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Abstract

We analyze a differential equation, describing the maturation of a stem cell population, with a state-
dependent delay, which is implicitly defined via the solution of an ODE. We elaborate smoothness con-
ditions for the model ingredients, in particular vital rates, that guarantee the existence of a local semiflow 
and allow to specify the linear variational equation. The proofs are based on theoretical results of Hartung 
et al. combined with implicit function arguments in infinite dimensions. Moreover we elaborate a criterion 
for global existence for differential equations with state-dependent delay. To prove the result we adapt a 
theorem by Hale and Lunel to the C1-topology and use a result on metric spaces from Diekmann et al.
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0. Introduction

In this paper we analyze a class of differential equations of the form

w′(t) = q((v(t))w(t), (0.1)

v′(t) = γ (v(t − τ(vt )))g(x2, v(t))w(t − τ(vt ))

g(x1, v(t − τ(vt )))
e
∫ τ (vt )

0 (d−D1g)(y(s,vt ),v(t−s))ds

− μv(t). (0.2)

We use the standard notation

xt (s) := x(t + s), s < 0,

if a function x is defined in t + s ∈ R. If t is fixed, then xt is a function describing the history 
of x at time t . Both (0.1) and (0.2) are equations in R and all functions are real-valued. Next, τ is 
a nonlinear functional with domain in a space of functions. The functions q , γ , g and d have real 
arguments, μ is a parameter and γ , g, d , τ and μ take nonnegative values.

The functional τ describes the delay and is allowed to depend exactly on the second compo-
nent vt of the state. The delay is in general only implicitly given: For a function ψ defined on an 
interval [−h, 0], we specify τ = τ(ψ) as the solution of the equation

y(τ,ψ) = x1, (0.3)

where y(·, ψ) is defined via the ordinary differential equation (ODE)

y′(s) = −g(y(s),ψ(−s)), s > 0,

y(0) = x2, (0.4)

and x1, x2 ∈ R, x1 < x2 are given model parameters, see Fig. 1. We interpret s as the time to 
evolve from y(s) to x2, i.e., we define y going backward in time. This facilitates denoting time 
dependence in the second argument of g, given that ψ is defined on [−h, 0]. As a consequence 
y(s, vt ) is the state at time t − s, given that x2 is reached at time t . The notation allows to express 
this state, and hence also the delay τ , as a function of history vt at time t . Equations (0.1)–(0.4)
can be classified as a differential equation with implicitly defined delay with state dependence.

The system describes the maturation process of stem cells. The underlying model is formu-
lated as a partial differential equation (PDE) of transport type in [12]. A special case of the PDE 
is derived via a limiting argument for related multi-compartment models. In our notation, the 
PDE formulation is (0.1) along with

g(x1, v(t))u(t, x1) = γ (v(t))w(t),

∂tu(t, x) + ∂xg(x, v(t))u(t, x) = d(x, v(t))u(x, v(t)), x ∈ (x1, x2),

v′(t) = u(t, x2)g(x2, v(t)) − μv(t).

An integration along the characteristics, similar to the one in Section II 4.1 in [24], yields that 
u(t, x2) is equal to the first summand on the right hand side of (0.2) divided by g(x2, v(t)). Filling 
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Fig. 1. Regulation of the maturation process of stem cells by the mature cells giving rise to state-dependent maturation 
delay: Dashed arrows refer to regulation by mature cells. Continuous arrows refer to mortality (vertical), self-renewal 
(circular, anti-clockwise) and transition to higher maturity (circular, clockwise).

this expression for u(t, x2) in the boundary condition at x2 of the above PDE gives (0.2). Note 
that in transport equations the exponential of the integral over the derivative −D1g is known as 
the dilation factor [24].

In the following we summarize the interpretation of the model ingredients, see also Fig. 1, 
referring to [2,12,13] for specifications and biological background. The dynamics of the whole 
cell population can be described in terms of the dynamics of the concentration of stem cells w
and mature (by which we mean fully mature) cells v. The function q is the stem cell population 
net growth rate describing growth due to division as well as outflow due to maturation or decay. 
Stem cells commit themselves to maturation at a rate γ and the committed cells with density u
that are not yet fully mature we call progenitors. The rates γ and q as well as the maturation 
velocity are regulated by the current size of the mature cell population. This regulation of the 
maturation velocity implies that the time spent for full maturation depends on the history of 
mature cells: τ(vt ) is the time for full maturation of progenitors given survival and that when 
reaching full maturity it is time t and history vt has been experienced. Finally μ is the decay rate 
of mature cells.

We describe the maturity of a cell by a one-dimensional variable x ∈R and assume that matu-
ration occurs at a rate g(x, y) that depends on maturity x and on the current size of the population 
of mature cells y. Stem cells w are then cells at initial maturity x = x1, and fully mature cells 
v are cells of maturity x = x2 > x1. Net growth of the cell population during maturation, that 
includes reproduction and decay of cells, can be described by a per cell net rate d(x, y) that, 
like g, depends on maturity and mature cell population.

In [19], Hartung et al. elaborated conditions that can be satisfied by differential equations 
with state-dependent delay and that guarantee the existence of a local (in time) semiflow for 
such equations. Additionally a linear variational equation is associated with the semiflow. A key 
point is to restrict initial histories to a submanifold of a space of C1-functions. In [11, Propo-
sition VII 2.2] the authors present a criterion for global existence for local semiflows on metric 
spaces. The idea is to show that if the maximal time interval of existence is finite, then an arbitrary 
compact set at some point in time is left for good. In applications it is useful to have a variant 
of this criterion in which the assumption of compact sets is relaxed to closed and bounded sets. 
For non-autonomous functional differential equations with functionals that satisfy smoothness 
conditions in a setting of continuous functions, such a criterion is [17, Theorem 2.3.2].
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In this paper we apply the mentioned results of [19,11]. In this way we establish local and 
global existence for (0.1)–(0.2) and specify the linear variational equation associated to the semi-
flow. As our main result we consider the elaboration of biologically reasonable conditions on the 
rates γ , q , g and d that guarantee these results. As our aim is to preserve generality where pos-
sible, we do this stepwise in a top down approach.

At the top level we adapt the criterion for global existence of [11] to the setting for state 
dependent delay equations of [19] and obtain a new sufficient criterion for global existence, 
similar to the mentioned one in [17], but applicable to differential equations with state-dependent 
delay.

The next step is to elaborate conditions for a class of equations that contain (0.1)–(0.2) that 
allow to use the previously established theory. These are differentiability and Lipschitz condi-
tions in finite and infinite dimensions. Finally we establish properties for the rates that guarantee 
that the differentiability and Lipschitz conditions hold. Part of this amounts to defining, some-
times implicitly, nonlinear operators and showing their differentiability with the implicit function 
theorem.

In Section 1 we present existing results from the literature and our main results (Theorems 1.7
and 1.13). Unless otherwise stated all results of Section 1 are proved in Section 2. In both sections 
each subsection refers to one step of the top down approach. Section 2.1 contains the proofs of 
Section 1.1, etc. Assumptions made in the running text are meant to hold until the end of the 
subsection except for in Theorems, where (to have them more self-contained) only the explicitly 
stated assumptions are assumed to hold. Section 3 contains a discussion of the results.

1. Existing results and main results of the paper

1.1. Differential equations with state dependent delay

Conditions for existence and uniqueness of a noncontinuable solution for differential equa-
tions with state dependent delay are given in [19]. We start by summarizing these results. For 
n ∈ N we will use the Banach spaces

(C([a, b],Rn),‖ · ‖), ‖φ‖ := max
θ∈[a,b] |φ(θ)|,

(C1([a, b],Rn),‖ · ‖1), ‖φ‖1 := ‖φ‖ + ‖φ′‖.

We define solutions for delay differential equations (DDE) with N components. Let h ∈ (0, ∞)

and let U ⊂ C1([−h, 0], RN) be open, F : U −→ R
N .

Definition 1.1. For any φ ∈ U , a solution on [−h, t∗), for some t∗ ∈ (0, ∞], of the initial value 
problem (IVP)

x0 = φ, x′(t) = F(xt ), t > 0 (1.1)

is a continuously differentiable function x : [−h, t∗) −→ R
N , which satisfies xt ∈ U for all t ∈

(0, t∗) as well as the IVP (1.1).
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Solutions on closed intervals [−h, t∗], t∗ > 0 are defined analogously. Suppose that F is at 
least continuous (the assumption will be sharpened below). Then a necessary condition for the 
solvability of IVP is that initial data are restricted to the set

X = X(F) := {φ ∈ U : φ′(0) = F(φ)}. (1.2)

We assume that F is such that X = X(F) is nonempty. The following smoothness condition is 
appropriate and will be used for various model ingredients: Let O ⊂ C1([−h, 0], Rn) be open, 
f : O −→ R

n. We say that f fulfills (S) if

(S1) f is continuously differentiable,
(S2) each derivative Df (φ), φ ∈ O extends to a linear map Def (φ) : C([−h, 0], RN) −→ R

n

and
(S3) the following map is continuous

O × C([−h,0],Rn) −→ R
n; (φ,χ) 	−→ (Def )(φ)χ.

For the remainder of this subsection we suppose that F satisfies (S) (with n = N and O = U ).
In [19, Theorem 3.2.1] the existence of solutions of differential equations with state-dependent 

delays is discussed. These solutions induce a nonlinear semiflow as well as smoothness proper-
ties of the latter under the assumptions on F that we have made. The theorem also relates the 
nonlinear semiflow to a linear variational equation defined by the derivative of the functional F
that defines the DDE. In the following theorem we rephrase these results. [19, Theorem 3.2.1]
also contains a result on differentiability of the semiflow with respect to the time argument, which 
we do not use here. First note that the tangent space of X in an element φ can be computed as

TφX = {χ ∈ C1([−h,0],RN) : χ ′(0) = DF(φ)χ}.

Theorem 1.2 (Local semiflow). The set X is a continuously differentiable submanifold of U with 
codimension N . Moreover, for each φ ∈ X there exists some tφ > 0 and a unique noncontinuable 
solution xφ : [−h, tφ) −→ R

N of the IVP. All segments xφ
t , t ∈ [0, tφ), belong to X and for

	 := {(t, φ) : t ∈ [0, tφ), φ ∈ X}
the map

S : 	 −→ X; S(t, φ) := x
φ
t

defines a continuous semiflow. Each map

S(t, ·) : {φ ∈ X (t,φ) ∈ 	} −→ X

is continuously differentiable and for all (t, φ) ∈ 	 and χ ∈ TφX we have

D2S(t, φ) = v
φ,χ
t

with vφ,χ
t : [−h, tφ) −→ R

N the solution of the linear IVP

v′(t) = DF(S(t, φ))vt , v0 = χ. (1.3)
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The set X is called the solution manifold. For φ ∈ X, we denote by Iφ := [0, tφ) maximal 
intervals of existence of xφ

t .
[11, Proposition VII 2.2 (iii)] states a property of semiflows on metric spaces in a context in 

which completeness of the metric space is assumed and we would like to use this property. See 
also the earlier [3, Section II 10] on flows. We do not know whether X is complete (we know that 
it is closed in the relative topology of the open set U ) but for [11, Proposition VII 2.2 (iii)] com-
pleteness is not necessary and the proof needs not to be changed if one drops the completeness 
assumption. We rephrase the adapted result without proof as

Lemma 1.3. Let E be a metric space and 
 be a local semiflow on E. Let φ ∈ E, [0, tφ) be 
the maximal interval and assume that tφ < ∞. Then, for any W ⊂ E compact there exists some 
tW ∈ (0, tφ), such that 
(t, φ) /∈ W for all t ∈ [tW , tφ).

In [17] non-autonomous functional differential equations with functionals that are defined 
on open subsets of R × C([−h, 0], RN), where, in the second component, open refers to the 
C-topology, are analyzed. [17, Theorem 2.3.2] is a variant of the previous result adapted to DDE. 
Complete continuity, i.e., continuity and compactness of the closure of the image of a bounded 
set, again in the C-topology, of the functional inducing the DDE is assumed. The assumption of 
compact sets is relaxed to closed and bounded sets. Also in our setting we can elaborate such a 
result if we add more smoothness assumptions:

Definition 1.4. The functional f : O −→ R
n is called (sLb) if for any bounded set B ⊂ O there 

exists some LB ≥ 0, such that

|f (φ1) − f (φ2)| ≤ LB‖φ1 − φ2‖, for all φ1, φ2 ∈ B.

Remark 1.5. In (sLb) L refers to Lipschitz, b to bounded and s to strong, the latter because 
on the right hand side we require the C-norm and thus the property is stronger than usual (C1-) 
Lipschitz (on bounded sets). The property (sLb) is stronger than the corresponding local property 
that would be implied by (S2)–(S3) and that is used in [27] and stronger than the property of 
being almost locally Lipschitz in [23]. In [19] (sLb) is used to show compactness of the maps 
t −→ S(t, ·) for t ≥ h.

We will use

Lemma 1.6. If f1, f2 :O −→ R are (sLb), then so are f1 + f2 and f1 · f2.

The first statement is obvious. To see the second statement, note that being (sLb) implies 
mapping bounded sets into bounded sets. We omit details of the proof. Let us denote by

Tφ := {xφ
t : t ∈ Iφ} ⊂ C1([−h,0],RN)

the orbit (or trace of the trajectory) of φ ∈ X. We denote by A the closure of a set A. Our result 
for general differential equations with state dependent delay can then be formulated as

Theorem 1.7. Suppose that F satisfies (S), (sLb) and that X = X(F) �= ∅. Let φ ∈ X be such 
that T φ ⊂ U . Then
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(a) if tφ < ∞, then for all closed and bounded L ⊂ U there exists some tL < tφ , such that xt /∈ L

for all t ∈ [tL, tφ),
(b) if Tφ is bounded, then tφ = ∞.

For (a) see Section 2.1. (b) is then standard: If tφ < ∞ apply (a) to L := T φ , which leads to 
the contradiction that xtL /∈ T φ for some tL < tφ .

1.2. A DDE describing stem cell maturation

In the following, we make a specification step for F and thus for the DDE (1.1) in the direction 
of the population equation of the stem cell model (0.1)–(0.2). We assume that F is R2-valued, 
i.e., that N = 2 such that the DDE has two components and that there is a delay τ that is allowed 
to depend on exactly the second of the two components. To specify U we introduce I as the 
range of the delay and assume that I ⊂ R, I �= ∅ is open. We agree that if the image space of a 
function space is R (rather than Rn, for n > 1) we drop it in the notation, i.e., we define

C[a, b] := C([a, b],R), C1[a, b] := C1([a, b],R).

We introduce an open set M and specify U via

M := C1([−h,0], I ), U := C1[−h,0] × M.

Finally we denote the nonnegative cone of Rn by Rn+ (and similarly for R):

R
n+ := {x ∈R

n : xi ≥ 0, i = 1, . . . , n}.

Then we specify F via model ingredients

β : I −→ R+, q : I −→ R, τ : M −→ [0, h], G : M −→R+, μ ≥ 0. (1.4)

Note that since τ(M) ⊂ [0, h], for ϕ ∈ C1[−h, 0] and ψ ∈ M the evaluation ϕ(−τ(ψ)) is well-
defined and ψ(−τ(ψ)) ∈ I holds. Then we define

F : U → R
2;

F(ϕ,ψ) :=
(

q(ψ(0))ϕ(0)

β(ψ(−τ(ψ)))ϕ(−τ(ψ))G(ψ) − μψ(0)

)
. (1.5)

If we set x = (w, v) the equation x′(t) = F(xt ) yields (0.1)–(0.2) if we specify β and G ap-
propriately, which will be done in Section 1.3. We first guarantee that X �= ∅. We assume that 
0 ∈ I . The assumption is natural, since, it allows trivial equilibria to be in the domain of F : as 
F(0) = 0, we have that 0 ∈ X, hence X �= ∅. Similarly, if the DDE defined by F has a nontrivial 
equilibrium, the corresponding constant function also lies in X.

To guarantee global existence we would like to guarantee that the closure of the orbit lies in 
the domain U = C1[−h, 0] × M . One way of doing this is to assume (in (b) of the following 
result) that I = (R−, ∞), for some R− < 0.
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Theorem 1.8. (a) Suppose that I ⊂ R open, 0 ∈ I and M = C1([−h, 0], I ). Let β , q , τ , G and 
μ be as in (1.4), suppose that β and q are continuously differentiable and τ and G satisfy (S). 
Let F be as in (1.5). Then F satisfies (S). For (ϕ, ψ) ∈ U and χ, ξ ∈ C1[−h, 0], one has

DF1(ϕ,ψ)(χ, ξ) = q(ψ(0))χ(0) + ϕ(0)q ′(ψ(0))ξ(0),

DF2(ϕ,ψ)(χ, ξ) = G(ψ)β(ψ(−τ(ψ)))[χ(−τ(ψ)) − ϕ′(−τ(ψ))Dτ(ψ)ξ ]
+ ϕ(−τ(ψ))G(ψ)β ′(ψ(−τ(ψ)))

· [ξ(−τ(ψ)) − ψ ′(−τ(ψ))Dτ(ψ)ξ ]
+ β(ψ(−τ(ψ)))ϕ(−τ(ψ))DG(ψ)ξ − μξ(0).

One obtains the extension DeF if one replaces Dτ and DG by the respective extensions. For the 
DDE induced by F there exists a local semiflow S on 	 in the sense of Theorem 1.2. Moreover 
for (t, φ) ∈ 	 and φ ∈ C1([−h, 0], R2+) one has S(t, φ) ∈ C1([−h, 0], R2+).

(b) Suppose that, additionally to the assumptions of (a), τ and G are (sLb), G is bounded and β
and q are Lipschitz on bounded sets and bounded. Then, if φ ∈ X and T φ ⊂ U , one has tφ = ∞. 
If I = (R−, ∞), for some R− < 0, then T φ ⊂ U and thus tφ = ∞ for any φ ∈ C1([−h, 0], R2+).

We will sketch the proof of (a) and omit the details. A similar result was shown in [2] for the 
case where I is a bounded open interval. Part (b) will be shown in Section 2.2. Also for later use 
we define the evaluation operator

ev : C1[a, b] × [a, b] → R; (ψ, s) 	→ ψ(s)

and recall that ev is C1 with

D1ev(φ, s)χ = ev(χ, s), D2ev(φ, s)1 = φ′(s),

see also [19, p. 481]. To show that under the conditions stated in Theorem 1.8 the functional F
fulfills (S1), one can set [a, b] = [−h, 0], use the decomposition

ev ◦ (id,−τ)(ϕ,ψ) = ϕ(−τ(ψ))

and show continuous differentiability of F with sum, product and chain rules. To show (S2), 
extend the definition of ev to C[−h, 0] × [−h, 0] and to show (S3) use continuity of this ex-
tension. Then existence of a semiflow in (a) follows from Theorem 1.2. If we denote for some 
φ = (ϕ, ψ) ∈ X the solution by (w, v) the variation of constants formula yields

w(t) = ϕ(0)e
∫ t

0 q(v(s))ds, (1.6)

v(t) = e−μt [ψ(0) +
t∫

0

eμsβ(v(s − τ(vs)))G(vs)w(s − τ(vs))ds]. (1.7)

With this formula it is easy to see that the semiflow maps nonnegative times and initial functions 
to nonnegative functions.
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1.3. Specification of τ , G and β

We denote open balls by B(x0, b) := {x ∈ R : |x − x0| < b} for some x0 ∈ R and some b > 0. 
To specify the delay τ , we introduce the progenitor maturation rate g as a new modeling ingredi-
ent. We also become slightly more specific about the range I of the delay, introduced in the previ-
ous subsection. We assume that g satisfies property (G): There exist numbers x1, x2, b, K, ε ∈R

and open intervals I, J with

(G1) B(x2, b) ⊂ J and g : J × I −→ R is C1,
(G2) D1g(x, y) is bounded on B(x2, b) × I ,
(G3) 0 < ε ≤ g(x, y) ≤ K on B(x2, b) × I and x2 − x1 ∈ (0, b

K
ε).

Note that here, other than for the evaluation operator, D1g(x, y) denotes a real number and not a 
linear map. Also below we will use symbols like D1 with both meanings. Condition (G3) implies 
that x1 ∈ B(x2, b). To well-define τ via (0.3)–(0.4) and to show that ψ 	→ τ(ψ) is smooth for 
appropriate ψ , we first establish existence and smoothness of y via (0.4). To save brackets, we 
will write Ax(t) instead of (Ax)(t) to denote evaluated functions in the image of an operator. 
In (c), however, the C-topology in the range space will turn out to be sufficient. See also the 
Discussion for references to related results in the literature. We now define

h := b

K
, M := C1([−h,0], I ). (1.8)

Proposition 1.9. (a) For any ψ ∈ M there exists a unique solution y = y(·, ψ) ∈ C1[0, h] of (0.4)
with y([0, h], ψ) ⊂ B(x2, b) and a unique τ = τ(ψ) ∈ (0, h), such that y(τ, ψ) = x1.

(b) The map Y : M −→ C1[0, h]; Y(ψ)(t) := y(t, ψ) is C1 with DY(ψ) : C1[−h, 0] −→
C1[0, h]

DY(ψ)χ(t) = −
t∫

0

e− ∫ t
s D1g(Y (ψ)(σ ),ψ(−σ))dσD2g(Y (ψ)(s),ψ(−s))χ(−s)ds. (1.9)

(c) The right hand side of (1.9) defines an extension DeY(ψ) : C[−h, 0] → C1[0, h] and the 
map

M × C[−h,0] −→ C[0, h]
(ψ,χ) 	−→ DeY(ψ)χ

is continuous.

Existence and uniqueness of y(·, ψ) on [0, h] in (a) is straightforward if we first fix ψ and 
then apply the Picard–Lindelöf theorem (see e.g. Theorem II.1.1 in [18]) to a non-autonomous 
ODE defined by a function

fψ : [0, h] × B(x2, b) −→ R; fψ(s, y) := −g(y,ψ(−s)).

The remaining statements of (a) can be shown by integrating the ODE and using (G3). We omit 
further details of the proof of (a).



JID:YJDEQ AID:8207 /FLA [m1+; v1.223; Prn:6/01/2016; 15:42] P.10 (1-25)

10 P. Getto, M. Waurick / J. Differential Equations ••• (••••) •••–•••
In (b), the reason to choose the C1-topology in the range space of Y will become clear in the 
context of Lemma 1.10. To prove (b) and for other use, we define an operator on an open domain 
via

C1([0, h], J ) × M −→ C1[0, h]

(z,ψ) 	→ [t 	→ G(z,ψ)(t) :=
t∫

0

k(z(s),ψ(−s))ds], (1.10)

where k : J ×I →R is an arbitrary C1-function, and I , J , h and M are as assumed. The function 
k will represent several model rates. To show (b), we set k = g. Then we consider for arbitrary 
ψ ∈ M the equation

z + G(z,ψ) = x2, (1.11)

with x2 denoting the constant function, in C1[0, h] and apply (in Section 2.3) the implicit func-
tion theorem to this equation. In (c) the extensibility is obvious. For the stated continuity property 
of the extension the C-topology in the range space will turn out to be sufficient. The next result 
will be used to show smoothness of τ (recall the convention on brackets).

Lemma 1.10. The map [0, h] × M → R; (t, ψ) 	→ y(t, ψ) is C1. In particular D2y(t, ψ)χ =
DY(ψ)χ(t).

The proof is a straightforward application of the chain rule to the composition

[0, h] × M → [0, h] × C1[0, h] ev−→ R

(t,ψ) 	→ (t, Y (ψ)) 	→ Y(ψ)(t).

Note that the C-topology in the range space of Y would not do since ev is not partially differen-
tiable with respect to the second argument on [0, h] × C[0, h].

Now note that

D1y(s,ψ)|s=τ(ψ) = −g(x1,ψ(−τ(ψ)) �= 0.

The implicit function theorem applied to (0.3) yields together with Lemma 1.10 directly the 
continuous differentiability statement in

Lemma 1.11. The functional M →R; ψ 	→ τ(ψ) is C1 with

Dτ(ψ)χ = − DY(ψ)χ(τ(ψ))

g(x1,ψ(−τ(ψ)))
.

For ψ ∈ M the right hand side with DY replaced by DeY defines an extension Deτ(ψ) :
C[−h, 0] → R and

M × C[−h,0] → R; (ψ,χ) 	→ Deτ(ψ)χ

is continuous. In particular, τ fulfills (S).
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The extension is clearly well-defined. The continuity statement follows directly from continu-
ity of (ψ, χ) 	→ DeY(ψ)χ , τ , g and ev (used twice, recall the discussion below Theorem 1.8). 
We omit details of the proof. Next, we introduce the progenitor net production rate d . We assume 
that the functions d, D1g : J × I −→ R are C1 and specify

G : M → R+; G(ψ) := g(x2,ψ(0))e
∫ τ (ψ)

0 (d−D1g)(Y (ψ)(s),ψ(−s))ds . (1.12)

For the proof of continuous differentiability we will use that

G(ψ) = g(x2,ψ(0))eG(ψ,Y (ψ))(τ(ψ)) (1.13)

if we set k = d − D1g in the definition of G. We then give an expression for the derivative in 
the notation of (1.12) (rather than in the notation of (1.13)). This makes the existence of the 
extension obvious and will allow to show continuity of the extension with the tools established 
for the proof of Proposition 1.9 (c).

Proposition 1.12. The functional G : M →R is C1 with

DG(ψ)χ = G(ψ){
τ(ψ)∫
0

[(D1d − D2
1g)(Y (ψ)(s),ψ(−s))DY(ψ)χ(s)

+ (D2d − D2D1g)(Y (ψ)(s),ψ(−s))χ(−s)]ds

+ (d − D1g)(x1,ψ(−τ(ψ)))Dτ(ψ)χ + D2g(x2,ψ(0))χ(0)}. (1.14)

For ψ ∈ M the right hand side with DY and Dτ replaced by DeY and Deτ respectively de-
fines an extension DeG(ψ) : C[−h, 0] → R and M × C[−h, 0] → R; (ψ, χ) 	→ DeG(ψ)χ is 
continuous. In particular, G fulfills (S).

The final specification of modeling ingredients used in (1.5) is

β(y) := γ (y)

g(x1, y)
, (1.15)

where we introduce the progenitor inflow rate γ : I −→ R+ to describe the outflow of those stem 
cells that commit themselves to maturation. With the specifications of β , τ and G made in this 
subsection, the functional F that is defined in (1.5) and that defines the DDE (1.1) becomes

F(ϕ,ψ) =
(

q(ψ(0))ϕ(0)

γ (ψ(−τ(ψ)))ϕ(−τ(ψ))
g(x1,ψ(−τ(ψ)))

e
∫ τ (ψ)

0 (d−D1g)(Y (ψ)(s),ψ(−s))ds − μψ(0)

)
(1.16)

with τ and Y defined in Proposition 1.9. The following theorem is the main result of this paper. 
Parts (a) and (b) are shown as Lemma 1.11 and Proposition 1.12 respectively. Part (c) follows by 
Theorem 1.8 (a) – note that under the assumptions β as defined in (1.15) is C1. We omit further 
details of parts (a)–(c).



JID:YJDEQ AID:8207 /FLA [m1+; v1.223; Prn:6/01/2016; 15:42] P.12 (1-25)

12 P. Getto, M. Waurick / J. Differential Equations ••• (••••) •••–•••
Theorem 1.13. Suppose that g satisfies (G). Define h := b
K

and M := C1([−h, 0], I ). Then the 
following statements hold:

(a) The map τ : M −→R satisfies (S).
(b) Let additionally d, D1g : J × I −→R be C1, then also G : M −→ R satisfies (S).
(c) Suppose that moreover 0 ∈ I , γ , q and μ are continuously differentiable and F is as 

in (1.16). Then F satisfies (S) with DF given as in Theorem 1.8 and Dτ , DG and DY

as in Lemma 1.11, Proposition 1.12 and Proposition 1.9 respectively. Moreover F induces 
a local semiflow S on 	 in the sense of Theorem 1.2 and DF and S specify the lin-
ear variational equation (1.3). Finally, for (t, φ) ∈ 	 and φ ∈ C1([−h, 0], R2+) one has 
S(t, φ) ∈ C1([−h, 0], R2+).

(d) Suppose that additionally

(i)

sup
(x,y)∈B(x2,b)×I

|D1g(x, y)| < K

b
(1.17)

(ii) d is bounded on B(x2, b) × I

(iii) D2g, Did and DiD1g, i = 1, 2 are bounded on B(x2, b) × A, whenever A ⊂ I is 
bounded and that

(iv) γ and q are Lipschitz on bounded sets and bounded.
Then, if φ ∈ X and T φ ⊂ U one has tφ = ∞. If I = (R−, ∞), for some R− < 0, then T φ ⊂ U

and thus tφ = ∞ for any φ ∈ C1([−h, 0], R2+).

2. Proofs of Section 1

2.1. Differential equations with state dependent delay – proofs of Section 1.1

We will apply the existing result that in case of a finite existence time compact sets are 
left for good (Lemma 1.3). A further useful tool is the following sufficient criterion for rela-
tive compactness in the C1-topology that is a straightforward corollary (which we state without 
proof) of the Arzela–Ascoli theorem. For A ⊂ C1([a, b], Rn), we denote by A′ := {f ′ : f ∈ A} ⊂
C([a, b], Rn) the set of derivatives of A.

Lemma 2.1. If A ⊂ C1([a, b], Rn) is bounded and A and A′ are equicontinuous, then A is 
relatively compact.

Proof of Theorem 1.7 (a). Let φ ∈ X, set x = xφ and let L ⊂ U be closed and bounded. 
Choose r , such that ψ /∈ L, whenever ‖ψ‖ ≥ r or ‖ψ ′‖ ≥ r . We first consider the case that x
is unbounded. By its continuity x is bounded on [−h, tφ − h]. From the unboundedness of x it 
then follows that there exists some tN ∈ [tφ − h, tφ), such that |x(tN)| ≥ r . Let t ∈ [tN , tφ). Then 
‖xt‖ ≥ r and thus xt /∈ L. Hence, the conclusion of the theorem holds. Now assume that x is 
bounded on [−h, tφ). Choose M1 > 0, such that ‖xt‖ ≤ M1 for all t ∈ Iφ . With similar argu-
ments as above we can show that if x′ is unbounded, the conclusion of the theorem holds. Hence, 
there is some M2 > 0, such that ‖x′

t‖ ≤ M2 for all t ∈ Iφ and thus Tφ is bounded. Moreover, for 
t1 ≥ t2 ≥ 0 one has
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|x(t1) − x(t2)| ≤
t1∫

t2

|x′(t)|dt ≤ M2|t1 − t2|

and thus x is uniformly continuous on Iφ and thus also on [−h, tφ). It follows that Tφ is equicon-
tinuous. As F is (sLb) and Tφ is bounded there exists some LTφ ≥ 0, such that for t ≥ s > 0

|F(xt ) − F(xs)| ≤ LTφ‖xt − xs‖.

Then, as x′ is bounded,

|F(xt ) − F(xs)| ≤ LTφ sup
θ∈[−h,0]

|x(t + θ) − x(s + θ)|

= LTφ sup
θ∈[−h,0]

t+θ∫
s+θ

|x′(σ )|dσ ≤ LTφκ|t − s|

for some constant κ . Thus x′ is uniformly continuous on Iφ and thus also on [−h, tφ). Hence, in 
the notation introduced above Lemma 2.1, T ′

φ is equicontinuous. We have shown that Tφ satisfies 

the assumptions of Lemma 2.1. Thus, T φ is compact. The assumption T φ ⊂ U and the continuity 
of F imply that T φ ⊂ X. Then Lemma 1.3 implies the existence of some tT φ

, such that xt /∈ T φ

for all t ∈ [tT φ
, tφ), which is a contradiction. �

2.2. A DDE describing stem cell maturation – proofs of Section 1.2

We would like to analyze global existence via Theorem 1.7. The boundedness and Lipschitz 
properties can be shown in a standard way if we suppose that the new model ingredients satisfy 
corresponding properties.

Lemma 2.2. Let τ , G, β and q be as defined in (1.4). Suppose that τ and G are (sLb) and β and 
q are Lipschitz on bounded sets, then F defined in (1.5) is (sLb).

Proof. Let B ⊂ U be bounded. First note that {ψ(0) : (ϕ, ψ) ∈ B} is a bounded subset of R. 
As q is Lipschitz on bounded sets, it follows that F1 is (sLb). Next, note that {ϕ(−τ(ψ)) :
(ϕ, ψ) ∈ B} and {ψ(−τ(ψ)) : (ϕ, ψ) ∈ B} are bounded subsets of R. Then, one can show with 
the mean value theorem, using that ϕ and ψ are C1 and that τ is (sLb), that the maps from U
to R given by

(ϕ,ψ) 	−→ ϕ(−τ(ψ)) and (ϕ,ψ) 	−→ ψ(−τ(ψ))

are (sLb). Finally, applying Lemma 1.6, it follows that F2 is (sLb). �
Now suppose that the assumptions of Theorem 1.8 (a) hold. We have discussed that this im-

plies the statements in Theorem 1.8 (a), in particular, that for every element φ = (ϕ, ψ) in the 
solution manifold X there exists a noncontinuable solution and thus an orbit Tφ on some inter-
val [0, tφ).
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Lemma 2.3. Suppose that β , G and q are bounded. Then for any φ ∈ X if tφ < ∞ the orbit Tφ

is bounded.

Proof. Let φ ∈ X and denote by x = xφ = (w, v) the noncontinuable solution. Then clearly 
{x(t) : t ∈ Iφ} is bounded by (1.6)–(1.7). Next, we can use the DDE induced by (1.5) and the 
boundedness of x to show that also x′ is bounded on [0, tφ). As φ ∈ U ⊂ C1, we also have 
boundedness of x and x′ on [−h, 0]. It follows that Tφ is bounded. �
Proof of Theorem 1.8 (b). Global existence follows by Theorem 1.7 and the two previous re-
sults if T φ ⊂ U . Now suppose that I = (R−, ∞) for some R− < 0 and that φ ∈ C1([−h, 0], R2+). 
Then, as C1([−h, 0], R2+) is C1-closed and as, by our nonnegativity results we have Tφ ⊂
C1([−h, 0], R2+) ⊂ U , we have T φ ⊂ U . Hence again tφ = ∞. �
2.3. Specification of τ , G and β – proofs of Section 1.3

To show continuous differentiability of involved integral operators we first establish a techni-
cal result.

Lemma 2.4. Let E be an open interval, a, b, c ∈ R, a < b, 0 ≤ c ≤ 1. For any ψ ∈ ME :=
C1([a, b], E) there exists some κ = κ(ψ), such that for all δ ∈ (0, κ]

Aδ := {ψ(s) + θ(ψ(s) − ψ(s)) : s ∈ [a, b], θ ∈ [c,1],ψ ∈ ME,‖ψ − ψ‖1 ≤ δ}
is a compact subset of E.

Proof. Let ψ ∈ ME . By the openness of E and the compactness of [a, b] with

κ(ψ) :=
{

1
2 dist(ψ([a, b]),R\E), R\E �= ∅,

1
2 , R\E = ∅,

(2.1)

where dist denotes the distance function, we get κ(ψ) ∈ (0, ∞) and Aδ ⊂ E for all δ ∈ (0, κ(ψ)]. 
Now fix some δ ∈ (0, κ(ψ)] and define

� : [−δ, δ] × [c,1] × [a, b] −→R; �(α, θ, s) := ψ(s) + θα.

As � is continuous its range is compact and the statement follows because the range 
equals Aδ . �

We use the previous result to show convergence properties that will in turn help to show 
differentiability and continuity properties of several operators. In the following we denote by l
an arbitrary function for which we show properties that will be applied to functions of the model 
and their derivatives.

Lemma 2.5. Suppose that I1, I2 are intervals, I1 is open and that l : I1 × I2 −→ R is partially 
differentiable in the first argument. Fix ϕ ∈ C([a, b], I2) and y ∈ C1([a, b], I1). Then for y ∈
C1([a, b], I1)
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sup
s∈[a,b]

|l(y(s), ϕ(s)) − l(y(s), ϕ(s)))

− D1l(y(s), ϕ(s)))(y(s) − y(s))|

is o(‖y − y‖1) as ‖y − y‖1 → 0.

Proof. (a) By the mean value theorem for s ∈ [a, b] there exists some θs ∈ [0, 1], such that

|l(y(s), ϕ(s)) − l(y(s), ϕ(s)) − D1l(y(s), ϕ(s))(y(s) − y(s))|
≤ ‖y − y‖1|D1l(y(s) + θs(y(s) − y(s)), ϕ(s)) − D1l(y(s), ϕ(s))|.

Now we can use Lemma 2.4, with ψ := y, and uniform continuity of D1l on the compact set 
Aδ × ϕ([a, b]) for some δ > 0 to deduce the statement. �

The next lemma follows from uniform continuity of l on a set that by Lemma 2.4 is compact. 
We omit a formal proof.

Lemma 2.6. Let I1, I2 be open intervals and let l : I1 × I2 −→ R be continuous, then the follow-
ing map is continuous

C1([a, b], I1) × C1([a, b], I2) −→ C[a, b]
(y,ϕ) 	−→ [t 	−→ l(y(t), ϕ(t))]. (2.2)

The result can also be formulated as continuity of a Nemytskii operator. If a Nemytskii opera-
tor is generated by a function that is continuous on R, its continuity is shown, e.g., as Theorem 9.1 
in [4].

Lemma 2.7. Let I1, I2 be open intervals, l : I1 × I2 −→ R be C1. Then the operator

H : C1([a, b], I1) × C1([a, b], I2) −→ C1[a, b]

H(y,ϕ)(t) :=
t∫

a

l(y(s), ϕ(s))ds

is C1 with, for i = 1, 2, DiH(ψ, z) : C1([a, b], Ii) −→ C1[a, b];

DiH(y,ϕ)χ(t) :=
t∫

a

Dil(y(s), ϕ(s))χ(s)ds. (2.3)

Proof. For reasons of symmetry it is sufficient to show that H is partially differentiable with re-
spect to the first argument and that (y, ϕ) 	→ D1H(y, ϕ) is continuous. First, we define a bounded 
linear operator A by setting A(y, ϕ)χ(t) equal to the right hand side of (2.3). Then
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|[H(y,ϕ) − H(y,ϕ) − A(y,ϕ)(y − y)](t)|

≤
b∫

a

|l(y(s), ϕ(s)) − l(y(s), ϕ(s)) − D1l(y(s), ϕ(s))(y − y)(s)|ds.

By Lemma 2.5 the integrand is o(‖y − y‖1) as ‖y − y‖1 → 0, uniformly in s and thus also

‖H(y,ϕ) − H(y,ϕ) − A(y,ϕ)(y − y)‖
is o(‖y − y‖1) as ‖y − y‖1 → 0. Next,

|[H(y,ϕ) − H(y,ϕ) − A(y,ϕ)(y − y)]′(t)|
= |l(y(t), ϕ(t)) − l(y(t), ϕ(t)) − D1l(y(t), ϕ(t))(y − y)(t)|.

Again, this is o(‖y − y‖1) as ‖y − y‖1 → 0 by Lemma 2.5. It follows that H is partially differ-
entiable in the first argument and D1H is as claimed. Next,

|[D1H(y,ϕ) − D1H(y,ϕ)]χ(t)|

≤ ‖χ‖1

b∫
a

|D1l(y(s), ϕ(s)) − D1l(y(s), ϕ(s))|ds.

The integral tends to zero by Lemma 2.6 if ‖y − y‖1 and ‖ϕ − ϕ‖1 tend to zero. Moreover

|[(D1H(y,ϕ) − D1H(y,ϕ))χ]′(t)|
≤ ‖χ‖1|D1l(y(t), ϕ(t)) − D1l(y(t), ϕ(t))|.

The last factor tends to zero in the desired limit by previously used arguments. �
We again assume that g satisfies (G), h := b/K and M := C1([−h, 0], I ) and G is as in (1.10)

with k an arbitrary C1-function (below alternatively k = g or k = d − D1g). The proof of the 
following result is a straightforward conclusion of the previous result.

Corollary 2.8. The operator G is C1. The derivative DG = (D1G, D2G) for (z, ψ) ∈
C1([0, h], J ) × M is

D1G(z,ψ) : C1[0, h] −→ C1[0, h],

D1G(z,ψ)χ(t) =
t∫

0

D1k(z(s),ψ(−s))χ(s)ds,

D2G(z,ψ) : C1[−h,0] −→ C1[0, h],

D2G(z,ψ)χ(t) =
t∫
D2k(z(s),ψ(−s))χ(−s)ds.
0
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Proof. In Lemma 2.7 set a := 0, b := h, I1 := J , I2 := I , l := k, then C1([a, b], I1) =
C1([0, h], J ) and ψ ∈ M if and only if ψ− ∈ C1([a, b], I ). The proof of continuous differen-
tiability becomes trivial if one uses that G(z, ψ) = H(z, ψ−), defining ψ−(s) := ψ(−s). �

Now we are ready for the

Proof of Proposition 1.9 (b). First, in the definition of G set k = g. The resulting operator is 
continuously differentiable by Corollary 2.8. Then it can be shown in a straightforward way that 
∂z(z − G(z, ψ)) = id + D1G(z, ψ) has the bounded linear inverse

(id + D1G(z,ψ))−1 : C1[0, h] −→ C1[0, h]
(id + D1G(z,ψ))−1x(t)

= x(0)e− ∫ t
0 D1g(z(s),ψ(−s))ds +

t∫
0

e− ∫ t
s D1g(z(σ ),ψ(−σ))dσ x′(s)ds

(recall the convention on brackets above Proposition 1.9). The implicit function theorem applied 
to (1.11) implies the conclusion. �

To show Proposition 1.9 (c) we prove

Lemma 2.9. Let k : J × I −→ R, p : R →R and

m : C1([0, h], J ) × M −→ C[0, h]
be continuous maps. Then the following maps are continuous:

C1([0, h], J ) × M × C[−h,0] −→ C[0, h]

(z,ψ,χ) 	−→ [t 	−→
t∫

0

m(z,ψ)(s)χ(−s)ds] (2.4)

C1([0, h], J ) × M −→ C[0, h]

(z,ψ) 	−→ [t 	−→ p(

t∫
0

k(z(s),ψ(−s))ds)]. (2.5)

Proof. It is straightforward to show continuity of (2.4) and we omit the details. Next note that by 
continuity of (2.2), for (z, ψ) ∈ C1([0, h], J ) × M there exist δ = δ(z, ψ) > 0, L = L(z, ψ) > 0
such that

|
t∫

0

k(z(s),ψ(−s))ds| ≤ L, for all t ∈ [0, h], (z,ψ) ∈ B((z,ψ), δ).

Now denote by f the operator defined in (2.5). Then
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|f (z,ψ)(t) − f (z,ψ)(t)|

= |p(

t∫
0

k(z(s),ψ(−s))ds) − p(

t∫
0

k(z(s),ψ(−s))ds)|.

Note that p|[−L,L] is uniformly continuous. To show continuity of f for (z, ψ) → (z, ψ) it is 
thus sufficient to show that

t∫
0

k(z(s),ψ(−s))ds →
t∫

0

k(z(s),ψ(−s))ds

uniformly in t in this limit. The latter follows from continuity of (2.2). �
Continuity of (2.2) and (2.4)–(2.5) will be used in the

Proof of Proposition 1.9 (c). We first show that

C1([0, h], J ) × M × C[−h,0] −→ C[0, h]

(z,ψ,χ) 	−→ [t 	−→ −
t∫

0

e− ∫ t
s D1g(z(σ ),ψ(−σ))dσD2g(z(s),ψ(−s))χ(−s)ds] (2.6)

is continuous. Then (ψ, χ) 	→ DeY(ψ)χ is continuous as a composition of the above map with 
the continuous map

M × C[−h,0] −→ C1([0, h], J ) × M × C[−h,0]
(ψ,χ) 	−→ (Y (ψ),ψ,χ).

The map in (2.6) is the product of −1 and the two maps

C1([0, h], J ) × M × C[−h,0] −→ C[0, h]
(z,ψ,χ) 	−→ [t 	−→ e− ∫ t

0 D1g(z(σ ),ψ(−σ))dσ ] (2.7)

(z,ψ,χ) 	−→ [t 	−→
t∫

0

e
∫ s

0 D1g(z(σ ),ψ(−σ))dσD2g(z(s),ψ(−s))χ(−s)ds], (2.8)

so it suffices to show continuity of these two maps. Continuity of (2.7) and continuity of

C1([0, h], J ) × M −→ C[0, h]
(z,ψ) 	−→ [t 	−→ e

∫ t
0 D1g(z(σ ),ψ(−σ))dσ ] (2.9)

follow from continuity of (2.5). Continuity of (2.9) together with continuity of (2.2) imply con-
tinuity of
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C1([0, h], J ) × M −→ C[0, h]
(z,ψ) 	−→ [t 	−→ e

∫ t
0 D1g(z(σ ),ψ(−σ))dσD2g(z(t),ψ(−t))].

This, together with continuity of (2.4), implies continuity of (2.8). �
Proof of Proposition 1.12. First, in the definition of G in (1.10), we now set k = d − D1g. By 
the chain rule the composition defined as follows is C1:

ψ
(id×Y)×τ	−−−−−−→ ((ψ,Y (ψ)), τ (ψ)) 	→ (G(Y (ψ),ψ), τ (ψ))

ev	−−→ G(Y(ψ),ψ)(τ (ψ))
e	−→ eG(Y (ψ),ψ))(τ(ψ)).

Next, note that M →R; ψ 	→ ev(ψ, 0) is C1, hence so is ψ 	→ g(x2, ψ(0)). Thus, by the product 
rule ψ 	→ G(ψ) is C1. The existence of DeG is obvious. To see the continuity statement we apply 
sum and product rules. To see continuity of

(ψ,χ) 	→ (d − D1g)(x1,ψ(−τ(ψ)))Deτ(ψ)χ,

use that (ψ, χ) 	→ Deτ(ψ)χ is continuous and so is d − D1g, τ and ev. Next, ψ 	→ G(ψ)

is C1, so (ψ, χ) 	→ G(ψ) is continuous. Now, define I as the map in (2.4) with m(z, ψ)(s) =
(D1d − D2

1g)(z(s), ψ(−s)), i.e.,

I(z,ψ,χ)(t) :=
t∫

0

(D1d − D2
1g)(z(s),ψ(−s))χ(−s)ds

and note that m is continuous by Lemma 2.6 applied to m̃(z, ψ) := m(z, ψ−). Moreover

τ(ψ)∫
0

(D1d − D2
1g)(Y (ψ)(s),ψ(−s))DeY (ψ)χ(s)ds

= ev(I(Y (ψ),ψ,DeY (ψ)χ), τ (ψ)).

Hence,

(ψ,χ) 	→
τ(ψ)∫
0

(D1d − D2
1g)(Y (ψ)(s),ψ(−s))DeY (ψ)χ(s)ds

is continuous by continuity of I , Y , (ψ, χ) 	→ DeY(ψ, χ), τ and ev. Continuity of the remaining 
terms can be shown similarly. �

We now turn to showing that the model ingredients satisfy property (sLb). First we will see 
how the boundedness properties that have been assumed for the derivatives in Theorem 1.13 (d) 
will be used. Further down it will become clear that in the following result (C1-)boundedness in 
the statement would be sufficient, but the following proof makes clear that we get C-boundedness 
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at no extra cost. Suppose for the remainder of the subsection that g satisfies (1.17) and that D2g is 
bounded on B(x2, b)×A for any bounded A ⊂ I . We will use the assumptions for the maturation 
rate g to elaborate properties for the maturation function y and how these interact with the rates.

Lemma 2.10. Suppose that k : J × I −→ R is C1 and that Dik, i = 1, 2, are bounded on 
B(x2, b) × A for any bounded A ⊂ I . Then for any C-bounded B ⊂ M there exist some 
KB, LB ≥ 0 such that

|y(s,χ) − y(s,ψ)| ≤ KB‖χ − ψ‖, ∀s ∈ [0, h],
h∫

0

|k(y(s,ψ),ψ(−s)) − k(y(s,χ),χ(−s))|ds ≤ LB‖ψ − χ‖, (2.10)

for all ψ, χ ∈ B .

Proof. First, clearly A := {ψ(−s) : ψ ∈ B} is bounded if B is C-bounded and hence so is its 
convex hull conv(A). By the mean value theorem applied to (x, y) 	→ g(x, y) there exist two 
functions [0, h] → [0, 1]; s 	→ θs, θ̃s such that

|g(y(s,χ),χ(−s)) − g(y(s,ψ),ψ(−s))|
≤ |D1g(y(s,χ) + θs(y(s,ψ) − y(s,χ)),χ(−s) + θ̃s(ψ(−s) − χ(−s)))|

|y(s,χ) − y(s,ψ)| +
|D2g(y(s,χ) + θs(y(s,ψ) − y(s,χ)),χ(−s) + θ̃s(ψ(−s) − χ(−s)))|
|ψ(−s) − χ(−s)|

≤ sup
(x,y)∈B(x2,b)×I

|D1g(x, y)|‖y(·, χ) − y(·,ψ)‖

+ sup
(x,y)∈B(x2,b)×conv(A)

|D2g(x, y)|‖ψ − χ‖.

It follows that

|y(t,χ) − y(t,ψ)| ≤
h∫

0

|g(y(s,χ),χ(−s)) − g(y(s,ψ),ψ(−s))|ds

≤ h sup
(x,y)∈B(x2,b)×I

|D1g(x, y)|‖y(·, χ) − y(·,ψ)‖

+ h sup
(x,y)∈B(x2,b)×conv(A)

|D2g(x, y)|‖ψ − χ‖.

This clearly yields
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‖y(·, χ) − y(·,ψ)‖(1 − h sup
(x,y)∈B(x2,b)×I

|D1g(x, y)|)

≤ h sup
(x,y)∈B(x2,b)×conv(A)

|D2g(x, y)|‖ψ − χ‖.

The first statement of the lemma follows if one uses that h = b
K

and (1.17). The second statement 
follows using similar arguments as well as the first statement. �

Next, recall that the delay τ = τ(ψ) was defined via y(τ, ψ) = x1.

Lemma 2.11. For any C-bounded B ⊂ M , there exists some LB ≥ 0, such that

|τ(ψ1) − τ(ψ2)| ≤ LB‖ψ1 − ψ2‖, for all ψ1,ψ2 ∈ B.

In particular, τ is (sLb).

Proof. Let B ⊂ M be C-bounded, ψ, χ ∈ B . We then get that

τ(ψ)∫
τ(χ)

g(y(s,ψ),ψ(−s))ds

=
τ(χ)∫
0

g(y(s,χ),χ(−s)) − g(y(s,ψ),ψ(−s))ds.

This implies that by (G3) and (2.10) applied to k = g

|τ(ψ) − τ(χ)| ≤ K‖ψ − χ‖
for some K ≥ 0, which proves the statement. �

Now consider G as defined in (1.12), suppose that d, D1g : J × I −→ R are C1 and that 
d , Did and DiD1g, i = 1, 2 are bounded on B(x2, b) × A, whenever A ⊂ I is bounded. The 
conditions guarantee that among others we can apply Lemma 2.10 to k = d − D1g.

Lemma 2.12. For any C-bounded B ⊂ M , there exists some LB ≥ 0, such that

|G(ψ1) − G(ψ2)| ≤ LB‖ψ1 − ψ2‖, for all ψ1,ψ2 ∈ B.

In particular, G is (sLb).

Proof. Let B ⊂ M be C-bounded, ψ, χ ∈ B . Then, note that the boundedness conditions for d
and D1g ensure that the map

J : B −→R; ψ 	−→
τ(ψ)∫

(d − D1g)(y(s,ψ),ψ(−s))ds (2.11)
0



JID:YJDEQ AID:8207 /FLA [m1+; v1.223; Prn:6/01/2016; 15:42] P.22 (1-25)

22 P. Getto, M. Waurick / J. Differential Equations ••• (••••) •••–•••
is bounded. Then, by the mean value theorem applied to e,

M −→ R;ψ 	−→ e
∫ τ (ψ)

0 (d−D1g)(y(s,ψ),ψ(−s))ds (2.12)

satisfies the first of the two stated Lipschitz properties if J does. Moreover

|J (ψ) −J (χ)| ≤ |
τ(ψ)∫

τ(χ)

(d − D1g)(y(s,ψ),ψ(−s))ds|

+
τ(χ)∫
0

|(d − D1g)(y(s,ψ),ψ(−s)) − (d − D1g)(y(s,χ),χ(−s))|ds.

The first integral is dominated by

K1|τ(χ) − τ(ψ)| ≤ K2‖ψ − χ‖

for some Ki ≥ 0, i = 1, 2, by the boundedness properties of d and D1g and Lemma 2.11. The 
second integral is dominated by

K3‖ψ − χ‖

for some K3 ≥ 0 by (2.10) applied to d −D1g in place of k. In summary, J satisfies the Lipschitz 
property, hence so does (2.12). The mean value theorem applied to y 	−→ g(x, y) (similarly as 
in the proof of the first statement of Lemma 2.10) and the boundedness properties of D2g imply 
that M −→ R; ψ 	→ g(x2, ψ(0)) satisfies the Lipschitz property. Now note that for this property 
there applies a similar product rule as stated for (sLb) in Lemma 1.6. By this product rule we 
now know that G satisfies the former property. �
Proof of Theorem 1.13 (d). By Lemmas 2.11 and 2.12, τ and G are (sLb). Next, note that the 
boundedness assumption for D2g implies that I −→ R+; y 	→ g(x1, y) is Lipschitz on bounded 
sets. Then, the Lipschitz properties of γ and g(x1, ·) on bounded sets along with the boundedness 
away from zero of g and the boundedness of γ imply that β as defined in (1.15) is Lipschitz on 
bounded sets and bounded. Since under the assumptions the functional G is bounded, also the 
remaining conditions of Theorem 1.8 (b) are satisfied and the theorem implies the statement. �
3. Discussion

In this paper we have elaborated a new general sufficient criterion for global existence (The-
orem 1.7) for differential equations with state dependent delay. Moreover, we have analyzed a 
differential equation with implicitly defined delay with state dependence that describes the mat-
uration process of a stem cell population. We have guaranteed existence of a local semiflow 
using a theorem from the literature and global existence via the above mentioned criterion, see 
Theorem 1.13. The computation of the derivative DF , which we used to verify the smoothness 



JID:YJDEQ AID:8207 /FLA [m1+; v1.223; Prn:6/01/2016; 15:42] P.23 (1-25)

P. Getto, M. Waurick / J. Differential Equations ••• (••••) •••–••• 23
condition (S) (Theorem 1.13), of the functional inducing the DDE was the essential step in the 
specification of the linear variational equation (1.3). This equation could be important for future 
analysis (see below).

In [1] the authors analyzed oscillatory behavior, phenomena beyond the scope of this paper, 
for a comparable stem cell maturation model as a differential equation with state dependent de-
lay. In difference to their model in this project we considered the case of a maturation rate that 
depends nonlinearly on both maturity and population. This leads to a merely implicitly defined 
delay as a function of the population history. It has become clear that an implicit definition of 
the delay complicates the verification of smoothness conditions (conditions (S) and (sLb)). As 
motivated by our example, such delays can be expected whenever the rate of individual develop-
ment depends nonlinearly on the population state. In ecological (structured) population modeling 
such dependencies are typical [7,10,8,9]. Also in physics there are examples of implicitly defined 
state-dependent delays, see [19, Section 2.1] (two-body problem).

Most of the assumptions of Theorem 1.13 seem consistent with biological observation: The 
cell rates of production and development, considered as functions of both, cell maturity and 
the mature, i.e., the size of the mature cell population, should be smooth, bounded and not too 
wildly growing. In [2,12,13] is given a specification of the rates on the basis of empirical bio-
logical knowledge; in particular intracellular signaling should be reflected in the dependencies 
of the rates on the mature. It is not hard to see that under mild additional assumptions for the 
specifications the above mentioned assumptions for the present ingredients are satisfied.

In Theorem 1.13 we also have required (see (G3)) that there is a minimum positive value 
(ε) below which maturation (speed) cannot fall for any size of the mature within the range I , 
corresponding to the mature-component of the domain of g, and at any maturity (x). In [2]
g is specified such that, as a function of the mature, it is decreasing and tending to zero at 
infinity, uniformly for all maturities. Under additional assumptions on maturity-dependence it 
is concluded there that maturation is bounded away from zero, since the range of the mature 
was assumed to lie within a finite interval I = (R−, R) and so the tending to zero is prevented. 
We have discussed biological relevance of the assumptions that guarantee local existence.

To discuss global existence note first that, if I is finite, for initial histories with large val-
ues of the mature a little population growth may lead to the latter assuming values beyond I . 
We propose two alternatives to avoid this, relating to the two possibilities of guaranteeing global 
existence that we have elaborated. One is to focus on those initial histories φ for which the orbit 
lies in the domain (condition T φ ⊂ U in Theorem 1.13 (d)), in particular for all times the ma-
ture assume only values in I . In parallel one can study whether these initial conditions capture 
the relevant situations. The second possibility is to guarantee global existence for all possible 
initial histories by modifying the specification such that an infinite interval I = (R−, ∞) (see 
again Theorem 1.13 (d)) is allowed for the values of the mature. With this modification the 
discussed specification for maturation velocity tends to zero at infinity and its boundedness 
from below is violated. To overcome this one may additionally slightly modify the specifi-
cation, such that the limit is a (small) positive value. The biological interpretation seems not 
much affected, taking into account that very large sizes of the mature population may be irrele-
vant.

Note that (0.4) can be interpreted as a nonautonomous ODE depending on a parameter in a 
Banach space, i.e.,

dx = f (t, x,λ), x(0) = x0, where f (t, x,λ) := −g(x,λ(−t)), x0 := x2. (3.1)

dt
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We have found established results for differentiability, with respect to infinite dimensional pa-
rameters, of solutions of more general classes than (3.1), which we will discuss in the following. 
We believe that in several cases the result could be applied to yield the differentiability statement 
in Proposition 1.9 but a precise formulation would lead to more technicalities than our proof 
contains.

[6, Theorem II 3.6.1] contains such a result for nonautonomous ODE. The initial data vector 
(0, x0, λ0) is required to belong to the interior of the domain of f . This suggests to take [−h, h]
as the first component of the domain, which in turn suggests to consider also λ on [−h, h]. An 
application of the theorem in this way could proceed first extending the parameter function and 
then restricting solutions. In [11] the equation

x′(t) = f (xt ,p)

is analyzed, which is not a direct generalization of (3.1) as it does not allow explicit time de-
pendence. [15, Theorem 4.6] contains a result for a class of neutral differential equations with 
state dependent delay that is much larger than (3.1). Differentiability is shown for a positive 
time of existence of solutions that is uniform locally around a given parameter. Here we would 
like to have differentiability for an existence time h that is uniform for all parameters in the set 
C1([−h, 0], I ) (Proposition 1.9). After a personal communication with the author and a study of 
[15] we are confident that the result is essentially applicable.

For our model [2] Alarcón et al. have analyzed the possibility of a unique positive equilibrium 
(next to the trivial one) and computed representations of it. It is shown in [14,25] that for ODE 
variants of our model there is the possibility of destabilization of equilibria via Hopf bifurcation 
and the emergence of oscillations. As a future project we plan the local stability analysis of 
equilibria in the general setting of the present paper. We would like to investigate the existence 
of periodic solutions and how they relate to biological mechanisms at the cell level. As a first step 
there may be computed a characteristic equation from the linear variational equation computed 
in Theorem 1.13.

Note that the central equation of our studies, i.e., (0.1)–(0.2) is of the form

x′(t) = f (xt , x(t − r(xt )), r(xt )), (3.2)

where f , x and xt are R2-valued and for x = (w, v) we have r(xt ) = τ(vt ). Stability and oscil-
lation as well as other much advanced topics for state dependent delays are analyzed in [5,16,
19–23,26]. However in most of the equations analyzed in these references there seems no formal 
allowance for a direct general dependence of f on xt and in several references the delay func-
tional r is only allowed to depend on x(t), rather than on xt . We hope that some of the established 
theory developed can be adapted to equations of the form (3.2).
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