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Abstract

We investigate sectoriality and maximal regularity in Lp–Lq -Sobolev spaces for the structurally damped 
plate equation with Dirichlet–Neumann (clamped) boundary conditions. We obtain unique solutions with 
optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in bounded 
domains of class C4. It turns out that the first-order system related to the scalar equation on Rn is sectorial 
only after a shift in the operator. On the half-space one has to include zero boundary conditions in the 
underlying function space in order to obtain sectoriality of the shifted operator and maximal regularity for 
the case of homogeneous boundary conditions. We further show that the semigroup solving the problem on 
bounded domains is exponentially stable.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

In this paper, we study the linear structurally damped plate equation with inhomogeneous 
Dirichlet–Neumann (clamped) boundary conditions given by
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∂2
t u + �2u − ρ�∂tu = f, (t, x) ∈ (0,∞) × G,

u = g0, (t, x) ∈ (0,∞) × ∂G,

∂νu = g1, (t, x) ∈ (0,∞) × ∂G,

u|t=0 = ϕ0, x ∈ G,

∂tu|t=0 = ϕ1, x ∈ G. (1.1)

Here, ρ > 0 is a fixed parameter and ∂ν stands for the normal derivative with respect to the 
outer unit normal. We treat the full space G = R

n (where we drop the boundary conditions), 
the half-space G = R

n+ := {x ∈ R
n : xn > 0}, and bounded domains G ⊂ R with a boundary 

of class C4. We establish maximal regularity of type Lp for the inhomogeneous problem (1.1)
and discuss sectoriality of the operator matrix governing the associated first order system. The 
generated semigroup is exponentially stable for bounded G.

The undamped plate equation with ρ = 0 occurs as a linear model for vibrating stiff objects 
where the potential energy involves curvature-like terms which lead to the bi-Laplacian (−�)2

as the main ‘elastic’ operator B , see e.g. Chapter 12 of [25] or [27]. (In the one-dimensional case 
one obtains the Euler–Bernoulli beam equation.) In this model, energy dissipation is neglected 
and the equation has no smoothing effect as the governing semigroup is unitary on the canonical 
L2-based phase space. One adds damping terms to incorporate the loss of energy. Structural 
damping describes a situation where higher frequencies are more strongly damped than low 
frequencies. Here the damping term has ‘half of the order’ of the leading elastic term, as proposed 
in Russell’s seminal paper [27]. Such systems have been studied in detail also from the viewpoint 
of dynamical systems and control theory, see e.g. [5,20,23,29] and the references therein. In the 
L2 case, the basic generation results were already obtained in [6]. It turned out that the underlying 
semigroup is analytic, which is false if the damping operator is a fractional power of the elastic 
operator with exponent strictly less than 1/2. In this sense, structural damping is a borderline 
case. The case of strong damping (where the elastic operator is bounded by the damping operator) 
is easier as it can be handled by perturbation arguments, see e.g. Section VI.3.a of [14].

Structurally damped plate and wave equations can also be considered in Lp-based spaces for 
p �= 2 (in contrast to the weaker damping given by −ρ∂tu), which is very convenient for the 
treatment of nonlinear terms in the framework of parabolic evolution equations, see e.g. [4,7,28]. 
However, in this context the available existence results are restricted to the very special case that 
the damping operator is a multiple of the square root B1/2 of the elastic operator B (which we 
call the square root case). On the other hand, in L2 one can treat much more general problems, 
[6]; but these results use the numerical range in an essential way and seem to be restricted to 
the L2 case. In our problem (1.1), the damping operator is a multiple of B1/2 only if G = R

n. 
For other domains the square root case corresponds to the boundary conditions u = �u = 0 on 
∂G. In the square root case one can easily compute the resolvent of the associated generator in 
terms of the given operators and show its sectoriality, see [16] and the references therein, as well 
as [4,7,8,15,28] for more recent contributions. Moreover, Theorem 4.1 of [7] shows maximal 
regularity in the square root case if the elastic operator B has an ‘R-bounded H∞-calculus’ 
(which can be applied to our case if G = R

n). In these papers, inhomogeneous boundary data 
have not been considered.

In our work we establish a fairly complete well-posedness and regularity theory for (1.1) with 
inhomogeneous boundary conditions in an Lp context, where p ∈ (1, ∞). We have chosen the 
(arguably most basic) situation of a clamped plate (i.e., having Dirichlet and Neumann boundary 
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conditions) governed by the bi-Laplacian and the Laplacian. We believe that our methods also 
apply to analogous general systems with coefficients and other boundary conditions, provided 
that appropriate ellipticity and Lopatinski–Shapiro conditions hold, cf. e.g. [10]. For conciseness 
we do not investigate such generalizations here.

The problem (1.1) on a bounded domain is reduced to corresponding equations on the full and 
half-space by localization, transformation and perturbation, see Section 5. In our approach we 
use ideas from [10] and [11] where different, more standard parabolic systems have been treated. 
We rewrite (1.1) as a system of first order in time with the new state v = (u, ∂tu)�, which is 
governed by an operator matrix A(D) on Rn or Ap,0 on Rn+, see (2.2) and (4.1), respectively. 
This has the advantage that one works in the framework of well developed theories for operator 
semigroups, dynamical systems (cf. [5]) and control problems (cf. [23]). We further see that 
our problem leads to a mixed-order boundary value problem in the sense of Douglis–Nirenberg, 
see e.g. Proposition 3.4 and [9]. The full and half-space problems are then solved via Laplace 
transform in time and Fourier transform in space. To invert these transforms, we mainly use 
Michlin’s theorem and employ its operator-valued version due to Weis [31], for the inversion 
of the Laplace transform. This step requires recently developed methods from operator-valued 
harmonic analysis briefly indicated at the end of this section.

The full space problem is solved in Theorem 2.5. In Section 2 we however focus on a detailed 
study of regularity properties of the resolvent of A(D) needed later on, see Theorem 2.3. These 
results are based on an analysis of the symbols associated with (1.1) which play an essential 
role in our approach. We thus present detailed proofs although some of the results could also 
be deduced from e.g. [7] and [16]. In Section 3 we derive the crucial solution formula for the 
parameter-dependent elliptic boundary value problem (3.1) corresponding to (1.1) on Rn+ and 
establish the core estimates on the operators appearing there, see Theorem 3.5 and Corollary 3.6. 
These facts rely on a thorough investigation of the relevant symbols in Lemma 3.2. We further 
show in Proposition 3.4 that the operator matrix A(D) with Dirichlet–Neumann boundary con-
ditions is not sectorial in H 2

p(Rn+) × Lp(Rn+) even if we allow shifts. The resolvent still exists 
but it does not satisfy the sectoriality estimates. This is actually a general phenomenon of such 
elliptic systems if the state space allows traces relevant to the boundary conditions, see [9].

Theorem 4.4 then shows that the restriction Ap,0 of A(D) to H 2
p,0(R

n+) × Lp(Rn+) is sec-
torial after applying a shift. To derive the resolvent estimate, one has to exploit the additional 
zero boundary conditions of the right-hand side, which is done using the Hardy-type Lemma 4.1. 
Such techniques may also be applied to other Douglis–Nirenberg systems on state spaces in-
volving regularity in future work. In Theorems 4.5 and 4.6 we then deduce well-posedness and 
maximal regularity of (1.1) on Rn+ from the previous results combined with semigroup theory 
and operator-valued harmonic analysis. In the last section, we finally treat the case of bounded 
domains. Here we can omit many details which are similar to, e.g., [10] and [11]. We further use 
standard spectral theory of analytic semigroups to show that the semigroup solving (1.1) on a 
bounded domain is exponentially stable. (This fact was recently shown in the square root case 
[15].) We thus obtain maximal regularity on (0, ∞) and not just on bounded time intervals as for 
the full and half-space.

We will investigate maximal regularity in the sense of well-posedness in Lp–Lq -Sobolev 
spaces for Eq. (1.1). For this, we will make use of the concept of R-boundedness and vector-
valued Fourier multiplier theorems which has become kind of standard for Lp-theory of bound-
ary value problems. We give a short summary of these tools, for a more detailed exposition we 
refer to [10] and [22].
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Let X and Y be Banach spaces, and let L(X, Y) be the space of all bounded linear operators 
from X to Y . For an interval J = (0, T ) with T ∈ (0, ∞], we denote by Lq(J ; X) the X-valued 
Lq -space, by Hk

q (J ; X), k ∈ N0, the X-valued Sobolev space, and by Ws
q (J ; X) := Bs

qq(J ; X), 
s ∈ (0, ∞) \N, the X-valued Sobolev–Slobodeckii space (which coincides with the Besov space). 
Moreover, (·, ·)θ,q stands for the real interpolation functor. Throughout, we let p ∈ (1, ∞).

A family T ⊂ L(X, Y) of operators is R-bounded if there exists a constant C > 0 such that 
for all m ∈N, (Tk)k=1,...,m ⊂ T , and (xk)k=1,...,m ⊂ X we have

∥∥∥ m∑
k=1

rkTkxk

∥∥∥
Lp([0,1];Y)

≤ C

∥∥∥ m∑
k=1

rkxk

∥∥∥
Lp([0,1];X)

.

Here the Rademacher functions rk , k ∈ N, are given by rk: [0, 1] → {−1, 1}, t 
→ sign(sin(2kπt)). 
If two families Tj ⊂ L(Xj , Yj ), j ∈ {1, 2}, are R-bounded, then also T1 + T2 (if X1 = X2 and 
Y1 = Y2) and T2T1 (if Y1 = X2) are R-bounded.

Domains of closed operators are endowed with the graph norm. A densely defined, closed 
operator A: D(A) ⊂ X → X is said to have maximal Lq -regularity, 1 < q < ∞, in the interval 
J = (0, T ) if the Cauchy problem

∂tu(t) + Au(t) = f (t), t ∈ J,

u|t=0 = u0,

has, for every f ∈ Lq(J ; X) and u0 ∈ (X, D(A))1−1/q,q , a unique locally integrable solution 
u : J → D(A) such that ∂tu, Au ∈ Lq(J ; X) and

‖∂tu‖Lq(J ;X) + ‖Au‖Lq(J ;X) ≤ C
(‖f ‖Lq(J ;X) + ‖u0‖(X,D(A))1−1/q,q

)
with a constant C independent of f and u0. If J is bounded or A is invertible, this property is 
equivalent to the isomorphy(

∂t + A,γ0,t

)
:H 1

q (J ;X) ∩ Lq(J ;D(A)) → Lq(J ;X) × (X,D(A))1−1/q,q ,

where γ0,t : u 
→ u|t=0 denotes the time trace. It is known that −A generates an analytic 
C0-semigroup if it has maximal Lq -regularity. If this semigroup is exponentially stable, then 
one even obtains maximal Lq -regularity on (0, ∞).

In the following, we use the notation 
ϑ := {z ∈ C \ {0} : | arg z| < ϑ} for ϑ ∈ (0, π]. Recall 
that a closed operator A: D(A) ⊂ X → X is called (R)-sectorial if A has dense domain and dense 
range, and if there exists an angle ϑ ∈ (0, π) such that ρ(−A) ⊃ 
π−ϑ and the set {λ(λ +A)−1 :
λ ∈ 
π−ϑ } is (R)-bounded. In this case, the angle of (R)-boundedness is defined as the infimum 
of all ϑ for which this holds.

A Banach space X is called of class HT if the vector-valued Hilbert transform is continuous in 
Lq((0, ∞); X) for some (and then any) q ∈ (1, ∞). Sobolev–Slobodeckii spaces with p ∈ (1, ∞)

are of class HT, as well as their X-valued analogues if X is of class HT. It was shown by Weis 
in [31] that a sectorial operator in a Banach space of class HT has maximal Lq -regularity for all 
q ∈ (1, ∞) if and only if the set {λ(λ + A)−1 : Reλ ≥ 0, λ �= 0} is R-bounded.
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2. The full space case

In this section we solve (1.1) in the whole space G =R
n (omitting the boundary conditions). 

Let us remark that in this case (1.1) can be treated by an operator-theoretic approach as it can be 
written in the form

∂2
t u + ρB1/2∂tu + Bu = f, t ∈ (0,∞),

u|t=0 = ϕ0,

∂tu|t=0 = ϕ1 (2.1)

with the operator B: D(B) ⊂ Lp(Rn) → Lp(Rn) being defined by D(B) := H 4
p(Rn) and Bu :=

(−�)2u. Therefore, (2.1) is related to the quadratic operator pencil V : H 4
p(Rn) → Lp(Rn),

V (λ) := λ2 + λρB1/2 + B = (α+λ + B1/2)(α−λ + B1/2),

where

α± =
⎧⎨⎩

ρ
2 ±

√
ρ2

4 − 1, ρ ≥ 2,

ρ
2 ± i

√
1 − ρ2

4 , 0 < ρ < 2.

Defining the angle ϑ = ϑ(ρ) by

ϑ(ρ) :=
{

arctan 2
ρ

√
1 − ρ2

4 , 0 < ρ < 2,

0, 2 ≤ ρ < ∞,

we can write α± = e±iϑ for ρ ≤ 2 and α± > 0 as ρ ≥ 2. Note that argα± = ±ϑ(ρ) and ϑ(ρ) ↗
π
2 for ρ ↘ 0.

By the theory of quadratic operator pencils and second-order Cauchy problems, we can invert 
the operator V (λ) and show maximal Lp-regularity, see Theorem 3.4 of [16] and Theorem 4.1 
of [7], as well as [4] and [28]. However, a more detailed investigation of the related first-order 
system will be useful for the analysis of the half-space. To this aim, we set v = (u, ∂tu)� and 
re-write (1.1) with G =R

n as

∂tv + A(D)v =
(

0

f

)
, (t, x) ∈ (0,∞) ×R

n,

v|t=0 =
(

ϕ0

ϕ1

)
, x ∈R

n,

with A(D) := F−1A(ξ)F , where F denotes the Fourier transform in Rn and the matrix-valued 
symbol A(ξ) is given by

A(ξ) :=
(

0 −1
|ξ |4 ρ|ξ |2

)
.
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Note that the Fourier transform is defined by

(Fφ)(ξ) := 1

(2π)n/2

∫
Rn

e−ixξ φ(x)dx, ξ ∈R
n,

for Schwartz functions φ ∈ S (Rn) and extended by duality to tempered distributions. Here and 
in the following, we use the standard multi-index notation and put D = −i∇ = −i(∂1, . . . , ∂n)

�. 
We also set

A(ξ,λ) := λ + A(ξ) =
(

λ −1
|ξ |4 λ + ρ|ξ |2

)
.

We thus have

A(D) =
(

0 −I

(−�)2 −ρ�

)
and A(D,λ) =

(
λ −I

(−�)2 λ − ρ�

)
. (2.2)

Employing the spaces

E := H 2
p(Rn) × Lp(Rn),

F := H 4
p(Rn) × H 2

p(Rn),

we introduce the unbounded operator Ap: D(Ap) ⊂ E → E by D(Ap) := F and Apu := A(D)u. 
Note that for the weight matrix

S1(ξ) :=
(

1 + |ξ |2 0
0 1

)
the operator S1(D) := F−1S1(ξ)F defines an isomorphism of E onto Lp(Rn; C2), and we 
thus have the equivalence of norms ‖f ‖E ∼= ‖S1(D)f ‖Lp . Setting S2(ξ) := (1 + |ξ |2)S1(ξ), one 
obtains S2(D) ∈ LIsom(F, Lp(Rn; C2)) and ‖u‖F ∼= ‖S2(D)u‖Lp . Below we will use Michlin’s 
theorem in the following variant.

Lemma 2.1. Let b: (Rn × 
π−ϑ−ε) \ {0} → C, (ξ, λ) 
→ b(ξ, λ), be infinitely smooth and ho-
mogeneous in (ξ, λ1/2) of degree 0. We then have ‖λγ ∂

γ
λ F−1b(·, λ)F‖L(Lp(Rn)) ≤ C with a 

constant C not depending on λ. Moreover, the family of operators

B := {
λγ ∂

γ
λ F−1b(·, λ)F : λ ∈ 
π−ϑ−ε

}⊂ L(Lp(Rn))

is even R-bounded. These facts apply to symbols of the form

λ(s−|α|)/2ξα

(λ + |ξ |2)s/2

with s ∈N and |α| ∈ {0, . . . , s}.
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Proof. By the assumption, the function given by ξβ∂
β
ξ λγ ∂

γ
λ b is again smooth and homogeneous 

of degree 0, and hence it is uniformly bounded for (ξ, λ) ∈ (Rn ×
π−ϑ−ε) \{0}, for each β ∈N
n
0

and γ ∈ N
2
0 (where we identify C with R2). Michlin’s theorem then implies the first assertion. 

See e.g. Theorem 5.2.7 of [18] and the remarks preceding it. In this situation Corollary 3.3 in 
[17] shows the R-boundedness of B. �

We first show that Ap + λ is invertible for all λ in the above setting, but that Ap fails to be 
sectorial. Later we will see that Ap + λ0 is R-sectorial for every positive shift λ0. Recall the 
definition of sectoriality given at the end of the introduction.

Proposition 2.2. a) For ϑ = ϑ(ρ) and all λ ∈ 
π−ϑ , the operator Ap + λ : F → E is invertible.
b) The operator Ap is not sectorial in E for any angle and, consequently, −Ap does not 

generate a bounded C0-semigroup on E.

Proof. a) Due to the definition of the spaces, the operator Ap + λ belongs to L(F, E) for every 
λ ∈ C. Let λ ∈ 
π−ϑ . From the identity

detA(ξ,λ) = λ2 + λρ|ξ |2 + |ξ |4 = (α+λ + |ξ |2)(α−λ + |ξ |2)

and α±λ ∈ 
π , we deduce that A(ξ, λ) is invertible with inverse

A(ξ,λ)−1 = 1

(α+λ + |ξ |2)(α−λ + |ξ |2)
(

λ + ρ|ξ |2 1
−|ξ |4 λ

)
. (2.3)

To show that (Ap + λ)−1 exists in L(E, F), we have to establish M(D, λ) ∈ L(Lp(Rn; C2)) for 
the matrix-valued multiplier symbol

M(ξ,λ) := S2(ξ)A(ξ,λ)−1S1(ξ)−1.

Direct calculations lead to

M(ξ,λ) = 1

detA(ξ,λ)
S2(ξ)

(
λ + ρ|ξ |2 1

−|ξ |4 λ

)
S1(ξ)−1

= 1

(α+λ + |ξ |2)(α−λ + |ξ |2)
(

(1 + |ξ |2)(λ + ρ|ξ |2) (1 + |ξ |2)2

−|ξ |4 λ(1 + |ξ |2)
)

.

For every fixed λ ∈ 
π−ϑ , each of the terms

1 + |ξ |2
α±λ + |ξ |2 ,

λ

α±λ + |ξ |2 , and
|ξ |2

α±λ + |ξ |2

can be estimated by a constant depending only on λ and ρ. Similarly, the k-th derivatives in ξ
of each term are bounded by a constant times |ξ |−k , where the constants depend on λ, ρ and k. 
Michlin’s theorem (see e.g. Theorem 5.2.7 of [18]) then implies M(D, λ) ∈ L(Lp(Rn; C2)). 
Clearly, M(D, λ) is the inverse of S1(D)A(D, λ)S2(D)−1 in L(Lp(Rn; C2)), and thus asser-
tion a) holds.
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b) Assume that Ap is sectorial in E of some angle, i.e., ‖λ(Ap + λ)−1‖L(E) ≤ C for all λ ∈
(0, ∞) with some constant C independent of λ. Similarly to a), this property is equivalent to the 
uniform boundedness of the operator M0(D, λ) ∈ L(Lp(Rn; C2)) with the symbol

M0(ξ, λ) := λS1(ξ)A(ξ,λ)−1S1(ξ)−1

= 1

(α+λ + |ξ |2)(α−λ + |ξ |2)
(

λ(λ + ρ|ξ |2) λ(1 + |ξ |2)
− λ|ξ |4

1+|ξ |2 λ2

)
. (2.4)

Since every Lp-Fourier multiplier is an L∞-function (see e.g. Proposition 3.17 in [10]), we 
derive

∣∣∣ λ(1 + |ξ |2)
(α+λ + |ξ |2)(α−λ + |ξ |2)

∣∣∣≤ C

for all λ > 0 and ξ ∈ R
n, where the constant C does not depend on λ or ξ . However, setting 

λ = k−2 and |ξ | = k−1 with k ∈ N, the expression on the left-hand side equals k2+1
(α++1)(α−+1)

which tends to ∞ as k → ∞. �
Although Ap is not sectorial, certain λ-dependent estimates for the inverse operator are valid 

in each sector 
π−ϑ−ε with ε > 0. One could formulate the next result more concisely within 
homogeneous Sobolev spaces, but for simplicity we avoid this setting. We often denote the 
vector-valued space Lp(Rn; Cm) also by Lp(Rn), for any m ∈N.

Theorem 2.3. Let ε ∈ (0, π − ϑ), λ ∈ 
π−ϑ−ε , and h = (h1, h2)
� ∈ E. Set v := (v1, v2)

� :=
(Ap +λ)−1h. Let k ∈ {0, 1, 2}, α ∈ N

n
0 with |α| = k, γ ∈N

2
0, and δ ∈ N

n
0 with |δ| = 2. Then there 

is a constant Cε > 0 such that

∥∥∥λ1− k
2

(
DαDδv1

Dαv2

)∥∥∥
Lp(Rn)

≤ Cε

(‖�h1‖Lp(Rn) + ‖h2‖Lp(Rn)

)
, (2.5)

‖λ2− k
2 Dαv1‖Lp(Rn) ≤ Cε

(‖λh1‖Lp(Rn) + ‖h2‖Lp(Rn)

)
. (2.6)

Moreover, the families of operators

{
λγ ∂

γ
λ

[
λ1− k

2

(
DαDδ 0

0 Dα

)
A(D,λ)−1

]
: λ ∈ 
π−ϑ−ε

}
(2.7)

in L(E, Lp(Rn)) and

{
λγ ∂

γ
λ

[
λ1− k

2

(
DαDδ 0

0 Dα

)
A(D,λ)−1

(
(λ − �)−1 0

0 1

)]
: λ ∈ 
π−ϑ−ε

}
, (2.8)

{
λγ ∂

γ
λ

[
(λ − �)2− k

2 (Dα 0 )A(D,λ)−1
(

(λ − �)−1 0
0 1

)]
: λ ∈ 
π−ϑ−ε

}
(2.9)

in L(Lp(Rn)) are R-bounded.
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Proof. We proceed as in the proof of Proposition 2.2, where we replace the matrices Si(ξ) by

Ṡ1(ξ) :=
( |ξ |2 0

0 1

)
and Ṡ(2+k)/2(ξ) := |ξ |kṠ1(ξ)

and use the symbols

Ṁk(ξ, λ) := λ1− k
2 Ṡ(2+k)/2(ξ)A(ξ,λ)−1Ṡ1(ξ)−1

= λ1− k
2 |ξ |k

(α+λ + |ξ |2)(α−λ + |ξ |2)
(

λ + ρ |ξ |2 |ξ |2
−|ξ |2 λ

)
for k ∈ {0, 1, 2}, cf. (2.3). We fix ε ∈ (0, π − ϑ) and take λ ∈ 
π−ϑ−ε and ξ ∈ R

n. Observe that 
then the expressions

λ

α±λ + |ξ |2 and
|ξ |2

α±λ + |ξ |2

are uniformly bounded. Moreover, 2 |λ| 1
2 |ξ | ≤ |λ| +|ξ |2 and ∇|ξ | = ξ |ξ |−1. Therefore the terms 

ξβ∂
β
ξ λγ ∂

γ
λ Ṁk(ξ, λ) are bounded by a constant depending on |α|, |γ | and ε, but not on λ ∈


π−ϑ−ε and ξ ∈ Rn. A result by Girardi and Weis (Corollary 3.3 in [17]) now says that the 
family of operators

{λγ ∂
γ
λ Ṁk(D,λ) : λ ∈ 
π−ϑ−ε} ⊂ L(Lp(Rn))

is R-bounded for each ε > 0. Since the symbols ξα |ξ |−|α| and |ξ |2(1 + |ξ |2)−1 also satisfy the 
assumptions of Michlin’s theorem, the estimate (2.5) and the assertion about (2.7) follow.

In the definition of Ṁk one can replace Ṡ1(ξ)−1 by the symbol(
(λ + |ξ |2)−1 0

0 1

)
and then establish the R-boundedness of the operator family (2.8) as above. By means of the 
symbols (

λ1−k/2ξα(λ + ρ|ξ |2)
(α+λ + |ξ |2)(α−λ + |ξ |2) ,

λ2−k/2ξα

(α+λ + |ξ |2)(α−λ + |ξ |2)

)
,

(λ + |ξ |2)2−k/2ξα

(α+λ + |ξ |2)(α−λ + |ξ |2)

(
λ + ρ|ξ |2
λ + |ξ |2 , 1

)
,

we finally derive (2.6) and the R-boundedness of (2.9) from (2.3) and Michlin’s theorem as 
before. �

Although the operator Ap is not sectorial, the above theorem contains precise resolvent esti-
mates. By the next result, the singularity for λ → 0 disappears if we consider the shifted operator 
Ap + λ0 with λ0 > 0.
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Proposition 2.4. For every λ0 > 0, the operator Ap + λ0 is R-sectorial with R-angle ϑ(ρ).

Proof. As in the proof of Proposition 2.2b), we have to consider M0(ξ, λ) from (2.4) with ξ ∈R
n

and λ ∈ λ0 + 
π−ϑ−ε for fixed λ0 > 0 and ε ∈ (0, π − ϑ). However, as α±λ cannot approach 
zero, now the term

λ(1 + |ξ |2)
(α+λ + |ξ |2)(α−λ + |ξ |2)

is uniformly bounded for λ ∈ λ0 + 
π−ϑ−ε . The same holds for all other terms of M0(ξ, λ)

and for ξβ∂
β
ξ M0(ξ, λ) with β ∈ N

n
0. Using Corollary 3.3 in [17], we deduce that Ap + λ0 is 

R-sectorial in E. �
Proposition 2.4 allows us to solve (1.1) in optimal regularity. Part b) of the next result would 

also follow from Theorems 2.1 and 4.1 of [7].

Theorem 2.5. a) The operator −Ap generates an analytic C0-semigroup on E and has maximal 
Lq -regularity on bounded time intervals for every q ∈ (1, ∞).

b) Let f ∈ Lp((0, T ); Lp(Rn)) =: E for some T > 0, ϕ0 ∈ W
4−2/p
p (Rn) and ϕ1 ∈ W

2−2/p
p (Rn).

Then there is a unique solution

u ∈ H 2
p((0, T );Lp(Rn)) ∩ Lp((0, T );H 4

p(Rn)) =: F

of (1.1) on G =R
n, and there is a constant Cp(T ) > 0 such that

‖u‖F ≤ Cp(T )
(‖f ‖E + ‖ϕ0‖W

4−2/p
p (Rn)

+ ‖ϕ1‖W
2−2/p
p (Rn)

)
.

c) Let f = 0, ϕ0 ∈ H 2
p(Rn) and ϕ1 ∈ Lp(Rn). Then there exists a unique solution u of (1.1)

on G =R
n with

∂2
t u, ∂t∇2u, ∇4u ∈ C([ε,∞),Lp(Rn))

for each ε > 0 and

∂tu, ∇2u ∈ C([0,∞),Lp(Rn)).

If ϕ0 ∈ H 4
p(Rn) and ϕ1 ∈ H 2

p(Rn), we can take ε = 0.

Proof. Assertion a) follows from Proposition 2.4, Theorem 4.2 in [31] and rescaling, since we 
have ϑ(ρ) < π

2 . In the context of part b) we thus obtain a unique solution v = (v1, v2)
� ∈

H 1
p((0, T ); E) ∩ Lp((0, T ); F) =: X of the first-order problem

∂tv + A(D)v = (0, f )�, t > 0,

v(0) = (ϕ0, ϕ1)
�. (2.10)
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Moreover, ‖v‖X ≤ Cp(T ) (‖f ‖E(T ) + ‖(ϕ0, ϕ1)‖W
4−2/p
p (Rn)×W

2−2/p
p (Rn)

) for some constant 

Cp(T ) > 0. (See e.g. Theorems 1.14.5 and 2.4.2/2 in [30] for the relevant properties of real 
interpolation spaces.) We set u := v1. The first component of (2.10) then yields ∂tu = v2 which 
easily implies that u belongs to F , solves (1.1) and satisfies the estimate in b). Conversely, if 
u ∈ F solves (1.1), then v := (u, ∂tu)� belongs to H 1

p((0, T ); E) ∩ Lp((0, T ); F) and fulfills 
(2.10). We recall that F ↪→ H 1

p(J ; H 2
p(Rn)). (This fact can be found, e.g., in Lemma 4.3 of 

[12].) Hence, assertion b) holds. Part c) can similarly be shown using that −Ap generates an 
analytic C0-semigroup on E. �
3. The stationary problem in the half-space case

In this section we treat the model problem in the half-space Rn+. We start with a homoge-
neous right-hand side and inhomogeneous boundary conditions. We thus study the parameter-
dependent boundary value problem

A(D,λ)v = 0 in R
n+,

v1 = g0 on R
n−1,

−∂nv1 = g1 on R
n−1, (3.1)

for λ ∈ 
π−ϑ and given functions g0 and g1 on Rn−1, say in the Schwartz class.
Following a standard approach in parameter-elliptic theory, we apply the partial Fourier trans-

form F ′ in the tangential variables x′ := (x1, . . . , xn−1)
�. We set w(xn) := w(ξ ′, xn, λ) :=

(F ′v)(ξ ′, xn, λ) and

A(ξ ′,Dn,λ) =
(

λ −1
(|ξ ′|2 − ∂2

n)2 λ + ρ(|ξ ′|2 − ∂2
n)

)
.

Problem (3.1) then leads to the family of ordinary differential equations

A(ξ ′,Dn,λ)w(xn) = 0, xn > 0, (3.2)

w1(0) = (F ′g0)(ξ
′), (3.3)

−∂nw1(0) = (F ′g1)(ξ
′), (3.4)

on the half-line R+, where ξ ′ ∈R
n−1. Eq. (3.2) gives w2 = λw1 for the solution w1 of

λ2w1(xn) + λρ(|ξ ′|2 − ∂2
n)w1(xn) + (|ξ ′|2 − ∂2

n)2w1(xn) = 0, xn > 0. (3.5)

To solve this equation, we consider its characteristic polynomial

P(τ) := λ2 + λρ(|ξ ′|2 − τ 2) + (|ξ ′|2 − τ 2)2.

Straightforward calculations show that the roots of this polynomial are given by τ =
±√|ξ ′|2 + α±λ. We know from the beginning of Section 2 that argα± = ±ϑ , and hence 
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|ξ ′|2 + α±λ /∈ (−∞, 0) for λ ∈ 
π−ϑ . The above square root is thus well-defined. The roots 
with positive real part are given by

τ1 = τ1(ξ
′, λ) :=

√
|ξ ′|2 + α+λ and τ2 = τ2(ξ

′, λ) :=
√

|ξ ′|2 + α−λ.

We have τ1 �= τ2 for ρ �= 2, while in the case ρ = 2 the root τ1 = τ2 has multiplicity 2. For fixed 
ε > 0, we obtain Re τj ≥ C|τj | and

C(|ξ ′|2 + |λ|)1/2 ≤ |τj (ξ
′, λ)| ≤ C′(|ξ ′|2 + |λ|)1/2 (3.6)

for all ξ ′ ∈ R
n−1 and λ ∈ 
π−ϑ−ε . Our arguments below also involve the points τ(r, ξ ′, λ) =

τ(r) := τ1 + r(τ2 − τ1) ∈ 
(π−ε)/2, r ∈ [0, 1], on the straight line between τ1 and τ2, which also 
satisfy

C(|ξ ′|2 + |λ|)1/2 ≤ |τ(r, ξ ′, λ)| ≤ C′(|ξ ′|2 + |λ|)1/2 (3.7)

for all r ∈ [0, 1], ξ ′ ∈ R
n−1, and λ ∈ 
π−ϑ−ε . Here, the upper inequality directly follows from 

(3.6). For the lower one, the above estimates yield

|τ(r)| ≥ Re τ(r) = (1 − r)Re τ1 + r Re τ2 ≥ C ((1 − r) |τ1| + r |τ2|)
≥ C(|ξ ′|2 + |λ|)1/2.

Here and below, C, C′, . . . stand for generic constants which may be different in each appearance 
and which are independent of ξ ′, λ, and yn (but which may depend on ε and ρ).

Lemma 3.1. Let ξ ′ ∈ R
n−1 and λ ∈ 
π−ϑ . We define the fundamental solutions ω(i) =

(ω
(i)
j (ξ ′, ·, λ))j=1,2: (0, ∞) → C

2 for i ∈ {0, 1} by

ω
(0)
1 (ξ ′, xn, λ) = 1

τ1−τ2
(−τ2e

−τ1xn + τ1e
−τ2xn),

ω
(1)
1 (ξ ′, xn, λ) = 1

τ1−τ2
(−e−τ1xn + e−τ2xn),

ω
(i)
2 = λω

(i)
1

for ρ �= 2. For ρ = 2 we set

ω
(0)
1 (ξ ′, xn, λ) = (1 + τxn)e

−τxn ,

ω
(1)
1 (ξ ′, xn, λ) = xne

−τxn ,

ω
(i)
2 = λω

(i)
1 ,

where τ := τ1 = τ2. Then ω(i) is a solution of (3.2) with the initial values

ω
(0)

(0) = 1, ∂nω
(0)

(0) = 0
1 1
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and

ω
(1)
1 (0) = 0, ∂nω

(1)
1 (0) = 1,

respectively. In particular, {ω(0), ω(1)} is a basis of the space of all stable solutions of (3.2).

Proof. We first consider the case ρ �= 2. Then every stable solution of (3.2) has the form ω(xn) =
(ω1(xn), ω2(xn))

� with ω2(xn) = λω1(xn) and ω1(xn) = c1e
−τ1xn + c2e

−τ2xn . The initial values 
are given by

ω(0) = c1 + c2 and (∂nω)(0) = −τ1c1 − τ2c2.

The formulas for the fundamental solutions now follow directly from the initial conditions.
Similarly, in the case ρ = 2, we have a double root τ = τ1 = τ2 = √|ξ ′|2 + λ, and every 

stable solution is of the form ω1(xn) = (c1 + xnc2)e
−τxn . The initial conditions ω1(0) = c1 and 

(∂nω1)(0) = −τc1 + c2 then yield the asserted expression for the fundamental solutions. �
The following technical result will be the basis for the a priori estimate of the solutions of the 

half-space problems.

Lemma 3.2. a) For fixed ε > 0, k ∈ N and � ∈ Z, we define the function fk,�: Rn−1 × (0, ∞) ×

π−ϑ−ε → C by

fk,�(ξ
′, xn, λ) :=

{
xk
n

τ1−τ2
(τ �

1 e−τ1xn − τ �
2 e−τ2xn), ρ �= 2,

xk+1
n τ �e−τxn , ρ = 2 (with τ = τ1 = τ2).

Then for all γ ∈N
2
0 and β ′ ∈ N

n−1
0 we obtain∣∣∣λγ ∂

γ
λ (ξ ′)β ′

∂
β ′
ξ ′ fk,�(ξ

′, xn, λ)

∣∣∣≤ C
(|ξ ′|2 + |λ|)(�−k−1)/2

.

b) Let ω(i), i ∈ {0, 1}, be the fundamental solutions from Lemma 3.1. Further, let ε > 0, k ∈
{0, 1, 2, 3, 4} and α = (α′, αn) ∈ N

n
0 with |α| = k. Then for all γ ∈ N

2
0, β ′ ∈ N

n−1
0 , xn > 0, λ ∈


π−ϑ−ε , m ∈ N0, and ξ ′ ∈ R
n−1 the inequality∣∣∣λγ ∂

γ
λ (ξ ′)β ′

∂
β ′
ξ ′
[
λ2− k

2 (ξ ′)α′
xm+1
n ∂

αn+j
n ω

(i)
1 (ξ ′, xn, λ)(λ + |ξ ′|2)(i−j+m−3)/2

]∣∣∣≤ C

holds for j ∈ {0, 1}.

Proof. a) We only consider ρ �= 2, the case ρ = 2 is treated in the same way (it is actually a bit 
simpler). We define

ϕ:
(π−ε)/2 →C; τ 
→ xk
nτ �e−τxn .

Recall that τ(r) = τ1 + r(τ2 −τ1) ∈ 
(π−ε)/2 for r ∈ [0, 1]. We start with the case |γ | = |β ′| = 0. 
Using the elementary estimate |(τxn)

me−τxn | ≤ C for τ ∈ 
(π−ε)/2 and xn > 0, we obtain
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|fk,�(ξ
′, xn, λ)| =

∣∣∣ϕ(τ1) − ϕ(τ2)

τ1 − τ2

∣∣∣= ∣∣∣ 1∫
0

ϕ′(τ1 + r(τ2 − τ1)) dr

∣∣∣
≤ C sup

r∈[0,1]

[
|(xnτ(r))ke−τ(r)xn | + |(xnτ(r))k+1e−τ(r)xn |

]
|τ(r)|�−k−1

≤ C sup
r∈[0,1]

|τ(r)|�−k−1 ≤ C(|ξ ′|2 + |λ|)(�−k−1)/2.

In the last step we employed inequality (3.7). The statement in the case β ′ �= 0 and γ = 0 follows 
iteratively from the recursion formula

∂ξj
fk,� = ξj

( fk,�

τ1τ2
+ �fk,�−2 − fk+1,�−1

)
.

This formula can directly be checked observing that ∂ξj
τ = ξj

τ
for τ = τ1, τ2.

For the λ-derivatives we note that ∂λ1τ = α±
2τ

and ∂λ2τ = iα±
2τ

. We compute

∂λ1fk,� = ∂λ1

1∫
0

ϕ′(τ1 + r(τ2 − τ1)) dr

=
1∫

0

ϕ′′(τ1 + r(τ2 − τ1))
( α+

2τ1
+ rα−

2τ2
− rα+

2τ1

)
dr.

We set σ = (|ξ ′|2 + |λ|)1/2. Estimate (3.7) yields

|λ1∂λ1fk,�| ≤ C
|λ1|
σ

sup
0≤r≤1

2∑
j=0

|yk+j
n τ (r)�+j−2e−τ(r)yn | ≤ Cσ sup

0≤r≤1
|τ(r)|�−k−2

≤ C(|ξ ′|2 + |λ|)(�−k−1)/2.

The λ2-derivative is treated in the same way so that we have shown a) for |γ | = 1 and β ′ = 0. 
The remaining cases can now be established by recursion.

b) For ρ �= 2 and i = 0, we write

ω
(0)
1 (ξ ′, xn, λ) = − τ2

τ1 − τ2
e−τ1xn + τ1

τ1 − τ2
e−τ2xn

= (1 − τ1
τ1−τ2

)e−τ1xn + (1 + τ2
τ1−τ2

)e−τ2xn

= (e−τ1xn + e−τ2xn) − f0,1(ξ
′, xn, λ).

It follows
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xm+1
n ∂

αn+j
n ω

(0)
1 (ξ ′, xn, λ) = (−1)αn+j

(
xm+1
n τ

αn+j

1 e−τ1xn

+ xm+1
n τ

αn+j

2 e−τ2xn − fm+1,αn+j+1(ξ
′, xn, λ)

)
. (3.8)

The first term on the right hand side can be estimated by

∣∣xm+1
n τ

αn+j

1 e−τ1xn
∣∣= |τ1|αn+j−m−1

∣∣(τ1xn)
m+1e−τ1xn

∣∣
≤ C(|ξ ′|2 + |λ|)(αn+j−m−1)/2.

Derivatives with respect to ξ ′ and λ can be handled as in a), and we infer∣∣∣λγ ∂
γ
λ (ξ ′)β ′

∂
β ′
ξ ′
[
xm+1
n τ

αn+j

1 e−τ1xn
]∣∣∣≤ C(|ξ ′|2 + |λ|)(αn+j−m−1)/2. (3.9)

The same inequality holds for the second term in (3.8), and due to part a) also for the third one.
For ρ �= 2 and i = 1, we have ω(1)

1 (ξ ′, xn, λ) = f0,0(ξ
′, xn, λ) and hence

xm+1
n ∂

αn+j
n ω

(1)
1 (ξ ′, xn, λ) = (−1)αn+j fm+1,αn+j (ξ

′, xn, λ).

Assertion a) then implies∣∣∣λγ ∂
γ
λ (ξ ′)β ′

∂
β ′
ξ ′
[
xm+1
n ∂

αn+j
n ω

(1)
1 (ξ ′, xn, λ)

]∣∣∣≤ C(|ξ ′|2 + |λ|)(αn+j−m−2)/2.

In the case ρ = 2 (where τ1 = τ2 = τ ) the situation is similar. For ω
(0)
1 (ξ ′, xn, λ) =

(1 + τxn)e
−τxn , Leibniz’ formula yields

∣∣xm+1
n ∂

αn+j
n ω

(0)
1 (ξ ′, xn, λ)

∣∣= ∣∣xm+1
n ταn+j (1 − αn − j + τxn)e

−τxn
∣∣

≤ C(|ξ ′|2 + |λ|)(αn+j−m−1)/2.

The derivatives with respect to ξ ′ and λ can then be controlled as in (3.9). In the same way, we 
estimate ω(1)

1 (ξ ′, xn, λ) = xne
−τxn . In all cases, we have established∣∣∣λγ ∂

γ
λ (ξ ′)β ′

∂
β ′
ξ ′
[
xm+1
n ∂

αn+j
n ω

(i)
1 (ξ ′, xn, λ)

]∣∣∣≤ C(|ξ ′|2 + |λ|)(αn+j−i−m−1)/2.

The statement in b) now follows from Leibniz’ rule and the observation

∣∣λγ ∂
γ
λ (ξ ′)β ′

∂
β ′
ξ ′ [(ξ ′)α′

λ2−k/2]∣∣≤ C(|ξ ′|2 + |λ|)(|α′|+4−k)/2. �
In the next result, we introduce the solution operators L(i)

j (λ) for the parameter-dependent 
boundary value problem (3.1) and establish the crucial a priori bounds for these operators. For 
s ≥ 0 and λ ∈ C we will use the parameter-dependent shift operators (λ − �′)s = (F ′)−1(λ +
|ξ ′|2)sF ′ on Rn−1 and (λ − �)s = (F )−1(λ + |ξ |2)sF on Rn.
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Proposition 3.3. For i, j ∈ {0, 1} and λ ∈ 
π−ϑ , we define the operator L(i)
j (λ) by

(L
(i)
j (λ)φ)(·, xn) := −

∞∫
0

(F ′)−1∂
j
nω

(i)
1 (·, xn + yn,λ)(F ′φ)(·, yn)dyn, xn > 0,

for all functions φ : Rn+ → C which are restrictions of Schwartz functions on Rn. Here the ‘dot’ 
refers to x′ or ξ ′ in Rn−1. Then the following assertions hold.

a) Set v(i)
1 = L

(i)
0 (λ)∂nφ + L

(i)
1 (λ)φ and v(i) = (v

(i)
1 , λv

(i)
1 )� for i ∈ {0, 1}. Then v(i)

1 (·, xn) =
(F ′)−1ω

(i)
1 (·, xn, λ)(F ′φ)(·, 0) for xn > 0 and

A(D,λ)v(i) = 0 in R
n+, i = 0,1,

v
(0)
1 (·,0) = φ(·,0), ∂nv

(0)
1 (·,0) = 0 on R

n−1,

v
(1)
1 (·,0) = 0, ∂nv

(1)
1 (·,0) = φ(·,0) on R

n−1.

b) Let ε ∈ (0, π − ϑ), γ ∈ N
2
0, k ∈ {0, 1, 2, 3, 4} and α ∈ N

n
0 with |α| = k. Then the set of 

operators in L(Lp(Rn+))

{
λγ ∂

γ
λ

[
λ2−k/2DαL

(i)
j (λ)(λ − �′)(i−j−3)/2] : λ ∈ 
π−ϑ−ε,

}
is (well-defined and) R-bounded.

Proof. a) Integrating by parts in the integral defining L(i)
j (λ), we obtain the first assertion. The 

properties of ω(i)
1 shown in Lemma 3.1 then yield the second part of assertion a).

b) Let xn, yn > 0, λ ∈ 
π−ϑ−ε , ξ ′ ∈ R
n−1, γ ∈ N

2
0, k ∈ N0, α ∈ N

n
0 and β ′ ∈ N

n−1
0 . 

Lemma 3.2b) yields with m = 0

∣∣λγ ∂
γ
λ (ξ ′)β ′

∂
β ′
ξ ′
[
λ2− k

2 (ξ ′)α′
∂

αn+j
n ω

(i)
1 (ξ ′, xn + yn,λ)(λ + |ξ ′|2)(i−j−3)/2]∣∣≤ C

xn + yn

,

where C does not depend on xn, yn, λ or ξ ′. The Michlin-type Corollary 3.2 in [17] thus shows 
that the family of operators

{
(F ′)−1λγ ∂

γ
λ

[
λ2− k

2 (ξ ′)α′
∂

αn+j
n ω

(i)
1 (ξ ′, xn + yn,λ)(λ + |ξ ′|2)(i−j−3)/2]F ′ :

λ ∈ 
π−ϑ−ε

}⊂ L(Lp(Rn−1))

is R-bounded with R-bound not greater than C
xn+yn

, for all xn, yn > 0. As the scalar integral 

operator in Lp(R+) with kernel 1
xn+yn

is bounded, we can apply Proposition 4.12 in [10] to 
derive the statement. �

Based on the above result, we now investigate the inhomogeneous parameter-dependent 
boundary value problem
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A(D,λ)v = h in R
n+,

v1 = g0 on R
n−1,

−∂nv1 = g1 on R
n−1, (3.10)

for λ ∈ 
π−ϑ and given functions h = (h1, h2)
� in Rn+ and g0, g1 on Rn−1. Due to the structure 

of the matrix A(D), the natural choice of spaces is

E+ := H 2
p(Rn+) × Lp(Rn+),

F+ := H 4
p(Rn+) × H 2

p(Rn+),

G := W
4−1/p
p (Rn−1) × W

3−1/p
p (Rn−1).

We remark that (3.10) is a mixed-order boundary value problem in the sense of Douglis–
Nirenberg, see e.g. [1]. The boundary conditions can be written in matrix form as B(D)v = g

where

B(D) := γ0

(
1 0

−∂n 0

)
.

Here γ0: v 
→ v|Rn−1 denotes the trace onto the boundary Rn−1 of Rn+. By standard trace results 
(see e.g. Theorem 2.9.1 in [30]), the operator (A(D, λ), B(D)): F+ → E+ × G is continu-
ous. As usual, the Lp-realization Ap,+: D(Ap,+) ⊂ E+ → E+ of the boundary value problem 
(A(D), B(D)) is defined by

D(Ap,+) := {v ∈ F+ : B(D)v = 0} and Ap,+v := A(D)v.

Note that we can write the domain of this operator in the form D(Ap,+) = (H 4
p(Rn+) ∩

H 2
p,0(R

n+)) × H 2
p(Rn+), where for k ∈N we define

Hk
p,0(R

n+) := {u ∈ Hk
p(Rn+) : γ0u = γ0∂nu = · · · = γ0∂

k−1
n u = 0}.

Before stating precise a priori estimates for the solution, we note that λ0 +Ap,+ is not sectorial 
on E+ for any shift λ0 ≥ 0.

Proposition 3.4. For each λ0 ≥ 0, the operator Ap,+ + λ0 is not sectorial in E+ and, conse-
quently, does not generate a C0-semigroup.

Proof. The mixed-order system (A(D) + λ0, B(D)) fits into the framework of Section 3.2 of 
[9] with the Douglis–Nirenberg structure (s1, s2) = (0, 2), (m1, m2) = (2, 0), and (r1, r2) =
(−2, −1). By Theorem 3.8 in [9], for every h ∈ E+ and vλ ∈ D(Ap,+) with A(D, λ)vλ = h

for λ ∈ (0, ∞), the estimate supλ∈(0,∞) ‖λvλ‖E+ < ∞ implies γ0h1 = γ0∂nh1 = 0. Therefore, 
the desired resolvent estimate does not hold for h ∈E+ with B(D)h �= 0. �

The proof of the last result indicates that zero boundary conditions have to be included in the 
basic space E+. In Section 4 we will indeed obtain a sectorial operator in this way.
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To solve the inhomogeneous boundary value problem (3.10), we make use of restriction 
and extension operators. Let e0: Lp(Rn+) → Lp(Rn) denote the trivial extension by zero and 
r+: Lp(Rn) → Lp(Rn+) the restriction onto Rn+. Instead of the trivial extension e0, we will 
also consider a global coretraction e+ of r+ which satisfies e+ ∈ L(Hs

p(Rn+), Hs
p(Rn)) and 

r+e+ = idHs
p(Rn+) for all s ∈ N0 (see e.g. Section 4.4 of [3]). A parameter-dependent extension 

operator from Rn−1 to Rn+ is defined by

(Eλφ)(·, xn) := (F ′)−1 exp
(− (λ + |ξ ′|2)1/2xn

)
F ′φ (xn > 0).

This extension was studied in [2] and [19], for instance. In particular, Proposition 2.3 of [2] yields 
(after a minor modification) that Eλ belongs to L(W

k−1/p
p (Rn−1), Hk

p(Rn+)) and that γ0Eλ =
id

W
k−1/p
p (Rn−1)

for all k ∈N and λ ∈ 
π−ϑ . We further deduce that

∂nEλφ = −(λ − �′)1/2Eλφ, φ ∈ W
1−1/p
p (Rn−1). (3.11)

Theorem 3.5. For all λ ∈ 
π−ϑ , h ∈ E+ and g ∈ G, there exists a unique solution v ∈ F+
of (3.10). Moreover, this solution can be written in the form

v = R(λ)e+h + T (λ)Eλg, T (λ) = T (0)(λ)∂n + T (1)(λ)

with operators R(λ) and T (j)(λ), j = 0, 1, which have the following R-boundedness property: 
Let ε > 0. Then for all k ∈ {0, 1, 2}, |α| = k, |δ| = 2, and γ ∈N

2
0 the families of operators{

λγ ∂
γ
λ

[
λ1− k

2 Dα

(
Dδ 0
0 1

)
R(λ)

(
(λ − �)−1 0

0 1

)]
: λ ∈ 
π−ϑ−ε

}

in L(Lp(Rn), Lp(Rn+)) and{
λγ ∂

γ
λ

[
λ1− k

2 Dα

(
Dδ 0
0 1

)
T (j)(λ)

(
(λ − �′)(−j−3)/2 0

0 (λ − �′)(−j−2)/2

)]
: λ ∈ 
π−ϑ−ε

}

in L(Lp(Rn+)) are R-bounded.

Proof. (i) Let λ ∈ 
π−ϑ , h ∈ E+ and g ∈ G. We set v′ := r+(Ap + λ)−1e+h ∈ F+ (see Propo-
sition 2.2a)) and write v = v′ + v′′. Then v′′ has to solve the boundary value problem

A(D,λ)v′′ = 0 in R
n+,

B(D)v′′ = g − B(D)v′ on R
n−1. (3.12)

The function ̃g := (g̃0, ̃g1)
� := Eλg − ( v′

1
−∂nv′

1

)
is an extension of g − B(D)v′ to Rn+. By Propo-

sition 3.3, a solution of (3.12) is given by

v′′ = T (λ)g̃ :=
1∑

T (j)(λ)∂
1−j
n g̃ with T (j)(λ) :=

(
L

(0)
j (λ) −L

(1)
j (λ)

λL
(0)
j (λ) −λL

(1)
j (λ)

)
(3.13)
j=0
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We remark that the operators L(i)
j (λ) were defined in Proposition 3.3 for restrictions of Schwartz 

functions to Rn+, but Proposition 3.3b) shows that L(i)
j (λ)∂

1−j
n can continuously be extended to 

an operator in L(H 4−i
p (Rn+), H 4

p(Rn+)) for i, j ∈ {0, 1}. In the same proposition, the equalities 
A(D, λ)T (λ)g̃ = 0 and B(D)T (λ)g̃ = γ0g̃ were shown for restrictions of Schwartz functions, 
and by continuity this identities also hold for the extended operators. As a result, the function 
v := v′ + v′′ ∈ F+ solves (3.10).

If z ∈ F+ is another solution of (3.10), then ϕ := v − z ∈ F+ solves this problem with h = 0
and g = 0. In particular, ϕ1 belongs to H 2

p,0(R
n+) so that ϕ2 = λϕ1 ∈ H 2

p,0(R
n+). Therefore, 

e0ϕ is contained in H 2
p(Rn; C2) ⊂ E and satisfies A(D, λ)e0ϕ = 0. This means that �2e0ϕ1 =

(ρ� − λ)e0ϕ2 in Rn which yields e0ϕ1 ∈ H 4
p(Rn) and hence e0ϕ ∈ F. Proposition 2.2a) now 

implies e0ϕ = 0 and thus the uniqueness of the solution of (3.10).
(ii) In this part we fix ε > 0 and consider λ ∈ 
π−ϑ−ε . We have seen in part (i) of the proof 

that the unique solution v of (3.10) is given by v = R(λ)e+h + T (λ)Eλg where T (λ) is defined 
in (3.13) and

R(λ) := r+(Ap + λ)−1 − T (λ)

(
1 0

−∂n 0

)
r+(Ap + λ)−1. (3.14)

Let |α| = k ∈ {0, 1, 2}, |δ| = 2 and γ ∈N
2
0. By Theorem 2.3, the family{

λγ ∂
γ
λ

[
λ1−k/2Dα

(
Dδ 0
0 1

)
(Ap + λ)−1

(
(λ − �)−1 0

0 1

)]
: λ ∈ 
π−ϑ−ε

}

in L(Lp(Rn)) is R-bounded, i.e., the first term in (3.14) is R-bounded as asserted in the theorem. 
For the second term, we use (3.13) and write

T (λ)

(
1 0

−∂n 0

)
r+(Ap + λ)−1

=
1∑

j=0

(
L

(0)
j (λ) L

(1)
j (λ)

λL
(0)
j (λ) λL

(1)
j (λ)

)(
(λ − �′)(−j−3)/2 0

0 (λ − �′)(−j−2)/2

)

×
(

∂
1−j
n (λ − �′)(j+3)/2 0

∂
2−j
n (λ − �′)(j+2)/2 0

)
r+(Ap + λ)−1.

Let i, j ∈ {0, 1}, |α| = k ∈ {0, . . . , 4} and γ ∈ N
2
0. The desired statement about the R-bounded-

ness for the second term in (3.14) now follows from Leibniz’ rule, from the R-boundedness of 
the family {

λγ ∂
γ
λ

[
λ2−k/2DαL

(i)
j (λ)(λ − �′)(i−j−3)/2] : λ ∈ 
π−ϑ−ε

}
(3.15)

in L(Lp(Rn+)), see Proposition 3.3b), and from the R-boundedness of the family{
λγ ∂

γ
λ

[
( (λ − �)2−k/2Dα 0 ) (Ap + λ)−1

(
(λ − �)−1 0

0 1

)]
: λ ∈ 
π−ϑ−ε

}

in L(Lp(Rn)), see Theorem 2.3.
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The R-boundedness of the second operator family in the theorem is deduced from Proposi-
tion 3.3b) and (3.11) in the same way. �
Corollary 3.6. For each ε > 0 and λ0 > 0 there exists a constant C = C(ε, λ0) such that for all 
|α| = k ∈ {0, 1, 2}, |δ| = 2 and all λ ∈ λ0 + 
π−ϑ−ε the estimate

‖λ1−k/2Dαv‖E+ ≤ C
(
‖h‖E+ + ‖g‖G + |λ| ‖h1‖Lp(Rn+)

+ |λ|2− 1
p ‖g0‖Lp(Rn−1) + |λ| 3

2 − 1
p ‖g1‖Lp(Rn−1)

)
holds for all h = (h1, h2)

� ∈ E+ and g = (g0, g1)
� ∈G, where v is the unique solution of (3.10).

Proof. We use the parameter-dependent norms ‖ |φ‖ |s,p,Rn+ := ‖φ‖Hs
p(Rn+)+|λ|s/2‖φ‖Lp(Rn+), φ ∈

Hs
p(Rn+), for s ∈ [0, ∞) and its analogues in Rn and Rn−1. By Michlin’s theorem (see e.g. 

Theorem 5.2.7 of [18]) the norm ‖ |φ‖ |s,p,Rn is equivalent to ‖(λ − �)s/2φ‖Lp(Rn) where the 
constants of the equivalence may be chosen independent of λ ∈ λ0 + 
π−ϑ−ε .

Due to Theorem 3.5, the problem (3.10) has a solution v satisfying

‖λ1−k/2Dαv‖E+ ≤ C
(
‖(λ − �)e+h1‖Lp(Rn) + ‖e+h2‖Lp(Rn) + ‖h1‖H 2

p(Rn+)

+ ‖(λ − �′)2Eλg0‖Lp(Rn+) + ‖(λ − �′)3/2Eλg1‖Lp(Rn+)

)
≤ C

(
‖|h1‖|2,p,Rn+ + ‖h‖E+) + ‖|Eλg0‖|4,p,Rn+ + ‖|Eλg1‖|3,p,Rn+

)
.

(We also use the equation λv1 = v2 + h1 and the lower bound for |λ| in the shifted sector to 
deal with zero order part of the norm in E+.) Now the statement follows from the fact that Eλ

is continuous with respect to the parameter-dependent norms in the sense that ‖ |Eλφ‖ |s,p,Rn+ ≤
Cs‖ |φ‖ |s−1/p,p,Rn−1 for all λ ∈ 
π−ϑ−ε + λ0, s ∈ N and φ ∈ W

s−1/p
p (Rn−1), cf. Proposition 2.3 

of [2]. �
4. Sectoriality and maximal regularity of the evolution equation on the half-space

In this section we solve the inhomogeneous problem (1.1) on Rn+ in optimal regularity. As 
a first step we discuss the sectoriality of the operator matrix Ap governing the associated first 
order system.

We have seen in the previous section that the operator Ap,+ is not sectorial in the basic space 
E+. As indicated in Theorem 3.8 of [9], see the proof of Proposition 3.4, one has to include zero 
boundary conditions already in the basic spaces. We thus use the spaces

E0 := H 2
p,0(R

n+) × Lp(Rn+),

F0 := (
H 4(Rn ) ∩ H 2 (Rn )

)× H 2 (Rn ).
p + p,0 + p,0 +
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We will see below that it is advantageous to replace the 0-extension operator e0 from E0 to E by 
the odd extension es ∈ L(E0, E) which is defined by

(esf )(x) :=
{

f (x), if xn ≥ 0,

−f (x′,−xn), if xn < 0.

The Lp-realization Ap,0: D(Ap,0) ⊂ E0 → E0 of the boundary value problem (A(D), B(D)) in 
the space E0 is defined by

D(Ap,0) := F0 and Ap,0v := A(D)v. (4.1)

For the analysis of this operator, we start with a Hardy-type result.

Lemma 4.1. Let X be a Banach space and let M be the operator of multiplication with t , i.e., 
(Mf )(t) := tf (t) for functions f : (0, ∞) → X. For all f ∈ H 2

p,0((0, ∞); X) we then obtain 

M−2f ∈ Lp((0, ∞); X) and

‖M−2f ‖Lp((0,∞);X) ≤ C‖f ′′‖Lp((0,∞);X).

In particular, M−2 ∈ L(H 2
p,0((0, ∞); X), Lp((0, ∞); X)).

Proof. As f (0) = f ′(0) = 0, we can write f (t) = ∫ t

0

∫ s

0 f ′′(r)dr ds and compute

‖M−2f ‖Lp((0,∞);X) =
( ∞∫

0

t−2p‖f (t)‖p
Xdt

)1/p

≤
( ∞∫

0

(
t−2p

( t∫
0

s∫
0

‖f ′′(r)‖X dr ds
)p

dt
)1/p

≤
( ∞∫

0

( t∫
0

s∫
0

‖f ′′(r)‖X

dr

s

ds

t

)p

dt
)1/p

=
( ∞∫

0

( t∫
0

1∫
0

‖f ′′(ρs)‖X dρ
ds

t

)p

dt
)1/p

=
( ∞∫

0

( 1∫
0

1∫
0

‖f ′′(ρσ t)‖X dρ dσ
)p

dt
)1/p

,

where we substituted ρ = r/s and σ = s/t . With Minkowski’s inequality, we conclude

‖M−2f ‖Lp((0,∞);X) ≤
1∫ 1∫ ( ∞∫

‖f ′′(ρσ t)‖p
X dt

)1/p

dρ dσ
0 0 0
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=
1∫

0

1∫
0

( ∞∫
0

‖f ′′(τ )‖p
X dτ

)1/p dρ

ρ1/p

dσ

σ 1/p

=
( p

p − 1

)2‖f ′′‖Lp((0,∞);X). �

Remark 4.2. Let Mn denote the operator of multiplication with xn. Then for every f ∈ H 2
p,0(R

n+)

we have M−2
n f ∈ Lp(Rn+) by Lemma 4.1. This gives additional information on the Fourier trans-

form of esf because of ∂2
nF esM

−2
n f = −F esf . To see this equality, we may assume that 

f ∈ D(Rn+) by density, and write

∂2
ξn

∫
R

e−iξnxn
1

x2
n

(F ′esf )(ξ ′, xn)dxn = −
∫
R

e−iξnxn(F ′esf )(ξ ′, xn)dxn.

We exploit the above observation in the next lemma which will provide the main step of the 
proof of the following sectoriality result.

Lemma 4.3. Let ε ∈ (0, π − ϑ) and b: (Rn × 
π−ϑ−ε) \ {0} → C be infinitely smooth and 
homogeneous of degree 0 in (ξ, λ1/2). We set

b0(ξ, λ) := −(λ + |ξ ′|2)∂2
nb(ξ,λ),

b1(ξ, λ) := −2i(λ + |ξ ′|2)1/2∂nb(ξ,λ),

b2(ξ, λ) := b(ξ,λ)

for (ξ, λ) ∈ (Rn × 
π−ϑ−ε) \ {0}. We then obtain

r+F−1b(·, λ)F esf =
2∑

�=0

M�
n(λ − �′)−1+�/2r+F−1b�(·, λ)F esM

−2
n f

for all f ∈ H 2
p,0(R

n+) and

‖r+F−1b�(·, λ)F es‖L(Lp(Rn+)) ≤ C (� = 0,1,2).

Moreover, the operator families

{
λγ ∂

γ
λ r+F−1b�(·, λ)F es : λ ∈ 
π−ϑ−ε

}⊂ L(Lp(Rn+))

are R-bounded for every γ ∈N
2
0 and � = 0, 1, 2.

Proof. Set f [2] := M−2
n f ∈ Lp(Rn+) for f ∈ D(Rn+). Let xn > 0. Using Remark 4.2 and inte-

grating by parts, we deduce
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F ′[r+F−1b(·, λ)F esf
]
(·, xn)

= 1√
2π

∫
R

eixnξnb(·, ξn, λ)(F esf )(·, ξn) dξn

= − 1√
2π

∫
R

eixnξnb(·, ξn, λ)∂2
n(F esf

[2])(·, ξn) dξn

= − 1√
2π

∫
R

∂2
n

[
eixnξnb(·, ξn, λ)

]
(F esf

[2])(·, ξn) dξn

= − 1√
2π

∫
R

eixnξn

[
∂2
nb(·, ξn, λ) + 2ixn∂nb(·, ξn, λ)

− x2
nb(·, ξn, λ)

]
(F esf

[2])(·, ξn)dξn

=
2∑

�=0

x�
nF

′(λ − �′)−1+�/2[r+F−1b�(·, λ)F esf
[2]](·, xn).

By density the first assertion follows. As b is homogeneous of degree 0, the same holds for b�

with � = 0, 1, 2. Lemma 2.1 thus yields the remaining assertions. �
We now establish the sectoriality of the shifted operator matrix on E0 which governs the 

associated first order system.

Theorem 4.4. For every λ0 > 0, the operator Ap,0 + λ0 (given by (4.1)) is R-sectorial in E0
with R-angle ϑ(ρ).

Proof. Let h ∈ E0, ε ∈ (0, π − ϑ) and λ ∈ λ0 + 
π−ϑ−ε . As in part (i) of the proof of Theo-
rem 3.5, one sees that the equation A(D, λ)v = h with boundary condition B(D)v = 0 has the 
unique solution v given by

v = R(λ)esh = r+(Ap + λ)−1esh − T (λ)

(
1 0

−∂n 0

)
r+(Ap + λ)−1esh. (4.2)

To check the asserted R-bound, we can restrict ourselves to h belonging to the dense subset 
D(Rn+) of E0. As esh ∈ E, the function ̃v := (Ap +λ)−1esh belongs to F and solves the equation 
A(D, λ)̃v = esh in Rn. Since esh is odd, also the map x 
→ −ṽ(x′, −xn) satisfies this equation. 
Because of uniqueness, the function ̃v is odd, and we obtain γ0v

′ = 0 for v′ := r+ṽ. Therefore, 
we may assume that ̃g0 = 0 in (3.13) and replace the second term in (4.2) by

1∑
j=0

(
0 −L

(1)
j (λ)

0 −λL
(1)
j (λ)

)
∂

1−j
n

(
1 0

−∂n 0

)
r+(Ap + λ)−1esh

=
(

1

λ

) 1∑ 2∑
L

(1)
j (λ)∂

2−j
n r+F−1ã1k(·, λ)F eshk =: S1(λ)h1 + S2(λ)h2, (4.3)
j=0 k=1
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where we denote the first line of A(ξ, λ)−1 by (̃a11(ξ, λ), ̃a12(ξ, λ)), i.e.,

(̃
a11(ξ, λ), ã12(ξ, λ)

) :=
(

λ+ρ|ξ |2
(α+λ+|ξ |2)(α−λ+|ξ |2) ,

1
(α+λ+|ξ |2)(α−λ+|ξ |2)

)
,

see (2.3). Since F−1ã1k(·, λ)F eshk is a Schwartz function, we can write

L
(1)
j (λ)∂

2−j
n r+F−1ã1k(ξ, λ)F eshk

= L
(1)
j (λ)(λ − �′)1−k−j/2r+F−1(iξn)

2−j (λ + |ξ ′|2)k−1+j/2ã1k(ξ, λ)F eshk (4.4)

for j ∈ {0, 1} and k ∈ {1, 2}. The functions

gkj (ξ, λ) := (iξn)
2−j (λ + |ξ ′|2)k−1+j/2ã1k(ξ, λ)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(λ + ρ|ξ |2)(iξn)

2−j (λ + |ξ ′|2)j/2

(α+λ + |ξ |2)(α−λ + |ξ |2) if k = 1,

(iξn)
2−j (λ + |ξ ′|2)1+j/2

(α+λ + |ξ |2)(α−λ + |ξ |2) if k = 2,

are smooth and homogeneous of degree 0 in (ξ, λ1/2) and therefore satisfy Michlin’s condition. 
Due to Lemma 2.1, for k = 2 the set{

λγ ∂
γ
λ r+F−1g2j (·, λ)F es : λ ∈ 
π−ϑ−ε

}⊂ L(Lp(Rn+)) (4.5)

is R-bounded for j ∈ {0, 1} and γ ∈N
2
0.

As we will see below, in the case k = 1 we need a more refined representation formula which 
exploits that h1 ∈ H 2

p,0(R+) and not only that h1 ∈ H 2
p(R+). To this aim, we apply Lemma 4.3

and obtain as above that

L
(1)
j (λ)∂

2−j
n r+F−1ã11(·, λ)F esh1

= L
(1)
j (λ)(λ − �′)−j/2r+F−1g1j (·, λ)F esh1

=
2∑

�=0

L
(1)
j (λ)(λ − �′)−1+�/2−j/2M�

nr+F−1g1j�(·, λ)F esh
[2]
1 (4.6)

where h[2]
1 := M−2

n h1, the functions g1j� are given by

g1j�(ξ, λ) := (iξn)
2−j (λ + |ξ ′|2)j/2ã11�(ξ, λ),

and ̃a11� are defined as b� in Lemma 4.3 with b replaced by ̃a11. By homogeneity and Lemma 2.1, 
for the corresponding Fourier multipliers the set of operators{

λγ ∂
γ
λ r+F−1g1j�(·, λ)F es : λ ∈ 
π−ϑ−ε

}⊂ L(Lp(Rn+)) (4.7)

is R-bounded for � ∈ {0, 1, 2}, j ∈ {0, 1} and γ ∈ N
2.
0
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To prove the theorem, we have to estimate λv = λR(λ)esh in the space E0. For the first 
term in (4.2), the R-boundedness of {r+λ(Ap + λ)−1es : λ ∈ λ0 + 
π−ϑ−ε} in L(E0) follows 
directly from Proposition 2.4. To treat the second term in (4.2), we first use (4.3) and (4.4). For 
the summands with k = 2, Proposition 3.3 and (4.5) imply that {S2(λ) : λ ∈ λ0 + 
π−ϑ−ε} is 
R-bounded in L(Lp(Rn+), E0).

It remains to consider the summands with k = 1 in (4.3). In view of the definition of the space 
E0, the representation (4.6) and the R-bound (4.7), we have to show that{

λ2−|α|/2DαL
(1)
j (λ)(λ − �′)−1+�/2−j/2M�

n : λ ∈ λ0 + 
π−ϑ−ε

}
(4.8)

in L(Lp(Rn+)) is R-bounded for |α| ≤ 2, � ∈ {0, 1, 2} and j ∈ {0, 1}.
For � = 0, this fact is stated in Proposition 3.3b). For � > 0, we follow the lines of the proof 

of Proposition 3.3 and write

λ2−|α|/2DαL
(1)
j (λ)(λ − �′)−1+�/2−j/2M�

nφ(·, xn)

= −
∞∫

0

(F ′)−1m(·, xn + yn,λ)(F ′φ)(·, yn)dyn

with

m(ξ ′, xn + yn,λ) := λ2−|α|/2(ξ ′)α′
(λ + |ξ ′|2)−1+�/2−j/2y�

n∂
αn+j
n w

(1)
1 (ξ ′, xn + yn,λ)

for xn, yn > 0, α = (α′, αn), and ξ ′ ∈ R
n−1. Since y�

n < (xn + yn)
� for xn > 0, Lemma 3.2b) 

shows that (xn + yn)m(·, xn + yn, λ) satisfies Michlin’s condition, see e.g. Theorem 5.2.7 of 
[18]. The R-boundedness of (4.8) can thus be established as in the proof of Proposition 3.3. �

The R-boundedness results above enable us to solve the instationary problem (1.1) on Rn+
with inhomogeneous right-hand sides, i.e.,

∂2
t u + �2u − ρ∂t�u = f in J ×R

n+,

γ0u = g0 on J ×R
n−1,

γ0∂νu = g1 on J ×R
n−1,

u|t=0 = ϕ0 in R
n+,

∂tu|t=0 = ϕ1 in R
n+. (4.9)

Here J = (0, T ), T ∈ (0, ∞), is a finite time interval, and we recall that ρ > 0 is fixed. The 
natural spaces for the right-hand sides are given by

f ∈ E+ := Lp(J ;Lp(Rn+)),

g0 ∈ G0 := W
2−1/(2p)
p (J ;Lp(Rn−1)) ∩ Lp(J ;W 4−1/p

p (Rn−1)),

g1 ∈ G1 := W
3/2−1/(2p)
p (J ;Lp(Rn−1)) ∩ Lp(J ;W 3−1/p

p (Rn−1)),
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ϕ0 ∈ Y0 := W
4−2/p
p (Rn+),

ϕ1 ∈ Y1 := W
2−2/p
p (Rn+).

The analogues of these spaces for the time interval R are denoted by E+(R) etc. The data have 
to satisfy the compatibility conditions

g0|t=0 = γ0ϕ0,

g1|t=0 = γ0∂νϕ0,

∂tg0|t=0 = γ0ϕ1 if p > 3
2 ,

∂tg1|t=0 = γ0∂νϕ1 if p > 3. (4.10)

The solution will belong to the space

u ∈F+ := H 2
p(J ;Lp(Rn+)) ∩ Lp(J ;H 4

p(Rn+)).

We recall that F+ ↪→ H 1
p(J ; H 2

p(Rn+)). This is stated, e.g., in Lemma 4.3 of [12] for Rn instead 
of Rn+, and follows for Rn+ by the existence of a universal extension operator (see Lemma 2.9.1/1 
in [30]). For i ∈ {0, 1}, we will write 0Gi for the subspace of all gi ∈ Gi which satisfy (4.10) with 
ϕ0 = ϕ1 = 0.

We first state the result for homogeneous boundary conditions which follows from Theo-
rem 4.4 as in the proof of Theorem 2.5. (For the initial values in part a) one now needs an 
interpolation result essentially due to Grisvard, see e.g. Theorem 4.9.1 and Example 4.9.3 in [3].)

Theorem 4.5. a) The operator −Ap,0 (given by (4.1)) generates an analytic C0-semigroup on 
E0 with maximal Lq -regularity on bounded time intervals for every q ∈ (1, ∞).

b) Let f ∈ E+, g = 0, and let ϕ0 ∈ Y0, ϕ1 ∈ Y1 satisfy (4.10) with g = 0. Then there is a unique 
solution u ∈F+ of (4.9), and there is a constant Cp(T ) > 0 such that

‖u‖F+ ≤ Cp(T )
(
‖f ‖E+ + ‖ϕ0‖Y0 + ‖ϕ1‖Y1

)
.

c) Let f = 0, g = 0, ϕ0 ∈ H 2
p,0(R

n+) and ϕ1 ∈ Lp(Rn+). Then there exists a unique solution u
of (4.9) with

∂2
t u, ∂t∇2u, ∇4u ∈ C([ε,∞),Lp(Rn+))

for each ε > 0 and

∂tu, ∇2u ∈ C([0,∞),Lp(Rn+)).

If ϕ0 ∈ H 4
p(Rn+) ∩ H 2

p,0(R
n+) and ϕ1 ∈ H 2

p,0(R
n+), we can take ε = 0.

Based on Theorems 4.5 and 3.5, we can now solve (4.9) by inverting the Banach space valued 
Fourier transform in time, where we proceed as in [11], for instance.
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Theorem 4.6. Let T ∈ (0, ∞) and p ∈ (1, ∞) with p /∈ {3/2, 3}. Then for every (f, g0, g1,

ϕ0, ϕ1) ∈ E+ × G0 × G1 × Y0 × Y1 satisfying the compatibility conditions (4.10), there exists a 
unique solution u ∈F+ of (4.9). Conversely, if u ∈ F+ is a solution of (4.9), then the right-hand 
sides of (4.9) belong to the spaces indicated above and satisfy the compatibility conditions (4.10). 
Finally, there is a constant Cp(T ) > 0 such that

‖u‖F+ ≤ Cp(T )
(‖f ‖E+ + ‖ϕ0‖Y0 + ‖ϕ1‖Y1 + ‖g0‖G0 + ‖g1‖G1

)
.

Proof. The necessity of the regularity and compatibility conditions (4.10) follows from standard 
spatial and temporal trace theorems, see e.g. Corollary 2.8 in [21] in a more general setting. The 
uniqueness is a consequence of Theorem 4.5.

To show existence, let data (f, g0, g1, ϕ0, ϕ1) ∈ E+ ×G0 ×G1 ×Y0 ×Y1 be given which satisfy 
(4.10). Extending f, ϕ0 and ϕ1 to Rn and applying Theorem 2.5, we obtain a solution u′ ∈F+ of

∂2
t u′ + �2u′ − ρ∂t�u′ = f in J ×R

n+,

u′|t=0 = ϕ0 in R
n+,

∂tu
′|t=0 = ϕ1 in R

n+

which satisfies the asserted estimate with g0 = g1 = 0. We set g̃0 = g0 − γ0u
′ and g̃1 = g1 −

γ0∂νu
′. Again standard trace theory and (4.10) yield that g̃k ∈ 0Gk for k ∈ {0, 1}. Moreover, 

‖g̃k‖Gk
≤ Cp(T ) (‖gk‖Gk

+ ‖u′‖F+).
Considering u − u′, we may therefore assume in the following that the data in (4.9) satisfy 

f = 0, ϕ0 = ϕ1 = 0 and gk ∈ 0Gk for k ∈ {0, 1}. Note that test functions on (0, ∞) × R
n−1

are dense in 0Gk , see Theorem 4.7.1 in [3]. Since we will show that the solution operator g =
(g0, g1)

� 
→ u is continuous from 0G0 × 0G1 → F+, we may restrict ourselves to test functions 
g0 and g1. We extend them by 0 to functions on R, using the same symbol. We now employ 
similar arguments as in Proposition 4.5 of [11] (see also the proof of Lemma 3.4 of [26] for a 
more detailed exposition in a somewhat different situation).

Let Ft be the temporal Fourier transform and put ĝ := Ft g. In view of Theorem 3.5, setting 
λ = iτ with τ ∈ R, we define v̂(iτ ) := T (iτ )Eiτ ĝ and recall that v̂2(iτ ) = iτ v̂1(iτ ) for τ ∈ R. 
We write v := F−1

t v̂ and u := v1, observing also that ∂tu = F−1
t (iτ v̂1(iτ )) = v2. Taking into 

account (3.13), (3.11) and that Ei · ĝ is rapidly decaying, we can compute

v̂(iτ ) =
1∑

j=0

T (j)(λ)

(
(iτ − �′)(−j−3)/2 0

0 (iτ − �′)(−j−2)/2

)
Ft

· F−1
t

[(
(i · −�′)(j+3)/2 0

0 (i · −�′)(j+2)/2

)
∂

1−j
n Ei · ĝ

]
(τ )

=
1∑

j=0

T (j)(λ)

(
(iτ − �′)(−j−3)/2 0

0 (iτ − �′)(−j−2)/2

)
Ft

· (−1)j+1F−1
t

[(
(i · −�′)2 0

0 (i · −�′)3/2

)
Ei · ĝ

]
(τ ). (4.11)
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We further note that Eiτ ĝ(·, xn) = e−xn(iτ−�′)1/2
ĝ(iτ, ·) for xn > 0 and τ ∈ R since the 

Dunford calculus for sectorial operators and Fourier multipliers coincide here. The operator 
L = ∂t − �′ with domain H 1

p(R, Lp(Rn−1)) ∩ Lp(R, H 2
p(Rn−1)) is sectorial of angle π/2

in Lp(R, Lp(Rn−1)), hence −L1/2 generates an analytic semigroup. Because of F−1
t (λ + i ·

−�′)−1Ft = (λ + L)−1 for Reλ < 0, we can use the Dunford calculus to deduce

F−1
t

[(
(i · −�′)2 0

0 (i · −�′)3/2

)
Ei · ĝ

]
(xn) =

(
Le−xnL1/2

Lg0

L1/2e−xnL1/2
Lg1

)
.

The norm in E+ of these functions is bounded by C (‖g0‖G0 +‖g1‖G1). Here, for the first compo-
nent we use Lemma 3.5 of [11] and for the second that Lg1 ∈ (Lp(R+, Lp(Rn−1)), D(L)) 1

2 − 1
2p

,p

= (Lp(R+, Lp(Rn−1)), D(L1/2))1− 1
p

,p
by Lemma 3.1 of [11] and the reiteration theorem, see 

e.g. Theorems 1.10.2 and 1.15.2 in [30]. In the first part of (4.11) we employ our Proposition 3.3
and the operator-valued Fourier multiplier theorem (Theorem 3.4 of [31]) and conclude

‖∂2
t u‖E+(R) + ‖∇4u‖E+(R) ≤ c (‖g0‖G0 + ‖g1‖G1). (4.12)

Since gk have support in (0, ∞) and since the symbols involved have a holomorphic extension 
to the half-plane {τ ∈ C : Im τ < 0}, all Fourier multipliers (with respect to t ) have the Volterra 
property in the sense of Section 2 in [13]. Hence, the function u vanishes on (−∞, 0), so that 
u and ∂tu have trace 0 at t = 0. In particular, (4.12) implies that ‖u‖E+(J ) ≤ c(T ) (‖g0‖G0 +
‖g1‖G1) which yields the asserted estimate ‖u‖F+(J ) ≤ c(T ) (‖g0‖G0 + ‖g1‖G1). Finally, v̂(iτ )

solves (3.10) with λ = iτ and boundary data ĝ(iτ ). So the first component u = v1 of the inverse 
Fourier transform in time of v̂ is the desired solution of (4.9). �
5. The evolution equation in a bounded domain

In this section we consider a bounded domain G ⊂R
n with boundary of class C4. We use the 

analogous spaces as in the previous section, replacing Rn+ by G, which we denote by E(G) etc. 
Moreover, we allow for T = ∞ in the time intervals. As before, we define D(Ap,0) = F0(G) and 
Ap,0v = A(D)v.

Theorem 5.1. Let G ⊂ R
n be a bounded domain with boundary of class C4 and ρ > 0. The 

operator Ap,0 is R-sectorial of angle ϑ(ρ) in E0(G). Moreover, −Ap,0 generates an exponen-
tially stable, analytic C0-semigroup on E0(G) with maximal Lq -regularity on (0, ∞) for every 
q ∈ (1, ∞).

Proof. The R-sectoriality of λ1 + Ap,0 for sufficiently large λ1 ≥ 0 is shown by a standard 
localization argument based on the R-bounds shown in Theorems 2.3 and 3.5. For details we 
refer to Section 8 of [10]. Via localization, transformation to the half-space and perturbation, one 
can reduce the problem to equations on Rn and Rn+ having constant coefficients and no lower 
order terms. Choosing appropriate transformations, these model problems turn out to be those 
studied in Theorems 2.3 and 3.5, cf. p. 102 of [10]. In this argument plenty of lower order terms 
appear which can be absorbed adding a large λ1 ≥ 0. There are also top-order perturbations 
both in G and in the boundary conditions which are treated by means of the continuity of the 
coefficients of the transformed operators and by choosing sufficiently small neighborhoods in 
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the localization. Here one has to exploit the full power of the regularity results in Theorems 2.3
and 3.5.

As in the proof of Theorem 2.5, it now follows that −Ap,0 generates an analytic semigroup 
on E0(G) with maximal Lq -regularity on bounded time intervals. Because of standard theory of 
analytic semigroups, it thus remains to show that the spectrum of −Ap,0 is contained in the open 
right half-plane. Since F0(G) is compactly embedded in E0(G), the spectrum is a discrete set of 
eigenvalues contained in the complement of λ1 + 
π−ϑ . If v is an eigenfunction for Aq,0 and 
some q ∈ (1, ∞), then it is also an eigenvalue for Ap,0 for all p ∈ (1, q) and the same eigenvalue. 
The case of p > q is treated by a standard bootstrap argument using the invertibility of μ +Ar,0
for large μ > 0 and r > q . We can thus restrict ourselves to p = 2. We then define the scalar 
product in E0(G) by

〈v,w〉E0(G) := 〈�v1,�w1〉L2(G) + 〈v1,w1〉L2(G) + 〈v2,w2〉L2(G), v,w ∈ E0(G).

Let λv + A2,0v = 0 for some λ ∈ C and 0 �= v = (v1, v2)
� ∈ D(A2,0). Taking the scalar 

product with v in E0(G), integrating by parts and taking the real part, we deduce

0 = Re〈λv + A2,0v, v〉E0(G) = (Reλ)

∫
G

(|�v1|2 + |v2|2) dx + ρ

∫
G

|∇v2|2 dx

thanks to the boundary conditions. Hence, Reλ is non-positive. If Reλ = 0, then v2 ∈ H 2
2,0(G)

has to vanish, so that (−�)2v1 = 0 because of λv + A2,0v = 0. Since v1 ∈ H 4
2 (G) ∩ H 2

2,0(G), 
we obtain v1 = 0 and the contradiction v = 0. As a result, Reλ < 0. �

We can now state our final result on the solvability and regularity of the inhomogeneous 
damped plate equation (1.1).

Theorem 5.2. Let G ⊂R
n be a bounded domain with boundary of class C4 and ρ > 0. Then the 

following assertions hold.
a) Let f = 0, g0 = g1 = 0, ϕ0 ∈ H 2

p,0(G) and ϕ1 ∈ Lp(G). Then there exists a unique solution 
u of (1.1) with

∂2
t u, ∂t∇2u, ∇4u ∈ C0([ε,∞),Lp(G))

for each ε > 0 and

∂tu, ∇2u ∈ C0([0,∞),Lp(G)).

If ϕ0 ∈ H 4
p(G) ∩ H 2

p,0(G) and ϕ1 ∈ H 2
p,0(G), we can take ε = 0.

b) Let T ∈ (0, ∞] and p ∈ (1, ∞) with p /∈ {3/2, 3}. Then for every (f, g0, g1, ϕ0, ϕ1) ∈
E(G) × G0(G) × G1(G) × Y0(G) × Y1(G) satisfying the compatibility conditions (4.10) on G, 
there exists a unique solution u ∈ F(G) of (1.1). Conversely, if u ∈ F(G) is a solution of (1.1), 
then the right-hand sides of (1.1) belong to the spaces indicated above and satisfy the compati-
bility conditions (4.10). Finally, there is a constant Cp > 0 such that

‖u‖F(G) ≤ Cp

(‖f ‖E(G) + ‖ϕ0‖Y0(G) + ‖ϕ1‖Y1(G) + ‖g0‖G0(G) + ‖g1‖G1(G)

)
.
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Proof. We omit the details of the proof which follows a fairly standard pattern, based on our 
results above. Assertion a), the uniqueness in b) and the case g0 = g1 = 0 in b) follow from The-
orem 5.1 and standard semigroup theory. The necessity in b) is a consequence of trace theorems 
again. The main step of the proof is the existence part of b) for f = 0 and ϕ0 = ϕ1 = 0 on finite 
time intervals. This can be done by localization, transformation to the half-space and perturbation 
as in Section 5 of [11], using the R-bounds of Theorems 2.3 and 3.5. Since −Ap,0 generates an 
exponentially stable analytic semigroup by Theorem 5.1, one can extend the existence statement 
and the maximal regularity estimate to the time interval (0, ∞) as in Proposition 8 of [24]. �
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