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Abstract

In this paper, we study an initial boundary value problem of the Cahn–Hilliard–Darcy system with a 
non-autonomous mass source term S that models tumor growth. We first prove the existence of global weak 
solutions as well as the existence of unique local strong solutions in both 2D and 3D. Then we investigate 
the qualitative behavior of solutions in details when the spatial dimension is two. More precisely, we prove 
that the strong solution exists globally and it defines a closed dynamical process. Then we establish the 
existence of a minimal pullback attractor for translated bounded mass source S. Finally, when S is assumed 
to be asymptotically autonomous, we demonstrate that any global weak/strong solution converges to a single 
steady state as t → +∞. An estimate on the convergence rate is also given.
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1. Introduction

In this paper, we consider the following Cahn–Hilliard–Darcy (CHD in short) system that 
arises in the study of morphological evolution in solid tumor growth (see, e.g., [15,45]):

φt + div(uφ) = �μ + S, in (τ, T ) × �, (1.1)

μ = −ε2�φ + f ′(φ) with f (φ) = 1

4
φ4 − 1

2
φ2, (1.2)

u = −∇p + γ

ε
μ∇φ, in (τ, T ) × �, (1.3)

div u = S, in (τ, T ) × �. (1.4)

Here, � is assumed to be a bounded domain in Rd (d ∈ {2, 3}). τ ∈R denotes the initial time and 
T > τ is any given number. The CHD system (1.1)–(1.4) is subject to the following boundary 
and initial conditions:

∂νφ = ∂νμ = 0, on ∂�, (1.5)

u · ν = 0, on ∂�, (1.6)

φ(t, x)|t=τ = φτ (x), (1.7)

where ν is the unit outward normal vector to the boundary ∂�.
The CHD system (1.1)–(1.4) can be viewed as the simplest version of those general diffuse in-

terface models for tumor growth, which were derived based on the principle of mass conservation 
together with the second law of thermodynamics [15,45]. In the diffuse-interface (or phase-field) 
framework, the tumor volume fraction is denoted by a scalar order parameter φ and the sharp 
tumor/host interfaces are replaced by narrow transition layers, whose thickness is approximately 
characterized by a small parameter ε > 0. Instead of tracking the interfaces explicitly, the dynam-
ics of interfaces (now recognized as zero level sets of the order parameter) can be simulated on 
a fixed grid. Therefore, the diffuse-interface model has the advantage that it can easily describe 
topological transitions of interfaces (e.g., pinch-off and reconnection for two-phase immiscible 
flow) in a natural way (see [2,21,22,24,25]).

Eq. (1.1) is a convective Cahn–Hilliard type equation, which is derived from the mass conser-
vation. The vector u stands for the advective velocity field, while the scalar functions μ, S stand 
for the chemical potential and the mass source term accounting for cell proliferation (or the rate 
of change in tumor volume, see [15,45]), respectively. The chemical potential μ is the variational 
derivative of the free energy functional:

E(φ) :=
∫
�

(
ε2

2
|∇φ|2 + f (φ)

)
dx,

in which the function f (see (1.2)) can be viewed as a smooth double-well polynomial approx-
imation of the physically relevant logarithmic potential (see [6]). Eq. (1.3) for the advective 
velocity u follows from a generalized Darcy’s law, in which γ is a positive constant measuring 
the excess adhesion force at the diffusive tumor/host tissue interfaces and p is the pressure that 
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consists of a combination of certain generalized Gibbs free energy and the gravitational potential. 
Eq. (1.4) serves as a constraint for the velocity due to the possible mass exchange.

We recall some previous works in the literature that are related to our problem. In biolog-
ical applications, e.g., the phase-field models for tumor growth and wound healing [15,28], 
the mass source term S may depend on the order parameter φ in a quadratic way such that 
S = αφ(1 − φ) (α > 0). When S has a linear dependence on φ, Eq. (1.1) (neglecting the veloc-
ity u) is also known as the Cahn–Hilliard–Oono equation that accounts for long-range (nonlocal) 
interactions in the phase separation process [33]. Concerning the mathematical analysis for these 
generalized Cahn–Hilliard equations with mass source (with the convection under velocity u
being neglected), we refer to the recent work [9,32,34], in which well-posedness and asymp-
totic behavior of the associated dynamical system have been investigated. When S = 0, the 
CHD system (1.1)–(1.4) is referred to as the Cahn–Hilliard–Hele-Shaw (CHHS) system that 
has been used to describe two-phase flows in the Hele-Shaw geometry [21,22] (see also [37] for 
a similar model for spinodal decomposition of a binary fluid in a Hele-Shaw cell). The CHHS 
system with zero mass source term has been studied by many authors in the literature, both nu-
merically and mathematically. For instance, an unconditionally energy stable and solvable finite 
difference scheme based on convex-splitting was proposed in [46], see also [14] for an implicit 
Euler temporal scheme combined with a mixed finite element discretization in space. Concern-
ing the analysis results, existence and uniqueness of global classical solutions in 2D torus and 
local classical solution in 3D torus were first established in [44]. Besides, some blow-up criteria 
were also obtained in the three-dimensional case. In [43], long-time behavior of global solutions 
and stability of local minimizers in both 2D and 3D periodic setting were proved based on the 
Łojasiewicz–Simon approach [39]. For the CHHS system in a 2D rectangle or in a 3D box under 
homogeneous Neumann boundary conditions, qualitative behaviors of strong solutions such as 
existence, uniqueness, regularity and asymptotic stability of the constant state 1

|�|
∫
�

φτdx are 
studied in [29]. Quite recently, the connection between the Cahn–Hilliard–Brinkman (CHB) sys-
tem and the CHHS system has been investigated in [4] such that a suitable weak solution to the 
CHHS system can be shown to be a limit of solutions to the CHB system as the fluid viscos-
ity goes to zero. Moreover, we would like to remark that the CHHS system can be viewed as a 
simplification of the full Cahn–Hilliard–Navier–Stokes (CHNS) system (see e.g., [2,24,25]) in 
the Hele-Shaw geometry. We refer to [1,5,12,17,18,41,47] and the references therein for analyt-
ical results of the CHNS system on well-posedness as well as long-time behavior under various 
situations.

However, to the best of our knowledge, there seem no analytical results in the literature con-
cerning the CHD system (1.1)–(1.4) with a non-zero mass source term S. This is the main 
goal of the present paper. In this paper, we shall confine ourselves to the situation that S is 
assumed to be a given source of mass, possibly depending on time t and position x, but not 
on the parameter φ. The case with more general mass source term will be treated in the future 
work.

We summarize the main results of this paper as follows. First, under suitable integrability con-
ditions on the mass source term S, we apply the Galerkin method to prove the existence of global 
weak solutions as well as the existence and uniqueness of local strong solutions to the CHD 
system (1.1)–(1.7) in both 2D and 3D cases (see Theorem 2.1). Then we focus on the studies 
of qualitative behavior for solutions in the 2D case. It is shown that in 2D, problem (1.1)–(1.7)
actually admits a unique global strong solution φ in H 2

N(�) which defines a family of closed 
processes {U(t, τ)}t≥τ on H 2

N(�) (see Theorem 2.2). If the mass source S is further assumed 
to be a translated bounded function in L2

t L
2
x (see (2.4)), the family of processes {U(t, τ)}t≥τ
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that are confined on the phase space HM (see (2.3)) turns out to admit a minimal pullback at-
tractor A (see Definition 5.3 and Theorem 2.3). In addition, we prove that under suitable decay 
assumption on S (see (2.5)), the dynamical process becomes asymptotically autonomous. In this 
specific case, the ω-limit set of each trajectory is actually a singleton. Namely, for arbitrary large 
initial datum, the global bounded solution will converge to a single steady state as t → +∞ and 
an estimate on the convergence rate is also given (see Theorem 2.4).

Before concluding the introduction part, we would like to stress some new features of the 
present paper. The presence of the mass source term S brings us several difficulties in the math-
ematical analysis. First, unlike in [14,29,43,44], the velocity field u is no longer divergence free. 
As a consequence, in order to prove the existence of weak/strong solutions, we use a modified 
Galerkin approximation different from that in [29]. Instead of solving the approximate velocity 
directly (by taking the Helmholtz–Leray orthogonal projection to eliminate the pressure term), 
we solve the pressure function that satisfies a Poisson type equation subject to homogeneous 
Neumann boundary condition (see (3.1)) and then obtain the velocity via the Darcy equation 
(1.3). Besides, some new estimates for the pressure p and its derivative (cf. [44]) are derived, 
which play an important role in the subsequent proofs for existence of global solutions (see 
Lemma 3.1).

Second, we study the long-time dynamics of problem (1.1)–(1.7) from the infinite dimensional 
dynamical system point of view [42]. The theory of global attractors has been generalized to the 
case of non-autonomous dynamical systems, for instance, the uniform attractors (see [8]) and 
pullback attractors (see [11,27] and the references therein). In this paper, we prove the existence 
of a pullback attractor for the CHD system (1.1)–(1.7) under rather general assumptions on the 
time dependent mass source term S in 2D. Due to the mass conservation property (2.2), we cannot 
expect an absorbing set for initial data varying in the whole space. Instead, we first confine the 
associated dynamical process {U(t, τ)}t≥τ on a suitable phase space HM (see (2.3)), which is 
a subset of H 2

N(�). Next, due to the highly nonlinear coupling of the CHD system, it seems 
difficult to obtain (strong) continuity of the process {U(t, τ)}t≥τ in HM but only a continuous 
dependence result in the lower-order space H 1 (see Lemma 4.2). This indicates that the process 
{U(t, τ)}t≥τ is only closed (see Definition 4.1, cf. also [35] for the notion of closed semigroups). 
We then perform a nonstandard argument devised in [19] for closed processes to conclude our 
result (cf. [40] for the case with closed cocycles). For this purpose, we deduce a generalized 
Gronwall type inequality (see Lemma A.2) to obtain some uniform estimates that lead to the 
existence of a pullback absorbing set (see Proposition 5.1). We believe that Lemma A.2 may have 
its own interests and can be applied to other problems with highly nonlinear structure. Besides, 
since the mass source term S is only assumed to be translated bounded in L2

t L
2
x , we are not able 

to obtain higher-order estimates of the solutions (and thus compactness) by taking derivatives of 
the PDEs. Instead, we use a continuity method for energy functions (see e.g., [19,30]) to obtain 
the pullback asymptotic compactness (see Proposition 5.2).

At last, we study the long-time behavior for any bounded global weak/strong solution of the 
CHD system (1.1)–(1.7) when the mass source S becomes asymptotically autonomous. This is 
nontrivial, since the topology of the set of steady states (see (6.7)) can be rather complicated in 
high dimensional case and it may form a continuum (see e.g., [36]). Moreover, since our prob-
lem (1.1)–(1.7) is now non-autonomous due to the presence of S, it no longer has a Lyapunov 
functional. Nevertheless, for global bounded solutions in H 2, it is possible to derive an energy 
inequality (see (6.8)), which enables us to characterize the corresponding ω-limit sets. Based on 
that energy inequality, we are able to apply the Łojasiewicz–Simon approach (cf. [10,13,26,39]) 
to obtain the convergence of φ(t) as time goes to infinity as well as an estimate on convergence 
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rate. Our convergence result generalizes the previous one in [43] for the homogeneous CHHS 
system in periodic setting. Moreover, we do not need to impose any additional assumption ei-
ther on the initial datum for φ (e.g., the average of initial datum 1

|�|
∫
�

φτdx being outside the 
spinodal region) or on the size of domain (being ‘small’) like in [29] in order to obtain certain 
asymptotical stability.

The rest of this paper is organized as follows. In Section 2, we introduce the functional settings 
and state the main results of this paper. Section 3 is devoted to the proof of the existence of global 
weak solutions as well as the existence and uniqueness of local strong solutions to problem 
(1.1)–(1.7) in both 2D and 3D. In Section 4, we prove the existence of a unique global strong 
solution as well as the regularity of weak solutions in 2D. Then we show in Section 5 that 
the associated closed processes {U(t, τ)}t≥τ on the phase space HM admit a minimal pullback 
attractor A, provided that the mass source S is translated bounded in L2

t L
2
x . Finally, in Section 6, 

we prove the convergence of global weak/strong solutions to a single steady state as t → +∞
and obtain an estimate on the convergence rate.

2. Preliminaries and main results

We first introduce some notations on the functional spaces. Let � ⊂ R
d , d = 2, 3, be either 

a smooth bounded domain or a convex polygonal or polyhedral domain. Lq(�), 1 ≤ q ≤ ∞
denotes the usual Lebesgue space and ‖ · ‖Lq(�) denotes its norm. Similarly, Wm,q(�), m ∈ N, 
1 ≤ q ≤ ∞, denotes the usual Sobolev space with norm ‖ · ‖Wm,p(�). When q = 2, we simply 
denote Wm,2(�) by Hm(�) and denote the norms ‖ · ‖L2(�), ‖ · ‖Hm(�) by ‖ · ‖ and ‖ · ‖Hm , 
respectively. The L2-Bessel potential spaces are denoted by Hs(�), s ∈R, which are defined by 
restriction of distributions in Hs(Rd) to �. If X is a Banach space, we denote by X′ its dual and 
by 〈·,·〉 the associated duality product. The inner product in L2 will be denoted by (·,·). If I is an 
interval of R+ and X a Banach space, we use the function space Lp(I ; X), 1 ≤ p ≤ +∞, which 
consists of p-integrable functions with values in X. Moreover, Cw(I ; X) denotes the topological 
vector space of all bounded and weakly continuous functions from I to X, while W 1,p(I, X)

(1 ≤ p < +∞) stands for the space of all functions u such that u, du
dt

∈ Lp(I ; X), where du
dt

denotes the vector-valued distributional derivative of u. Bold characters will be used to denote 
vector spaces.

Given any function v ∈ L1(�), we denote by v = |�|−1
∫
�

v(x)dx its mean value. Then we 
define the space L̇2(�) := {v ∈ L2(�) : v = 0} and v̇ = P0v := v − v the orthogonal projection 
onto L̇2(�). Furthermore, we denote Ḣ 1(�) = H 1(�) ∩ L̇2(�), which is a Hilbert space with 
inner product (u, v)Ḣ 1 = ∫

�
∇u · ∇vdx due to the classical Poincaré inequality for functions 

with zero mean. Its dual space is simply denoted by Ḣ−1(�). Denote the spaces H 2
N = {ϕ ∈

H 2(�) | ∂νϕ = 0 on ∂�} and H 4
N = {ϕ ∈ H 4(�) | ∂νϕ = ∂ν�ϕ = 0 on ∂�}. We can see that 

the operator A = −� with its domain D(A) = H 2
N ∩ L̇2(�) is a positively defined, self-adjoint 

operator on D(A) and the spectral theorem enables us to define powers As of A for s ∈ R. Then 
space (H 1(�))′ is endowed with the equivalent norm ‖v‖2

H 1(�)′ = ‖A− 1
2 (v − v)‖2 + |v|2 and 

the norm on Ḣ−1(�) is given by ‖v‖2
Ḣ−1 = ‖A− 1

2 (v − v)‖2.
Throughout the paper, without loss of generality, we assume that γ = ε = 1. C ≥ 0 will stand 

for a generic constant and Q(·) for a generic positive monotone increasing function. Special 
dependence will be pointed out in the text if necessary.



J. Jiang et al. / J. Differential Equations 259 (2015) 3032–3077 3037
Following the constraint (1.4) and the boundary condition (1.6), we can easily see that a 
necessary condition for the external force S is that

∫
�

S(t, x)dx ≡ 0. (2.1)

Below we introduce the definitions of weak solution as well as strong solution to the CHD 
system (1.1)–(1.4).

Definition 2.1. Assume d = 2, 3.
(i) Let T > τ , φτ ∈ H 1(�) and S ∈ L2(τ, T ; L̇2(�)) be given. A triplet (φ, u, p) is a weak 

solution to the system (1.1)–(1.4) endowed with boundary and initial conditions (1.5)–(1.7), if

φ ∈ Cw([τ, T ];H 1(�)) ∩ L2(τ, T ;H 3(�)), ∂tφ ∈ L
8
5 (τ, T ; (H 1(�))′),

u ∈ L2(τ, T ;L2(�)), p ∈ L
8
5 (τ, T ;H 1(�))

such that

〈φt ,ψ〉 + 〈div(uφ),ψ〉 + (∇μ,∇ψ) = (S,ψ), ∀ψ ∈ H 1(�), a.e. t ∈ [τ, T ],
(∇p,∇ϕ) = (S,ϕ) + (μ∇φ,∇ϕ), ∀ϕ ∈ H 1(�), a.e. t ∈ [τ, T ],

(u,v) = (−∇p + μ∇φ,v), ∀v ∈ L2(�), a.e. t ∈ [τ, T ],

with μ ∈ L2(τ, T ; H 1(�)) given by (1.2), and

∂νφ = 0, a.e. on ∂� × (τ, T ),

φ|t=τ = φτ , a.e. in �.

(ii) Let T > τ , φτ ∈ H 2
N(�) and S ∈ L2(τ, T ; L̇2(�)) be given. A triplet (φ, u, p) is a strong 

solution to the system (1.1)–(1.4) endowed with boundary and initial conditions (1.5)–(1.7), if

φ ∈ C([τ, T ];H 2
N(�)) ∩ L2(τ, T ;H 4

N(�)), φt ∈ L2(τ, T ;L2(�)),

u ∈ L2(τ, T ;H1(�)), p ∈ L2(τ, T ;H 2(�)),

μ ∈ C([τ, T ];L2(�)) ∩ L2(τ, T ;H 2(�)),

such that

φt + div(uφ) = �μ + S, in L2(�) a.e. t ∈ [τ, T ]

with μ given by (1.2),

−�p = S − div (μ∇φ), in L2(�) a.e. t ∈ [τ, T ],

(1.3) holds in H1(�) for a.e. t ∈ [τ, T ] and
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∂νφ = ∂νμ = ∂νp = 0, a.e. on ∂� × (τ, T ),

φ|t=τ = φτ , a.e. in �.

Remark 2.1. It is easy to see that the mean of any weak/strong solution φ over � is conserved 
in time, i.e.,

φ(t) := 1

|�|
∫
�

φ(t, x)dx ≡ 1

|�|
∫
�

φτdx := M. (2.2)

Now we are in a position to state our main results.

Theorem 2.1. Suppose that d = 2, 3.
(i) For any φτ ∈ H 1(�) and S ∈ L2(τ, T ; L̇2(�)) with arbitrary T ∈ (τ, +∞), problem

(1.1)–(1.7) admits at least one global weak solution (φ, u, p) on [τ, T ].
(ii) For any φτ ∈ H 2

N(�), S ∈ L2(τ, T ; L̇2(�)) ∩ L∞(τ, T ; Ḣ−1(�)) with arbitrary T ∈
(τ, +∞), there exists a time T ∗ ∈ (τ, T ) such that problem (1.1)–(1.7) admits a strong solution 
(φ, u, p) on [τ, T ∗] that is unique up to an additive function of t to p.

When the spatial dimension is two, more comprehensive information about problem 
(1.1)–(1.7) can be achieved. First, we can prove the existence of a unique global strong solu-
tion, i.e.,

Theorem 2.2. Suppose that d = 2. For any φτ ∈ H 2
N(�), S ∈ L2

loc(R; L̇2(�)) and arbitrary 
T ∈ (τ, +∞), problem (1.1)–(1.7) admits a global strong solution (φ, u, p) on [τ, T ] that is 
unique up to an additive function of t to p. The global strong solution defines a family of closed 
processes {U(t, τ)}t≥τ on H 2

N(�) such that

U(t, τ )φτ = φ(t), ∀ t ∈ [τ, T ].

Consider the following phase space:

HM =
{
φ ∈ H 2

N(�), |φ| ≤ M
}

, M ≥ 0. (2.3)

For the external source term S, we consider the Banach space L2
b(R; L̇2(�)) defined by

L2
b(R; L̇2(�)) =

⎧⎨
⎩S ∈ L2

loc(R; L̇2(�)) : ‖S‖2
L2

b(R;L̇2(�))
:= sup

t∈R

t+1∫
t

‖S(s)‖2ds < ∞
⎫⎬
⎭ , (2.4)

which is the subspace of L2
loc(R; L̇2(�)) of translation bounded functions.

Then we can prove that:

Theorem 2.3. Let d = 2. For any S ∈ L2
b(R, L̇2(�)), the family of closed processes {U(t, τ)}t≥τ

associated with problem (1.1)–(1.7) defined on the phase space HM admits a minimal pullback 
attractor A in the sense of Definition 5.3.
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Furthermore, if the dynamical process becomes asymptotically autonomous under suitable 
assumptions on the external source S, we can prove that the global weak (or strong) solution 
converges to a single steady state as t → +∞ and obtain an estimate on the convergence rate.

Theorem 2.4. Let d = 2. Assume that S ∈ L2(τ, +∞; L̇2(�)) and satisfies the following condi-
tion

sup
t≥τ

(1 + t)1+ρ

+∞∫
t

‖S‖2ds < +∞, for some ρ > 0. (2.5)

Let (φ, u, p) be a global weak (or strong) solution to problem (1.1)–(1.7). Then there exists a 
steady state φ∞ ∈ H 2

N(�), which is a solution to the stationary Cahn–Hilliard equation

⎧⎨
⎩

−�φ∞ + f ′(φ∞) = ∫
�

f ′(φ∞)dx, in �,

∂νφ∞ = 0, on ∂�,∫
�

φ∞dx = ∫
�

φτdx

(2.6)

such that as t → +∞
{

φ(t) → φ∞ strongly in Hs(�), s < 2,

φ(t) ⇀ φ∞ weakly in H 2(�).

Moreover, the following convergence rate holds

‖φ(t) − φ∞‖Hs ≤ C(1 + t)−
2−s

3 min{ θ
1−2θ

,
ρ
2 }, ∀ t ≥ τ + 1, s ∈ [−1,2). (2.7)

Here C is a constant depending on ‖φτ‖H 1 , 
∫ +∞
τ

‖S‖2dτ and �, θ ∈ (0, 12 ) is a constant de-
pending on φ∞.

3. Well-posedness

In this section, we prove Theorem 2.1, namely, the existence of global weak solutions and 
(unique) local strong solutions to the system (1.1)–(1.7) in both 2D and 3D. For the sake of 
simplicity, we shall present the proofs in the 3D case, which are still valid for the 2D case with 
minor modifications due to different Sobolev embedding theorems and interpolation inequalities.

3.1. Pressure estimate

The following lemma on the estimate for the pressure p will be useful in the subsequent 
analysis:

Lemma 3.1. Suppose d = 2, 3. For any given function φ ∈ H 3(�) ∩ H 2
N(�), the pressure func-

tion p satisfies the following Poisson equation subject to a homogeneous Neumann boundary 
condition:
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⎧⎨
⎩

−�p = S − div (μ∇φ), in �,

∂νp = 0, on ∂�,∫
�

pdx = 0.

(3.1)

Moreover, the following estimates hold:

‖∇p‖ ≤ C‖S‖ + C‖μ‖L6‖∇φ‖L3, (3.2)

‖p‖ ≤ C‖S‖ + C‖∇μ‖‖∇φ‖
L

3
2

+ ∣∣μ(φ)
∣∣‖φ − φ‖, (3.3)

where μ is given by μ = −�φ + φ3 − φ.

Proof. It follows from the assumption on φ and the Sobolev embedding theorem (d = 3) that 
μ = −�φ + φ3 − φ ∈ H 1(�). Multiplying (3.1) by p and integrating by parts, we get

‖∇p‖2 =
∫
�

(Sp + (μ∇φ) · ∇p)dx.

The above formula together with the Poincaré inequality and the Hölder inequality easily yields 
(3.2).

Next, we deduce from (3.1) that

p = A−1S − A−1 div(μ(φ)∇φ)

= A−1S − A−1 div
(
(μ(φ) − μ(φ))∇φ

)
− A−1 div

(
μ(φ)∇φ

)
= A−1S − A−1 div

(
(μ(φ) − μ(φ))∇φ

)
− μ(φ)A−1 div

(∇(φ − φ)
)

= A−1S − A−1 div
(
(μ(φ) − μ(φ))∇φ

)
+ μ(φ)(φ − φ). (3.4)

Applying the Sobolev embeddings L
6
5 (�) ↪→ (H 1(�))′, H 1 ↪→ L6 (d = 3) and Hölder’s in-

equality, we obtain that

‖p‖ ≤ ‖A−1S‖ + ‖A−1 div
(
(μ(φ) − μ(φ))∇φ

)
‖ + ∣∣μ(φ)

∣∣‖φ − φ‖
≤ C(‖S‖ + ‖(μ − μ)∇φ‖(H 1)′) + ∣∣μ(φ)

∣∣‖φ − φ‖
≤ C(‖S‖ + ‖(μ − μ)∇φ‖

L
6
5
) + ∣∣μ(φ)

∣∣‖φ − φ‖
≤ C‖S‖ + C‖μ − μ‖L6‖∇φ‖

L
3
2

+ ∣∣μ(φ)
∣∣‖φ − φ‖

≤ C‖S‖ + C‖μ − μ‖H 1‖∇φ‖
L

3
2

+ ∣∣μ(φ)
∣∣‖φ − φ‖,

which together with the Poincaré inequality yields our conclusion (3.3). �
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3.2. Global weak solutions

The existence of global weak solutions can be obtained by a suitable Galerkin procedure. We 
consider the eigenvalue problem −�w = λw subject to the homogeneous Neumann boundary 
condition ∂νw = 0. It is well known that there exist two sequences {λn}n=1,2,... and {wn}n=1,2,...

such that, for every n ≥ 1, λn ≥ 0 is an eigenvalue and wn �= 0 is a corresponding eigenfunction, 
the sequence λn is nondecreasing, tending to infinity as n → +∞, and the sequence {wn} is 
orthonormal and complete in L2(�). We notice that λ = 0 is an eigenvalue, whence λ1 = 0, and 
that any non-zero constant is an eigenfunction (i.e., w1 = 1). For every i > 1, wi cannot be a 
constant and 

∫
�

widx = 0, whence λi = ∫
�

|∇wi |2dx > 0. Moreover, as w1 = 1 is a constant 
and {wn} is orthonormal in L2(�), we easily deduce that A−1wi = λ−1

i wi for every i > 1.
For any n ≥ 1, we introduce the finite-dimensional space Wn = span{w1, . . . , wn} and �n the 

orthogonal projection on Wn. Then we consider the Galerkin approximate problem (Pn):
Set

φn(t, x) =
n∑

i=1

gni(t)wi(x)

which satisfies the following approximation equation:

⎧⎨
⎩

∂tφn = �μn + �n(S − div(unφn)),

μn = −�φn + �nf (φn),

φn(τ ) = �nφτ ,

(3.5)

where f (φn) = φ3
n − φn and

un = −∇pn + μn∇φn. (3.6)

Here, pn satisfies a Poisson equation with homogeneous Neumann boundary condition:

{−�pn = S − div (μn∇φn), in �,

∂νpn = 0, on ∂�.
(3.7)

Then pn is uniquely determinate up to an arbitrary additive function that may only depend 
on t . For the sake of simplicity and without affecting the mathematical analysis, we require 
that 

∫
�

pndx = 0 and thus

pn = A−1S − A−1 div(μn∇φn).

Taking the inner product of (3.5) in L2(�) with wj , we infer that gnj (t) satisfies the following 
ODE system

{
g′

nj + (λ2
j − λj )gnj + Gj(g) = Sj (t), j = 1, · · · , n,

gnj (τ ) = ξj := (φτ ,wj )
(3.8)

where
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Gj(g) = λj

(
(

n∑
i=1

gniwi)
3,wj

)
+

(
div(un

n∑
i=1

gniwi),wj

)
,

and

Sj (t) = (S,wj ) ∈ L2(τ, T ).

It is easy to verify that the nonlinearity Gj is locally Lipschitz in g = (gn1, · · · , gnn) and as a 
consequence there exists Tn ∈ (τ, T ) depending on |ξj | such that (3.8) has a unique local solution 
gnj (t) ∈ C[τ, Tn].

In what follows, we derive some a priori estimates on the approximate solutions that are valid 
in both 2D and 3D.

First, integrating (3.5) over � × [τ, T ], it is easy to find that

∫
�

φn(t)dx =
∫
�

φn(τ)dx =
∫
�

φτdx, ∀ t ∈ [τ, T ]. (3.9)

Multiplying Eq. (3.5) by μn and integrating by parts, we get

d

dt

∫
�

(
1

2
|∇φn|2 + f (φn)

)
dx + ‖∇μn‖2

=
∫
�

Sμn(1 − φn)dx −
∫
�

(un · ∇φn)μndx. (3.10)

Taking L2-inner product of (3.6) with un, using integration by parts, we obtain that

‖un‖2 =
∫
�

(−∇pn + μn∇φn) · undx =
∫
�

pnS + (μn∇φn) · undx.

Summing it with (3.10), using (3.4) for pn, Hölder’s inequality and Poincaré’s inequality, we 
deduce that

d

dt

∫
�

(
1

2
|∇φn|2 + f (φn)

)
dx + ‖∇μn‖2 + ‖un‖2

=
∫
�

Sμn(1 − φn)dx +
∫
�

pnSdx

=
∫
�

S(μn − μn)(1 − φn)dx − μn

∫
�

Sφndx

+
∫

S
(
A−1S − A−1 div ((μn − μn)∇φn) + μn(φn − φn)

)
dx
�
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=
∫
�

S(μn − μn)(1 − φn)dx +
∫
�

S
(
A−1S − A−1 div ((μn − μn)∇φn)

)
dx

≤ ‖S‖‖μn − μn‖ + ‖S‖
L

3
2
‖μn − μn‖L6‖φn‖L6

+ ‖S‖(‖A−1S‖ + ‖A−1 div ((μn − μn)∇φn)‖)
≤ C‖S‖‖∇μn‖(1 + ‖φn‖H 1) + C‖S‖

(
‖S‖ + ‖∇μn‖‖∇φn‖

L
3
2

)
. (3.11)

Thanks to Young’s inequality and Poincaré’s inequality, it holds

‖φn‖2
H 1 = ‖∇φn‖2 + ‖φn‖2 ≤ C

⎛
⎝1

2
‖∇φn‖2 +

∫
�

f (φn)dx + 1

⎞
⎠ . (3.12)

Denoting

E0(φn) = 1

2
‖∇φn‖2 +

∫
�

f (φn)dx + 1,

we infer from (3.11), (3.12) and Young’s inequality that

d

dt
E0(φn) + ‖∇μn‖2 + ‖un‖2 ≤ 1

2
‖∇μn‖2 + C‖S‖2E0(φn). (3.13)

Applying the Gronwall inequality, we obtain that

∫
�

(
1

2
|∇φn|2 + f (φn)

)
(t)dx +

T∫
τ

‖∇μn‖2dt +
T∫

τ

‖un‖2dt ≤ C (3.14)

where C depends on ‖φτ‖H 1 , � and ‖S‖L2(τ,T ;L2) but not Tn and n. This entails that

‖φn(t)‖2
H 1 = ‖(−� + I )

1
2 φn‖2 =

n∑
i=1

(1 + λi)g
2
ni(t) ≤ C for τ ≤ t ≤ T . (3.15)

Hence the local solution φn can be extended to [τ, T ] for any fixed T > τ .
The estimate (3.14) indicates that un is uniformly bounded in L2(τ, T ; L2(�)). Since

∣∣∣∣∣∣
∫
�

μndx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
�

f (φn)dx

∣∣∣∣∣∣ ≤ C(‖φn‖L1 + ‖φn‖3
L3) ≤ C, (3.16)

it follows from (3.14) and the Poincaré inequality that μn is uniformly bounded in L2(τ, T ;
H 1(�)). Furthermore, by the Gagliardo–Nirenberg inequality (d = 3), we have
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‖∇�φn‖2 ≤ C

⎛
⎝‖∇μn‖2 +

∫
�

φ4
n|∇φn|2dx + ‖∇φn‖2

⎞
⎠

≤ C(1 + ‖∇μn‖2 + ‖φn‖4
L∞)

≤ C(1 + ‖∇μn‖2 + ‖φn‖3
L6‖∇�φn‖ + ‖φn‖4

L6)

≤ 1

2
‖∇�φn‖2 + C(1 + ‖∇μn‖2),

which yields that

T∫
τ

‖∇�φn‖2dt ≤ C.

As a consequence, we obtain that φn is uniformly bounded in L∞(τ, T ; H 1(�)) and also in 
L2(τ, T ; H 3(�)). By the following interpolation inequality (d = 3)

‖φn‖L∞ ≤ C‖φn‖
3
4
L6‖∇�φn‖ 1

4 + C‖φn‖L6,

it holds that for any ϕ ∈ L
8
3 (τ, T ; H 1(�)),

∣∣∣∣∣∣
T∫

τ

∫
�

div(unφn)ϕdxdt

∣∣∣∣∣∣ ≤
T∫

τ

‖un‖‖φn‖L∞‖∇ϕ‖dt

≤
⎛
⎝ T∫

τ

‖un‖2dt

⎞
⎠

1
2
⎛
⎝ T∫

τ

‖φn‖8
L∞dt

⎞
⎠

1
8
⎛
⎝ T∫

τ

‖ϕ‖
8
3
H 1dt

⎞
⎠

3
8

≤ C.

Therefore, we have

div(unφn) ∈ L
8
5 (τ, T ; (H 1(�))′),

which further implies that

∂tφn ∈ L
8
5 (τ, T ; (H 1(�))′)

is uniformly bounded.
By the interpolation inequality (d = 3)

‖∇φn‖L3 ≤ C‖∇φn‖ 3
4 ‖∇�φn‖ 1

4 + C‖∇φn‖, (3.17)

we have for any v ∈ L
8
3 (τ, T ; L2(�)), it holds
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∣∣∣∣∣∣
T∫

τ

(μn∇φn) · vdt

∣∣∣∣∣∣ ≤
T∫

τ

‖μn‖L6‖∇φn‖L3‖v‖dt

≤ C

⎛
⎝ T∫

τ

‖μn‖2
H 1dt

⎞
⎠

1
2
⎛
⎝ T∫

τ

‖∇φn‖8
L3dt

⎞
⎠

1
8
⎛
⎝ T∫

τ

‖v‖ 8
3 dt

⎞
⎠

3
8

≤ C. (3.18)

As a consequence, μn∇φn ∈ L
8
5 (τ, T ; L2(�)) and hence we have ∇pn ∈ L

8
5 (τ, T ; L2(�)).

The above uniform estimates are enough to pass to the limit n → +∞ in the Galerkin scheme 
by standard compactness theorems to obtain the existence of global weak solutions to the system 
(1.1)–(1.7). The details are omitted here. One may refer to [4,43] for detailed argument for the 
simpler case S = 0.

3.3. Local strong solutions

Now we proceed to prove the existence of local strong solutions. For this propose, we derive 
some higher order a priori estimates for the approximation solutions.

Testing (3.5) by �2φn and using integration by parts, we obtain that

1

2

d

dt
‖�φn‖2 + ‖�2φn‖2

=
∫
�

�(φ3
n − φn)�

2φndx +
∫
�

S(1 − φn)�
2φndx −

∫
�

un · ∇φn�
2φndx

≤ 1

4
‖�2φn‖2 + 3

∫
�

(
|�(φ3

n − φn)|2 + S2(1 − φn)
2 + |un|2|∇φn|2

)
dx. (3.19)

By the three-dimensional Agmon’s inequality ‖φn‖L∞ ≤ C‖φn‖
1
2
H 1‖φn‖

1
2
H 2 and the estimate 

(3.15), we can deduce that∫
�

∣∣�(φ3
n − φn)

∣∣2
dx

≤ C

∫
�

(
φ2

n|∇φn|4 + φ4
n|�φn|2 + |�φn|2

)
dx

≤ C
(
‖φn‖2

L6‖∇φn‖4
L6 + ‖φn‖4

L∞‖�φn‖2 + ‖�φn‖2
)

≤ C(‖�φn‖2 + ‖�φn‖4 + 1), (3.20)

and ∫
S2(1 − φn)

2dx ≤ (1 + ‖φn‖L∞)2‖S‖2 ≤ C(1 + ‖�φn‖)‖S‖2. (3.21)
�
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For the third term on the right-hand side of (3.19), we have

∫
�

|un|2|∇φn|2dx ≤ C

∫
�

(
|∇pn|2|∇φn|2 + |μn|2|∇φn|4

)
dx

≤ C‖∇φn‖2
L∞‖∇pn‖2 + C‖∇φn‖4

L∞‖μn‖2. (3.22)

Using the estimates (3.15), (3.17) together with Agmon’s inequality for ∇φn

‖∇φn‖L∞ ≤ C‖φn‖
1
2
H 2‖φn‖

1
2
H 3

and the fact

‖∇pn‖2 =
∫
�

(Spn + (μn∇φn) · ∇pn)dx

we have

‖∇φn‖2
L∞‖∇pn‖2 ≤ C‖∇φn‖2

L∞(‖S‖2
Ḣ−1 + ‖μn∇φn‖2)

≤ C‖∇φn‖2
L∞‖S‖2

Ḣ−1 + C‖∇φn‖4
L∞‖μn‖2, (3.23)

where

‖∇φn‖4
L∞‖μn‖2 ≤ C(1 + ‖∇φn‖2

H 1‖∇φn‖2
H 2)(1 + ‖�φn‖2)

≤ C(1 + ‖�φn‖2‖∇�φn‖2 + ‖�φn‖2 + ‖∇�φn‖2)(1 + ‖�φn‖2)

≤ 1

8
‖�2φn‖2 + C(‖�φn‖10 + 1), (3.24)

and

‖∇φn‖2
L∞‖S‖2

Ḣ−1 ≤ C(1 + ‖�φn‖‖∇�φn‖ + ‖�φn‖ + ‖∇�φn‖)‖S‖2
Ḣ−1

≤ 1

8
‖�2φn‖2 + C(‖�φn‖2 + 1). (3.25)

As a consequence, we obtain from (3.19)–(3.24) that

d

dt
‖�φn‖2 + ‖�2φn‖2 ≤ C

(
‖�φn‖10 + 1

)
. (3.26)

Letting yn(t) = ‖�φn‖2 + 1, we have

y′ (t) ≤ C0y
5(t) (3.27)
n n
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where the constant C0 is independent of t . Solving this inequality implies that

yn(t) ≤ yn(τ )

(1 − 4C0y4
n(τ )t)

1
4

, ∀ τ ≤ t ≤ min

{
1

4C0y4
n(τ )

, T

}
:= Tn.

Noticing that

yn(τ ) ≤ y(τ) = ‖�φτ‖2 + 1,

we get

yn(t) ≤ 2− 1
4 (‖�φτ‖2 + 1), whenever τ ≤ t ≤ min

{
1

8C0(‖�φτ‖2 + 1)4
, T

}
:= T ∗.

As a result, for any t ∈ [τ, T ∗], the following estimate holds

‖φn(t)‖2
H 2 +

T ∗∫
τ

‖φn(t)‖2
H 4dt ≤ C. (3.28)

The above estimate together with (3.21)–(3.24) yields

T ∗∫
τ

‖div(unφn)‖2dt ≤ C.

Besides,

T ∗∫
τ

‖μn‖2
H 2dt ≤ C

T ∗∫
τ

(‖�2φn‖2 + ‖φn‖2
H 2 + ‖φn‖6

H 2)dt ≤ C. (3.29)

As a consequence, we also have

T ∗∫
τ

‖∂tφn‖2dt ≤ C (3.30)

and

T ∗∫
τ

‖p‖2
H 2dt ≤ C

T ∗∫
τ

(
‖S‖2 + ‖div(μn∇φn)‖2

)
dt

≤ C +
T ∗∫
τ

(‖∇μn‖2
L3‖∇φn‖2

L6 + ‖μn‖2
L∞‖φn‖2

H 2)dt

≤ C. (3.31)
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Finally, from (3.29) and (3.31) we can easily derive that

T ∗∫
τ

‖un‖2
H 1dt ≤ C. (3.32)

Combining the above estimates together, we are able to prove the existence of local strong 
solution to the system (1.1)–(1.7) by the same argument as in [29]. Moreover, arguing exactly as 
in [29, Section 6], we can obtain the uniqueness of strong solutions. This completes the proof of 
Theorem 2.1.

4. Global strong solution in 2D

In this section, we focus on the study of the CHD system (1.1)–(1.7) in the 2D case and 
prove Theorem 2.2. Differently from the 3D case, the strong solution exists globally under weak 
assumption on the external source term S. Moreover, it defines a family of closed processes 
{U(t, τ)}t≥τ in the space H 2

N(�).

4.1. Existence

We show that under a slightly weaker assumption on S than in Theorem 2.1(ii), one can actu-
ally prove the existence of global strong solution to the system (1.1)–(1.7). Based on the Galerkin 
scheme described before, we only need to obtain proper global-in-time a priori estimates. For the 
sake of simplicity, below we shall just perform formal estimates for smooth solutions (i.e., drop 
the subscript ‘n’), which can be rigorously justified by the Galerkin approximation in previous 
section.

Lemma 4.1. Suppose that d = 2 and S ∈ L2(τ, T ; L̇2(�)). Let (φ, u, p) be a smooth solution to 
problem (1.1)–(1.7). Then the following estimates hold

‖�φ(t)‖2 ≤ C1

(
1 + 1

t − τ

)
, ∀ t ∈ (τ, T ], (4.1)

and

‖�φ(t)‖2 +
T∫

τ

‖�2φ(t)‖2dt ≤ C2, ∀ t ∈ [τ, T ] (4.2)

where the constant C1 depends on ‖φτ‖H 1 , � and ‖S‖L2(τ,T ;L2), while the constant C2 depends 
on ‖φτ‖H 2 , � and ‖S‖L2(τ,T ;L2).

Proof. Similar to (3.14), we have the following estimate

sup
t∈[τ,T ]

‖φ(t)‖2
H 1 +

T∫
‖∇μ‖2dt +

T∫
‖u‖2dt ≤ C (4.3)
τ τ
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where C depends on ‖φτ‖H 1 , � and ‖S‖L2(τ,T ;L2). Next, it is similar to (3.19) that by testing 
(1.1) by �2φ and using integration by parts, we obtain

1

2

d

dt
‖�φ‖2 + 3

4
‖�2φ‖2

≤ 3
∫
�

(
|�(φ3 − φ)|2 + S2(1 − φ)2 + |u|2|∇φ|2

)
dx, (4.4)

Using the two-dimensional Agmon’s inequality ‖φ‖L∞ ≤ C‖φ‖ 1
2 ‖φ‖

1
2
H 2 and the Gagliardo–

Nirenberg inequality ‖∇φ‖L4 ≤ C‖∇�φ‖ 1
4 ‖∇φ‖ 3

4 + C‖∇φ‖, we can estimate the first two 
terms on the right-hand side of (4.4) as follows:

3
∫
�

∣∣�(φ3 − φ)
∣∣2

dx

≤ C

∫
�

(
φ2|∇φ|4 + φ4|�φ|2 + |�φ|2

)
dx

≤ C
(
‖φ‖2

L∞‖∇φ‖4
L4 + ‖φ‖4

L∞‖�φ‖2 + ‖�φ‖2
)

≤ C(‖φ‖2 + ‖�φ‖‖φ‖)(‖∇�φ‖‖∇φ‖3 + ‖∇φ‖4)

+ C(‖�φ‖2‖φ‖2 + ‖φ‖4)‖�φ‖2 + C‖�φ‖2

≤ C‖φ‖3
H 1(‖φ‖2

H 1 + ‖�φ‖2)(‖∇�φ‖ + ‖φ‖H 1) + C‖�φ‖2, (4.5)

where we have used the interpolation ‖�φ‖2 ≤ ‖∇φ‖‖∇�φ‖, which is a consequence of the 
fact that φ fulfils ∂νφ = 0 on the boundary. Besides, it is easy to see that

3
∫
�

S2(1 − φ)2 ≤ C‖S‖2(1 + ‖φ‖L∞)2 ≤ C‖S‖2(‖�φ‖‖φ‖ + ‖φ‖2). (4.6)

For the third term on the right-hand side of (4.4), we deduce from (3.4) that

3
∫
�

|u|2|∇φ|2dx

≤ C

∫
�

|∇p|2|∇φ|2dx + C‖∇φ‖4
L∞‖μ‖2

≤ C

∫
�

|∇A−1S|2|∇φ|2dx +
∫
�

|∇A−1 div(μ∇φ)|2|∇φ|2dx + C‖∇φ‖4
L∞‖μ‖2

≤ C‖∇A−1S‖2
L4‖∇φ‖2

L4 + C‖∇φ‖4
L∞‖μ‖2

≤ C‖S‖2(‖∇φ‖2 + ‖∇φ‖‖�φ‖)
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+ C(‖∇φ‖4 + ‖∇φ‖2‖�φ‖2 + ‖∇φ‖2‖∇�φ‖2)(‖f ′(φ)‖2 + ‖�φ‖2)

≤ C‖S‖2(‖∇φ‖2 + ‖�φ‖2)

+ C‖∇φ‖2(‖∇φ‖2 + ‖∇�φ‖2)(‖φ‖6
H 1 + ‖φ‖2

H 1 + ‖�φ‖2). (4.7)

Here we note that the constants C in (4.5)–(4.7) depend only on � and coefficient of the system.
As a consequence, we deduce from (4.4)–(4.7) and the uniform estimate (4.3) that

d

dt
‖�φ‖2 + ‖�2φ‖2 ≤ Ch(t)‖�φ‖2 + Ch(t), (4.8)

where

h(t) = 1 + ‖S‖2 + ‖∇�φ‖2

and the constant C in (4.8) depends on ‖φτ‖H 1 , � and ‖S‖L2(τ,T ;L2).
Besides, it easily follows from (4.3) that

sup
t∈[τ,T )

t+r∫
t

h(s)ds ≤ r + C, ∀ r ∈ (0,min{1, T − t}). (4.9)

Then by the uniform Gronwall inequality [42, Lemma III.1.1], we infer that

‖�φ(t + δ)‖2 ≤ C(1 + δ−1), ∀ t ∈ [τ, T ), δ ∈ (0,min{1, T − t}), (4.10)

where the constant C depends on ‖φτ‖H 1 , � and ‖S‖L2(τ,T ;L2).
On the other hand, by the classical Gronwall inequality, we also infer that

‖�φ(t)‖2 ≤ (‖�φτ‖2 + 1)eC
∫ T
τ h(s)ds, (4.11)

and then

T∫
τ

‖�2φ(t)‖2dt ≤ C, (4.12)

where the constant C depends on ‖φτ‖H 2 , � and ‖S‖L2(τ,T ;L2). �
The existence of global strong solutions to problem (1.1)–(1.7) is a direct consequence of the 

uniform estimates (4.2) and (4.3) (see [29, Section 4] for detailed argument with S = 0). Thus, 
the proof is omitted here.



J. Jiang et al. / J. Differential Equations 259 (2015) 3032–3077 3051
4.2. Continuous dependence on initial data

The strong solution to problem (1.1)–(1.7) satisfies the following continuous dependence 
property, which also yields the uniqueness:

Lemma 4.2. Suppose that d = 2. Let (φi, ui , pi) (i = 1, 2) be the two global strong solutions 
corresponding to the initial data φτi ∈ H 2

N(�). Then for t ∈ [τ, T ], the following estimate holds:

‖φ1(t) − φ2(t)‖2
H 1 +

T∫
τ

(‖∇μ(s)‖2 + ‖u(s)‖2)ds ≤ CT ‖φτ1 − φτ2‖2
H 1, (4.13)

where the constant CT may depend on ‖φτ1‖H 2 , ‖φτ2‖H 2 , 
∫ T

τ
‖S‖2ds, �, τ and T .

Proof. The argument is similar to [29, Section 6] with minor modifications due to the appearance 
of the source term S. For the convenience of the readers, we sketch the proof here. Let us set 
φ = φ1 − φ2, u = u1 − u2 and p = p1 − p2. Also denote μi = −�φi + f (φi), i = 1, 2 and 
μ := μ1 − μ2 = −�φ + f (φ1) − f (φ2). Then (φ, u, p) solves the system

⎧⎨
⎩

φt + div(uφ1 + u2φ) = �μ,

u = −∇p + (μ∇φ1 + μ2∇φ),

div u = 0,

(4.14)

subject to boundary and initial conditions

{
∂νφ = ∂νμ = u · ν = 0 on ∂�,

φ(t, x)|t=τ = φτ1 − φτ2.

Testing the first equation of (4.14) by φ, after integration by parts we obtain that

1

2

d

dt
‖φ‖2 + ‖�φ‖2

=
∫
�

(f ′(φ1) − f ′(φ2))�φdx − 1

2

∫
�

Sφ2dx +
∫
�

φ1u · ∇φdx

:= I1 + I2 + I3. (4.15)

Using the uniform estimates (4.3) and Agmon’s inequality, the terms I1, I3 can be estimated as 
in [29, (6.9)] such that

I1 ≤ (1 + ‖φ2
1 + φ1φ2 + φ2

2‖L∞)‖φ‖‖�φ‖

≤ 1

4
‖�φ‖2 + C‖φ‖2, (4.16)

I3 ≤ ‖u‖‖∇φ‖‖φ1‖L∞ ≤ 1‖u‖2 + C‖∇φ‖2. (4.17)

8
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Concerning I2, we have

I2 ≤ 1

2
‖S‖‖φ‖‖φ‖L∞ ≤ C‖S‖‖φ‖ 3

2 ‖φ‖
1
2
H 2

≤ C‖S‖‖φ‖2 + C‖S‖‖φ‖ 3
2 ‖�φ‖ 1

2

≤ 1

4
‖�φ‖2 + C(‖S‖2 + 1)‖φ‖2. (4.18)

As a consequence, we have

d

dt
‖φ‖2 + ‖�φ‖2 ≤ 1

4
‖u‖2 + C(‖S‖2 + 1)(‖∇φ‖2 + ‖φ‖2). (4.19)

Next, testing the first and the second equation of (4.14) by μ and u respectively, adding the 
results together, we obtain that

d

dt

⎛
⎝1

2
‖∇φ‖2 − 1

2
‖φ‖2 + 1

4

∫
�

φ4dx

⎞
⎠ + ‖∇μ‖2 + ‖u‖2

=
∫
�

μ2∇φ · udx +
∫
�

φu2 · ∇μdx + 3
∫
�

φ1φ2φφtdx. (4.20)

The first two terms on the right-hand side of (4.20) can be estimated exactly like [29, (6.6)–(6.7)]
that ∫

�

μ2∇φ · udx +
∫
�

φu2 · ∇μdx

≤ 1

8
‖∇μ‖2 + 1

8
‖u‖2 + C(‖φ2‖2

H 4 + ‖u2‖2
H 1)(‖∇φ‖2 + ‖φ‖2). (4.21)

For the third term, we have

3
∫
�

φ1φ2φφtdx

= −3
∫
�

div(uφ1 + u2φ)φ1φ2φdx + 3
∫
�

φ1φ2φ�μdx

= −3
∫
�

(u · ∇φ1)φ1φ2φdx − 3
∫
�

Sφ1φ2φ
2dx − 3

∫
�

(u2 · ∇φ)φ1φ2φdx

− 3
∫
�

∇(φ1φ2φ) · ∇μdx

≤ 1‖u‖2 + C‖∇φ1‖2
4‖φ1‖2

L∞‖φ2‖2
L∞‖φ‖2

4 + C‖S‖‖φ1‖L∞‖φ2‖L∞‖φ‖2
4
8 L L L
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+ C‖u2‖L4‖φ1‖L∞‖φ2‖L∞‖∇φ‖‖φ‖L4 + 1

8
‖∇μ‖2 + C‖φ1‖2

L∞‖φ2‖2
L∞‖∇φ‖2

+ C‖∇φ1‖2
L∞‖φ2‖2

L∞‖φ‖2 + C‖φ1‖2
L∞‖∇φ2‖2

L∞‖φ‖2

≤ 1

8
‖u‖2 + 1

8
‖∇μ‖2

+ C(‖φ2‖2
H 3 + ‖φ1‖2

H 3 + ‖u2‖2
H 1 + ‖S‖2 + 1)(‖∇φ‖2 + ‖φ‖2). (4.22)

As a consequence, we infer from (4.20)–(4.22) that

d

dt

⎛
⎝1

2
‖∇φ‖2 − 1

2
‖φ‖2 + 1

4

∫
�

φ4dx

⎞
⎠ + 3

4
‖∇μ‖2 + 3

4
‖u‖2

≤ C(‖φ2‖2
H 4 + ‖φ1‖2

H 3 + ‖u2‖2
H 1 + ‖S‖2 + 1)(‖∇φ‖2 + ‖φ‖2). (4.23)

Adding (4.19) with (4.23), we obtain that

d

dt

⎛
⎝1

2
‖∇φ‖2 + 1

2
‖φ‖2 + 1

4

∫
�

φ4dx

⎞
⎠ + 3

4
‖∇μ‖2 + 1

2
‖u‖2

≤ Ch(t)

⎛
⎝‖∇φ‖2 + ‖φ‖2 + 1

2

∫
�

φ4dx

⎞
⎠ , (4.24)

where

h(t) = ‖φ2‖2
H 4 + ‖φ1‖2

H 3 + ‖u2‖2
H 1 + ‖S‖2 + 1.

Due to (4.2),

t∫
τ

h(s)ds ≤ C, ∀ t ∈ [τ, T ],

where the constant C depends on ‖φ2(τ )‖H 2 , 
∫ T

τ
‖S‖2ds, τ and T . Thus by the Gronwall in-

equality, we deduce that for all t ∈ [τ, T ]

‖∇φ(t)‖2 + ‖φ(t)‖2 + 1

2

∫
�

φ4dx

≤ eC
∫ T
τ h(s)ds

(
‖∇(φτ1 − φτ2)‖2 + ‖φτ1 − φτ2‖2 + 1

2
‖φτ1 − φτ2‖4

L4

)
.

Our conclusion (4.13) easily follows from the above estimate. The proof is complete. �
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4.3. Associated process

Recall the following definition (see [19], we also refer to [35] for the definition of closed 
semigroups):

Definition 4.1. Let X be a metric space. The set class {U(t, τ)}t≥τ that U(t, τ) : X → X is 
called a process on X, if (i) U(τ, τ)x = x for any x ∈ X; (ii) U(t, τ)x = U(t, s)U(s, τ)x for any 
τ ≤ s ≤ t and any x ∈ X.

Moreover, a process {U(t, τ)}t≥τ is said to be closed on X, if for any τ ≤ t , and any sequence 
{xn} ∈ X with xn → x ∈ X and U(t, τ)xn → y ∈ X, then U(t, τ)x = y.

Then we infer from Lemma 4.2 that:

Proposition 4.1. For any S ∈ L2
loc(R; L̇2(�)), we are able to define a family of closed processes 

{U(t, τ)}t≥τ on H = H 2
N(�) as follows:

U(t, τ )φτ = φ(t; τ,φτ ), ∀φτ ∈ H 2
N(�), ∀ τ ≤ t,

where φ(t) is the unique global strong solution to problem (1.1)–(1.6).

5. Pullback attractor in 2D

In this section, we study the long-time dynamics of the family of processes {U(t, τ)}t≥τ de-
fined by the global strong solution to CHD problem (1.1)–(1.7) in terms of the pullback attractor. 
To this end, we first introduce some basic definitions and abstract results about pullback attractors 
for closed processes adopted from [19] (cf. [40] for the case of closed cocycles).

5.1. Preliminaries

Consider a metric space (X, dX). We denote by distX(B1, B2) the Hausdorff semi-distance 
in X between two sets B1, B2 ⊂ X defined as distX(B1, B2) = supx∈B1

infy∈B2 dX(x, y). P(X)

stands for the family of all nonempty subsets of X. Let D be a nonempty class of families 
parameterized in time D̂ = {D(t) : t ∈ R} ⊂ P(X). The class D is called a universe in P(X)

(see [31]).
We recall now some definitions that will be useful in the subsequent analysis (see e.g., [7,19]):

Definition 5.1. A family of nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X) is said to be pull-
back D-absorbing for the process {U(t, τ)}t≥τ , if for any D̂ ∈ D and any t ∈ R, there exists a 
τ0(t, D̂) ≤ t such that U(t, τ)D(τ) ⊂ D0(t) for any τ ≤ τ0(t, D̂).

Definition 5.2. The process {U(t, τ)}t≥τ is said to be pullback D-asymptotically compact, if for 
any t ∈ R and any D̂ ∈ D, any sequence τn → −∞ and any sequence xn ∈ D(τn), the sequence 
{U(t, τn)xn}∞n=1 is relatively compact in X.

Definition 5.3. A family AD = {AD(t) : t ∈ R} of nonempty subsets of X is said to be a pullback 
D-attractor for the process {U(t, τ)}t≥τ in X, if
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(i) AD(t) is compact in X for any t ∈R,
(ii) AD is invariant, i.e., U(t, τ)AD(τ ) = AD(t) for any τ ≤ t ,

(iii) AD is pullback D-attracting, i.e., for any t ∈R and any D̂ = {D(t) : t ∈ R} ∈D, it holds

lim
τ→−∞ distX(U(t, τ )D(τ),AD(t)) = 0.

The following abstract result on the existence of minimal pullback attractors for closed pro-
cesses is proved in [19] (see also [40] for the case of closed cocycles):

Lemma 5.1. Consider a closed process {U(t, τ)}t≥τ in X. Let D be a universe in P(X). If the 
following conditions are satisfied:

(1) there exists a family D̂0 = {D0(t) : t ∈ R} ⊂P(X) such that D̂0 is pullback D-absorbing for 
{U(t, τ)}t≥τ ,

(2) {U(t, τ)}t≥τ is pullback D-asymptotically compact,

then there exists a minimal pullback D-attractor AD = {AD(t) : t ∈ R} in X given by

AD(t) =
⋃

D̂∈D
�(D̂, t)

X

,

where

�(D̂, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ )D(τ)
X

, D̂ ∈D.

Remark 5.1. (i) Such a family AD is minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is 
a family of closed subsets such that for any D̂ = {D(t) : t ∈R} ∈ D,

lim
τ→−∞ distX(U(t, τ )D(τ),C(t)) = 0,

then AD(t) ⊂ C(t).
(ii) In the definition above, D̂0 does not necessarily belong to the class D. Furthermore, if 

D̂0 ∈ D, then we have AD(t) = �(D̂0, t) ⊂ D0(t)
X

.

5.2. Existence of pullback DHM

F -absorbing sets

Since our system (1.1)–(1.4) preserves the spatial average of φ (see (2.2)), it seems im-
possible to construct a suitable absorbing set for the process {U(t, τ)}t≥τ on the whole space 
H := H 2

N(�). Instead, we shall study the dynamics of problem (1.1)–(1.7) confined on the phase 
space HM (see (2.3) for its definition).

For the sake of simplicity, in the subsequent text, we denote by DHM

F the class of families D̂ =
{D(t) = D : t ∈ R} with D being a nonempty fixed bounded subset of HM (i.e., D̂ ⊂ P(HM)

and D is parameterized in time but constant for all t ∈ R, see [11]). Then DHM

F is the universe 
we shall work on.
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First, we prove the existence of a pullback DHM

F -absorbing family of sets for the process 
{U(τ, t)}t≥τ :

Proposition 5.1. Let d = 2. Suppose that S ∈ L2
b(R; L̇2(�)). Then there is a family D̂0 ⊂

DHM

F that is pullback DHM

F -absorbing for the processes {U(t, τ)}t≥τ associated with problem
(1.1)–(1.7).

Proof. In the subsequent proof, C, Ci denote constants that may depend on �, M , but are inde-
pendent of the initial datum for φ. Qi(·) stand for certain monotone increasing functions.

Multiplying (1.1) by μ and (1.3) by u, integrating over � then adding the resultants together 
(comparing with (3.11) for the approximate solutions), we deduce from the Hölder inequality 
and the Poincaré inequality that

d

dt
E(φ) + ‖∇μ‖2 + ‖u‖2

=
∫
�

S(μ − μ)(1 − φ)dx +
∫
�

S
(
A−1S − A−1 (div ((μ − μ)∇φ))

)
dx

≤ ‖S‖‖μ − μ‖ + ‖S‖‖μ − μ‖L4‖φ‖L4

+ ‖S‖
(
‖A−1S‖ + ‖A−1 (div ((μ − μ)∇φ))‖

)
≤ C‖S‖‖∇μ‖(1 + ‖φ‖L4) + C‖S‖

(
‖A−1S‖ + ‖∇μ‖‖∇φ‖

L
3
2

)
, (5.1)

where

E(φ) =
∫
�

(
1

2
|∇φ|2 + f (φ)

)
dx.

By the two-dimensional Gagliardo–Nirenberg inequality and Young’s inequality, we have

C‖S‖‖∇μ‖(1 + ‖φ‖L4) + C‖S‖
(
‖A−1S‖ + ‖∇μ‖‖∇φ‖

L
3
2

)

≤ 1

4
‖∇μ‖2 + C‖S‖2(1 + ‖φ‖2

L4 + ‖∇φ‖2

L
3
2
)

≤ 1

4
‖∇μ‖2 + C‖S‖2

(
1 + ‖∇φ‖ 2

3 ‖φ‖
4
3
L4 + ‖φ‖2

L4

)

≤ 1

4
‖∇μ‖2 + C‖S‖2

(
1 + ‖φ‖

8
3
L4 + ‖∇φ‖ 4

3

)
. (5.2)

From estimates (5.1)–(5.2) and Young’s inequality we infer that

d

dt

∫ (
1

2
|∇φ|2 + f (φ)

)
dx + 1

2
‖∇μ‖2 + ‖u‖2 ≤ C1‖S‖2

(
1 + ‖φ‖

8
3
L4 + ‖∇φ‖ 4

3

)
. (5.3)
�
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Recalling the mass conservation property (2.2), we rewrite Eq. (1.1) in the following form

(φ − φ)t + �2(φ − φ) − �(f ′(φ) − f ′(φ)) = S − div(uφ). (5.4)

Multiplying the above equation by A−1(φ − φ), integrating by parts, we obtain that

1

2

d

dt
‖A− 1

2 (φ − φ)‖2 + ‖∇φ‖2 +
∫
�

(f ′(φ) − f ′(φ))(φ − φ)dx

=
∫
�

(S − div(uφ))A−1(φ − φ)dx. (5.5)

By Young’s inequality, we have

∫
�

(f ′(φ) − f ′(φ))(φ − φ)dx =
∫
�

f ′(φ)(φ − φ)dx

=
∫
�

(φ3 − φ)(φ − φ)dx

=
∫
�

(φ4 − φ2)dx − |φ|
∫
�

φ3dx + |�||φ|2

=
∫
ω

(2f (φ) + 1

2
φ4)dx − |φ|

∫
�

φ3dx + |�||φ|2

≥ 2
∫
�

f (φ)dx − C2. (5.6)

Moreover, by Young’s inequality and Poincaré’s inequality, the right-hand side of (5.5) can be 
estimated as follows∫

�

(S − div(uφ))A−1(φ − φ)dx

≤
∫
�

SA−1(φ − φ)dx +
∫
�

φu · ∇A−1(φ − φ)dx

≤ ‖A−1(φ − φ)‖‖S‖ + ‖u‖‖φ‖L4‖∇A−1(φ − φ)‖L4

≤ 1

2
‖∇φ‖2 + C‖S‖2 + 1

2η
‖u‖2 + η

2
‖φ‖2

L4‖∇A−1(φ − φ)‖2
L4

≤ 1

2
‖∇φ‖2 + 1

2η
‖u‖2 + Cη‖φ‖2

L4(‖φ‖2
L4 + |φ|2) + C‖S‖2

≤ 1‖∇φ‖2 + 1 ‖u‖2 + (C3η‖φ‖4
L4 + C3M

2η‖φ‖2
L4) + C3‖S‖2,
2 2η
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where η > 0 is a constant to be specified later. Since

C3η‖φ‖4
L4 + C3M

2η‖φ‖2
L4 ≤ C3η

(
1 + M2

4

)
‖φ‖4

L4 + C3M
2η

≤ C3η(8 + 2M2)

∫
�

f (φ)dx + C3(4 + 2M2)η,

we take η = 1
C3(8+2M2)

and deduce that

d

dt
‖A− 1

2 (φ − φ)‖2 + ‖∇φ‖2 + 2
∫
�

f (φ)dx ≤ C‖S‖2 + C3(8 + 2M2)‖u‖2 + C4. (5.7)

Multiplying (5.7) by C5 = 1
C3(16+4M2)

and adding the resultant up with (5.3) gives

d

dt

(
E(φ) + C5‖A− 1

2 (φ − φ)‖2
)

+ 1

2
‖∇μ‖2 + 1

2
‖u‖2 + C5‖∇φ‖2 + 2C5

∫
�

f (φ)dx

≤ C6‖S‖2
(

1 + ‖φ‖
8
3
L4 + ‖∇φ‖ 4

3

)
+ C7. (5.8)

It is easy to see that there exist constants C8, C9 that are independent of φ such that

C8(‖∇φ‖2 + ‖φ‖4
L4) − C9 ≤ E(φ) + C5‖A− 1

2 (φ − φ)‖2 ≤ C8(‖∇φ‖2 + ‖φ‖4
L4) + C9.

Then we define �1(t) := E(φ) + C5‖A− 1
2 (φ − φ)‖2 + C9 + 1, which satisfies

�1(t) ≥ max
{

1,C8(‖∇φ‖2 + ‖φ‖4
L4)

}
. (5.9)

Then it follows from (5.8) and Young’s inequality that

d

dt
�1(t) + C10�1(t) + 1

2
‖∇μ‖2 + 1

2
‖u‖2 ≤ C11‖S‖2�

2
3
1 (t) + C11(1 + ‖S‖2). (5.10)

Since S ∈ L2
b(R; L̇2(�)), then applying Lemma A.2 in Appendix A with n = 1 and ω = a1 = 2

3 , 
we obtain the following dissipative estimates

�1(t) ≤ C13�1(τ )e− 3
4 C10(t−τ) +Q1

(
‖S‖2

L2
b(R;L̇2(�))

)
, ∀ t ≥ τ. (5.11)

It follows from the above estimate and (5.9) that

‖φ(t)‖2
H 1 ≤Q2(‖φτ‖2

H 1)e
−C14(t−τ) +Q3

(
‖S‖2

2 ˙ 2

)
. (5.12)
Lb(R;L (�))
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As a consequence, we deduce from (5.12) that for any t ∈ R, D̂ ∈ DHM

F , there exists a time 
τ1(D̂, t) < t − 3 such that

‖φ(r; τ,φτ )‖2
H 1 ≤ ρ1, ∀ r ∈ [t − 3, t], τ ≤ τ1(D̂, t), φτ ∈ D ∈ D̂, (5.13)

where

ρ1 = 1 +Q3

(
‖S‖2

L2
b(R;L̇2(�))

)
.

Besides, integrating (5.10), we infer that

sup
r∈[t−2,t]

r∫
r−1

(
‖∇μ(s)‖2 + ‖u(s)‖2

)
ds ≤Q4

(
ρ1,‖S‖2

L2
b(R;L̇2(�))

)
. (5.14)

for τ ≤ τ1(D̂, t) and φτ ∈ D ∈ D̂, which together with (5.12) and the Sobolev embedding theo-
rem yields

sup
r∈[t−2,t]

r∫
r−1

‖φ‖2
H 3ds ≤ Q5

(
ρ1,‖S‖2

L2
b(R;L̇2(�))

)
. (5.15)

Next, testing (1.4) by �2φ, using the estimate (5.12) and a similar argument in Lemma 4.1, we 
can still obtain the differential inequality (4.8) for ‖�φ‖2, namely,

d

ds
‖�φ(s)‖2 + ‖�2φ(s)‖2 ≤ Ch(s)‖�φ‖2 + Ch(s), (5.16)

for a.e. s ∈ [t − 3, t], τ ≤ τ1(D̂, t) and φτ ∈ D ∈ D̂, here h(s) = 1 + ‖S‖2 + ‖∇�φ‖2, and the 
constant C now depends on ρ1, � and ‖S‖L2

b(R;L2).
Using (5.15), (5.16) and the uniform Gronwall inequality [42, Lemma III.1.1], we can deduce 

that

‖�φ(r)‖2 ≤ Q6

(
ρ1,‖S‖2

L2
b(R;L̇2(�))

)
, ∀ r ∈ [t − 2, t]. (5.17)

Thus, it follows from (5.12) and (5.17) that

‖φ(r; τ,φτ )‖2
H 2 ≤ ρ2, ∀ r ∈ [t − 2, t], τ ≤ τ1(D̂, t), φτ ∈ D ∈ D̂ (5.18)

where ρ2 depends on ρ1, ‖S‖2
L2

b(R;L̇2(�))
, M and �.

In summary, we can take the family

D̂0 =
{
D0(t) = BM(0, ρ

1
2
2 ), t ∈R

}
∈ DHM

F ,



3060 J. Jiang et al. / J. Differential Equations 259 (2015) 3032–3077
where BM(0, ρ
1
2
2 ) is the closed ball in HM of center zero and radius ρ

1
2
2 . Then D̂0 satisfies that 

for any t ∈R and any family D̂ ∈DHM

F , there exists a time τ0(D̂, t) < t such that

U(t, τ )D(τ) ⊂ D0(t), ∀ τ ≤ τ0(D̂, t), D(t) ∈ D̂.

This completes the proof. �
Using the uniform estimates obtained in the above proposition and the Sobolev embedding 

theorem, indeed we can also prove the following

Corollary 5.1. For any t ∈ R and any family D̂ ∈ DHM

F , there exists a time τ0(D̂, t) < t such 
that

sup
r∈[t−1,t]

r∫
r−1

(
‖φ(s)‖2

H 4 + ‖u(s)‖2
H 1 + ‖φt (s)‖2

)
ds ≤ ρ3, ∀ τ ≤ τ0(D̂, t), φτ ∈ D(τ).

5.3. Pullback DHM

F -asymptotic compactness

Now we proceed to prove the pullback DHM

F -asymptotic compactness for the universe DHM

F

in HM .

Proposition 5.2. Suppose that S ∈ L2
b(R; L̇2(�)). Then the family of processes {U(t, τ)}t≥τ is 

pullback DHM

F -asymptotically compact.

Proof. Consider t ∈ R, a family D̂ ∈ DHM

F , a sequence of time τn → −∞ and a sequence of 
initial data φτn ∈ D(τn) ∈ D̂ (recall from the definition that here the set D(t) is indeed time 
independent). For the sake of simplicity, below we just denote

φn(s) = φ(s; τn,φτn) = U(s, τn)φτn .

It follows from Proposition 5.1 and Corollary 5.1 that there exists a τ0(D̂, t) < t − 3 such 
that the subsequence {φn : τn ≤ τ0(D̂, t)} ⊂ {φn} is uniformly bounded in L∞(t −2, t; H 2(�) ∩
L2(t − 2, t; H 4(�)) and correspondingly, {φn

t } is uniformly bounded in L2(t − 2, t; L2(�)).
Recall the following compactness lemma (see e.g., [38]):

Lemma 5.2. Let X ⊂ Y ⊂ Z be three Hilbert spaces, T ∈ (0, +∞). Suppose that the embedding 
X ↪→ Y is compact. Then:

(1) For any p, q ∈ (1, +∞), the embedding {φ ∈ Lp(0, T ; X), φt ∈ Lq(0, T ; Z)} ↪→
Lp(0, T ; Y) is compact.

(2) For any q ∈ (1, +∞), the embedding {φ ∈ L∞(0, T ; X), φt ∈ Lq(0, T ; Z)} ↪→ C([0, T ]; Y)

is compact.
(3) The embedding {φ ∈ L2(0, T ; X), φt ∈ L2(0, T ; Y)} ↪→ C([0, T ]; [X, Y ] 1

2
) is continuous.



J. Jiang et al. / J. Differential Equations 259 (2015) 3032–3077 3061
We deduce that there exists a subsequence still denoted by {φn} and a function φ ∈ L∞([t −
2, t]; H 2(�) ∩ L2(t − 2, t; H 4(�)) with φt ∈ L2(t − 2, t; L2(�)) such that

φn ⇀ φ, weakly star in L∞(t − 2, t;H 2(�)),

φn ⇀ φ, weakly in L2(t − 2, t;H 4(�)),

φn
t ⇀ φt , weakly in L2(t − 2, t;L2(�)),

φn → φ, strongly in L2(t − 2, t;H 2(�)) and C([t − 2, t],H 1(�)), (5.19)

φn(s) → φ(s), strongly in H 2(�), for a.e. s ∈ (t − 2, t). (5.20)

Moreover, we have φ ∈ C([t − 2, t], H 2(�)) and it satisfies the system (1.1)–(1.4) a.e. on 
(t − 2, t).

From the fact that {φn} is uniformly bounded in C([t − 2, t], H 2(�)), we infer that for any 
sequence {sn} ⊂ [t − 2, t] satisfying sn → s∗ ∈ [t − 2, t], it holds (up to a subsequence)

φn(sn) ⇀ φ(s∗) weakly in H 2(�). (5.21)

In what follows, we prove that the sequence {φn(t)} is relatively compact in H (see Defini-
tion 5.2), which is a direct consequence of the following result such that up to a subsequence, it 
holds

φn → φ strongly in C([t − 1, t];H 2(�)). (5.22)

To proceed, first we need to derive proper energy estimates. For every φn, recalling (4.4) and 
the computations in (4.5)–(4.7), using the interpolation inequality ‖∇�φn‖2 ≤ ‖�φn‖‖�2φn‖
and Young’s inequality, after a straightforward but tedious calculation, we can re-estimate the 
three terms on the right-hand side of (4.4) (now in terms of φn, cf. (4.5)–(4.7)) and deduce that

d

dt
‖�φn‖2 + ‖�2φn‖2 ≤ C�(F1(φ

n) + F2(φ
n) + F3(φ

n)), (5.23)

where C� is a constant that depends only on �. In particular, it is independent of φn. The func-
tions Fi are given by

F1(φ
n) = ‖φn‖4

H 1‖�φn‖6,

F2(φ
n) = (‖φn‖16

H 1 + ‖S‖2 + 1)‖�φn‖2,

F3(φ
n) = ‖φn‖10

H 1 + ‖S‖2‖φn‖2
H 1 + 1.

In a similar manner, we have for φ

d

dt
‖�φ‖2 + ‖�2φ‖2 ≤ C�(F1(φ) + F2(φ) + F3(φ)), (5.24)

where C� is the same as in (5.23).



3062 J. Jiang et al. / J. Differential Equations 259 (2015) 3032–3077
As a consequence, for φn and φ, t − 2 ≤ s1 ≤ s2 ≤ t , we infer from the above inequalities that

‖�φn(s2)‖2 +
s2∫

s1

‖�2φn(ξ)‖2dξ

≤ ‖�φn(s1)‖2 + C�

s2∫
s1

(F1(φ
n(ξ)) + F2(φ

n(ξ)) + F3(φ
n(ξ)))dξ, (5.25)

‖�φ(s2)‖2 +
s2∫

s1

‖�2φ(ξ)‖2dξ

≤ ‖�φ(s1)‖2 + C�

s2∫
s1

(F1(φ(ξ)) + F2(φ(ξ)) + F3(φ(ξ)))dξ. (5.26)

Define

Jn(s) = ‖�φn(s)‖2 − C�

s∫
t−2

(F1(φ
n(ξ)) + F2(φ

n(ξ)) + F3(φ
n(ξ)))dξ,

J (s) = ‖�φ(s)‖2 − C�

s∫
t−2

(F1(φ(ξ)) + F2(φ(ξ)) + F3(φ(ξ)))dξ.

Since φn, φ ∈ C([t −2, t]; H 2(�)), the functions Jn(s) and J (s) are continuous for s ∈ [t −2, t]. 
Moreover, they are non-increasing with respect to s ∈ [t − 2, t]. To this end, we infer from (5.25)
that

Jn(s2) − Jn(s1)

= ‖�φn(s2)‖2 − ‖�φn(s1)‖2 − C�

s2∫
s1

(F1(φ
n(ξ)) + F2(φ

n(ξ)) + F3(φ
n(ξ)))dξ

≤ −
s2∫

s1

‖�2φn(ξ)‖2dξ

≤ 0, for all t − 2 ≤ s1 ≤ s2 ≤ t.

Similar result holds for J (s). From the strong convergence results (5.19) and (5.20), we have for 
a.e. s ∈ (t − 2, t), ‖�φn(s)‖ → ‖�φ(s)‖ and ‖φn(s)‖H 1 → ‖φ(s)‖H 1 . As a consequence,

Fi(φ
n(s)) → F(φ(s)), a.e. for s ∈ (t − 2, t), i = 1,2,3. (5.27)
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Since φn is uniformly bounded in L∞(t −2, t; H 2(�), then Fi(φ
n) is also bounded L∞(t −2, t). 

It follows from the Lebesgue dominated convergence theorem that

s∫
t−2

Fi(φ
n(ξ))dξ →

s∫
t−2

Fi(φ(ξ))dξ, ∀ s ∈ [t − 2, t], i = 1,2,3, (5.28)

which implies

Jn(s) → J (s), a.e. s ∈ (t − 2, t). (5.29)

Now we proceed to prove the strong convergence property (5.22) by a contradiction argument 
introduced in [19,30]. Assume that (5.22) is not true, then there exists a constant κ > 0 and a 
sequence {tn}∞n=1 ⊂ [t − 1, t] that without loss of generality, converges to a certain point t∗ ∈
[t − 1, t] (otherwise, we can take a convergent subsequence) such that

‖φn(tn) − φ(t∗)‖H 2 ≥ 2κ.

From the elliptic estimate, here we can simply use the equivalent norm on H 2(�) given by 
‖ · ‖H 2 = ‖ · ‖H 1 + ‖� · ‖. Then it follows from (5.19) that there exists n0 ∈ N depending on κ
such that

‖�φn(tn) − �φ(t∗)‖ ≥ κ, ∀n ≥ n0. (5.30)

On the other hand, from (5.29), we can take a monotone increasing sequence {rj} ⊂ (t − 2, t∗)
that satisfies

lim
j→+∞ rj = t∗ and lim

n→+∞Jn(rj ) = J (rj ), ∀ j ∈ N. (5.31)

For any δ > 0, it follows from the continuity of J (s) that there exists a constant j0 ∈ N depending 
on δ such that

|J (rj ) − J (t∗)| < δ

2
, ∀ j ≥ j0(δ). (5.32)

Due to (5.31), for j0, there exists an integer n1 depending on j0 and satisfying n1 ≥ n0 such that

tn ≥ rj0 , and |Jn(rj0) − J (rj0)| <
δ

2
, ∀n ≥ n1. (5.33)

Since Jn(s) is non-increasing for s ∈ [t −2, t], we infer from (5.32) and (5.33) that for all n ≥ n1, 
it holds

Jn(tn) − J (t∗) ≤ Jn(rj0) − J (t∗) ≤ |Jn(rj0) − J (rj0)| + |J (rj0) − J (t∗)| < δ, (5.34)

which implies

lim supJn(tn) ≤ J (t∗). (5.35)

n→+∞
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It follows from (5.28) and the boundedness of Fi that

lim
n→+∞

∣∣∣∣∣∣
tn∫

t−2

Fi(φ
n(ξ))dξ −

t∗∫
t−2

Fi(φ(ξ))dξ

∣∣∣∣∣∣
≤ lim

n→+∞

∣∣∣∣∣∣
t∗∫

t−2

Fi(φ
n(ξ))dξ −

t∗∫
t−2

Fi(φ(ξ))dξ

∣∣∣∣∣∣ + lim
n→+∞

∣∣∣∣∣∣
tn∫

t∗
Fi(φ

n(ξ))dξ

∣∣∣∣∣∣
= 0, i = 1,2,3. (5.36)

Then from the definition of Jn, J , and (5.35)–(5.36), we can see that

lim sup
n→+∞

‖�φn(tn)‖ ≤ ‖�φ(t∗)‖. (5.37)

On the other hand, the weak convergence (5.21) implies that

lim inf
n→+∞‖�φn(tn)‖ ≥ ‖�φ(t∗)‖. (5.38)

As a consequence, we have the norm convergence

lim
n→+∞‖�φn(tn)‖ = ‖�φ(t∗)‖, (5.39)

which together with the weak convergence (5.21) yields the strong convergence such that

lim
n→+∞‖�φn(tn) − �φ(t∗)‖ = 0. (5.40)

This leads to a contradiction with our assumption (5.30). Therefore, (5.22) holds and the se-
quence {φn(t)} is relatively compact in H. The proof is complete. �
5.4. Proof of Theorem 2.3

For any S ∈ L2
b(R; L̇2(�)), we know from Proposition 4.1 that the global strong solution φ

to problem (1.1)–(1.7) defines a closed process {U(t, τ)}t≥τ in the phase space HM . Observing 
Propositions 5.1 and 5.2, also noticing that the pullback DHM

F -absorbing family D̂0 constructed 

in Proposition 5.1 indeed belongs to the universe DHM

F , then we are able to apply the abstract 
results in Lemma 5.1 and Remark 5.1 to conclude that the process {U(t, τ)}t≥τ admits a minimal 
pullback DHM

F -attractor ADHM
F

= {ADHM
F

(t) : t ∈R} in HM , which is given by

ADHM
F

(t) = �(D̂0, t) =
⋂
s≤t

⋃
τ≤s

U(t, τ )D0(τ )
H 2(�)

.

The proof of Theorem 2.3 is complete.
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Remark 5.2. We remark that in the current particular case under consideration, i.e., D̂ is param-
eterized in time but constant for all t ∈ R, the corresponding minimal pullback DHM

F -attractor 
for the process {U(t, τ)}t≥τ is just the pullback attractor defined in [11]. One can also apply the 
abstract results in [19] to treat more general case that the family D̂ is time dependent, under suit-
able assumptions on its element D and the external source term S. We leave this to the interested 
reader.

6. Convergence to steady states in 2D

In this section, we investigate the long-time behavior of a single trajectory φ(t) when the 
associated dynamical process becomes asymptotically autonomous as time goes to infinity.

6.1. Uniform-in-time estimates

Hereafter, we assume that the external source term S satisfies

S ∈ L2(τ,+∞; L̇2(�)). (6.1)

We recall the inequality (3.13) which implies that

d

dt
E0(φn) + 1

2
‖∇μn‖2 + ‖un‖2 ≤ C‖S‖2E0(φn), (6.2)

E0(φn(t)) ≤ E0(φτ )e
∫ t
τ ‖S‖2ds, ∀ t ≥ τ .

The above estimate easily yields the following uniform-in-time estimates for global weak (or 
strong) solutions to problem (1.1)–(1.7) such that

sup
t∈[τ,+∞)

‖φ(t)‖2
H 1 +

+∞∫
τ

‖∇μ‖2dt +
+∞∫
τ

‖u‖2dt ≤ C, (6.3)

and

sup
t≥τ

t+1∫
t

‖φ‖2
H 3ds ≤ C, (6.4)

where the constant C depends only on ‖φτ‖H 1 , 
∫ +∞
τ

‖S‖2ds and �.
Next, recalling the differential inequality (4.8), by the uniform Gronwall inequality [42, 

Lemma III.1.1], we can deduce that

‖�φ(t + 1)‖2 ≤ C, ∀ t ≥ τ, (6.5)

where the constant C depends on ‖φτ‖H 1 , � and 
∫ +∞
τ

‖S‖2ds. If in addition, φτ ∈ H 2(�), then 
by the classical Gronwall inequality, we have
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‖�φ(t)‖2 ≤ (‖�φτ‖2 + 1)eC
∫ τ+1
τ h(s)ds ≤ C, ∀ t ∈ [τ, τ + 1]. (6.6)

The above uniform-in-time estimates (6.5)–(6.6) imply that:

Proposition 6.1. Assume that S ∈ L2(τ, +∞; L̇2(�)). Then the global strong solution to prob-
lem (1.1)–(1.7) is uniformly bounded in H 2 for all t ≥ τ . Moreover, the global weak solution 
to problem (1.1)–(1.7) will become a strong one after a positive time and it is also uniformly 
bounded in H 2.

6.2. The ω-limit set

Since we are interested in the long-time behavior of φ as t → +∞, Proposition 6.1 enables 
us to focus on the study of uniformly bounded global strong solution of problem (1.1)–(1.7).

For any initial datum φτ ∈ H 2
N(�). We define the ω-limit set as follows

ω(φτ ) = {φ∞ ∈ H 2
N(�) | ∃{tn} ↗ +∞ s.t. φ(tn) → φ∞ in H 1, as tn → +∞}.

Besides, we introduce the set of steady states associated with the initial datum

S =
⎧⎨
⎩ψ ∈ H 2

N(�) | −�ψ + f ′(ψ) = 1

|�|
∫
�

f ′(ψ)dx, a.e. in �,

∫
�

ψdx =
∫
�

φτdx

⎫⎬
⎭ . (6.7)

Using the classical variational method and the elliptic regularity theorem, we can easily deduce 
that (see [43, Proposition 3.5] for the case with periodic boundary condition):

Proposition 6.2. The set S is nonempty. Any element ψ ∈ S is a critical point of E(φ), which 
satisfies ψ ∈ C∞ and its Hm-norms (m ≥ 0) are bounded by a constant depending on |φτ | and �.

Using the fact that the strong solution φ is uniformly bounded in H 2 for t ≥ τ , similar to the 
calculations in (3.10)–(3.11) for the approximate solution, we can apply Young’s inequality to 
obtain the following energy inequality for φ:

d

dt
E(φ(t)) + 1

2
‖∇μ‖2 + ‖u‖2 ≤ K1‖S‖2, for a.e. t ≥ τ, (6.8)

where

E(φ) =
∫
�

(
1

2
|∇φ|2 + f (φ)

)
dx (6.9)

and K1 is a constant depending on ‖φτ‖H 2 , 
∫ +∞
τ

‖S‖2ds and �.
The above type of energy inequality plays an important role in studying the long-time behavior 

of global solutions to non-autonomous system (cf. [10,26]). First, we can prove the following 
relationship between the ω-limit set and set S .
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Proposition 6.3. For any φτ ∈ H 2
N(�), its corresponding ω-limit set is a nonempty bounded 

subset in H 2(�) such that ω(φτ ) ⊂ S . Moreover, E(φ) is a constant on ω(φτ ).

Proof. Due to the uniform H 2-estimate for φ and the compact embedding H 2 ↪→ H 1, there 
exists certain function φ∞ ∈ H 2

N(�) and an unbounded increasing sequence tn → +∞ that 
‖φ(tn) − φ∞‖H 1 → 0 as n → +∞. Hence, ω(φτ ) is a nonempty, bounded subset in H 2(�).

It follows from (6.8) that

E(φ(t1)) − E(φ(t2)) ≤ K1

t1∫
t2

‖S‖2dt, ∀ τ ≤ t2 ≤ t1 < +∞. (6.10)

Thus, E(φ(t)) is continuous in time (and it is bounded from below from its definition (6.9)).
Denote Ẽ(t) = E(φ(t)) + K1

∫ ∞
t

‖S‖2ds. Then it follows from (6.8) that

d

dt
Ẽ(t) + 1

2
‖∇μ‖2 + ‖u‖2 ≤ 0, for t ≥ τ.

Hence, Ẽ(t) is non-increasing in t . Since Ẽ is also bounded from below, we may infer that as 
t → +∞, Ẽ(t) → E∞ for some constant E∞. Recalling the fact limt→+∞

∫ +∞
t

‖S‖2ds = 0, 
we get

lim
t→+∞E(φ(t)) = E∞. (6.11)

By the definition of ω(φτ ), it is easy to see that E(t) equals E∞ on ω(φτ ).
Next, for any cluster point φ∞ ∈ ω(φτ ), it easily follows that φ∞ ∈ H 2

N(�) and φ∞ = φτ . In 
order to show that φ∞ ∈ S , we apply the argument introduced in [26]. Consider the unbounded 
increasing sequence tn → +∞ such that ‖φ(tn) − φ∞‖H 1 → 0 as n → +∞. Without loss of 
generality, we assume tn+1 ≥ tn + 1, n ∈ N. Integrating (6.8) on the time interval [tn, tn+1], we 
obtain that

E(φ(tn+1)) − E(φ(tn) +
tn+1∫
tn

(
1

2
‖∇μ(s)‖2 + ‖u(s)‖2

)
ds ≤ K1

tn+1∫
tn

‖S‖2ds. (6.12)

It follows from (6.11) and (6.12) that as n → +∞, it holds

1∫
0

(
1

2
‖∇μ(tn + s)‖2 + ‖u(tn + s)‖2

)
ds ≤

tn+1∫
tn

(
1

2
‖∇μ(s)‖2 + ‖u(s)‖2

)
ds → 0. (6.13)

Besides, by Eq. (1.1), the uniform H 2-estimate for φ and Agmon’s inequality, we have (cf. [1])

‖φt‖(H 1(�))′ ≤ C(‖uφ‖ + ‖∇μ‖ + ‖S‖) ≤ C(‖u‖‖φ‖L∞ + ‖∇μ‖ + ‖S‖)
≤ K2 (‖u‖ + ‖∇μ‖ + ‖S‖) , (6.14)
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where K2 is a constant depending on ‖φτ‖H 2 , 
∫ +∞
τ

‖S‖2ds and �. By (6.14) and (6.13), we 
have

lim
n→+∞

1∫
0

‖φt (tn + s)‖2
(H 1(�))′ds = 0. (6.15)

As a consequence,

‖φ(tn + s1) − φ(tn + s2)‖(H 1(�))′ → 0, uniformly for all s1, s2 ∈ [0,1].

From the precompactness of φ(t) in H 1(�) and the sequential convergence of φ(tn) in H 1, we 
infer that

lim
n→∞‖φ(tn + s) − φ∞‖H 1 = 0, ∀ s ∈ [0,1]. (6.16)

For any ξ ∈ H 1(�), using Lebesgue’s dominated convergence theorem, the Poincaré inequality, 
(6.13) and (6.16), we deduce that

∣∣∣∣∣∣
∫
�

(∇φ∞ · ∇ξ + f ′(φ∞)ξ − f ′(φ∞)ξ)dx

∣∣∣∣∣∣
= lim

n→+∞

∣∣∣∣∣∣
1∫

0

∫
�

(
∇φ(tn + s) · ∇ξ + f ′(φ(tn + s))ξ − f ′(φ(tn + s))ξ

)
dxds

∣∣∣∣∣∣
= lim

n→+∞

∣∣∣∣∣∣
1∫

0

∫
�

(μ(tn + s) − μ(tn + s))ξdxds

∣∣∣∣∣∣
≤ lim

n→+∞

1∫
0

‖μ(tn + s) − μ(tn + s)‖‖ξ‖ds

≤ lim
n→+∞

⎛
⎝ 1∫

0

‖μ(tn + s) − μ(tn + s)‖2ds

⎞
⎠

1
2

‖ξ‖

≤ lim
n→+∞C

⎛
⎝ 1∫

0

‖∇μ(tn + s)‖2ds

⎞
⎠

1
2

‖ξ‖

= 0

which enables us to conclude that φ∞ ∈ S . The proof is complete. �
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Remark 6.1. Indeed, from (6.12), we can also obtain the decay of velocity u in the following 
weak sense

lim
t→+∞

1∫
0

‖u(t + s)‖2ds = 0.

6.3. Convergence of trajectory φ(t)

The precompactness of the trajectory φ(t) in H 1(�) only yields a sequential convergence 
result for φ(t). Next, we demonstrate that the ω-limit set ω(φτ ) consists of a single point, namely, 
we show that each bounded global strong solution converges to a single steady state as time goes 
to infinity. For this purpose, we assume in addition that

sup
t≥τ

(1 + t)1+ρ

+∞∫
t

‖S‖2ds < +∞, for some ρ > 0. (6.17)

First, we introduce the following Łojasiewicz–Simon type inequality, which easily follows from 
the abstract result in [16]:

Lemma 6.1. Let ψ ∈ H 2
N(�) be a critical point of E(φ). Then there exist constants θ ∈ (0, 12 )

and β > 0 depending on ψ such that for any φ ∈ H 2
N(�) satisfying 

∫
�

φdx = ∫
�

ψdx and 
‖φ − ψ‖H 1 ≤ β , it holds that

‖P0(−�φ + f ′(φ))‖ ≥ |E(φ) − E(ψ)|1−θ . (6.18)

The proof for convergence of the whole trajectory φ(t) follows from the so-called
Łojasiewicz–Simon approach (see e.g., [10,13,17,26,47]). By Lemma 6.1, for each element 
φ∞ ∈ ω(φτ ), there exist βφ∞ > 0 and θφ∞ ∈ (0, 12 ) such that the inequality (6.18) holds for

φ ∈ Bβφ∞ (φ∞) :=
{
φ ∈ H 2

N(�) :
∫
�

φdx =
∫
�

φτdx, ‖φ − φ∞‖H 1 < βφ∞
}
.

The union of balls {Bβφ∞ (φ∞) : φ∞ ∈ ω(φτ )} forms an open cover of ω(φτ ) and because of 
the compactness of ω(φτ ) in H 1, we can find a finite sub-cover {Bβi

(φi∞) : i = 1, 2, . . . , m} of 
ω(φτ ) in H 1, where the constants βi, θi corresponding to φi∞ in Lemma 6.1 are indexed by i. 
From the definition of ω(φτ ), there exists a sufficient large t0 > max{τ, 0} such that

φ(t) ∈ U :=
m⋃

i=1

Bβi
(ψi), for t ≥ t0.

Taking θ = minm
i=1{θi} ∈ (0, 12 ), using Lemma 6.1 and the convergence of energy (6.11), we 

deduce that for all t ≥ t0,

‖P0(−�φ + f ′(φ))‖ ≥ |E(φ(t)) − E∞|1−θ . (6.19)
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It follows from (6.8) and (6.14) that

d

dt
E(φ(t)) + 1

4K2
‖φt‖2

(H 1(�))′ +
1

4
‖∇μ‖2 + 3

4
‖u‖2

≤
(

K1 + 1

4

)
‖S‖2, for a.e. t ≥ τ. (6.20)

Introduce the auxiliary functions

Y(t)2 = 1

4K2
‖φt‖2

(H 1(�))′ +
1

4
‖∇μ‖2 + 3

4
‖u‖2, z(t) =

(
K1 + 1

4

) ∞∫
t

‖S‖2ds.

The assumption (6.17) implies that

z(t) ≤ C(1 + t)−(1+ρ), ∀ t ≥ t0.

Then the energy inequality (6.20) yields that for t ≥ t0,

E(φ(t)) − E∞ ≥
∞∫
t

Y(s)2ds − z(t)

≥
∞∫
t

Y(s)2ds − C(1 + t)−(1+ρ). (6.21)

Set the exponent

ζ = min

{
θ,

ρ

2(1 + ρ)

}
∈ (0,

1

2
).

We infer from (6.19) and the uniform H 2-bound for φ that

|E(φ(t)) − E∞| ≤ ‖P0(−�φ + f ′(φ))‖ 1
1−θ

≤ C‖P0(−�φ + f ′(φ))‖ 1
1−ζ

≤ C‖∇μ‖ 1
1−ζ ≤ CY(t)

1
1−ζ , ∀ t ≥ t0. (6.22)

On the other hand, it is easy to verify that

∞∫
(1 + s)−2(1+ρ)(1−ζ )ds ≤

∞∫
(1 + s)−(2+ρ)ds ≤ (1 + t)−(1+ρ), ∀ t ≥ t0. (6.23)
t t
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Now we denote

Z(t) = Y(t) + (1 + t)−(1+ρ)(1−ζ ).

It follows from (6.21)–(6.23) that

∞∫
t

Z(s)2ds ≤ CY(t)
1

1−ζ + C(1 + t)−(1+ρ)

≤ CZ(t)
1

1−ζ , ∀ t ≥ t0. (6.24)

Thanks to the technical Lemma A.3, we conclude from (6.24) that

+∞∫
t0

Z(t)dt < +∞. (6.25)

Since ρ > 0, we also have

+∞∫
t0

(1 + t)−(1+ρ)(1−ζ )dt ≤
∞∫

t0

(1 + t)−
2+ρ

2 dt = 2

ρ
(1 + t0)

− ρ
2 < +∞, for t0 > 0,

which together with (6.25) yields

+∞∫
t0

‖φt‖(H 1(�))′dt < +∞.

As a consequence, φ(t) converges strongly in (H 1(�))′ as t → +∞. Together with the com-
pactness of the trajectory in Hs(�), s ∈ (0, 2), we finally obtain that there exists φ∞ ∈ S such 
that

lim
t→+∞‖φ(t) − φ∞‖Hs = 0 and φ(t) ⇀ φ∞ weakly in H 2(�).

Next, we proceed to prove the estimate on convergence rate. Let

K(t) = E(t) − E∞ + z(t).

It follows from (6.20) that

d

dt
K(t) +Y(t)2 ≤ 0, for t ≥ t0. (6.26)

Thus, K(t) is decreasing on [t0, +∞) and due to (6.11) and (6.17), K(t) → 0 as t → +∞. 
Besides, we deduce from (6.17), (6.22) that
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K(t)2(1−θ) ≤ CY(t)2 + C(1 + t)−2(1−θ)(1+ρ)

≤ −C
d

dt
K(t) + C(1 + t)−2(1−θ)(1+ρ).

Then by [3, Lemma 2.6], we obtain that

K(t) ≤ C(1 + t)−κ , ∀ t ≥ t0,

with the exponent given by

κ = min

{
1

1 − 2θ
,1 + ρ

}
.

We infer from (6.26) that for any t ≥ t0,

2t∫
t

Y(s)ds ≤ t
1
2

⎛
⎝ 2t∫

t

Y2(s)ds

⎞
⎠

1
2

≤ Ct
1
2 K 1

2 (t) ≤ C(1 + t)
1−κ

2 .

Thus, we have

+∞∫
t

Y(s)ds ≤
+∞∑
j=0

2j+1t∫
2j t

Y(s)ds ≤ C

+∞∑
j=0

(2j t)−λ ≤ C(1 + t)−λ, ∀ t ≥ t0,

where

λ = κ − 1

2
= min

{
θ

1 − 2θ
,
ρ

2

}
> 0. (6.27)

Therefore,

+∞∫
t

‖φt‖(H 1(�))′ds ≤ C

+∞∫
t

Y(s)ds ≤ C(1 + t)−λ, ∀ t ≥ t0,

which yields the convergence rate of φ in (H 1(�))′:

‖φ(t) − φ∞‖(H 1(�))′ ≤ C(1 + t)−λ, ∀ t ≥ t0.

Using the interpolation inequality and the uniform H 2-estimates for φ, we have for any s ∈
[−1, 2],

‖φ(t) − φ∞‖Hs ≤ C‖φ(t) − φ∞‖
2−s

3
(H 1(�))′ ‖φ(t) − φ∞‖

s+1
3

H 2

≤ C(1 + t)−
2−s

3 λ, ∀ t ≥ t0. (6.28)

The proof of Theorem 2.4 is complete.
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Remark 6.2. If the external source term S is more regular, further decay property can be ob-
tained. For instance, if in addition S ∈ L2(τ, +∞; Ḣ 1(�)) ∩ H 1(τ, +∞; Ḣ−2(�)), then using 
the energy method (see e.g., [23,43,47]), we can prove

lim
t→+∞(‖φ(t) − φ∞‖H 3 + ‖u(t)‖ + ‖p(t)‖H 1) = 0.

Moreover, the convergence rate (6.28) can be improved such that

‖φ(t) − φ∞‖H 2 ≤ C(1 + t)−λ, ∀ t ≥ t0,

where the exponent λ is given in (6.27).
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Appendix A

We first recall the following Gronwall-type inequality (see [20, Lemma 2.5]):

Lemma A.1. Let y(t), f (t) and g(t) be nonnegative locally integrable functions on [τ, +∞)

which satisfy, for some γ > 0

d

dt
y(t) + γy(t) ≤ f (t)y

1
2 (t) + g(t) for a.e. t ∈ [τ,+∞). (A.1)

Then

y(t) ≤ 2y(τ)e−γ (t−τ) +
⎛
⎝ t∫

τ

f (s)e− γ
2 (t−s)ds

⎞
⎠

2

+ 2

t∫
τ

g(s)e−γ (t−s)ds (A.2)

for any t ∈ [τ, +∞). Moreover, the inequality

t∫
τ

m(s)e−γ (t−s)ds ≤ eγ

1 − e−γ
sup
r≥τ

r+1∫
r

m(s)ds (A.3)

holds for any nonnegative locally integrable function m on [τ, +∞) and any γ > 0.

The above lemma easily yields the following result:
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Corollary A.1. Let y(t), f (t) and g(t) be the nonnegative locally integrable functions on 
[τ, +∞) that satisfy the assumptions in Lemma A.1. Assume, in addition that

sup
t≥τ

t+1∫
t

f (s)ds ≤ A1 and sup
t≥τ

t+1∫
t

g(s)ds ≤ A2 (A.4)

for some positive constants A1, A2. Then

y(t) ≤ 2y(τ)e−γ (t−τ) + Q(γ,A1,A2) (A.5)

where

Q(γ,A1,A2) =
(

e
γ
2

1 − e− γ
2
A1

)2

+ 2eγ

1 − e−γ
A2. (A.6)

The result in Corollary A.1 can be generalized. Namely, we have

Lemma A.2. Let y(t), f (t) and g(t) be nonnegative locally integrable functions on [τ, +∞)

which satisfy, for some γ > 0 and some ω ∈ {an}∞n=0 with an := n+1
n+2 (n = 0, 1, 2, . . .)

d

dt
y(t) + γy(t) ≤ f (t)yω(t) + g(t) for a.e. t ∈ [τ,+∞) (A.7)

and such that

sup
t≥τ

t+1∫
t

f (s)ds ≤ A1 and sup
t≥τ

t+1∫
t

g(s)ds ≤ A2

for some positive constants A1, A2. Then

y(t) ≤ 4
(

4αn2βny(τ )e−θnγ (t−τ) + Qβn(
γ

2
,A1,A2)

)
(A.8)

for any t ∈ [τ, +∞), where

αn =

⎧⎪⎨
⎪⎩

0, if n = 0,

(n + 2)

n+1∑
j=2

1

j
, if n ≥ 1, βn = n + 2

2
, θn = n + 2

2n+1
,

and Q is the same as in Lemma A.1.

Proof. Without loss of generality, we suppose that y(t) ≥ 1. Otherwise, we can simply set ỹ(t) =
y(t) + 1. Using the fact yω < ỹω, we obtain a differential inequality for ỹ that has the same form 
as for y.
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Then we prove the result by induction. The case ω = a0 = 1
2 corresponds to (A.5) in Corol-

lary A.1, with α0 = 0, β0 = 1 and θ0 = 1
2 . Supposing that (A.8) holds for ω = an (n ≥ 0), we 

consider the case ω = an+1. Denote ϕ(t) = yω(t). Then y(t) = ϕ
1
ω (t) and it holds that

d

dt
ϕ(t) + ωγϕ(t) ≤ ωf (t)ϕ2− 1

ω (t) + ωh(t),

where

h(t) = ϕ1− 1
ω (t)g(t).

Noticing that ω ∈ [ 1
2 , 1), ϕ(t) ≥ 1 and 2 − 1

an+1
= an, we have

h(t) ≤ g(t)

and

d

dt
ϕ(t) + γ

2
ϕ(t) ≤ f (t)ϕan(t) + ωg(t).

Then it follows from the case ω = an that

ϕ(t) ≤ 4
(

4αn2βnϕ(τ)e− θnγ (t−τ )
2 + Qβn(

γ

2
,A1,A2)

)
i.e.,

yω(t) ≤ 4
(

4αn2βnyω(τ )e− θnγ (t−τ )
2 + Qβn(

γ

2
,A1,A2)

)
.

Applying the elementary inequality

(x + y)θ ≤ 4(xθ + yθ ), for x, y > 0, 1 ≤ θ ≤ 2

and noticing that 1
ω

∈ (1, 2], we get

y(t) ≤ 4

(
4

(1+αn)
an+1 2

βn
an+1 y(τ)e

− (t−τ )γ θn
2an+1 + Q

βn
an+1 (

γ

2
,A1,A2)

)
,

with

αn+1 = 1 + αn

an+1
, βn+1 = βn

an+1
, θn+1 = θn

2an+1
,

such that (A.8) holds for ω = an+1. This completes the proof. �
Remark A.1. Since an ↗ 1 as n → +∞, the above lemma enables us to deal with the general 
case ω ∈ ( 1

2 , 1) in (A.7). On the other hand, when ω ∈ (0, 12 ), we can also employ Lemma A.1, 

thanks to Young’s inequality such that yω ≤ 2ωy
1
2 + (1 − 2ω).
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The following lemma (cf. [13,26]) will be used to study the long-time behavior of global 
solutions to problem (1.1)–(1.7):

Lemma A.3. Let ζ ∈ (0, 12 ). Assume that Z ≥ 0 is a measurable function on (τ, +∞), Z ∈
L2(τ, +∞) and there exist C > 0 and t0 ≥ τ such that

∞∫
t

Z2(s)ds ≤ CZ(t)
1

1−ζ , for a.e. t ≥ t0.

Then Z ∈ L1(t0, +∞).
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