(∇ · p) =
[ v̄2∂3(∇ · p) − v̄3∂2(∇ · p)

v̄3∂1(∇ · p) − v̄1∂3(∇ · p)

v̄1∂2(∇ · p) − v̄2∂1(∇ · p)

]
.

Hence
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∇p ⊗ ∇v̄ − v̄ × ∇(∇ · p) =
[∇ · (v̄3∂2p − v̄2∂3p)

∇ · (v̄1∂3p − v̄3∂1p)

∇ · (v̄2∂1p − v̄1∂2p)

]
,

which gives after the use of integration by parts

b1 + b3 + b4 =
∫
Ω

[∇p ⊗ ∇v̄ − v̄ × ∇(∇ · p)
] · (∇ × u)

=
∫
Ω

(∂2u3 − ∂3u2)∇ · (v̄3∂2p − v̄2∂3p) +
∫
Ω

(∂3u1 − ∂1u3)∇ · (v̄1∂3p − v̄3∂1p)

+
∫
Ω

(∂1u2 − ∂2u1)∇ · (v̄2∂1p − v̄1∂2p)

= −
∫
Ω

(v̄3∂2p − v̄2∂3p) · ∇(∂2u3 − ∂3u2) −
∫
Ω

(v̄1∂3p − v̄3∂1p) · ∇(∂3u1 − ∂1u3)

−
∫
Ω

(v̄2∂1p − v̄1∂2p) · ∇(∂1u2 − ∂2u1). (4.17)

Combining (4.14)–(4.17) yields (4.13).
Noticing p = 0 on Γ , we have from (4.12) and (4.13) that

a(u̇,v) =
∫
Ω

∇ × (p · ∇u) · ∇ × v̄ − κ2
∫
Ω

(p · ∇u) · v̄ = a
(
(p · ∇)u,v

)
. (4.18)

Denote the domain derivative u′ = u̇ − (p · ∇)u. It follows from (4.18) that

a
(
u′,v

) = 0 for all v ∈ H S(curl,Ω),

which yields

∫
Ω

∇ × u′ · ∇ × v̄ − κ2
∫
Ω

u′ · v̄ − iωμ0

∫
Γ

T u′
Γ · v̄Γ = 0 for all v ∈ H S(curl,Ω).

Following the integration by parts, it holds that for all v ∈ H S(curl,Ω)

∫
Ω

[∇ × (∇ × u′) − κ2u′] · v̄ +
∫
Γ

[(∇ × u′) × nΓ − iωμ0T u′
Γ

] · v̄ = 0,

which completes the first part of the proof.
Next is to prove the boundary condition (4.10). The proof is similar to what is used in [12] for the

derivation of the boundary condition of the shape derivative. Observe that

p · ∇ = pS · ∇S + (nS · p)∂S ,
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where ∇S denotes the surface gradient on S , pS is the tangential component of the direction vector p,
i.e., pS = −nS × (nS × p) = p − (nS · p)nS , and ∂S is the normal derivative on S . Since nS × u = 0
along S , it follows

0 = (pS · ∇S)(nS × u) = (pS · ∇S)nS × u + nS × (pS · ∇S)u,

which gives

nS × (p · ∇)u = nS × (nS · p)∂S u − (pS · ∇S)nS × u.

Noticing

0 = lim
h→0

nSh × uh − nS × u

h
= lim

h→0

nSh × uh − nS × uh

h
+ lim

h→0

nS × uh − nS × u

h

= ṅS × u + nS × u̇,

we have

nS × u̇ = −ṅS × u.

Hence the domain derivative satisfies the boundary condition

nS × u′ = nS × u̇ − nS × (p · ∇)u = −ṅS × u − nS × (p · ∇)u

= −nS × (nS · p)∂S u + [
(pS · ∇S)nS − ṅS

] × u. (4.19)

It can be verified that

∇S(nS · p) = (
J�

p nS
)

S + (
J�

S p
)

S ,

where Jp and J S are the Jacobian matrices of the vector p and the unit outward normal nS , respec-
tively. We obtain

(pS · ∇S)nS − ṅS = (pS · ∇S)nS + (
J�

p nS
)

S = ( J S p)S + (
J�

p nS
)

S

= ∇S(nS · p) + ( J S p)S − (
J�

S p
)

S .

Since S is assumed to be of class C2, it is shown in [14] that the distance function φ(x) = dist(x, S) is
of class C2 in the set {x ∈ Ω: φ(x) < c}, where c is some positive number, and furthermore nS = −∇φ

for x ∈ S . Hence J S = J�
S , which yields

(pS · ∇S)nS − ṅS = ∇S(nS · p).

The boundary condition (4.19) reduces to

nS × u′ = −nS × (nS · p)∂S u + ∇S(nS · p) × u.

It is clear that



P. Li / J. Differential Equations 252 (2012) 3209–3225 3223
−nS × (nS · p)∂S u = (nS · p)∂S
[
uS + (nS · u)nS

] × nS

= (nS · p)∂S uS × nS .

Finally, since nS × u = 0 we have also uS = 0 and hence

∇S(nS · p) × u = ∇S(nS · p) × [
uS + (nS · u)nS

]
= ∇S(nS · p) × (nS · u)nS = (nS · u)∇S(nS · p) × nS .

Combining the last two formulas yields the boundary condition for the tangential trace of the domain
derivative:

nS × u′ = [
(nS · p)∂S uS + (nS · u)∇S(nS · p)

] × nS ,

which completes the second part of the proof, and hence the proof of the whole theorem. �
Besides the application for the proof of the stability, the characterization of the domain derivative,

i.e., the boundary value problem (4.8)–(4.10), can be utilized for an implementation of Newton-based
methods for solving shape optimization problems involving Maxwell’s equations.

4.3. Local stability

In applications, it is impossible to make exact measurements. Stability is crucial in the practical
reconstruction of cavity walls since it contains necessary information to determine to what extent the
data can be trusted.

For any two domains D1 and D2 in R
2, define d(D1, D2) the Hausdorff distance between them by

dist(D1, D2) = max
{
ρ(D1, D2),ρ(D2, D1)

}
where

ρ(Dm, Dn) = sup
x∈Dm

inf
y∈Dn

|x − y|.

Introduce domains Ωh bounded by Sh and Γ , where

Sh: x + hp(x)nS ,

where p ∈ C2(S,R). It is easily seen that the Hausdorff distance between Ω and Ωh is of the order h,
i.e., dist(Ωh,Ω) = O (h).

We have the following local stability result.

Theorem 4.3. If p ∈ C2(S,R) and h > 0 is sufficiently small, then

dist(Ωh,Ω) � C
∥∥nΓ × uh − nΓ × u

∥∥
H1/2

0 (Γ )
(4.20)

where C is a positive constant independent of h.
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Proof. We prove it by contradiction. Suppose now that the assertion is not true, for any given p ∈
C2(S,R), there exists a subsequence from {uh}, which is still denoted as {uh} for simplicity, such that

∥∥∥∥nΓ × uh − nΓ × u

h

∥∥∥∥
H1/2

0 (Γ )

→ ∥∥nΓ × u′∥∥
H1/2

0 (Γ )
= 0 as h → 0, (4.21)

which yields nΓ × u′ = 0 on Γ . Based on Theorem 4.2, it follows from the boundary condition of
nΓ × u′ on Γ in (4.9) and the injectivity of the boundary operator T that (∇ × u′) × nΓ = 0 on Γ .
An application of Holmgren’s uniqueness theorem yields that u′ = 0 in R

3+ . We infer by unique con-
tinuation that u′ = 0 in Ω . The boundary condition of u′ in (4.10) gives

nS × u′ = [
p∂S uS + (nS · u)∇S p

] × nS = 0 on S.

Since p is arbitrary, we have ∂S uS = 0 and nS · u = 0, which yields ∂S u = 0. Since both the tangential
trace nS × u = 0 and the normal component nS · u = 0, then u = 0 on S . Therefore u = 0 and ∂S u = 0
on S . We infer by unique continuation once again that u = 0 in Ω , which is a contradiction to the
transparent boundary condition (3.1). �

The result indicates that for small h, if the boundary measurements are O (h) close to the wave
field in the H1/2

0 (Γ ) norm, then Ωh is O (h) close to Ω in the Hausdorff distance.

5. Concluding remarks

In this paper, we have presented two results for the inverse electromagnetic cavity scattering prob-
lem: a global uniqueness and a local stability. The uniqueness shows that the cavity shape is uniquely
determined by the tangential trace of the electric field measured on the cavity aperture corresponding
to a single incoming wave; the stability shows that the Hausdorff distance of two cavities is bounded
above by the distance of corresponding tangential trace of the electric fields if they are close enough.
To prove the stability, a crucial step is to establish the domain derivative of the electric field with
respect to the change of the cavity shape. We have deduced that the domain derivative satisfies a
boundary value problem of the Maxwell equation, which is similar to the model problem of the di-
rect scattering.

Throughout, the medium is assumed to be lossy inside the cavity. A challenging problem is to
investigate the case of lossless medium in the whole physical domain. Although the global uniqueness
may not be possible, it is desirable to extract the information: to what extend the uniqueness may
become available? Another interesting project is concerned with the optimal design problem, which
is to design the cavity structure and material to reduce or enhance the radar cross section. The results
will be reported elsewhere.
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