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Abstract

In this paper we prove existence and uniqueness of local solutions to the three-dimensional (3D) Navier—
Stokes (N-S) equation driven by space—time white noise using two methods: first, the theory of regularity
structures introduced by Martin Hairer in [16] and second, the paracontrolled distribution proposed by Gu-
binelli, Imkeller, Perkowski in [12]. We also compare the two approaches.
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1. Introduction

In this paper, we consider the three-dimensional (3D) Navier—Stokes equation driven by
space—time white noise: Recall that the Navier—Stokes equations describe the time evolution
of an incompressible fluid (see [23]) and are given by
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ou+u-Vu=vAu—-Vp+§
u(0) =up, divu=0 1.1

where u(z, x) € R? denotes the value of the velocity field at time ¢ and position x, p(¢, x) denotes
the pressure, and £(¢, x) is an external force field acting on the fluid. We will consider the case
when x € T3, the three-dimensional torus. Our mathematical model for the driving force £ is a
Gaussian field which is white in time and space.

Random Navier-Stokes equations, especially the stochastic 2D Navier—Stokes equation
driven by trace-class noise, have been studied in many articles (see e.g. [9,17,5,21] and the
reference therein). In the two-dimensional case existence and uniqueness of strong solutions
have been obtained if the noisy forcing term is white in time and coloured in space. In the
three-dimensional case, existence of martingale (=probabilistic weak) solutions, which form a
Markov selection, have been constructed for the stochastic 3D Navier—Stokes equation driven by
trace-class noise in [10,7,13]. Furthermore, the ergodicity has been obtained for every Markov
selection of the martingale solutions if driven by non-degenerate trace-class noise (see [10]).

This paper aims at giving a meaning to equation (1.1) when & is space—time white noise and at
obtaining local (in time) solution. Such a noise might not be relevant for the study of turbulence.
However, in other cases, when a flow is subjected to an external forcing with a very small time
and space correlation length, a space—time white noise may be appropriate to model this situation.
The main difficulty in this case is that £ and hence u are so singular that the non-linear term is
not well-defined.

In the two-dimensional case, the Navier—Stokes equation driven by space—time white noise
has been studied in [6], where a unique global solution in the (probabilistically) strong sense has
been obtained by using the Gaussian invariant measure for this equation. Thanks to the incom-
pressibility condition, we can write u - Vu = 1div(u ® u). The authors split the unknown into
the solution to the linear equation and the solution to a modified version of the Navier—Stokes
equations:

0z=vAz—Vm +£&, divz=0;

1
ov=vAv— Vg — Ediv[(v—l-z)@(v—i-z)], divv = 0. (1.2)

The first part z is a Gaussian process with non-smooth paths, whereas the second part v is
smoother. The only term in the nonlinear part, initially not well defined, is z ® z, which, how-
ever, can be defined by using the Wick product. By a fixed point argument they obtain existence
and uniqueness of local solutions in the two-dimensional case. Then by using the Gaussian in-
variant measure for the 2D Navier—Stokes equation driven by space—time white noise, existence
and uniqueness of (probabilistically) strong solutions starting from almost every initial value is
obtained. (For the one-dimensional case we refer to [8,24].)

However, in the three-dimensional case, the trick in the two-dimensional case breaks down
since v and z in (1.2) are so singular that not only z ® z is not well-defined but also v ® z and
v ® v have no meaning. Here v is the solution to the nonlinear equation (1.2) and we cannot
define these terms by using the Wick product. As a result, we cannot make sense of (1.2) and
obtain existence and uniqueness of local solutions as in the two-dimensional case. As a way out
one might try to iterate the above trick as follows: we write v = vy + v3, where vy, v3 are the
solutions to the following equations:



R.C. Zhu, X.C. Zhu / J. Differential Equations 259 (2015) 44434508 4445

1
0;v2 =VvAvy — Vgr — Ediv(z ®z), divvy =0,
1. 1
0v3 =vAvz — Vg3 — Edlv[(v3 +v2) ® (v3 +v2)] — Ele((vs +1)®2)
1
— Ediv(z ® (v3 +v2)), divuz =0. (1.3)

Now we can make sense of the terms without v3 in the right hand side of (1.3), hope v3 becomes
smoother such that the nonlinear terms including v3 are well-defined and try to obtain a well-
posed equation. However, this is not the case. For the unknown v3 the nonlinear term on the right

hand side of (1.3) including v3 ® z is still not well-defined. Indeed, in this case z € C —3-K for

every k > 0. As a consequence, we cannot expect that the regularity of v3 is better than C 3% for
every k > 0, which makes v3 ® z not well-defined. No matter how many times we modify this
equation again as above, the equation always contains the multiplication for the unknown and z,
which is not well-defined. Hence, this equation is ill-posed in the traditionally sense.

Thanks to the theory of regularity structures introduced by Martin Hairer in [16] and the
paracontrolled distribution proposed by Gubinelli, Imkeller and Perkowski in [12] we can solve
this problem and obtain existence and uniqueness of local solutions to the stochastic three-
dimensional Navier—Stokes equations driven by space—time white noise. Recently, these two
approaches have been successful in giving a meaning to a lot of ill-posed stochastic PDEs like
the Kardar—Parisi—-Zhang (KPZ) equation [18,2,15], the dynamical <I>‘31 model [16.,4] and so on.
From a “philosophical” perspective, the theory of regularity structures and the paracontrolled
distribution are inspired by the theory of controlled rough paths [20,11,14]. The main difference
is that the regularity structure theory considers the problem locally, while the paracontrolled
distribution method is a global approach using Fourier analysis. For a comparison of these two
methods we refer to Remark 3.13.

The key idea of the theory of regularity structures is as follows: we perform an abstract Talyor
expansion on both sides of the equation. Originally Talyor expansions are only for functions.
Here the right objects, e.g. regularity structure that could possibly take the place of Taylor poly-
nomials, can be constructed. The regularity structure can be endowed with a model (£, which
is a concrete way of associating every element in the abstract regularity structure to the actual
Taylor polynomial at every point. Multiplication, differentiation, the state space of solutions, and
the convolution with singular kernels can be defined on this regularity structure, which is the
major difficulty when trying to give a meaning to such singular stochastic partial differential
equations as above. On the regularity structure, a fixed point argument can be applied to obtain
local existence and uniqueness of the solution & to the equation lifted onto the regularity struc-
ture. Furthermore, we can go back to the real world with the help of another central tool of the
theory, namely the reconstruction operator R. If & is a smooth process, R® coincides with the
classic solution to the equation. Now we have the following maps

E— b O RO,

and one is led to the following question: Given a sequence & of regularisations of the space—time
white noise &, can we obtain the solution associated with £ by taking the limit of R®,, as ¢ goes
to 0, where @, is the solution associated to &;. However, the answer to this question is no. Indeed,
while the last two maps are continuous with respect to suitable topologies, the above sequence
& of canonical models fails to converge. It may, however, still be possible to renormalise the
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model (£, into some converging model i€, , which in turn can be related to a specific renormalised
equation.

With these considerations in mind, let us go back to the 3D Navier—Stokes equations driven
by space—time white noise. We apply Martin Hairer’s regularity structure theory to solve it. First,
as in the two-dimensional case we write the nonlinear term u - Vu = %div(u ® u) and construct
the associated regularity structure (Theorem 2.8). As in [16] we construct different admissible
models to denote different realisations of the equations corresponding to different noises. Then
for any suitable models, we obtain local existence and uniqueness of solutions by a fixed point
argument. Finally, we renormalise the models associated with the approximations as mentioned
above such that the solution to the equations associated with these renormalised models converge
to the solution to the 3D Navier—Stokes equation driven by space—time white noise in probability,
locally in time.

The theory of paracontrolled distributions combines the idea of Gubinelli’s controlled rough
path [11] and Bony’s paraproduct [3], which is defined as follows: Let A;f be the jth
Littlewood—Paley block of a distribution f and define

r (L) =702 )= Y Y AifAjg, m(fie)= Y AifAje.

j=—li<j-1 li—jl=1

Formally fg =n(f, g)+mo(f, g)+m~(f, g). Observing that, if f is regular, 7 (f, g) behaves
like g and is the only term in Bony’s paraproduct not increasing the regularity, the authors in [12]
consider a paracontrolled ansatz of type

u=n_(u',g) +u",

where - (1, g) represents the “bad-term” in the solution, g is a functional of the Gaussian field
and u? is regular enough to allow the required multiplication. Then to make sense of the product
uf we only need to define gf by using a commutator estimate (Lemma 3.3).

In the second part of this paper we apply the paracontrolled distribution method to the 3D
Navier—Stokes equations driven by space—time white noise. First we split the equation into four
equations and consider the approximation equations. Here as in the theory of regularity struc-
tures, we still approximate & by smooth functions &, and obtain the approximation equation
associated with &;. By using the paracontrolled ansatz we obtain uniform estimates for the ap-
proximation equations and moreover we also get the local Lipschitz continuity of solutions with
respect to initial values and some extra terms Z(&.), which are independent of the solutions.
These extra terms Z(&;) play a similar role as the models associated with the “distributional-
like” elements in the abstract regularity structures. If Z(&,) converges to some Z in some suitable
space, then the solution u, associated with Z(&;) will converge to the desired solution. However,
as in the theory of regularity structures, we have to do suitable renormalisations for these terms
such that they converge in suitable spaces. Here, inspired by [16], we prove Lemma 3.10, which
makes the calculations for the renormalisation easier. Moreover taking the limit of the solutions
to the approximation equations we obtain local existence and uniqueness of the solutions. In-
deed, by choosing a suitable solution space we can also give a meaning to the original equation
(see Remark 3.9).

The main result of this article is the following theorem.
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Theorem 1.1. Let ug € C" for n € (—1, & + 2] with o € (—2, —3). Let & = (£, £2, &%), with
£l i =1,2,3 being independent white noises on R x T3, which we extend periodically to R*.
Let p : R* — R be a smooth compactly supported function with Lebesgue integral equal to 1,
and symmetric with respect to space variable, set p¢(t, x) = 8’5,0(8%, i—“) and define éé = pp &L
Consider the maximal solution u. to the following equation

3 3 3
a,u'S:AungE P”lggl—EE P”l(§ D;uiul)), ue(0)= Puo.
j=1

i1=1 i1=1

Then there exists u € C ([0, t); C") and a sequence of random time Ty, converging to the explosion
time T of u such that

sup |lu® —ull, )
tel0,7r]

Remark 1.2.

(i) From Theorem 1.1 we know that although some diverging terms appear in the intermediate
stages of the analysis, no renormalisation is actually necessary in (1.1).

(ii) The results obtained by using paracontrolled distribution method are expressed a little bit
differently (see Theorem 3.12).

This paper is organised as follows. In Section 2, we use the regularity structure theory to
obtain local existence and uniqueness of solutions to the 3D Navier—Stokes equations driven by
space—time white noise. In Section 3, we apply the paracontrolled distribution method to deduce
local existence and uniqueness of solutions. In Remark 3.13 we compare the two approaches.

2. N-S equation by regularity structure theory
2.1. Preliminary on regularity structure theory

In this subsection we recall some preliminaries for the theory of regularity structures
from [16].

Definition 2.1. A regularity structure T = (A, T, G) consists of the following elements:

(i) Anindex set A C R such that 0 € A, A is bounded from below and locally finite.

(i1) A model space T, which is a graded vector space T = @yeca Ty, With each T, a Banach
space. Furthermore, 7)) is one-dimensional and has a basis vector 1. Given 7 € T we write
|IT|lq for the norm of its component in 7,

(iii) A structure group G of (continuous) linear operators acting on 7' such that for every I" € G,
every o € A and every 1, € Ty one has

Mty — 1o € Tog = ) Tp.

B<a

Furthermore, 'l =1 forevery I' € G.
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Now we have the regularity structure 7 = D, en T, given by all polynomials in d + 1
indeterminates, let us call them Xy, ..., X4, which denote the time and space directions respec-
tively. Denote X* = Xé" e XS" with k& a multi-index. In this case, A = N and 7}, denote the
space of monomials that are homogeneous of degree n. The structure group can be defined by
XK= (X —h)k, h e RIFL

Given a scaling s = (sg, 51, ..., 5q) of R+, We call |s| =80+ 81+ ...+ s4 scaling dimen-
sion. We define the associate metric on R4*+! by

d
/ . 11/s;
lz=2lls =) lzi —zj1"/*.
i=0

For k = (ko, . .., kq) we define |k|s = Y9_ sik;.
Given a smooth compactly supported test function ¢ and a space—time coordinate z =
(t,x1,...,x3) € R¥!, we denote by ¢? the test function

—ls| ST Y1 —X1 Yd —Xd

$Cm T s

(pg‘(s,yl,...,yd)=)» eens ).

Denote by B, the set of smooth test functions ¢ : R¢*! — R that are supported in the centred
ball of radius 1 and such that their derivatives of order up to 1 + |«| are uniformly bounded
by 1. We denote by S’ the space of all distributions on R?*! and denote by L(E, F) the set
of all continuous linear maps between the topological vector spaces E and F. Now we give
the definition of a model, which is a concrete way of associating every element in the abstract

regularity structure to the actual Taylor polynomial at every point.

Definition 2.2. Given a regularity structure ¥, a model for ¥ consists of maps
R sz T, e L(T,S), RIT'xR*'5(2,7) > T, €G,

satisfying the algebraic compatibility conditions

HZFZZ/ = HZ/7 FZZ/ o] FZ/Z// = FZ "

7"

as well as the analytical bounds

M@ SANTlar Tzl Sz =215 Tl

Here, the bounds are imposed uniformly over all 7 € Ty, all B <« € A with @ <y, y > 0, and
all test functions ¢ € B, with r = inf A. They are imposed locally uniformly in z and 4 -

Then for every compact set & C R?*! and any two models Z = (I1,T) and Z = (I1,T) we
define

Z; ZIlly: := sup[ sup A~*|(T.7 — T.7)(p})]
ZER ¢,A,Q,T

+ sup sup ”Z_Z/”sia”Fzz’t_fzz’fllﬁ]»

lz—2'lls<1e.B,T
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where the suprema are taken over the same sets as in Definition 2.2, but with ||t||, = 1. This
gives a natural topology for the space of all models for a given regularity structure.

Now we have the following definition for the spaces of distributions CJ, o < 0, which is an
extension of the definition of Holder space to include o < 0.

Definition 2.3. Let n € S’ and o < 0. We say that € CY if the bound

In(eH| S A%,

holds uniformly over all A € (0, 1], all ¢ € B, and locally uniformly over z € R¥+!.
For every compact set R C R?*!, we will denote by || Nlla: = the seminorm given by

IMlg;08 := sup sup sup 2~%|n()].
7€M peBy 1<1

We also write || - ||, for the same expression with % = R4+!,

In the following we also use C* to denote Cg on R for the scaling 5 := (s1, ..., 584). On a
bounded domain, C* coincides with the Besov space BY, ., defined in Section 3.

We also have the following definition of spaces of modelled distributions, which are the
Holder spaces on the regularity structure. Set 98 = {(z, x) : = 0}. Given a subset )% C R¢H!
we also denote by SRy the set

1 _ L
Ry =1{(z,2) € R\P)?:z#Zand ||z — Z|ls < |1]% A 7|50 A1},
where z = (¢, x),Z = (f, X).

Definition 2.4. Given a model (T1, I') for a regularity structure T and 3 as above. Then for any
y >0 and n € R, the space D?"" consists of all functions f : R4t \ 9 — b T, such that

for every compact set /& C R?*! one has
ILf @l If(z) =Tz f @i

1/ llyoson s= sup sup === 4 sup sup , =7
@RIy | "0 @ISR l<y |z — 23T (e A fF])

a<y

Here we wrote |7 ||; for the norm of the component of 7 in 7; and also used ¢ and 7 as shorthands
for the time components of the space-time points z and Z.

For f € DY"" and f € D?" (denoting by D”"" the space built over another model (I, I")),
we also set

I £(2) — f@l
pI1@ = F @l

IF: Fllyon:= sup su
ZeR\'P <y |[|§AO
If ()= F@ -T2 f@+ Tz f@
+ sup sup — i
(Z,Z)Emml<y ”Z_Z”;/_l('tl A |t—|)?

which gives a natural distance between elements f € DY and f € D?".



4450 R.C. Zhu, X.C. Zhu / J. Differential Equations 259 (2015) 4443-4508

Given a regularity structure, we say that a subspace V C T is a sector of regularity « if it is
invariant under the action of the structure group G and it can be written as V = ®geca Vg with
Vg C T, and Vg = {0} for B < a. We will use D?”""(V) to denote all functions in D" taking
values in V.

On the regularity structure a product « is a bilinear map on 7T satisfying that for every a € T,
and b e Tgonehasaxb e Ty p and 1 xa =ax1=a for every a € T. The product induces the
pointwise product between modelled distribution under some conditions. For more details we
refer to [16, Section 4].

Under suitable regularity assumptions, we can reconstruct from a given modelled distribu-
tion f, a distribution R f in the real world which “looks like IT, f (x) near x”. This result, which
defines the so-called reconstruction operator, is one of the most fundamental results in the regu-
larity structures theory.

Theorem 2.5. (Cf. [16, Proposition 6.9].) Given a regularity structure and a model (I1,T"). Let
f € DV"I(V) for some sector V of regularity a <0, some y > 0, and some n < y. Then provided
that @ A1 > —sq, there exists a unique distribution R f € CZ"* such that

I(Rf — T, f (@) (@) <17,

holds uniformly over ) € (0, 1] and ¢ € B, with (pg‘ compactly supported away from 3 and
locally uniformly over z € R4+,

Moreover, (I1, T, f) — R f is jointly (locally) Lipschitz continuous with respect to the metric
for (I1,T') and f defined in Definitions 2.2 and 2.4.

In order to define the integration against a singular kernel K, Martin Hairer in [ 16] introduced
an abstract integration map Z : T — T to provide an “abstract” representation of /C operating at
the level of the regularity structure. In the regularity structure theory 7 is a linear map from 7 to
T such that ZT, C Ty4p and IT =0andforevery € G,t € T onehas 'Zt — It e T.

Furthermore, we say that K is a f-regularising kernel if one can write K =), _, K, where
each K, : R¥*! — R is smooth and compactly supported in a ball of radius 27" around the
origin. Furthermore, we assume that for every multi-index k, one has a constant C such that

sup | D¥ K, (x)| < C2"@+1=B+Ikls)
X

holds uniformly in 7. Finally, we assume that f K, (x)E(x)dx = 0 for every polynomial E of
degree at most r for some sufficiently large value of r.

We say that a model IT realises K for Z on a sector V if, for every @ € A, every a € V,, and
every x € R4, one has

M,Za = / K( = () (d2) — LT (x)a,

Rd+!1

where J (X)a = 3 | catp ),i—,k Jra+1 DFK (- — 2)(T1ca) (dz).

The reason that I1,Z7 # K  I1,7 is the following: Intuitively, T4 g contains the elements
that vanish at the order o + 8. Since ZT,, C Ty 4, one should subtract a suitable polynomial that
forces the I1,Za to vanish at the correct order.
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Then we have the following results from [16, Proposition 6.16].

Theorem 2.6. Let ¥ = (A, T, G) be a regularity structure and (I1,T") be a model for X. Let
K be a B-regularising kernel for some f > 0, let T be an abstract integration map acting on
some sector V of regularity « <0, and let T1 be a model realising K for Z. Let y >0, n < y.

Then provided that o A > =2, y + B,n+ B not in N, there exists a continuous linear operator
Ky :DV"(V) — DV withy =y + B and 1 = (n Aa) + B, such that

REK, f=K*Rf,
holds for f € DYV"1(V).

In the following we will only consider (1.1) with periodic boundary conditions. By the theory
of regularity structures proposed in [16] we can define translation maps and use it to define the
modelled distribution to be periodic. Now the fundamental domain of the translation maps is
compact. We use the notations Or = (—oo, T'] x R? and use || - lly,q;7 as a short hand for
Il - lly,n; 07 - Moreover, we have for some 6 > 0

Ky 1w f Wy a:r S TN S My
2.2. N-S equation

In this subsection we apply the regularity structure theory to the 3D Navier—Stokes equations
on T3 driven by space—time white noise. In this case we have the scaling s = (2, 1, 1, 1), so that
the scaling dimension of space—time is 5. Since the kernel G¥/, i, j = 1,2, 3, given by the heat
kernel composed with the Leray projection P has the scaling property G/ (4 37 3) = 83GU (t,x)
for 8 > 0, by [16, Lemma 5.5] it can be decomposed into K/ + R, i, j =1,2,3, where K%/
is a 2-regularising kernel and R" € C*°. By [16] we can choose K/ compactly supported and
smooth away from the origin and such that it annihilates all polynomials up to some degree
r > 2. Moreover, by [19] we have K% is of order —3, i.e. |D¥K (2)| < C||z||53 s for every z
with ||z||s < 1 and every multi-index k. We also use D; K, j =1, 2, 3, to represent the derivative
of K with respect to the j-th space variable and D jK is also a l-regularising kernel and of
order —4.

Consider the regularity structure generated by the stochastic N-S equation with 8 = 2,
—% < a < —2. In the regularity structure we use symbol the Z; to replace the driving noise £ .
Fori,i; =1, 2, 3, we introduce the integration map T associated with Kt and the integra-
tion map I”’ for a multi-index k, which represents integration against DFK' . We recall the
following notations from [16]: deﬁnmg a set F by postulating that {1, E;, X ;} C F and when-

ever 7,7 € F, we have 17 € F and I (1) € F; defining F as the set of all elements t € F
such that either t =1 or |7]|s > 0 and such that, whenever T can be written as T = 7|7p we
have either 7; =1 or |1;|s > 0; H, H+ denote the sets of finite linear combinations of all ele-
ments in F, F, respectively. Here for each T € F a weight |7|; which is obtained by setting
1]s =0,

|TT]s = |Tls + ITs,
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for any two formal expressions T and 7 in F such that
|Bils =0, |Xils=5i, |5 (D)ls=Itls +2~ [kls.

To apply the regularity structure theory we write the equation as follows: fori =1, 2,3

3 3
dvf=v Y P Av + " PUgN dive; =0,
i1=1 i1=1
3 o1 . 4
vl =v Z Pl Ay — Z pin EDJ'[(U” +uH@ o)), dive=0. 2.1
i1=1 i1, j=1
Then vy + v is the solution to the 3D Navier—Stokes equations driven by space—time white noise.
Now we consider the second equation in (2.1). Define for i, j =1, 2, 3,

MY = {1, 77 (&), TV (E;), T (& )T (E,), Ui, U}, Ui U}, T (Ei) U,
UL (&), i1, j1=1,2,3).
Then we build subsets {73,’;}"20 and {W,},>0 by the following algorithm: For i, j = 1,2, 3, set
W(l)/ = 736 = & and
wi=wl v | o Pl ).
Qeim'}
Ph={X"}U(Z ()t T e Wi iy i =1,2,3),

and

3
Fe=JUW. Fl=Uwlij=123.

n>01i,j=1 n>0

Then FF contains the elements required to describe both the solution and the terms in equa-
tion (2.1). We denote by HF, ’HIF], i, j=1,2,3, the set of finite linear combinations of elements
in Fr, Fj, respectively.

Remark 2.7. Here we construct FF in a slightly different way from [] 6]. From (2.1) we observe
that the integration map I;.” only acts on the elements belonging to W,/ . The regularity structure

does not contain the elements belonging to Ij.i‘ (W,?j‘) for (i1, j) # (i, j1) and (i1, j) # (j1,i2),
which is enough for us to describe the solution and the equations.

Now we follow [16] to construct the structure group G. Define a linear projection operator
Py :'H — Hy by imposing that

Pit=t, t€Fy, Pyt=0, t€F\Fq,
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and two linear maps A : H — H ® Hy and A*: H — Hy ® Hy by

Al=1®1, AT1=1®1,
AX;=X;®1+1®X;, ATX;=X;®1+1®X;,
AE =E'®1,

and recursively by

A(T7) = (AT)(AT)
ij i Xl xm ij
AZy) =Ty @ DAT + %; T W(P+Ik+l+m ),
AT(ET) =(ATT)(ATT)
—Xx)

AT = U@L/ 1) + Y (PL) ® — )AL
l .

By using the theory of regularity structures (see [16, Section 8]) we can define a structure
group G of linear operators acting on H ¢ satisfying Definition 2.1 as follows: For group-like
elements g € H%, thedual of Hy, 'y : H — H, Tyt = @ g)At. By [16, Theorem 8.24] we
construct the following regularity structure.

Theorem 2.8. Let T = Hp with T, = {t € Fr :|tls =v}), A={ltls : v € Fr} and let G
be as above. Then ¥ = (A, H, GF) defines a regularity structure X. Furthermore, for every
i,iy =1,2,3, 7" is an abstract integration map of order 2.

Proof. In our case, the nonlinearity is locally subcritical. (i), (ii) in Definition 2.1 can be
checked easily. (iii) in Definition 2.1 and the last result for T follow from the definitions of
AandT,. O

We also endow T with a natural commutative product » by setting T x t/ = 7’ for all basis
vectors T, T’.

Now we come to construct suitable models associated with the regularity structure above.
Given any continuous approximation &, to the driving noise £, we set for x, y € R*

MOENG) = (). MOXH) =,
and recursively define
(M) () = M DI D),

and

(MOT 1)(y) = / DYK(y — z)(l_l(g)f)(z)dz+z f;“(PJ 0. (22
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Here fx(s)(Ilij 7) are defined by
@ =- / DiK' (x — ) (P 7)(2)dz. 2.3)

Furthermore, we impose fx(s)(Xi) = —X;, fx(a)('(f) = fx(g)(r)fx(a)(f) and extend this to all of
‘H 4+ by linearity. Then define

I = f;@)*‘ ol (2.4)

f;s) )

where Fot=08 FEYAT for T € H.
By [16, Proposition 8.27] we have

Proposition 2.9. (I1¥), T'®)) is a model for the regularity structure T constructed in Theo-
rem 2.8.

Definition 2.10. A model (IT, I') for ¥ is admissible if it satisfies (IT, X¥)(y) = (y — x)¥ as well
as (2.2), (2.3) and (2.4). We denote by M the set of admissible models.

Set

Fo={1,8,T" (&), T (&I (8)), T} (T"(8;,), T} (T2 (E,) T (8))),
T @i (g, 3 @R @) T E), T T (S )T (),
T (T8, T (B )T (8,), T (T02(8,) T (B VT (T (2 )T (51, ),
L (R T (8 T (B )T E))T (),
(@ (@ (E) T (B, )T ELN T (E)),
i, j. k.1 i1, 02,13, j1, jo, k1,11, 12 =1,2, 3}

and
Fe ={T*(Ep), " @2 (B, T (B, )TN (B)), i ky i n, o j1, K = 1,2, 3).

To make our paper more readable we use the tree notation from [16] to explain the complicated
elements in Fy. However, unlike as in the Cbg‘ case, the solution to the stochastic NS equation is
vector valued and there are a lot of superscripts and subscripts for the elements in Fy, which will
not be noticeable in the tree notation. The tree notation only helps us to make the complicated
notation clearer.

For E we simply draw a dot. The integration map Z is then represented by a downfacing line
while the integration map Z; is then represented by a downfacing dotted line. The multiplication
of symbols is obtained by joining them at the root.



R.C. Zhu, X.C. Zhu / J. Differential Equations 259 (2015) 44434508 4455

Fo=A{1, g;,1 \/\v, / \/\/ /}

Fe={], /}.

We choose o € (— %, —%) and the reason for o > — T is that this is precisely the value of « at
17
which the homogeneity of the term Z;(t)Z(E) vanishes for t = 7.

Then Fo C FF contains every t € Fr with |t|s <0 and for every 7 € Fo, At € (Fo) ®
(Alg(Fy)). Here (Fp) denotes the linear span of Fy and Alg(F,) denotes the set of all elements
in F of the form X* ] I;,llzl'l for some multi-indices k and /; such that |I”'r, |s > 0 and
T € ]:*.

As mentioned in the introduction, we should do renormalisations for the model (I, I"?) built
from &, such that it converges as £, — £ in a suitable sense. In the theory of regularity structure,
this has been transferred to find a sequence of M, belonging to the renormalisation group Ry
defined in [ 16, Definition 8.43] such that M, (I1¢, I'®) converges to a finite limit. In the following
we use the notations and definitions in [16, Section 8.3] and follow Hairer’s idea to define M.
We also use the tree notation as above to make it clearer.

For constants Cllll]]l Cizilizjjljzkkl”l K C?ilizi3kklllljjl’ C?ilizkkl”llzjjl’
l1,1p =1, 2,3, we define a linear map M on (Fy) by

i,i1,ip

i,j,k,1,i1, 02,13, j1,k1,

MM (&I E)) =T @) (E) = Cf 1,

”1]]1
1
Mv v C”l]]l

M(I]iil (Iiliz(Eiz)Ikkl (Ek ))Ijll (Ijljz(Ejz)Illl (El )))
= TN @2 (BT (B NI @2 ()TN (B)) - 1,

VvV VYV

llllz]]l]zkkllll

2
= Cliyinjijy joky ity 1

M(Z" (T (@5 (8 T (B VI (BT (8 )
=" (@@ (BT (B )T (E)TNE)) -

V. V.
G_ U3
M / = / — Cii1i2i3kk1”ljjl

M@ (@ @R (8, TR (B )T (B)TN(E )

tl|121gkk1111 //11’

17

o - T
=7, (@' @ (BT G NI (B VIV (E ) — Cif kit 1 (2.5)

as well as M (t) = t for the remaining basis vectors in Fy. Here we omit the tree notation for the
last one since it is the same as the one including C3. We claim that for any t € Fj,

Me—M7)®1. (2.6)

Since t satisfies Mt =7— C1 for any 7 € Fy, it is easy to check that (2.6) holds. Here for the
definitions of AM, A, M, AM we refer to [16, Section 8.3].
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Fort = \, we have
A+\1=\1®1+1®\;,
~ ~ NN AN
AMAQMAT 1= 1®@14+1® .
It follows that

i v,
Fort ZIZH] (t1), where 7y = /', i,i; = 1,2, 3, we have
AT @) =T () @1+ 107" (7).
AMA® AT (o) =T (1) @1+ 11 L (1)),
which implies that
AMTN (o) =T (1) ® 1.

As a consequence of this expression, M belongs to the renormalisation group 2Rg defined in
[16, Definition 8.43]. Then by [16, Theorem 8.46] we can define (IT™, I'™) and it is an admissi-
ble model for T ¢ on (Fp). Furthermore, it extends uniquely to an admissible model for all of TF.
By (2.6) we also have

Mz =m,Mr.

Now we lift the equation onto the abstract regularity structure. First, we define for any ag < 0
and compact set 93 the norm

|$|a0;9'% =sup [|§1;> ||oz0;§)%a
seR

and we denote by C2° the intersections of the completions of smooth functions under | - |93 for
all compact sets *R.

Since o < —%, Theorem 2.5 does not apply to Rt E; directly, where RT : R x RY — R
is given by R (r,x) =1 for t > 0 and R¥ (¢, x) = 0 otherwise. To define the reconstruction
operator for RTE; by hand, we need the following results, which have been proved by [16,
Proposition 9.5].

Proposition 2.11. Let & = (i—‘l, 52, 53), with Si,i = 1,2, 3 being independent white noises on
R x T3, which we extend periodically to R*. Let p : R* — R be a smooth compactly supported
function with Lebesgue integral equal to 1, set pe(t,x) = 8_5,0(;—2, f) and define &} = p; * &'.
Then for every i, i1 = 1,2,3, K« Sil e C(R, C¥T2(R3)) almost surely. Moreover, for every
compact set R C R* and every 0 < 0 < —a — % we have

i i 6
E|§l _§é|a;m58 .
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Finally for every 0 <k < —a — 3, we have the bound

E sup [|[K"%&0(t, ) — K s &)1, ) lot2 S &
t€[0,1]

Now we reformulate the fixed point map as

3
vi =) (K} + RIR)RT &,

ii=1
. 13 . 3 o I
ui=—3 > (DKM + (D R™M), RYRT ' wul) +vi + > GMug . (2.7)

i, j=1 i=1

Here for i,i;, j =1,2,3, IC;;I and (D leiil)); are the continuous linear operators obtained by

Theorem 2.6 associated with the kernel K‘/! and D i K i respectively,

) y xk y o\ e s
RN :C¢— DV (R )R)= ) F/DI{R"'(Z—Z)f(Z)dZ’
Klo<y

g .. Xk g
(D;RM), :C¢ — DV (D;RM), f()= Y FfD'ﬁD,-R”')(z—Z)f(Z)dz,
[kls<y ’

xk
Guo= 3 =7 P (Guo) (),
lkls<y

where y,y will be chosen below. We also use that fK(x — YD f(ydy =

[ DjK(x —y)f(y)dy and define RR™E as the distribution £1,>.
We consider the second equation in (2.7): Define

Vi=a) LI @ span{T(8). i =1.2.3}@ T,
V=vixvixvs.
For y > 0, n € R we also define

DYV : =DV (VY x DV1(V?) x DVI(V3).
(DV'1)3 ;= DV 5 DV 5 DV1,

Lemma 2.12. For y > | + 2| and —1 < n < « + 2, the map u — u'u’ is locally Lipschitz
continuous from DV (V) into DY te+2.21,

Proof. This is a consequence of [16, Proposition 6.12, Proposition 6.15]. O

Now for y, 7 as in Lemma 2.12 and ué‘ € C"(R?),i; = 1,2, 3, periodic, we have Piilué' €
C'(R3),i,i; = 1,2,3 (see Lemma 3.6), which by [16, Lemma 7.5] implies that G''lu; €
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DY Qi =1,2,3. By Proposition 2.11 and [16, Remark 6.17] we also have that vi e Dr:1
for i =1,2,3. Now we can apply a fixed point argument in (D""") to obtain existence and
uniqueness of local solutions to (2.7).

Proposition 2.13. Let T be the regularity structure from Theorem 2.8 associated to the stochas-
tic N-S equation driven by space—time white noise with o € (— 15—3 —%). Letne (—1l,a+2],y >
la + 2|, ug € C"(R3), periodic and let Z = (I1,T) € Mg be an admissible model for T with
the additional properties that for i,iy = 1,2,3, &' := RE' belongs to C_s"‘ and that K" « £ e
C (R, C"). Then there exists a maximal solution S* € (DV"")3 to equation (2.7).

Proof. Consider the second equation in (2.7). We have that u takes values in a sector of regularity
¢=a+2and u'ul,i,j=1,2,3, takes value in a sector of regularity ¢ = 2« + 4 satisfying
{<¢+1.Fornand y wehave j=2npandy >y =y +a+2>0and y >y + 1. By
Lemma 2.12 for i, j = 1,2, 3, u'u/ is locally Lipschitz continuous from D?>7(V) to D?-"I. Then
n< @A)+ 1and (7AZ)+2 > 0 are satisfied by our assumptions. We consider a fixed model.
Denote by M;(u) the right hand side of the second equation in (2.7). By [16, Theorem 7.1,
Lemma 7.3] and local Lipschitz continuity of u — u'u’/ we obtain that there exists x > 0 such
that for every R > 0

3 3
D MM ) = M @lllypr ST Y lu'u! —d'al |lp .7
i=1 i,j=1

3
ST ' =it fly 7

i=1

uniformly over T € [0, 1] and over all u, i such that [|u’|l, .7 + li’[ly.,.7 < R. Then we
obtain local existence and uniqueness of the solutions by similar arguments as in the proof of
[16, Theorem 7.8]. Here we consider vector valued solutions and the corresponding norm is
the sum of the norm for each component. To extend this local map up to the first time where
Z?:l ||(Rui)(t, )|l blows up, we write # = v| + v, + v3 with vy in (2.7) and

(Djlciil)y 4 (DjRiil)yR)R+(vil * v{)’

MN
t\.)l'—‘

D }Clll)y_l_(D R”l)yR)RJr[(v’?; +U21)*(U3 +U2)

2
s

l\.)lv—*

3
+ 5 o) wo] o) F o]+ Y G,
ii=1

In this case vé takes values in a function-like sector of regularity 3« 4+ 8 and we can use similar
arguments as in the proof of [16, Proposition 7.11] to conclude the results. O
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Remark 2.14. Here the lower bound for 5 is —1, which seems to be optimal by the theory of
regularity structures. The reason for this is as follows: the nonlinear term always contains v x v
and thus 1 < 2n which should be larger than —2 required by [16, Theorem 7.8]. As a result,
n>—1.

Set O :=[—1,2] x R3. Given a model Z = (IT,T") for TF, a periodic initial condition
uo € (C")3, and some cut-off value L > 0, we denote by u = St(ug, Z) € (DV'")3 and T =
T (ug, Z) € Ry U {400} the (unique) modelled distribution and time such that (2.7) holds on
[0, T'], such that ||(Ru)(¢, )|l, < L for t < T, and such that ||(Ru)(¢, -)|l, > L for t > T. Then
by [16, Corollary 7.12] we obtain the following result.

Proposition 2.15. Ler L > 0 be fixed. In the setting of Proposition 2.13, for every ¢ > 0 and
C > 0 there exists 5 > 0 such that setting T =1 A T (ug, Z) A TE(itg, Z) we have

“SL(MO, Z)— SL(IZO, Z)“y,n;T <e,

for all wo, i, Z, Z provided that || Zlll,.0 < C, | Zlly.0 < C, lluolly < L/2, lliolly < L/2,
lluo — ttolly <8, and 1Z; Zllly;0 = 6 and

|§|a;0 + |§|a;0 =< C,
3

sup [I(CK" %) (2, )y + 1K™ EM) (@, )y < C,
Q=1 tel0,1]

as well as

|E_§|oc;0 55,
3 . . . -
sup [[(K'"' % E1)(, ) — (K" % E")(t, )]l <6,

i relon]

where ' = RE! and R is the reconstruction operator associated to Z.

Asin [16, Section 9] we now identify solutions corresponding to a model that has been renor-
malised by M with classical solutions to a modified equation.

Proposition 2.16. Given a continuous periodic vector & = (581, 582, &‘83), denote by Z, =
(M®, I'®)Y the associated canonical model realising T given in Proposition 2.9. Let M be
the renormalisation map defined in (2.5). Then for every L > 0 and periodic ug € C"(R3; R3),
ue = RSt (uo, Z,) satisfies the following equation on [0, TE(ug, Z)] in the mild sense:

1
Oty = Aug — EPdiV(ug Qug)+ P&, divug =0, u.(0)= Puy.

Furthermore, ué” =RSE (o, MZ,) also satisfies the same equation on [0, TL(ug, MZ,)] in the
mild sense.
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Proof. We follow a similar argument as in the proof of [16, Proposition 9.4].
For i =1, 2, 3, the solution u' to the abstract fixed point map can be expanded as

3 3
=Y TNE) -5 Y I @RENTE;) +¢'
i1=l1 Jiitsiz, 1=1

3 3
1 L o L .
. E Z I}ll (Ijjl(ajl))§0” _ E Z Z;ll (Illlz(Eiz))(p]
Jiij1=1 Jiit,iz=1
4 Z Z I]l(” (I}' i2 (11213(31,3)1]]1 (Ejl ))Ikkl (Ekl))
i1,02,13, ], j1.k.k1=1
1 3 L .
+ty 2 LN@REnLN@REGTYED) + o
i1,02,J, j1,k k1, kp=1

ie.

3
. v ; 1 N
P=1- 1 11— gl
u > +o > ®

i1=1
3 \Y V
1 N o 1Ly IN
N C ol — —
2]-2_1(/) +4‘+4‘+,0u.

Here every component of p, has homogeneity strictly greater than 3« + 8. Then we have

3
il =5 Y L@ RENTNEDT @R E T E)
i1,02,j1,j2.k.k1, 11 =1
1 3 . 1 3 iy
-5 2 L'@RETNEw -5et Y B@RENTH(E)
i1,i2,k,k1=1 Jisdaskki=1
1 3 - 3
+o'e =5 Y LN@RETNENTNE) +¢' ) TE))
i1,i2,j1,k.k1=1 Ji=1
! S Tii (rkk (g hriing ., 1 : T erhiz (g, kriit(g .
-5 2 L@@ TNED -5 ) L@RE)YTIE;))
i1, j1.k,k1=1 i1,i2,j1,k=1
1 > i 102 (riniz 1l o= kky (= Jiv(m
+3 > L@ @R (B T (&) TN (B T (B )
i1,i2,i3,0,01 ,k k1, j1=1
1 3
ii 11y = kk - = i1 =
+3 . L@REL @ E)TEYHTIE))

i1,i2,k,ky,k2,0,01, j1=1
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3 3
_ E Z I].!./l (Ijljz(EjZ)Ikkl(Ekl))Itll(Eil) + Z (ijul(Eil)
i1, J1sJ2.k k=1 ii=1
3 3
1 y o 1 L )
-5 ) Ba@M@EeM TN E) -5 Y LN @RE)e T E)
i1, j1,k.k1=1 i1,J1,j2,k=1
3
+ Z Z I]gjl (I[JIJZ (IJZB(EB)IHI (El] ))Ikkl (Ekl ))I”l (Eh)
i1, J1sJ25 03,00k k=1
1 3
jj T kk — — (i1 /=
+7 > T @ (8 )T (T (B T (BN T (i)
i1, Jisgaslhkokyko=1
3
+ > TMEDTE) + or
i1, j1=1

i.e.

IV Y 1Y

i N — ot
u'u 1 2‘</) 2‘;0‘
AU /U N R LI N
i __ U it - VAP Y ok
+o'el = ] 22 o3> Ve
i1=1 k=1
\% \4 3N 3N
1/ 1\ 1V, ; 1 1
AT VA VAR Vool — — Y ok
TR ;T 22 o' =32 e
Jj1=1 k=1
VR

1\
17+ /+V +pr,

~

where pf has strictly positive homogeneity. Moreover, we have

3 3
Rut = - Z DjKlll s (K2 w g2 KN s 10 4 o + Z K" gl
i1,i2,j,j1=1 i1=1

where R is the reconstruction operator associated with Z,. Since A7 = Mt ® 1, one has

the identity (ITX"®1)(z) = (M M7)(2). Tt follows that for the reconstruction operator R
associated with M Z,

3 3
o |
M, i jy__ i j_ = Z 2 _ Z 1
R Wu’)=Ru'Ru’ — 2 Clirinjji okl Ciirji
i1,i2, 1, j2.k k1,001 =1 i1, j1=1
3 3
G X Cumwesg L
4 iiyipizllikky jj 4 iiriollikkika jj1

i1,i2,i3,k,k1,0,11, j1=1 i1,i2,k,k1,k2,1,11,j1=1
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3 3
_1 » o1 3 ct
4 Jivhjsllikkyiin =y Jivi2llikkkpiiy
i1,k kL g, 2. j3=1 i1,k ky,k2, 0,0, j, j2=1

which together with the fact that fj [ D;G"1(t — s, x — y)dyds = 0 implies the results. O

Now we follow [16, Section 10] to show that if £, — & with Z, denoting the corresponding
model, then one can find a sequence M, € Rg such that M. Z, — Z.

Theorem 2.17. Let TF be the regularity structure associated to the stochastic N-S equation
driven by space—time white noise for B =2, 0 € (—=, %), let & = p. % & be as in Propo-
sition 2.11, pe symmetric in the sense that p.(t,x) = ,og (t, —x), and let Z. be the associated
canonical model and M, be a sequence of renormalisation linear maps deﬁned in (2.5) cor-
responding to C'¢,C%¢ C>¢ C*¢, which will be defined in the proof. Set Ze = My Z,. Then,
there exists a random model Z mdependent of the choice of the mollifier p and M, € Ro such
that My Zg — Z in probability.
More precisely, for any 6 < —% — o, any compact set R and any y < r we have

ElMeZe; Zlllyion S €,
uniformly over ¢ € (0, 1].
Proof. By [16, Theorem 10.7] it is sufficient to prove that for T € F with |t|s < 0, any test

function ¢ € B, and every x € R*, there exist random variables I »T(p) such that for k > 0
small enough

E|(TT,7)(¢h)* S A2Tlte, 2.8)

and such that for some 0 < 6 < —% -,

E|(IM,t — T® 1) (ph) 2 < ePn20lstr, (2.9)

Since the map ¢ — (I1,7)(¢) is linear, we can find some functions WK ¢ with V€K 1)
(x) € L2(R x T?)®k where x € R* and such that

M@= > ’k</<ﬂ(y)(W(“k)r)(y)dy>,

k=]l

where | z|| denotes the number of occurrences of E in the expression 7 and [Ij is Adeﬁned
as in [16, Section 10.1]. To obtain (2.8) and (2.9) it is sufficient to find functions W®1 ¢
L2(R x T3)®k define

(M@ = ) Ik(/w(y)S;@"(W(k)f)(y)dy>,

k==l
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and estimate the terms [(VERT)(2), WEDT)(E))| and [{(OWVERT)(2), (SWE Doy@)l,
where {Sy},cgs+ is the unitary operators associated with translation invariance and SWER T =
Web Wk,

For t = g, 7 (Eil), i,i1 =1,2,3, it is easy to conclude that (2.8), (2.9) hold in this case.
For t =1"1(&;)Z/'(Ej)), i,i1, j, j1 =1,2,3, we have

N®z(y) = / K (y — 28 (2)dz / K/ (y — &/ @)dz — i -

If we choose Czum = (Kéi‘, ngl) with K, = p; * K, we have

A0 = [ K= 2K (3 = 2080 @1) 0 ) (ddardn
so that fl)(f)r( y) belongs to the homogeneous chaos of order 2 with

OVED D) (y: 21, 20) = Kl (y — 20) K37 (y — 22).

Since for i, j =1, 2,3, K/ is of order —3, applying [ 16, Lemma 10.14] we deduce that
(OVED ) (), WED @) Sy — 31152
holds uniformly over € € (0, 1], which for 4« + 10 4+ k¥ < 0 implies the bound

| / / PO EHOVEID (), WED 1) () dydF] < 210 f ly — 71 2dyd5

Iyls<A,I¥lls<A

P Iyl 2dy S A72 S axt2Qetd),

ylls<2A

Hence we can choose

WO )(y;21,22) = K (y — 2D K (y — 22),
and we use iE to define (ﬁ +T)(¥). In the same way, it is straightforward to obtain an analogous
bound on (WP)(t), which implies that (2.8) holds in this case. So it remains to find similar

bounds for (SWED 1) = WEDT) — WD), Similarly, by [16, Lemma 10.17] we have for
O0<k+60<-2Qux+Y5)

HEWVED ) (), GWED YN S llly — 715277,

holds uniformly over ¢ € (0, 1]. Then we obtain the bound
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| / / YO E(EWED ) (), GWED 1) (3))dydF| < ef T2t

which implies (2.9) holds in this case.
For v = I}” (Z2(Biy)TH (8 ), i, i1, 02, j, j1 = 1,2, 3, we have the following identity

M7(y) = / D;K"'(y —y1) f K" (y) — 2)E2(2)dz f K7 (y1 — 2)E/ (2)dzdy,
= / DK™ (y = y1) / f K2y — 2) K7 (y) — 22)E2(21) 0 &/ (z2)dz1dzad Y1,
so that ﬁig)r(y) belongs to the homogeneous chaos of order 2 with

WED 1) (yi21.20) = / DK (y — yD K2 (y1 — 20) K (1 — 22)dy1.
Then by [16, Lemma 10.14] we obtain that for any § > 0

HOVED ) (y), WEDTYGNI S Ny — 31152,

holds uniformly over ¢ € (0, 1], which implies the bound

| / / WO GHOVEI D (), WED 1) () dyd 5] < 210 / ly = F17dyd5
Iylls<A,I¥lls<A
5 )\’—5 ||y||;6dy 5 )\’—5 5 )\‘K+2(2a+5)’

ylls<2A

for 0 < x +6 < —2(2a + 5). Hence we can choose
WD) (y;21,22) = / DK™ (y — yDK"2(y1 — 20) K (y1 — 22)dy1,

and deduce easily that (2.8) holds for t = I;i' (1"'1"2(3,‘2)1771 (8j,)). Similarly for 0 <« +6 +
0 < —22a +5) we have that the bound

| / / PP EG(EWED ) (), GWED 1) (3))dydy| < ef T2t

holds uniformly over ¢ € (0, 1], which also implies that (2.9) holds for 7 = I}ll(Ii'iz(Eiz)
TIN(E})).

In the following we use «——- to represent a factor K or K, and - to represent DK or DK,
where for simplicity we write K/l = K, D i K i = DK and we do not make a difference be-
tween the graphs associated with different K*'!, since they have the same order. In the graphs
below we also omit the dependence on ¢ if there’s no confusion. We also use the convention that
if a vertex is drawn in grey, then the corresponding variable is integrated out.
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For t =T,/ (T*1 (B¢ )TV (E))), i, i1, k, ki1, j, j1 = 1,2,3 we have

/ !

(W(EQZ)T)(Z) — \»z — ZI 30
Defining kernels QS, Pg0 by
e & _ _ € _
POz —7) = 7, Q01— 7) = Zevoemsronre 7 |

we have
WED (), WED1(2)) = P2z — )@ 0%(z. 2),
where for any function Q of two variables we have set
30(2,2) = 0(z,2) — 0(z,0) = 0(0,2) + (0, 0).
It follows from [16, Lemma 10.14, Lemma 10.17] that for every § > 0 we have
100 - QOIS Iz, 1PP@IS Izl
As a consequence we have the desired a priori bounds for W21, namely for every § > 0
(VD )(@), WD) @) S llz =205 Nz = 2157 + llzlls ™ + 12017

holds uniformly over € € (0, 1]. As previously, we define W@t like WED T, but with K, re-
placed by K. Moreover, we use ~~ to represent the kernel K — K, and we have

(5W<€;2>T)(Z)=( «/z' - 0§ Iz )+ "n,f; - 0§ zz> .
By a similar calculation as above we obtain the following bounds
(WD) @), W 1)@) L ez = 205 (e = 215727 + 1zl ™7 + 12077
+eX =20 Uz = 218 + 2l i+ 1Z1).

which is valid uniformly over €€ (0, 1], provided that 6 < 1,8 > 0. Here we used
[16, Lemma 10.17]. We come to W0 ¢ and have

WVED ) (7) = AR

Since K is symmetric and DK is anti-symmetric with respect to the space variable, we conclude
that

¥ =o,
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which implies the following

V07 = — L.

By [16, Lemma 10.14, Lemma 10.17] we have that for every § > 0
|VEDT) ()] S Izl

holds uniformly over ¢ € (0, 1]. Simila; bounds also hold for (rSVAV(S?O)t). Then we can easily
conclude that (2.8) (2.9) hold for T = Z,'! (Z*1 (8¢ ) I/ (2 ,).

For t = I, (T"2(E;,) I/ (E})), i, i1, i2, k, j, j1 = 1,2,3, we can prove similar bounds as
above, since in this case we also have

¥ =o

N N \V
For t = Z,'' (T2 (B, ) I (B WIVN(E ) = 7, iy i, ia, ko ki1, j, 1 = 1,2, 3, we have the
following identities

VeI @) = ¥

k

gt

WEN = ¥ - >l

11

k

W= 2 - @ L
Then
WEDT (), WEDT () = Pz =2 Qe(z — D),

where

0.c—5=""Cm W o

k]

By [16, Lemmas 10.14 and 10.17] for every § > O we obtain the bound
10:(z = DI < llz = 2II5°,
which implies that

(WED (), WEIDr @) S llz — 215172,
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holds uniformly over ¢ € (0, 1]. As previously, we define W< like WED T, but with K re-
placed by K. Then W3 can be bounded in a manner similar as before. Now for WD,
we have

OVED ) (2) = (R1Le) * KX (2),

where L.(z) = ¥ and (R1L) (W) = ng(x)(w(x) — ¥ (0))dx for ¢ smooth with compact
support. It follows from [16, Lemma 10.16] that the bound

KOV 0@, WP @) S llz 21l !

holds uniformly for ¢ € (0, 1]. Similarly, this bound also holds for (Wéﬁl)r)(z). Again,
SWi(g;l)r, i = 1,2 can be bounded in a manner similar as before. Then we can easily conclude
that (2.8), (2.9) hold for = I, (Z112(E;,)T**1 (8, ) I/ (E})).

o L VARV
For t = I,/ ("2 (8, ) I* (B NI} (@ 2(E )T (Ey) = o L i,iv, ok ki, Jo j1, Jos
[,11 = 1,2, 3, we have the identities

WD) = ¥

Wl

. . 4 /\cjj::-
(WEDTD) (), WED D) (2)) = <P

Then we obtain the bound for every § > 0
HOVEDT) @), WED D@ S llz — 21150
Similarly, we obtain
HEWEDTD) (), WD )@ S ez — 2152

holds uniformly for ¢ € (0, 1], provided 6 < 1.
For W®21)(z), we have the identity

4
WVEIT) () = WP 1)(@),

i=1

WP = ¥

Other terms can be obtained by changing the position for i1, k or ji, /. Since the estimates are
similar, we omit them here. We also use the notation ~—@— for ||z — z||¥1;—z,<c for a con-
stant C. We obtain that for § > 0
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N

& A
(WVED D) (@), WE0)(2)) = >

o] é _
-c-F e o
S T S P

holds uniformly for ¢ € (0, 1], where we used Young’s inequality in the first inequality. Similarly,
we have

(VD) (2), WP 0)@) S ¥z —z17% 70,

provided 6 < 1. Now for W01 we have

O L

A)(€:0) —  Cag _ e
W) (z) = + Ciiinjjr inkkeally -

Hence we choose

2, _
inviajjiiokkilly =

and also in this case (2.8), (2.9) follow.

<<

For v = I, (L' (X3 (8;) T (&, NI (Bi,)T1(Bj) = 7 iirvin.is, j, 1.k, ki,
[,1; =1, 2,3, we have the following identities:

\/ Y,
ey = ¥ - ol
WEDD)(2) = Z(W“”r)(z)—Z[( WD) — Vs 1),
i=1 i=1
where

Voot A
(W(gz)l')(Z)z x/z — ?/Z (W(Ez)‘[)(z)znilzf l)xIZ’

oo v, :
WePow= ¥ - LoiPne=rile als
v %

) b Y N :
WePn@= & - 1 VL 0iPnm = I-
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W) (2) = WP 1) () — WS P 10)(2) =

WED ) (2) = WEP 1) (2) — WEP 1) (2) =
Now for W& ¥t we have
WVEDT(2) WEDT (@) = Pz — 98P 022, 2),

where

Bt b,

_ z
0%(z,2) =
By [16, Lemmas 10.14, 10.16 and 10.17] for every § > 0 we have that the bound
(WED (), WEDT @) < Nz — 205 Az — 2L + 1z =8 + 1zl =2
holds uniformly for ¢ € (0, 1], and that
IV ED () —WED (), WED (@) - WEP 1 (2))
Slz =zl 'K « RILL % DK (z — ) — K % RiLL % DK (=),

K+RILL* DK(Z—)— K *RiLL x DK (—"))|
Slz=zl z = 20870 + Nz lls 7> + 1201875
. 1 .\ ~ 4) ~ (2) . .
holds uniformly for & € (0, 1], where L (z) = ¥ . Then define W T, W 5r,i=1,2,in a

similar way as before. Similarly, these bounds also hold for (VAVES;Z)I)(Z). Again, WEDT,
SWi(g;z)t, i = 1,2 can be bounded in a manner similar as before. For Wég;z)r we have

WGP 1)() = (RiLY) * L) (@),

\

where Ll(z) =¥, L2(z) = . It follows from [16, Lemma 10.16] that for every § > 0, the
bound

HOVTP D)@, W D@ < llz = 21157

holds uniformly for ¢ € (0, 1]. Moreover, for VAV3(§;2) 7 we have for every 8 € (0, 1)



4470 R.C. Zhu, X.C. Zhu / J. Differential Equations 259 (2015) 4443-4508

O, !

e ) I
HOVED 1) (2), VGV D) @) = foocd S|

0
0 0 0 »

.. > ..
i ﬁ 8= =8 | n=n—8
R S b Szl Nz ° + 11z,

where we used Young’s inequality. Again, 5W§8;2)T, can be bounded in a manner similar as
before. For Wﬁmr we have that for § > 0

HOVEP 1) (@), WP 0)@)) =+

_____ L._H

-
5 lz—zll5°,

holds uniformly for € € (0, 1], where we used Young’s inequality. For é € (0, 1) we have that

|<O/V(‘E 2)‘[)(1)’ (Wigz)‘[)(Z)H — 0 g ; ,1 .....
e o = T e

< Vee x T e EE b
Z o—- 1o 5 —o-»o 0 Z _'
4 0 1 + [UPOR. S mruny O

S llzI5° + 112157,
holds uniformly for ¢ € (0, 1], where we used Young’s inequality for each inequality. Similarly,
these bounds also hold for (Ws(g;z)r) (z). Again, defining Wi(z) 7,i =4, 5, similarly as before and

8VAVI.(8;2)I, i =4, 5 can be bounded in a manner similar as before.
We now turn to WE D ¢:

2 2
(W(S;O)T)(Z) — Z(Wi(é‘;())r)(z) — Z[(Wl(f‘o).[)(z) (W(é‘ O)T)(Z)] ullzmkklulm
i=1 i=1

where

VD)) = N (W‘s Oy =24 40

k

OO =k - w e

|
<
*—
™

VED 1) (2) =
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we choose C>:% = (VA\/l(i;o)r)(z) + (Wz(i;o)r)(z). By [16, Lemma 10.16] we have that

iiyipizkkill jj1
forevery § >0,i =1,2,

o B
VS0 @)1 < lzI15°

holds uniformly for & € (0, 1]. Similarly as before, we obtain the bounds for 8Wi(28;0)r. Then
(2.8), (2.9) also follow in this case.
) N
For © = Z," (T (@2 (81, T (Bi VT2 (B,)VTVN(B)) = V', dyitin, L1, o, ko ke, J,
j1=1,2,3, we have similar bounds as above with

L k

kAR LR

CaR(a

4 ; i
Ciiyigktyinhjjy = %+ % . O

Now combining Theorem 2.17 and Propositions 2.13 and 2.15, we conclude Theorem 1.1
easily.

3. N-S equation by paracontrolled distributions
3.1. Besov spaces and paraproduct

In the following we recall the definitions and some properties of Besov spaces and para-
products. For a general introduction to these theories we refer to [1,12]. Here the notations are
different from the previous section.

First, we introduce the following notations. The space of real valued infinitely differentiable
functions of compact support is denoted by D(R?) or D. The space of Schwartz functions is
denoted by S(R?). Its dual, the space of tempered distributions is denoted by S’(R). If u is a
vector of n tempered distributions on R4, then we write u € S’ (Rd, R™). The Fourier transform
and the inverse Fourier transform are denoted by F and F~!.

Let x, 0 € D be nonnegative radial functions on R4, such that

(1) the support of y is contained in a ball and the support of 6 is contained in an annulus;
(i) x(2)+ ¥ ;2902 2) =1 for all z e R%. | |
(iii) supp(x) N supp(@(277/:)) =@ for j > 1 and supp(@(27"-)) N supp(@(2~/:)) = @ for
li—jl>1.

We call such a pair (x, ) a dyadic partition of unity, and for the existence of dyadic partitions
of unity we refer to [1, Proposition 2.10]. The Littlewood—Paley blocks are now defined as

A ju=F ' ((Fu) Aju=F1OQ)Fu).

For @ € R, the Holder-Besov space C¥ is given by C* = Bg‘oym(Rd ,R™), where for p,q €
[1, oo] we define
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By RORN = {u=',....u") e SRR : |lullsg,
n
=) () @A u L)) < oo},
i=1 j>-1

with the usual interpretation as the /°°-norm in case ¢ = co. We write || - ||, instead of || - || BY o

We point out that everything above and everything that follows can be applied to distributions
on the torus. More precisely, let D’ (T9) be the space of distributions on T<. Therefore, Besov
spaces on the torus with general indices p, g € [1, oo] are defined as

BY (T4 R") = {u e §'(T, R") : |lullps, = Z(Z(zmmunmw))q) /1 < o0).
i=1 j>-1

We will need the following Besov embedding theorem on the torus (cf. [12, Lemma 41]):

Lemma 3.1. Let 1 < p; < pp<ooand 1 <q) <qp <0, and let « € R. Then B% (']I‘d) is

P11
continuously embedded in B, ;12(1/ pi=1/p2) (pdy,

Now we recall the following paraproduct introduced by Bony (see [3]). In general, the product
fg of two distributions f € C%, g € CP is well defined if and only if @ + 8 > 0. In terms of
Littlewood—Paley blocks, the product fg can be formally decomposed as

f8=Y > AifAjg=m(f.8)+m0(f.8) + 7= (f.8).

jz—liz—1

with

r(f)=m(2 =Y Y AifAjg, m(fie)= Y Aifhje.

j>—li<j—1 li—jl=1
We use the notation
S;if= Z A f.
i<j—1
We will use without comment that || - |lo < - ||g for o < g, that || - [[zc S || - [l for @ > 0, and

that || - lo S|+ Iz for @ < 0. We will also use that [|.Su|lze < 27|y || for @ < 0 and u € C.
The basic result about these bilinear operations is given by the following estimates:

Lemma 3.2. (Paraproduct estimates, [3], [12, Lemma 2].) For any B € R we have

< (fllp SN leeligls  fel™® gec?,

and for o < 0 furthermore

I7<(f, Ollatp S flallgls  feC* gech.
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For o + B > 0 we have

lmo(f, ©)llatp S I fllaliglls  feC,geCP.

From this lemma we know that 7 _( f, g) and 7~ (f, g) are well defined if f € L°. The only
term not well defined in defining fg is mo(f, g). Furthermore, if f is smooth, the regularity of
- (f,g) and mo(f, g) will become better than the regularity of g. m-(f, g) retains the same
regularity as g.

The following basic commutator lemma is important for our later use:

Lemma 3.3. (See [12, Lemma 5].) Assume that o € (0, 1) and B, y € R are such that « + 8 +
y >0and B+ y <O0. Then for smooth f, g, h, the trilinear operator

C(f. 8. h)=mo(m<(f,8),h) — fro(g, h)
has the bound
IC(f. 8 Wlla+p+y SN fllaliglplilly
Thus, C can be uniquely extended to a bounded trilinear operator in L>(C* x CP x 7, CotA+Y).

By using this commutator estimate to make sense of the product of w_(f, g) and & for f € C?,
g €CP h e, itis sufficient to define mo(g, h).

Now we prove the following commutator estimate for the Leray projection. We follow a sim-
ilar argument as [4, Lemma A.1]. In the following we use the notation f(D)u = F~! f Fu.
Lemma 3.4. Let u € C* for some a < 1 and v € CP for some g € R. Then for every k,1=1,2,3

1P <@, v) = <, POl S lullallvllg,

where P is the Leray projection.

Proof. We have

o
PR (u,v) —mo(u, Py =Y " [P(S;1utjv) — Sjun; PHv]
j=—1

and every term of this series has a Fourier transform with support in an annulus of the form 2/ .4
where A is an annulus. Let 1 € D with support in an annulus be such that ¢ =1 on .A. Then

PH(S;_quAjv) — Sj_juA; PMo = [PH(D), S;_julAjv=[(¢ 277 ) PXY(D), S;—1ulAjv.

Here P (x) = 8 — % and

(w277 PMY(D), Sj_1ul f = (W 277 ) PHY(DY(S;—uf) — Sj—1u(y 27 ) PXY(D) f
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denotes the commutator. By a similar argument as in the proof of [4, Lemma A.1] we have

(w2~ PKY(D), Sj—1ulA v oo

SO I FE TP 107 ull e | A Loe.
neN?, |p|=1

Moreover, we have the following estimates

" F @) B
<2 F @)@ T B [+ 1F @@ 8" B
=27/ |F @y O P QD + IF W O P @)
S2NA P FT@Y ORI Q@I DI + 10+ 1 PF T @ TP Q)
=27 IF 1A = )@Y O P @I + 1IF (= A W " P @) 11
S22 = 1)@ O P @)+ 10 = A (W ()37 P @)
<o Z (27)lml (2]_1)‘”1' + Z (zf)lmwm

0=<|m|=<2d lm|<2d

<27,

where in the fourth inequality we used | D™ pKl @) < lx |~ for any multi-indices m. Thus we
get that

Iy @7 PY (D), Sj1ulAjvliee S 277 P g llv]p,

which implies the result by a similar argument as in the proof of [4, Lemma A.1]. O

Now we recall the following heat semigroup estimate.
Lemma 3.5. (See [ 12, Lemma 47].) Let u € C* for some o € R. Then for every § >0

I Prullas < 172 ulla

where P; is the heat semigroup on T¢.

For the Leray projection we have the following estimate on T¢:
Lemma 3.6. Let u € C* on T for some a € R. Then for every k,1=1,2,3

1P ulle S e

where P is the Leray projection.
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Proof. Let iy € D with support in an annulus be such that ¢ = 1 on the support of 6. We have
that for j >0

A PR ulpoo = | F~HPX () (277 )0 Full o
SIF P OY QTN 27 ulle = 1F P QI 1277 lully.

Here P (x) =6 — % By a similar calculation as in the proof of Lemma 3.4 we obtain that

! <
(27)ml ~

IF PRy SIA =AYyl S Y @)H
0<|m|<2d

By the theory in [22] we know that the above calculations also hold on T¢. Moreover, we have
onT? for 1 < p < o0

1AL P ul poopay = IF " PH x Full poopay SIF T PH x Full Lo pay

S A wullpperay S NA-1ullpoo(ray,

where in the first inequality we used that supp(x P Fu) is contained in a ball and in the second
inequality we used Mihlin’s multiplier theorem. Thus the result follows. O

3.2. N-S equation

Let us focus on the equation on T>:

3 3 3
Lut =" piligh — 5 > PO D ul)),
i=1 i1=1 j=1
u(0) = Pug € C%, (3.1

where £ = (£1,£2,&3), €1, £2, €3 are the periodic independent space time white noise, L =
0 — A and z € (1/2,1/2 + 8p) with 0 < §g < 1/2. Here without loss of generality we suppose
that v = 1. As we mentioned in the introduction the nonlinear term of this equation is not well
defined because of the singularity of £. In the following we follow the idea of [12] to give the
definition of the solution to the equation as a limit of solutions u? to the following equations:

3 3

3
Lu&,l — E Plllgé‘,l] _ 5 E Pll1(§ Dj(usug’])),

i1=1 i1=1 j=1
u(0) = Pug e C~.

Here &£°¢ is a family of smooth approximations of & such that §* — & as ¢ — 0. Now we prove a
uniform estimate for u®.

In the following to avoid heavy notation we omit the dependence on ¢ if there’s no confusion
and consider (3.1) for smooth &. We split equation (3.1) into the following four equations:
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3

Luj =) Pigh,

i1=1

3 3
{ ‘ :

by =3 3 PNQ_Dj oud) 1@ =0

1=1 j=1
Lu :——ZP”'(ZD(M ou) +ulf oul)), uz(0)=0
i1=1 Jj=1
and
Lui___ Z PUD; [ o (] +up) + @ +ulf) oui +uf ouj
i1,j=1

+ u;‘ (ué + ui) + ué(ué‘ + uif) + (ué1 + ui‘)(ué + ui)],
14(0) = Pug — u1(0), (3.2)

where fori, j =1,2,3
i J_ Joi Joi Joi
uy ouy =m(uy, uy) + s (uy, uy) + mwo,o (uz, uf)
and
whoul =x (uj ui)+n (uj ui)—{—n (uj ui)
1Yy =<y, M >y, % 0,0ty Uy).

Here fori =1,2,3, u{ (1) = fioo Zi:l Pl p,_ 50 ds and we use ¢ to replace the product of
some terms, the meaning of which will be given later. In fact, the product of these terms needs
to be renormalised such that they converge as ¢ — 0. We will discuss this in Section 3.3 below.
The results for the renormalised terms not including u4 can be proved by using a similar idea as
in the definition of Wick products. However, u4 ¢ u1 cannot be defined by this trick since u4 is
the unknown. To deal with this term we will use the fact that u4 has a specific structure since it
satisfies (3.2). Now we do some preparations. Consider the following equations:

LK =4}, K'(0)=

Then we obtain that for every § > 0 small enough, if u’l e C(]0, T];C’%’%), then K' €
C([0, T1; C3~%) and by Lemma 3.5

IK (N5 St sup [l ()ll-1/2-72. (3.3)

s€[0,7]

First we assume that «! € C([0, T1;C™272), u} o u} € C([0,T];C~"92), ul o ul =
wy o uy € C([0,T; C~V27%2), uby o uy € C([0, T C7%), mo,0(ub, uy) € C(10,T];C~°) and
70,0(P'D ;K7 ul'), 70,0 (P' DK ul') € C([0, T];C~%) for i, j, i1, j1 = 1,2,3, and that
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1= sup [leul l-1/2—8/2 + Z [l <>u1 Mo 52+ Z |Iu1 ouy” g 1/2-58/2

1€[0,T] i,j=1 i,j=1

.J 8,./'
+ Z I o u5 s + Z 1700 (5", i)l =s

i,j=1 i,j=1
3 3
.. Poej ii N &,j
+ ) Imoo(PUDKS Wi s+ Y ||7T0,<>(P”‘DjK€'”,u1”)ll—s}<OO
i, j, 1=1 i, j,1=1

By Lemmas 3.5 and 3.6 we easily deduce that u, € C([0, T1;C™%), u} € C([0, T1; C'/?7?) for
i =1,2,3, and that

sup (Z luh || - 3+Z||M3||1/2 5) S Ce. (3.4)
tel0,T] i=1
In the following we will fix § > 0 small enough such that

1-28p 1—z
N

d<dg A
< 00 3

ANQ2z—1).

By a fixed point argument it is easy to obtain local existence and uniqueness of solution

to equation (3.2): More precisely, for each ¢ € (0, 1) there exists a maximal time 7, and
1/2—80+2
ug € C(0, Tp); 01/2’80) with respect to the norm SUp; o, 77 ? 7 lua(t)1l1/2—5, such that uy

satisfies equation (3.2) before T, and

1/2-80+2
sup 1 2 |lua(D)ll1/2-5, = 0.
t€[0,T:)

Indeed, since &, is smooth, by (3.2) and Lemmas 3.5 and 3.6 we have the following estimate

1/2-80+
sup t 2 IIu4(t)||1/2 50 S Celluoll—z, ur, uz, uz)
t€l0,T]

1/2+89—2

27
(sup ¢ - ||u4(t)||1/2 50)%
1€[0,T]

+T

where C¢(||uoll—z, u1, u2, u3) are constants depending on ¢ and we used z < 1/2 + 8.

Paracontrolled ansatz: As we mentioned before, our problem lies in how to define no(u;{, u’l ).
Observing that the worst term on the right hand side of (3.2) is PDw—(u3 + u4, u1), we write ug
as the following paracontrolled ansatz for i =1, 2, 3:

3
Y PO Dyl K)o+, K] 4 u®

i_
Uy =
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with u®i(t) € C1/?>*P for some §/2 < B < (z +28 —1/2) < (1/2—28) and ¢ € (0, T;) (which
can be done for fixed ¢ > 0 since &, is smooth and by (3.2) we note that

l/2 1/2+89— 1/2-8
||M4(t)||1/2+ﬂ SCellluoll—z,ur,uz, uz) +t~ 2 ( sup s - ||M4(S)||1/2 50)%)-
s€[0,¢]

From the paracontrolled ansatz and Lemma 3.2 we easily get the following estimate for i =
1,2, 3:

|K 7 13/2—5 + 4™ 1124 (3.5)

[TATEESS Z e+l 11 /2-50
i1,j=1

Moreover u4 solves (3.2) if and only if u* solves the following equation:

Lubt = —— Z P”'D <>u2 —l—uz' (u3 +u4) +u2(u3 +uf‘1) + (ui31 +u2)(u§ —l—ui)
l]j 1
— A (L +uy), KI)+2)  w (D +uy). DiIKT) + 7o (uf ,ul)
=1

7100, ul) + w06 (Ul w]) — o (L) +ul), KM
+2) (D@ 4 uy), DIKY) 4 s 4wy, ul') + 70,0l u) + 70,0 (. )]
=1

= Bl (3.6)
Renormalisation of 7 (uft, u{ ): By the paracontrolled ansatz we have for i, j = 1,2, 3,

no(ug,u{):——no( Z Pitg_ul +ull, Dj K"y, ul)
i1, j1=1

3
1 . . . o
J1 J J
— Eno(. § 1P”171<(u3 +ul,Dj K'Y, u))
I, 1=

1 . . .
3 Z o (P (D, () +ult), K7, ul))

=5 Y P Dy !+, K, )+ o u).

i, j1=

The last three terms can be easily controlled by Lemma 3.2, and it is sufficient to consider the
first two terms: For i, i1, j, j1 =1, 2,3,
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mo(P_l +ull, Dj K7V, u)
= wo(P o (uf +uf, Dj K, u]) — mo(< @l +ulf, P D; KM, u))
ool +ul), PD K, u]) — @l +ul)mo(PT D K, ul)
+ @ 4+ uHmo(P Dy KT ul).
Applying Lemmas 3.3 and 3.4 we can control the first four terms on the right hand side of above

equality. As we mentioned above for 77o(P/!1 D i K I, u{ ) we need to do renormalisation to make

it convergent as ¢ — 0, which leads to the renormalisation of no(uﬁ", u{ ). Define

’%
70,0 (ttly, u?) = =5 (m0.0( > Pl (Wi +ull, Dj KM, ul)
i1, j1=1

3
+m00( Y Plm @l +uy, Dy K", uf)

i1, j1=1
3
+ Y (P (D), () +uld), K, ul))
i1, j1=1
3
+ Y (P (D, +uf). K™ ul)) + mot ),
i1, j1=1

where

710’<>(P’-’.'71<(ug1 + uif, Dj, K, u{)
= JT()(P”'JT<(L£;1 + uif, D K/, u{) — no(n<(u;1 + uf“, PiilelKj‘), u{)
o<l +ull, PP D K, ul) — @+ ul o (PT D K ul)
+ U+ ul)mo o (P D KT ul),
and no,o(Pii1n< (ué' + ui‘ ,Dj, Ky, u{) can be defined similarly. Using Lemmas 3.2 and 3.3
we get that for § <8y < 1/2 —35/2
70,0 (Pt (ul) + 1, Djy K1), u)| -
SUPH T (uff +ulf, Dj K7 — ol +ulf, PDy KM [ —sosg ] 11252
s Ul N1 ja—sy | PTI D, K1 ||1/2—5|Iu{||—1/2—3/2
+ 1+ w2y 0,0 (P D K7 )5

i i 1 i i i ii i J
Sy 4wy 1 2—so 1K 1325wy | —1/2—6/2 4 lug + uy [11/2-5 170,06 (P Dj, KV, uy) || 5.
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Here in the last inequality we used Lemmas 3.4 and 3.6. Similar estimates can also be deduced
for ”0,0(2?1,j1:1 Piiig_(u} +uj', Dj K", uf).
Hence we obtain that for i, j =1, 2, 3,

3

3
i j i i i j
0,0 Gy u)ll =5 S D Ml + w1280 Y IK l32—slufll-1/2-5/2
i1=1 J1=1

3
o } o
+ ) g+ ul sy im0 (PP Dy K )| -
i1, 1=1

3
+ )+ ug a0 (PP Dy KT uf)]| s
i1, j1=1
+ [l !
124glluyll=1/2-5/2
S CS +1+ ||M4||1/2—30(C.;g + 1) + [|u” Ce.

Estimate of ¢°: To obtain a uniform estimate for uj, we first prove an estimate for ok

Lemma 3.7. For ¢° defined in (3.6), the following estimate holds:
6™ I 125 S (14 CH[1+ 4?1245 + luallij2—sy + luall3]- 3.7

Proof. First we consider - (L(u"3 + uf‘), Kj), i,j=1,2,3,: Indeed (3.2) implies that for i =
17 2’ 37

3
J J 1 l J J J 1 1
L(us + ul) ==3 E P'Dj(uy ouy +uyouy +ull o (uy +uy)+up o uy +uy
i1,j=1

+ ué‘ o ué + ué‘ (ug + ui) + ué(ué‘ + uil) + (ug1 + uif )(ué + u‘{)),
where for i, j =1, 2, 3,
wh o W)+ ul) = ol +ul,ud) + 70,0 ), ul) + 7 (ud + i, ) + 70,0 (), ).
Using Lemmas 3.6 and 3.2 we obtain that fori =1, 2, 3,
1L s + ul)ll-3/2-5/2
3

i j i j i j j
S Dl 0wl ll-ijp-ssa+ lluh 0wl s + luf =1 /22 llud + el 1123
i1, 1=1

o ; , .
+ ll7w0,0 (e, i)l =5 + ) [l s 3" + g 1/2-5
i i j j i
s g s lugt 4wy lls + 10,0 ey, ug' )] —s]

S+ 14+ +CHlluslliyo—s, + Cellu*ll1/24p + lluall3.
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where we used § < §p A (% — &p), which by Lemma 3.2 yields that

77 < (L(ub + ), KT) =352
SUK 3/2-5[C2 + 1+ (14 CHlluallija—so + Cellu* 1121 + luall3].

Then we consider 7l’<(D1(u;l + uf“), D/ K7y + JT>(M;1 + uif,u{) for iy,l, j =1,2,3 in (3.6):
Indeed Lemma 3.2 implies that

||7T<(Dl(u3 +”4) DIKJ)+7T>(M3 +u4» 1)”—23

S Wit jas + e 1 y2—s) WK 1325 + ] |-1/2-572)

3
S Ui hyo—s + D u§ +ufl1j2-so 1K l13/2—5 + 1™ |1/21p)Ce.

iz, j1=1

where in the last inequality we used (3.5).
Combining all these estimates obtained above, by (3.6) we get that

™" 1l -1 25
<Z(||Kf||3/z s+ 1) Z Ly o ud' s + ll70,0 (el 1] Y| =s + e I =sllee + uf 11/2—s,
i1, j1=1

+ )+ sl + s + CF + 1+ (1 + CHllusllija—s, + Celull1/21p + lual]

+ Z (Ul /25 + Z 1663+ 1250 I K7 13725 + ™11 245)Ce
i1, j1,1=1 iz, j1=1

S A+ CH[1+ 4P 1245 + lluallija—so + lusll3].
where we used (3.2) (3.3) and § < §p in the last inequality. O
Construction of the solution: In the following we will prove a uniform estimate of u}: By the

paracontrolled ansatz (3.3) and Lemma 3.2 we get

S1Pce Z e (1) + 1} D111 25 + 165 (0117259,
ii=1

[TAGIIEESS

which shows that for ¢ € [0, T] (with 7 > 0 only depending on C¢)

leu4(t)||1/2 IS cg+Z||u {Ol1/2-s0- (3.8)

i=1
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Similarly, we have for € [0, T] (with T > 0 only depending on C £)

3 3
Dol Olls SC2+ Y lu @)lls. (3.9)

i=1 i=1
Moreover, Lemma 3.5 and (3.6) yield that for § + z < 1

PFNE 124

t
SIPug — uy (0)||— + 1277 / (t — 5) 734 P2g =G 02 92 (5) | _1_nsds,  (3.10)
0

where we used the condition on 8 to deduce that 3/4 + 8/2 4+ 8 < 1 and % <é+z.
Similarly, we deduce that

t
_143s
PENuP O3 S IPuo — ur (0))12, +1275( f (t—s5)" 2 s CTIPOT 98 (5) | _1_nsds)?
0
t
_ _ 1438 _
SIPug —ur (01, + 173972 / (t—s)" 2 s OTI (T2 PP (5) | —1-25)ds.

0 (3.11)

Here in the last inequality we used Holder’s inequality. Thus, by (3.7)-(3.11) we get that for
tel0,T]

PP 128 S A+ CH[I1Puo — ur (02, + CE + 1
t
+ / 1 (1 — ) ARG (P §F (5) [ -1-26)
0

1+3
2

—_ _ 438
+ 1072 — )™ T ORI (P @R (5) |- 1-25)dls .

Then Bihari’s inequality implies that for § < 14;1 there exists some 0 < Ty < T such that

sup 1°%2|¢% 125 < C(To, Ce. luoll ). (3.12)
1€[0,Tp]

where C(Tp, C¢, |lugll-;) depends on Ty, |lugll—, and Cg. Here Ty can be chosen independent of
£ such that (3.12) holds for all ¢ € (0, 1), if Cg and |lug||—; is uniformly bounded over ¢ € (0, 1).
Similarly as (3.10) we have
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20002y (1) || o,
t
SIPug — up (0)]| -, + ¢1/27%0F/2 / (t — )40/ =0F2) §02) 62 (5) || 1 _nsds
0
SIPug — up ()| + =472 sup ST BP () 11128 (3.13)
5€[0,1]

Then by (3.8) (3.13) we obtain that

2—-30+z

1/
sup t7 2 Jlua®)ll12-s0 S C§ + lluoll-z + C(To, C¢, lluoll—2).,
1€[0,Tp]

which implies that 7, > Typ. Here we used z > 1/2 4 §/2. Moreover, similarly as for (3.8) one
also gets that for 7 € [0, Tp]

lua@ll -2 S CZ+ u* @) -

t
—1-28+z _
S CE+ luoll—: + / (t—s)" 2 s OISO @BM _ psds,
0

where in the last inequality we used Lemma 3.5. This gives us our final estimate for u*:

sup Nua(®)ll—z < CF + lluoll—z + C(To, Ce. lluoll ).
te[0,Tp]

We define Z(£°) := (uf,ui o uj,uj o u5,u5 o u5,mwo0us5, ui), moo(PDK®, uj)) € X :=
C(0,T];C71279%) % C([0,T);C~17%%) x C([0,T);C~127%%) x C([0,T];C™%) x
C([0, T1;C~%) x C([0, T]; C?). Here X is equipped with the product topology.

Similar arguments show that for every a > 0 there exists a sufficiently small 7y > O such that
the map (uq, Z(&:)) — u4 is Lipschitz continuous on the set

max({|luo . Ce} < a.

Here we consider u4 with respect to the norm given by

sup lua ()|l —.
1€[0,Ty]

Hence we obtain that there exists a local solution u to (3.1) with initial condition uq, which is the
limit of the solutions u?, & > 0, to the following equation

3 3 3
Lu®' = E PHIESN 3 E P E D" u®’))  u®(0) =uo,

i=1 i=1 j=1
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pr.pyided. that Z.(£%) converges in X, i.e. for i, iy, j,. Jj» = 1,2, 3, there exist vl, v’zj, vgj, v:{, vgj,
v’6””2 1)17””2 such that for any 8 > 0, u{' — v} in C([0,T];C~1/279/2), ui’ o
ui! — v in ([0, T1; 712, uf 0wy — v in €(10, T1; €712722), w5 o us? — vl in
C0, T1;C™%), mo.0 5", uy”) — v in C([0,T1; C7), 70,0 (P11 DK™ uf ™) — v 72 in
C([0, T1;C~%) and 7o, o (P11 D; K&t u”*) — v3' "2 in C([0, T1; C%). Here
&,j e &, &,ij
1 <>u1 =uuy Co ,

8,0 a]_&‘lé‘]
Uy ouy”’ =uy Uy,

8,0 &j._ &1 &] &,ij
Uy Quy” =uy uy’ —Cy

, sz
7[00(“2 »ulj) —770(143 y Uy j)_ ]

70,0 (P DK U i= mo (P D KO uf ),
70,6(P D KSN U2 = mo (P D KEN Ul ),

and Cj € R is defined in Section 3.3, C{ is defined in Section 3.3.1 and C3 is defined in Ap-
pendlx A.2. Hence we obtain the followmg theorem:

Theorem 3.8. Let 7 € (1/2,1/2 + 80) with 0 < 8y < 1/2 and assume that (§%) ¢~ is a family of
smooth functions converging to & as € — 0. Let for ¢ > 0 the function u® be the unique maximal
solution to the Cauchy problem

3 3 3
Lu®' = Z PHES — > Z ph (Z D;®"u®’))  u®(0) = Puo,

i1=1 i1=1 j=l1
such that ujy defined as above belongs to C((0, T¢); C1/2=%) where ug € C~2. Suppose that
Z.(E%) converges to (vi, va, v3, U4, Vs, Vg, U7) in X. Then there exist T = 1 (ug, v, V2, V3, V4, Vs,
vg, v7) > 0 and u € C([0, t]; C™%) such that

sup |lu® —ul—, — 0.
1el0,7]

The limit u depends only on (ug, vi),i =1...,7, and not on the approximating family.

Remark 3.9. Indeed we can define the solution space as follows: u —u € DL if

t

3

1 . ,

u—w=urtuz - o / PP Djlr (P u}) + 1 (P up)lds + ©*
0 j=l

such that

ft ft
JE— y4z wta || DF — D5 |la_2p
|®%||s1,,7 == sup o ||¢’ li—n + sup 72 “q)?”y"‘ sup s 2 %
1€[0,T] 1€[0,T] 5,1€[0,T] [t —s|

< 00,
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and

24z wa | DF — P lle—24
1D llv2.L.7 = sup 177 D12+ sup s 7 ——1=C
1€[0,T] 5,1€[0,T] [t —s|

Here n,y € (0,1),a >2b,0 <k < 1/2,c > 2d. By a similar argument as in [4], if u —u; € D}L(
then the equation

t

1 : j j j
u—uy= P (uyg—u(0)) — 3 P,_SPZDj(ul ouyp+ U —up)ouy +uy o —up)
0 j=1

+u—up)ou—uy)lds

can be well defined and by a fixed point argument we also obtain local existence and uniqueness
of solutions. The calculations for this method are more complicated and we will not go into
details here.

3.3. Renormalisation

In the following we use the notation X to represent u1, ki, := Z?:l k; and

F) = (2n)—%ff(x)e'“‘dx
T3

for k € Z3. To simplify the arguments below, we assume that £ (0) = 0 and restrict ourselves to
the flow of fT3 u(x)dx = 0. Then we know that X; = ZkeZ3\{O} X, (k)ey is a centred Gaussian
process with covariance function given by

. 3 o IKkPl=sl
E[X}()X{ (k)] = lir=0 Y g P RPN ),

i=1

and X,(0) =0, where ¢ (x) = 21)~3/2e'**, x € T? and P1 (k) = &, — % for k € Z3\{0}.
Let us take a smooth radial function f with compact support such that f(0) = 1. We regularise

X in the following way

t
3
X5 = / > PP g5 ds

oo i1=1

with €4 = ZkeZ3\{0} f(ek)§ (k). In this subsection we will prove that there exist vy, v2, v3, v4, Vs,
v, U7 such that Z(&°) converges to (vq, vy, ..., v7) in X.
It is easy to obtain that there exists v such that u"i" — vy in LP(2, P,C([0,T1; C—1/2—6/2))

for every p > 1. The renormalisation of uf’i o ui’f ,i,J =1,2,3 and the fact that there exists
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vy € C([0, T1; C~1=%) such that uf" ou’ — v¥ in LP(Q, P, C([0, T]; C~'~?)) forevery p > 1
can be easily obtained by using the Wick product (cf. [4]), where

8!} (27_[) 3 Z Z f(|8]2 Pul(k)P]ll(k)

i1=1keZ3\{0}

It is obvious that C0 — oo as ¢ — 0. Here u{ and u’ U <>u1 correspond to Tand V' in Section 2
respectlvely By a similar argument as in the proof of Theorem 2.17 we could conclude that
uy <>u2] — vy in C([0,T];C~1/%79), u‘“ <>u2J — vy in C([0, T1; C%). We could also use
Fourier analysis to obtain it. Here for completeness of this method we calculate it in Appendix A.
For the terms including w9 we cannot use a similar argument as in the proof of Theorem 2.17
to obtain the results since the definition of my depends on the Fourier analysis. That is one of
difference between these two approaches (see Remark 3.13).
We first prove the following two lemmas for later use, the first of which is inspired by
[12, Lemma 10.14].

Lemma 3.10. Let O <!, m <d,l+m —d > 0. Then

k llk S k l+l d:
m ~ P
b hneZ Oy i K1 T2 1K

Proof. We have the following estimate:

1 1
< o
Z kil k| ™ Z k1| |k |™

ki,k2€Z4N\(0}, k1 +ko=k ki ko €ZA\{O}, ki +ha=k, ki | <!

1
* 2 e ko™

ki ko €Z4\ (0}, k1 +ho=k, |ka| < 4!

1
+ TS
Z k1| k2 |™

k1 ko €Z\{0}, ky +hko =k, k1 | > BL [k |> ]
Since |k1| < |k|/2 implies that |k2| > |k| — |k1| > |k|/2, we obtain
> T » e
W [kl ks L |1k
ki ko €Z4\ (0}, k1 +ho=k, |k; | < 41 ki €Z4\{0}, lky | < &

For the second term a similar argument also yields the desired estimate. For the third term: by
|k2| > k1| — |k| and the triangle inequality, one has

el = S (k] — e + 2=
2_4 1 )

1
k| > —1k1],
||_4|1|

which implies that
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Z 1 <| | —I— m+d‘
|1|’|k ™~

ki ko €Z4\ (0} ky +ho=k, k1 |> &L k| >
Hence the result follows. O

Lemma 3.11. Forany 0 <n < 1,1, j,I = 1,2, 3 and for t > 0 the following estimate holds:
e a2t ) BT (k) — e WPt BT (kg | S iy 7]~ 2,

Here ﬁij(x) =38;j — M

|x[2

Proof. First we have the following bound:
ko |? 5 kPt B -
e ks P(kin) — ek Pka) | S 1)1,

Consider the function F(x) = e Pryp (x). Then it is easy to check that | D F'| is bounded, which
implies that

ks 2 A a2 A
le 121k P ki) — e Mk P (ko) | S T .
Thus, the result follows by the interpolation. O

3.3.1. Renormalisation for m)(ug"o S’Jo)
Now we consider ﬂo(un ,u1 £.J0Y The estimates for no(u3 — uifo, u, £.J0) can be obtained

similarly, where Lu31 =-—3 Zil:l Pioii ijl D; (u2 o u{). We have the following identity:

7
i 1
oGy " uy )0 = 2 Y]

i=1

where

=em™? 3 Y X Z 02 k123)0 (2~ /k4)/dse Ik1as [ (1=5)

keZ3\{0} li—jI<Lkioza=kiy,iz,i3,j1=1
S
N SE,1 it j 2 i _ 20 ; ; N PP
/:Xi”z(kl)Xf,’”(kz)Xﬁ’“ (k3) Xp P (hkg) : e F121°6 =) g 13 1l s P12 () POV (kyp3)ey,
0

2+17=@n)~? oo > Z 002 ky3)0(2~ /kl)/dse k1231 (1 =s)

keZ3\(0} li—jI<1kaz=k,ky i1,i2,i3, j1=1

s 120 3
. i [k11=(t—=0) £(ck1)2 i .
/ XG5 U)X )+ £ 2k |{ (CRVZ S piots ) pvis ekl 0=
1

0 ig=1

lk” lk{l23pl”2(k12)PlOll (k123)(1i5:i3,i6=i2 + 1i5=i2,i6:i3)ekv
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3
=m0 3 3y > 0@ k)02 k3)

keZ3\{0} li—jI<1 kia=k,k3 i1,i2,i3,j1=1

eI £ (ek3)?
2lk3 2

t s
/dse*“‘m'z(fﬂ‘)/;)23*"2(1{1)}?3"3(@);
0 0

3
3 Bl (k) BI04 (k3)e 1200 4o ki k]l B2 (kpp) B0 (ki3 )e
ig=1

Fif—eo?? Y Y Y Y seikwe f/q)fdse P t—=s)

keZ3\{0}) li—jI<Lkia=k,kp i1,i2,i3, j1=1

S _ 200 3
o s k2 |=(s—0) k 2

/ R U] ) 1 S Sk
2]ks| =
0 4=

1o (ky) P14 (k)

_ 2(a_ . s e . N
e k276 goy k3 k]t P12 (ky9) PO (ky) (Lig iy igmis + Lismis,igmir)ek-

k1) f(ekp)?
f=con® Y Z 62 k)2 /kz)/dse sy [ LR R Do)
41k 1% lk2]
li—jl<lkikyiy,iziz, j1=1 0
3 . . .. o . . . . . . . . . ..
Z (P (k) P14 (ky) P15 (k) PTO'S (k) 4 P2 (ky) P71 (ky) P'3'5 (kp) P05 (k2))
ig,is=1

eIk (s=0)— ki ‘z(s_")_|k2|2(’_")dmk’fzzkél P12 () PO (k).

Here 172, I} and I}, I® correspond to the terms associated with each indicator function re-
spectively. To make it more readable we write each term corresponding to the tree notation
in Section 2. no(uglm, u /0) corresponds to ¥~ and 1,1, 1,2, 1,3, 114, 1,5, 1,6, It7 correspond to the
associated WEH),| Wf 2, Ws(g 2, W3(8 2, Wl(s’2), VAVS’Z), WO in the proof of Theorem 2.17
respectively.

First we consider It7: by simple calculations we have

f(ek)? f(eka)?
41k 2 ka |2 (Jk1 |2 + ko |2 + [k12]?)

3
=0 0% Y kyiky P12 (ki) P (ky)
ki.kaiy,iz,i3,j1=1

3
D (PR PI (hy) P25 (k) PO (k) + P2 (k) PIV (k) PR (k) P (k)

ig,is=1

t

2kt

[1 sz |22 _/dsezumz(zs)e(|k12|2+|k1|2+|k22>s}
2
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Let
‘9 lO/O(I) _ 17

We could easily conclude that C‘E «i0Jo (t) > 00,as e —> 0.
Similarly, we can also find C12 for uz — u3y. Define C{ = C{, + C{,

Terms in the second chaos: We come to 12 and have the following calculations:
E|AGI7)?

DY > Y 6QT k)0 kDO k)6 2 kB2 k)

keZ3\{0} li—jI=L|i'—j'|<Ukpz=k.k1.ky

o fek)? — .
IT;_, TRE //dsd Se ! 1231 (t—5)— k34> (1 =5)

//dad& ket P(1=0) =1k 0 ~3) = (125 =0) ks P 6= |k skaskosa
0 0

S Z Z 02 k123)0 2 k)02 k234)0 27 kg)0 (279k)?
k€Z3\{O} li—j|<1,)i’—j'|<1 kpz=k,k1 ks
"
ko | [k3 |2 kg [+ kg |47

"
—(1=n—e)i —(l—n—e)i’ 2=49 )2 1924 (n+2¢)
Z ZZ 22 Z@( k) |k |2|k |2§'t2 ’

keZ3\{0} ¢ <i qsi’ kyz=k

where 1, € > 0 are small enough, we used sup,cp la|” exp(—az) < C for r > 0 in the second
inequality and Lemma 3.10 in the last inequality. Furthermore, ¢ < i follows from |k| < |k123] +
|k1| <2 and similarly one gets ¢ < i’. Also for I; 3 we have a similar estimate.

Now we deal with I} = I* — [} 4+ I — Z”_l U (1)C5" (1) where

—emt Y Y Y Z 02 " k123)0 (2 k3)

keZ3\(0} li—jI=1 kip=k,k3 i1,i2,i3,j1=1

L XED (k) KED (ky) : e W12 k13 piri2 () od s

o

1
—1k317(t=9) £ (ckn)2 "
/dse—mmﬁo—s)e |k3|2f(8 ) Zleu(k%)P]OM(k?)llePlOll(k123)’
0

and
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e 2lk3 P (t—s) 2
sll(t)_(zn) : Z 229(2 "k3)0(2~ ]kz)/ds ’ [ (eks3)

2
li—jl<l k3 ji=I Iks]

S B ky) B (k! B0 (k) =0

is

3 _ \k3| (1—s) k : N
Let 01{123 o (E—8) =2 = Va3 (1= S)%kam P (k1»3)|. Then we have for e > 0

small enough,
E|Aq (1 = )P
S > > 0202 k123)0 2 k3)0 (2 ki24)0 (27 ka)

keZ3\{0} li—jI<L|i'—j'|<Ukio=k.k3.k4

i 5
fds/ds |k1|2|k2|2 Z ck123 k3 s)ck124’k4(t—s)

s

[/d(,/d&(e—m.zz(s—a) _e—lklz\z(t—tf))(e—\k12|2(§—5) _e—\k12|2(t—6>)|k12|2

0 0
t ‘
—i—/dg/d&ek12|2(ttr)|k12|2(t6)|k12|2i|
s 5
P> 2 > 0202 k123)0 Q2 k3)0 (2 ki24)0 27 ka)

keZ3\{0} li—jI=L|i'—j'|<Ukio=k.k3.k4

/4 1/4 Ji -
/ f ST~ =) > it =90

Jr.ji=1
> > Y. 00 ko k)0 ko 27 k)
keZ3\{0} li—jI=1,|i"—j'|<1 kio=k,k3,ka
12¢€

k12| lk1|?k2|? k3% kal? (|k123]? + |k3|2)3/4_€(|/€124|2 + |k4|?)3/4—€

ZGZZZ (i+i")(1/2— 36)2 Z 02 % )|k12||k1|2|k2|2

q<lq<l k kip=k

1
26 —2q(1/2—3¢) qp 2e 2q(35)
272 >N Q) ————— <172
== nzller ko ?

where in the last inequality we used Lemma 3.10 and g < i follows |k| < |k23] + |k3| < 2¢ and
similarly one gets ¢ < i’. Moreover, by a similar argument as in the proof of Lemma 3.11 we
obtain that for > € > 0 small enough
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3
E[|Ag(F = ud" ()€ ()]

i1=1

“IsP(=5) £ (gks)2
% 002 k) [ € 3
NZ Z |k1|2|k2|2|k12|2 @70 [ Z 2 200 3)/ e

i, ji=li—jI<1 k3

2
OQ Tkipp)e M9y pioit (k53) — g2 ky)e Vsl U= ]t Wl(/q))ds}

eIl - v)

2
< 2 % 002k -(=-m/24
Z Z |k1|2|k2|2|k12|2 79 H) [ 2_0¢ 3)/ op ) g

Jj=0 k3

< n—€pq @)

where in the last inequality we used Lemma 3.10.
Now we consider [7 = I7 — I? + I — I}, where

3
P=en™?®* Y > > > 02T kOQ ka)

keZ3\{0} li—jI=<1 kia=k,ky i1,iz,i3, j1=1
t

/ L XED (k) KETO (g e MIP 9 1 pioit (k) ey

0
)
— k226 =0) £(ekr)2 . S
/ ook 6-0)€ |k2|2f R ki B0 k1) Y B ko) B k),
0 ig=1

and

3
D =Qn) %? Z Z Z Z 02 k)02 ka)

keZ3\(0} li—JjI=1 kia=k,ka i1,i2,i3,j1=1
t

/ : )A(Sg’iz(kl)f(f’jo(k@ : eilkllz(’*s)lk{1 PO (k) Yerds

0
N
—kalPG$=0) £(ekr)2 . . SN
/ doe el =) ¢ |k2|2f (ek2) K5 P12 (k) 37 B (k) P11 (ky) = 0.
0 is=1

ka2 (s—0) s A ) )
Let diyy 1, (s —0) = Z?z.is—l —lkia s — ”)%U{%P”u(hz)l. Since by Holder’s in-

equality we obtain
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EGXT? ()X (kg s =2 XG2 e X770 (ka) G X2 RDX7TO U - = XE2GRD X702
21~
| — g—lk1?ls—o] 1 — e W55
< , 1/2 1/2
S =t st F Tt bt 2 ] 21k, 2
ISTRILAK

<Uy_ply A+l 1, —m L g 5125 5|12,
S U=ty g =k, + 1y =k k4,kl)|k1”k1”k4”ki|l "= |

it follows that for 1, € > 0 small enough
E|A (I = ID)?

SD) > > 020 kNI kDO kO ks)

keZ3\{0} li—jI<L,|i’—j'|<1 kia=k,k3,ko

t t s 5
- 1
/ds/dg/da/dae—'kl'2<f—f>e—‘k1'2<'—5>|k1|2—H .
Ky |7~ k4|
0 0 0 0

s — o |25 — & " 2dyyy 4y (5 — 0Ny 13 G — &)

py > > 00T kNI k)R kDO k)

keZ3\{0} li—jI=L,1i"=j'|<Vkia=k.k3.ka

t t K K
] 1
/ds/dgfdafd&e*"‘l'20*)(“‘4'2(’*”|k1||k4|ﬁ
[y >~ kg|=—
0 0 0 0

Is — o215 — & 1" 2diyy ky (s — 0)dliyy k3 (5 — )
s > > D020 kIR k)0 k)OQR T ka)
keZ3\{0} li—jI<L i’ =)' |<1 kia=k
té tE
5 + — p——
ki [#=21=2€ kg |2 kg 3707 kg3 70€

_ » 1
§I€Z Z 02 %)Zz lm

(

)

k  kia=k q<i
. 1
+ € 027 %) 27J€

< 4€ 24 (2€+21)

where in the last inequality we used Lemma 3.10 and g < i follows from |k| < |k;| + |ks| < 27
Moreover, it follows by Lemma 3.11 that for 5, € > 0 small enough

E[|A (I — D)%)

<2 2 Y 00T kIR kDO k)NOQR T ka)

keZ3\{0} li—jI=L,1i"=j'| <1 kia=k.k3,ka
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N

- k(s —0)

/-/|k1|2+2neflk1|2(t7s+175+|s7§|) 1 /‘3 (s — o)~(-m/2
k1% [ka|? k2|

0 0 0

S

e ksPG—3)
f T(E —6)"UM2g4sdsdods
3

+ ) > Y QU0 kO k)02 ki) 2 k)
keZ3\(0} li—j|=1,|i"—j'|<1 kia=k,k3,ko

1 s

t
—lko |2 (s—
//|k1|1+2n|k4|672|k1\2<rfs>72\k4\2<tfs> 1 /e lka*(s—0) (s — o)~(-m/2
Ikt 12 |kea]? k2|
0 0 0

S

—|k3|*(G—5)
f elk—P(E — &)y U=D24sd5dods
3

_ » 1
SEEY N 0 Y 2 ’m

k kig=k g<i
. 1
+1 0279k Y 27
2 2 e T

< €09 2e+2n)

where in the last inequality we used Lemma 3.10 and g < i follows from |k| < |k;| + |k4] <27,
Similar estimates can also be obtained for I?.

Terms in the fourth chaos: Now for 1! we have the following calculations:

E[|A, 1]

<> > Y QTR k)02 ka0 27 K302 KY)

keZA\(0} i—jI= 111" = j' | =1 kipaa=k. k] 554 =k
Ly =] kyky ks =k ka=hly T Lk =k k= kg kg =k, Ly =k ky=k) ks = kg =k,

Lk k] o=k kg =k kg=k)y, T Ly =k ky=k], sk ka=ly, T Ly =k}, ey =k) kg =k kg =k

t t
= —lk132(t=s)— |k, |*(1=5)
+ 1k1:k£,k2:ké,k3:k/l,k4:k§)/ds/dse k1231 LSP8Y
0 0

s s
1 _ 20 mY—1l 12(5_F~ —
// et 21 2 1ks Plka 2 PR CDdo 45 |kiokinsk) ok s |
0 0

=E' +‘E’+E+E'+E +ES+E].
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Here each E ; corresponds to the term associated with each indicator function.
For €, n > 0 small enough by Lemma 3.10 we have

< Y 3 5 9(2—qk)29(2:'klf)e(22—1'1«24)9(22—f’k1235{92572—f/k4>r”
KO0} =] 1< TP 11 Krreck lk11=1kal=1k31 %1 kal* k12| |k123]
< 2 Yoo ) 6@ ko k82 ki) (27 k)
keZ3\{0} li—jI<1,li'—j'|<1 ki23a=k
th

|ka|? ki3 |4—2n—¢

. t"
< 2 2=21=9ig(p=a k)2 — < 24+
P>
€Z3\{0} ¢ Si
and
0(2796)20(2  k123)0 (2~ ka)0 (2 ko34)0 (2 k)t
E,2§ Z Z Z k1 21k |2 ks 2 a2 -1 -1
11=1k2|= k3 |*1kal“1k12] 1 k241123 "~ k234

keZA\{0} li—jI=1,1i"=j’1=1 ki234=k

02~ 1k)%12-1@2m)

<
~ kezz-?\:w}klg::k ki 117 ko |2 k3 |2 1ka | 7 k12] [koal k1231 [kosa |17

< Z (Z 0(2~9k)%12~9(2=2m NG
Y o ot W TR s P kg 7 2 s 227

0(2-9k)2n2~-9C2—2n) 12
el 21 P lka | a2 kasa |22

(
ki

23

n
< E : 27(27217)(1[_ < 29@myn
~ k ~J
keZ3\{0} Ikl

By a similar argument we can also obtain the same bounds for £ 3 E,4, E,5, E[6 and E,7 , which
implies that for €, n > 0 small enough

E[|Ag1} 71 S 201G,
By a similar calculation as above we get that for 7, €, y > 0 small enough
E[|Aq (0,0 5" uy" ) (11) — 70,0 5", i 0 (12) — 70,0 @50, ™) (11)

£2,1 €2, ] 2
+ 70,0 W5, u ) (12)) 7]

2 2 2
S (e +e))ln — 121,

which by Gaussian hypercontractivity and Lemma 3.1 implies that
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EllI7o0,0 5", i) (1) — 70,0, w570 (12) = 70,0 (5", i ) (11)
+ 70,0 (W5, Z'J")(tz)nc,n,g,y,,]

S Elllo,o @™, uf™) (1) — 0,0 (5", 1) (02) = 70,6 (a3, ) (11)
+ 70,0 (3, w17, ]

PI’

5 (8{’)’ 4 85}/)“1 _ tzlp(ﬂ—e)/z’ (3.14)

(see the proof of (A.2), (A 3)). Thus, for every ip, jo = 1,2,3 we choose p large enough and
deduce that there exist v 0o e (10, T1,C~%), iy, jo=1,2,3, such that for p > 1

70,05, uy ) > V¥ in LP(Q, P, C(10,T1,C7%)).
Here § > 0 depending on 5, €, p can be chosen small enough.

3.3.2. Renormalisation for wo(P"2 D ;) K&Jo u$'"y and m‘)(P“i2 Dj k&2, ul'h .
In this subsection we consider mo(P12D; K&, u7’") and 7o(P12Dj K&, u7’") for
i1,12, jo, j1 =1, 2, 3 and have the following identity:

wo(P12D j K90, uS /) (1)

Z Z Ze(z—ikl)e(z—sz)

keZA\{0} li—jl=1 kio=k

e~ t=9lki? kIO REP () XET (ko) - dse P2 (ky) 4+ (2) 73 > D 0@ kR k)
li—jl<1 ki

0\_‘

~2(t-9)lki 2 3o f(ekp)?
e ki

T AT PlllZ(k ) Z P]O]Z(kl)PJIJZ(kl)

=1

o

Here 7ro(P"2 D, K70, u7”'") corresponds to /' and the first term and the second term on the

right hand side of the above equality correspond to the associated WED WED iy the proof of
Theorem 2.17 respectively. It is easy to get that the second term on the right hand side of the
above equality equals zero. It is straightforward to calculate for € > 0 small enough:

11 L Ji £,j1y12
E|Agmo(PV2Dj K50 u( !t

S Z Z Z 0212002 k)OQ k)02 k)02 k)

keZ3\{0} li—jI<1,li’—j'|<1 kio=k

k
[/ / ot
et Plka]
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t t

. 2 < 2 1
+//672<H>|k1| ~20-9k2P |, ko | dsdg]
) k112 k2|

- i 1
SIEZZ Z 9(2 qk)9(2 lk[)m

k g<ikia=k

. _ . 1
F1EY DD 002702 lk2)7|k1|3—2€|k2|3

k q<ikn=k
< t522q5’

where in the last inequality we used Lemma 3.10. By a similar calculation we also get that for
€,1 >0, y > 0 small enough

E[1 A (0,6(P12 Djy K0 uy ™) (1) = 0,0 (P12 Djy K0, 1) (12)

— 70,0 (P12 Djy K0 uf ) (1) + 70,0 (P12 Djy K0, 1y 1) (1)) ]

2 2
< (81)/ +82y)|t1 - t2|n2q(e+2n),

which by Gaussian hypercontractivity, Lemma 3.1 and similar arguments as for (3.14) implies
that there exists vé””(’“ € C([0, T1; C%) for iy, ia, jo, j1 = 1,2,3 such that for p > 1

70,6(P12 Dy K& 90, uf /) — w207 in LP(Q, P, C(10, T]; C7%)).

Here § > 0 depending on 7, €, p can be chosen small enough. By a similar argument we also
obtain that there exists 1)17”2]0]1 € C([0, T];C7%) for iy, iz, jo, j1 = 1,2, 3 such that

70,6(P12 D K& 07ty — v} 207 in LP(Q, P, C([0, TT; C70)).

Combining all the convergence results we obtained above and Theorem 3.8 we obtain local
existence and uniqueness of the solutions to the 3D Navier—Stokes equation driven by space—time
white noise.

Theorem 3.12. Let z € (1/2,1/2 + §p) with 0 < 89 < 1/2 and ug € C™%. Then there exists a
unique local solution to

3 3 3
Lu' =) Pig— % Y PO Diwul))  u(0)= Puo,

i=1 i=1 j=1

in the following sense: For £ =3, f (ak)é(k)ek with f a smooth radial function with com-
pact support satisfying f(0) =1 and for ¢ > 0 consider the maximal unique solution u® to the
following equation, such that ujj defined above belongs to C((0, T®);C 1/2=80y,
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3 3 3
Lu® =" Pl — 3 > PO Dt utT)),  uf(0) = Pug.
=1

i=1 i=1

Then there exists u € C([0, t); C™%) and a sequence of random time ty, converging to the explo-
sion time T of u such that

sup luf —ull_. =" 0.
te[0,71]

Proof. By a similar argument as above we have that there exists some y > 0 and u; €

C([0,T];C Y2782y yp e C([0,T1: C~%), uz € C([0, T1; C%’S) such that for every p > 0
E|uf grP

s

p
—ui ||C([0,T];C_I/2_5/2) 5
& _ p < g¥YP
E”uz MZ”C([O,T];C*‘S) ~ € .

e p
Elluy —u3 ”C([O,T];CW*B) Se’?

Then for ¢ = 27k 5> 0ande>0

o o
Z P(”M‘;"k —Uuj ||C([0’T];C—l/2—8/2) > 6) 5 Zz_ky/é < 00,
k=1 k=1

which by the Borel-Cantelli Lemma implies that uf"’i — u’1 —0in C([0, T]; C—l/z—a/z) a.s., as
k — oco. The results for the other terms are similar. Thus we obtain that sup,, _»+ ren éék <00

a.s., Ty independent of ¢, ug := limg_ oo ui" on [0, To], u = uj + us + u3 + u4 as the solution
to (3.1) on [0, Ty] and

sup ||u®* —ul_;,—0 as.
t€[0,Ty]

Now we can extend the solution to the maximal solution such that

sup [luf|—; = oo.
tel0,7)

Indeed, a similar argument as in the proof in Section 3.2 implies that there exists some 77 (C (7p))
(for simplicity we assume 77 < Ty) such that for every t* € [0, Tp]

- S+ztk
sup  [(t = Y g+ (1 — 1) T2 @ @)5] S C(T1. CEL C(To), u(t™)]-2).
te[t*,r*+T]

where i® denotes the solution starting at t* with initial condition z° (#*) = u(¢t*) and we can also
define i1*%. Here the only difference is that K/ satisfies the following equation

dK® = (AK® +ufhdt, K5 (%) =0,
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and by a similar argument as above we obtain that there exists some y > 0 such that for every
p>1

Er:[l(l)pT] ”jTO(PD/ —Yulds ul( )) - JTO(PD/ P-—Suldsv Ml('))”g([o!T];Cfé) rS 8[’)/’
’ r r

which implies that a similar convergence also holds for 7o(PDK?, uf) in this case. Here we
omit superscripts for simplicity.

Therefore for t* = Ty — %(TO)) we obtain the following estimate

sup (RS gy 1 ()] 5)
1€ Ty, To+ 211

_ S+z4k
S osup (=) TENESE O jpgp + @ =TT @D s)

1€l To+2]
< C(Th, CE, C(To), lluoll—2)-
Hence by a similar argument as above we obtain the solution u = limg_, o, u% on [Ty, Tp + %].

Iterating the above arguments we get that there exist the explosion time 7 > 0 and the maximal
solution u on [0, T) such that

sup [lu(t)]|—; = oo
t€l0,7)

In the following we prove u® converges to u before some random time. For L > 0 define 77 :=
inf{z : |u(#)||-; > L} A L. Then 7, increases to 7. Also define 7; :=inf{¢ : |u®(t)| - > L} A L
and pz =inf{r : Cg (t) = L}. Then by the proof in Section 3.2 we obtain for any L, L1, Ly > 0,

sup lu® —ull—, > 0 as.
1€l0,pp ATLATE |

Now we have for any € > 0

P( sup |lu® —ul—;>e€) < P( sup luf —ull—; > ¢€)
tel0,7,] te[O,rL/\pilAriZ]

+ Pt > pp,) + P(tL A pp, > 7).

Here the first term goes to zero by the above result, the second term goes to zero as L goes to
infinity and for Ly > L + €

PLApy, >ti)<P( sip  fuf —ull >,
te[O,rL/\pilAriz]

which goes to zero as ¢ — 0 by the above result. Thus the result follows. O
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Remark 3.13. We used two different approaches and obtained the same results in Theorem 1.1
and Theorem 3.12. As we mentioned in the introduction from a “philosophical” perspective,
the theory of regularity structures and the paracontrolled distribution are inspired by the theory
of controlled rough paths [20,11]. The main difficulty for this problem lies in how to define
multiplication for the unknowns. In the regularity structure theory we used an extension of the
Taylor expansion and split the unknown into elements of different orders of homogeneity (i.e.
regularity structure). Then it suffices to define the multiplications for these elements of different
orders of homogeneity. In the paracontrolled distribution method using Bony’s paraproduct we
split the unknown into good terms and bad terms (7~ (-,-)), where the singularity of the bad
term is the same as the singularity of some functional of the Gaussian field. Then by using the
commutator estimate it suffices to define the multiplication of some functionals of the Gaussian
field.

From the proof we see that the terms required to be renormalised in the two methods are
similar: The terms not including the terms with | - | > O in the theory of the regularity structures
are the same as the associated terms in the paracontrolled distribution, while the terms including
the terms with | - | > 0 (like Z;(Zx (Z(E)Z(E))Z(E))Z(E) and Zx(Z(E))Z(E)) are different
from the terms in the paracontrolled distributions (7o (%3, #1) and mo(P DK, u1)). In the theory of
regularity structures a distribution is divided into the elements of different orders of homogeneity.
For example, the terms of good regularity (e.g. u3) are split into constants, polynomials and some
other terms with positive order (e.g. Z;(Zx (Z(E)Z(E))Z(E))). In the paracontrolled distribution
method using Bony’s paraproduct for these terms it is sufficient to define mo(-, -), which plays a
similar role as the term of positive order in the regularity structure theory.
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Appendix A

A.1. Renormalisation for uju’

In this subsection we focus on u{u$ and prove that u"f’i o u‘;’ — véj in C([0, T1; C~1/279) for
i,j=1,2,3. Now we have the following identity: for ¢t € [0, T],7, j =1,2,3

e,j e,
uy ]”2 (1)

t
) L
(712) o3 > ek RO ) R k) K5 (k) 2 ds P (ke
i1,i2=1keZ3\{0} k123=k |
t

3 2
2m) 73 PN e el7=5) £(gky)?
+( 2) 2 : § : e—|k|2|2(t—s)lk1122X§,t1(kl) T |J;( 2) ds
iLini3=1ky ko eZN\ (0} § 2

P (kyp) P23 (k) P (Kp) ey,
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t

)3 ) i pe
Y Y e et

i1,02,i3=1 k1 ,ky €Z3\{0} {

e KlP(=9) £ (k)2
20k |2

P (ki) P25 (k) BT (ko)er,
=1+ 2+ 1.
To make it more readable we write each term corresponding to the tree notation in Section 2:

vV, A A A
S usT corresponds to " and 1, I2, I? correspond to the associated W) WD WED i
the proof of Theorem 2.17 respectively.

Term in the first chaos: First, we consider Itz. ‘We have
3 . .
P=r -+ =) x/"epn,
i1=1

where

—lka 2 (t—s 2
2= (27T) Z Z X“l(kl)ek / ,|k12‘2(t7s)lkll-22e 2l =9) £ (eky) "

2|ko |2
i1,i2,i3=1 ky,ky €73\ {0} Lel

P”l (klz)Pm3 (kz)PJ” (kp),
and
oemT L £
Cf’“ _ % Z Z 72|k2| (t—s) kl2 f2(|‘°;€ 2|; P”l(k )Pzzn (]Q)Pll% (ko)ds =
i2,i3=1 kyeZ3\{0} )

A straightforward calculation yields that for n > 0 small enough

E[lA (12— 1)1

3 ! 5
SE Z fZe(z—qkl)ekla,i‘l’2‘3(r $)(XEM (k) — X5 (ky))ds }
i1,ip,iz=1 0 ki
q q i1i203 2% =
Z Z dsds Ze(z k@D |t (e — s)a. k, t —3)|
i1,i,i3= ]tl 12 13_10 ki, k/

E|(X$" (k) — Sll(kl))(X 1(k/) - l‘(k’))|

- f(ek)? i 2
<Y e qk1)2|k AT |t—s|"/2|a,§11’2’3(r—s)|ds :
k1 0



R.C. Zhu, X.C. Zhu / J. Differential Equations 259 (2015) 44434508 4501

Here

—lka|*(t—s5) 2

— e ck oot e n

a1 —5) =Y ekl sz R i (1) B2 o) B Uy,
k2

and in the third inequality we used that for n > 0 small enough

E[(REM (k) — XET () (RE (K — X7 6D

< gyt (EIXED () = X7 )2 ENRS 0 = X7 ()2

k 4 s
e |12) (1 — et 2 LR |(,f,|2) (1 e WPy

f(ek1)? _
S TP k1 |*]e — s|"/? 1t — 5172

Since sup,cp lal” exp(—a?) < C for r > 0 implies that for n > € > 0, € small enough
11— 1 .
la k”z”(t <t —s|7! G/ZZkzlkzl—He,ltfollows that

t t

1

/2y, iiis _on/2—1—€/2 (TI e)/2
/u s a0 s)|ds5/|z 51 ‘“Z|k2|3+€5
0 0

which implies that
E[lAq (It2 _ it2)|2] 5 2(](1+27’])t7]—€.
Moreover, by Lemma 3.11 we deduce that for € > 0 small enough

3
ElAq (7 = X" PP

i1=1

flek)?, o, el £ (k)
Z T [ / kol

i1,i2,i3=1 ko |

2
(E—Iklz\z(l—S)kllzzﬁiil (klz)ﬁi2i3 (kz)ﬁji3 (k) — e—lkz\z(l—S)k’22 ﬁiil (kz)ﬁim (kz)ﬁjiz (kz))ds]

L 5
f(8k1)2 a2 /e [ka|=(2 S)f(8k2)2 o uewn
S L@ <kzo =)

< pnmepa+2m, (A.1)
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holds uniformly over ¢ € (0, 1), which is the desired bound for 1,2. Here in the third inequality
we also used sup, g |a|” exp(—az) <C forr > 0.
Similarly, we obtain that

E[|Ag P S =200+,

Term in the third chaos: Now we focus on the bounds for I!. Let b;;ll‘;z (t —s5) = e~ k2PPt=9)

k%f’”l (k12). We obtain the following inequalities:

E|A LM

<2 Z Z > 0@ %) Z m_ 1f|(,fk|2 ffe—(lk1|2+|kz|2)\s—5\

’ !
iniz=lilij=1 k

|b;{11 2 — s)bklzz(t —5)|dsds

t ot

(ek;)? T T S D

) Z Z Yo Y M 1f|k,-|12 //e ko Pls =1 Ik1 =)~ ks (=)
00

i1,ir= 111—1/( k3k

B2 (1 — )by (¢ — 5)|dsds

=J + Iz

Since |ka lz(t < 5 it follows by Lemma 3.10 that for n > 0 small enough

-1
ki ['=n(r—s)1=n/
"

1
J, <Ze(2 k) Z _ 1|k RATSET

ki23=k
SICRTN) PR a—
S) 027%)
p L= k3|2 k123 =20
123=

< ,n24(1+2n)7

and

th
J2<N 0%
! NXk: ( )k;k k1|2 ka2 |2 k3|2 k12| = k3o |17

t" t"
S 0 7k)( )2 )12
Xk: kl;,( k11?2 |2 k3| k12|20 kn;k k11 [k2 |2 |k3)? k32220

< tnzq(1+2n),

which yield the desired estimate for / ,1. By a similar calculation we also obtain that for n > € > 0,
y > 0 small enough,
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RN g €1, ] REEN) £2,1 €1,] 2
E[| A5 ui™ (1) —ul ulM (1) —ud ult (1) + ud ult (1))
2 2 _
S (& + )l — 20, A-2)

which by Gaussian hypercontractivity and Lemma 3.1 implies that

e1,i €1, e1,i_ e1,] e,0 €1,] £2,i €1,] I4
E[”(”zl ull (1) — uzl ull (2) _Mzz ”1| (1) +M22 M1I (t2))||cfl/27n—e—3/p]
e1,0_ €1,] e1,0 €1,] &,0 €1,] &,0 €1,] P
S EN@y" ui™ () —ug ul"™ (1) —ui ul"™ (1) + ui ui! @) =172
PP

S(ef” + &)l —n]PmO2, (A3)

Thus, for every i, j = 1,2,3 we choose p large enough and deduce that there exists v;j €
C ([0, TT; C~1/278/2y such that

uS 0wl > o in LP(Q, P, C([0, T];C~/279/%)).

Here § > 0 depending on 7, €, p can be chosen small enough. For the proof of (A.2) we only
calculate the corresponding term as in (A.1) and the other terms can be obtained similarly. It is
straightforward to calculate that for 0 <# <, <T

3 3
ENAGTy = 30 X" = I+ 3 X eI

=1 =1
3 s 1 e 1alPt1=5) £(pky)?
SE| Y Y X KkDOQ ke, [Z / e

i1,i,i3=1 ki k2 0 2

<6—|kl22(tl —S)kiZZﬁil'l (klz)ﬁi2i3 (kz)ﬁji3 (k) — e—lkz\z(ll—s)kéz piit (kz)ﬁi2i3 (kz)ﬁjl's (kz))ds
1)
B / e—lkzlz(tz—S)f(Skz)Z
ko |2
o) k2]

2
(e|k12|2(12S)k’122ﬁii1 (klz)ﬁizlé (kz)ﬁji3 (k2) — e*|k2|2(lzﬂ')k122 pii (kz)ﬁizis (kz)ﬁjiz (kz))ds]

15}

: e Se.i —k2lP(2=9) £ (k)2
> Z(Xzsfll(kl)—sz’l'(k1))0(27qk1)ekl/e f(ek2)
0

+E

Ik |?

i1,iz,i3=1 ki

2
<e—|k|22(t2—3)k1122ﬁii| (klz)ﬁi2i3 (kz)ﬁji3 (kp) — e_|k2‘2(t2_s)k122 piil (kz)}gizi3 (kz)ﬁji3 (kz))ds

SLI+ L2+ 103+ LY,

where
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| 2 2
—lkal*(t1—=5) (1 — o~ k2l (12—11) 2
E E 0(2 qkl)zl:E /e - d |ek2|22 — )

ky iy,ip= l ko 0

2
(e—|k12|2(11 _S)kizzﬁii‘ (k12) — e—‘k2|2(t1—~“)k£2 piii (kz))ds]

—Ik2l*(12=5) £ (£)r)2 o
=2 Z e qkl)z[Z/e Ikz|2f(€ : (eklZlZ(t”)k?zP”l(kn)

ki i1,ix= 1

2
_ e_|k2|2(f1_5)k£2 piil (ky) — e—\klzlz(tz—s)kllézﬁiil (k12) + e—lkzlz(lz—‘f)k? piit (kz))dsi|

e~ k2P (02=9) £ (gky)? , o
=Z Z 0(2 qkl)z[Z/ |k2|2f 2 <e_k12| (tz—S)kizzpm(ku)

ki iy,ip= l

— e—lkzlz(tz—S)kéz pii (k2)>dsi|

_E

7l (-5 2
&,i1 _ e M1 q e f(eka)
E E (X (k1) (kl))E 02~ kl)%/ e

ki iy,ip=1 ko 0

(e—|k12|2(12—5)k122ﬁi"1 (k1) — e‘“‘?lz(’z_x)k;zﬁiil (k2))ds

It is easy to deduce the desired estimates for LY L;’, Lf as for (A.1) and it is sufficient to con-
sider Ltz: for some 0 < By < 1/2,n > 0 small enough, by Lemma 3.11 and interpolation we
have

N2|k 302 k1)

k2| (1 —5) .
(Z/W['k""A"Z‘“'%ﬂklzlz’w|kz|2">](z1 _ -2
kz

2
< Z B |29(2 k)

—lka|*(11—5)
Q- / W"”'"“ Bty — 1112 (Peia 270 + o 7P0) (11 — 9)~ 7" dis)?
ko

<y — t2|'lﬂo/22q(1+277(1+ﬁo)),

which is the required estimate for L2.
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A.2. Renormalisation for u;’lug’]

In this subsection we deal with u5'u3”,i, j = 1,2,3, and prove that u5" o u5’ — vy in

C([0, T]; C~%). Recall that for i, j =1,2,3
u;’i o u;’j = u;’iug’j — C;’ij,
We have the following identities:
ug’iu;’j =L'+ L2+ 13,
where

3 t ot
t=ent Y% //e—lku\2<r—s>—\k34|2<t—s>

iniz, j1, p=1kiza=k(y |

P REN (k) XE2 (k) X2 (k3) X272 (ky) : disdSe P11 (kpo)ikiy PIT1 (kag)ik

4
L?:Zl}

i=1
3 Lo 2 — Ik 25—
— Q)2 3 //e—\klzlz(r—m—\m—k.|2(z—f)f(gkl)zsc |2'
i1,i2,j1, o=l koa=k,k1 |y | !
L XU (k) RSP (ky) @ dsdSe P (kya)ik PV (ky — k)i (k) — k)
3
Z P15 (ky) P15 (kl)(1i3=i2,i4=i1wJ'3=J'2sj4=j1 + 1i3=i2»i4=i1,j3=j11j4=j2
Js=1

Flis=iyiy=is, js=jo. ja=j1 + Lis=ivis=ia, js=j1, ja=j2)>

and

3 t ot 2 2 _ 2 AYP -
(k)2 (ko) 2e— ki P+ P)ls =51
Li=cm™® > ) o oPa—sti—s) S (K1) (eka) e

4k |2 |ko|?
itz j1.jo=1ki.kay kil7lke|

dsds P (k) P (ko) ik (—ik2)

3
Z (ﬁilja (kl)ﬁjl/a (kl)ﬁiz./lt (kz)ﬁjzjzt (k2) + pitss (kl)ﬁjzjs (Iq)ﬁiz-/"‘ (kz)ﬁjm k2)).
J3.ja=1

Here each I/ corresponds to the term associated with each indicator function respectively. To

make it more readable we write each term corresponding to the tree notation in Section 2. ui” u;”
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\Vaav4 . . <
corresponds to " and Ltl, L?, Itl, L;” correspond to the associated wed W) Wl(g’z),
WED in the proof of Theorem 2.17 respectively.

By an easy computation we obtain that

3
L=0n™ 3 Y flekn? feka P (ki) PO (ki) kpk

i1,i2,j1,2=1ki k2

3
Z ([)iljs (kl)ﬁjlh (kl)ﬁi2j4 (kz)ﬁjzh (k) + piis (kl)ﬁj2/3 (kl)ﬁi2j4 (kz)ﬁjl.M (k2))
J3,ja=1

1 [ 1 — o 2lknalt

t
_/e—2|k12|2(t—s>—<|k.|2+|k22+k12|2)sds}
20k Plk2 (k1 |2 + k2|2 + k2D L 20ki2f?

Let
Ciy =13
2 (t) - -

Terms in the second chaos: Now we come to L?: it is sufficient to consider 1! and the desired
estimates for the other terms can be obtained similarly. For € > 0 small enough we have the
following inequality

tot ot
E|Aq1t1|2 < Z Z 9(2 ‘Ik)2////e—\klzlz(l—g)—lkzt—kl|2(l—5)|k12(k4 — k)|
00

k  koy=k Kk, Sa=k, ki,k

1
L
e 21K PliaPlka 2 a=ho ke=ki)

e—'kﬁzlzﬂ—”-'kﬁ—ki'2<'—s‘> R
+1{k2=k£,k4=ké}d‘gd§do’d6’7

Now in the following we only estimate the term corresponding to the first characteristic function
on the right hand side of the inequality. The second term can be estimated similarly:

Elagl Py S oo qk)2//// k2 2 —5)— kg~ (1 —5)—las [ (1—0) — ks —k3 2 (1—5)

k  koa=k,kyi,k3

1
k112 |k2|? k3 |?|k4l?

dsds|kip (kg — k1)koz (kg — k3)|

<Y Y 0(2~7k)*
~ otk k112 1ka|21k31? [kl |k1 — kal'=€ ks — k3|lk12|'=€|kos]
24=K,K1,K3

0(2-k)% 1 1
<
~ Z Z k2|2 ks 2]: ki — kallk1]? k12| %: k3 — kallk3]? k3]
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0(2-k)2 1 12 1 12
Z Z k2| ks ; k1 —k4|2’2€|k1|2) (%: |k12|2’2€|k1|2)
Q:——J;——W%X}—i——wz
o k3 — kal|?|k3|? T k2312 |k3|?

Z Z 0(2-k)? —
ko 3=€ kg 3—€ s

where in the last two inequalities we used Lemma 3.10.

Terms in the fourth chaos:
Now we consider L!. For € > 0 small enough we have the following calculations:

EaLIPSY Y o qk)z[//// g (—s+1—0)—k3a P (—F-+1—)

k kip3a=k
e—(lkl\ +ka ) s—o|—(1ks[*+1ks|?) |55 |

k112 1k2|? k3| |ka

t t t t
+///fe—lklz\2(1—5)—\kzsIz(l—d)—|k34|2(t—§)—|k14\z(l—t_f)
0000

1
k112 1ka | |Kk3|? kal?

1
<t€ § E: 9(24)2<
o k11 1k2|? k3 |? ka2 k12 |?>~€ |k3al>—€
k kioza=k

dsdsdods|kizksa|?

dsdsdo do |kiokzskiakos |:|

1
+
lk1 |2|k2|2|k3|2|k4|2|k12|1_6/2|k34|1_6/2|k14|1_6/2|k23|1_€/2)

g2 1/2
te|:22qe+< Z 0(27%k) )
Pyl k112 ko |2 k3 |2 ka2 12| >=€ k3a] >~

( Z 0(2~9k)2 )1/2]
k112 1k2|? k3 |? k4 |? k142~ ko3 |>—€

ki23a=k

5 1€ 22qe ,

where we used Lemma 3.10 in the last inequality. By a similar calculation we also get that for
€, n >0, y > 0 small enough

E[|Ag 5 o us™ (1) —u5 o u5 (1) —uf w5 (1) +u5" 0 s ) (1))

2
SET + 6| — 11290,
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which together with Gaussian hypercontractivity, Lemma 3.1 and similar arguments as for (A.3)
implies that there exist v‘l{ e C([0,T]; C%), i,j=1,2,3 such that for p > 1

uS ouf! > v in LP(Q, P, C(10, T1;C7%).
Here § > 0 depending on 1, €, p can be chosen small enough.
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