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Abstract

We consider a three-dimensional kinetic model for a two species plasma consisting of electrons and ions 
confined by an external nonconstant magnetic field. Then we derive a kinetic-fluid model when the mass 
ratio me/mi tends to zero.

Each species initially obeys a Vlasov-type equation and the electrostatic coupling follows from a Poisson 
equation. In our modeling, ions are assumed non-collisional while a Fokker–Planck collision operator is 
taken into account in the electron equation. As the mass ratio tends to zero we show convergence to a new 
system where the macroscopic electron density satisfies an anisotropic drift-diffusion equation. To achieve 
this task, we overcome some specific technical issues of our model such as the strong effect of the magnetic 
field on electrons and the lack of regularity at the limit. With methods including renormalized solutions, 
relative entropy dissipation and velocity averages, we establish the rigorous derivation of the limit model.
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1. Introduction

In many plasma physics applications, the numerical simulation of full multi-species kinetic 
systems of equations can be extremely expensive in computer time. Indeed, since the typical time, 
space and velocity scales of each species differ from several orders of magnitude, it requires a 
fine discretization to accurately approximate the different scales. We refer to [2] for a discussion 
on these issues in the two-species Vlasov–Poisson case. Therefore, part of the problem is some-
times overcome by making simplifying assumptions on species with negligible contribution to 
the whole dynamic. In this paper, we are interested in reducing a kinetic model by taking the 
limit when the mass ratio between light and heavy particles, namely electrons and ions, tends 
to 0.

The charged gas evolves under its self-consistent electrostatic field and an external magnetic 
field. This configuration is typical of a tokamak plasma [4,40] where the magnetic field is used to 
confine particles inside the core of the device. We assume that on the time scale we consider, col-
lisions on ions can be neglected while for electrons, it is entirely modeled with a Fokker–Planck 
operator. At the formal level, an exhaustive study of asymptotic mass-disparate model with more 
involved collision operators such as the Boltzmann or Landau operator can be found in the re-
view [16] of Degond. When the mass ratio goes to 0, our model converges to a drift-diffusion 
equation featuring a magnetic-field dependent diffusion matrix for the electrons coupled with the 
original kinetic equation for the heavy particles. Similar parabolic equations with non-symmetric 
diffusion for plasmas can also be found in [5,15,20,17,16].

Hereafter, we start from the physical equations and propose a detailed scaling with respect to 
the ions time scale. In the dimensionless system, for the light species equation, the leading order 
terms with respect to the mass ratio are those related to the magnetic field and the collisions. 
Therefore, the resulting derivation is in the mean time similar to a strong magnetic field limit as 
in the papers of Golse and Saint-Raymond [29,44], and to a diffusive or parabolic limit as in the 
work of Poupaud, Soler, Masmoudi and El Ghani in [43,25]. While the latter papers provide us 
with many tools to handle our own problem, some technical issues in our analysis are closely 
related to the special features of our model. In a single-species model of charged particles, the 
other particles density is usually given either as a static regular background or as a function 
of the electric potential, while our ions are only known to obey a non-trivial kinetic equation. 
Because of this coupling, it turns out that some extra analysis is needed to recover the regularity 
required for our limit system to make sense. Besides, we have to control the strong magnetic 
field. This is done by looking at the interplay between the increasing effect of oscillations and 
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collisions in the asymptotic regime where the mass ratio tends to 0. Indeed, despite the fact 
that collisions and magnetic forces appear at the same order of magnitude in original and limit 
equations we consider, we prove, by making the most of special cancellations, that with other 
respects collisional effects provide a form of control on magnetic contributions. While the rest 
of our analysis seems rather robust the latter control — that relies on cancellations — does not 
seem to extend readily to other forms of dissipation operators such as linear Boltzmann collision 
operators.

1.1. The physical model

To avoid unnecessary technicalities, we suppose that there is only one type of ion in the plasma 
of mass mi and charge q , while me denotes the electron mass and −q their negative charge. The 
case of a plasma containing several types of ions can be treated in the same way.

The number of particle of type α in the phase space volume dx dv at position x ∈ R
3, with 

velocity v ∈ R
3 between time t and t + dt is fα(t, x, v) dx dv dt . The index α stands for the 

species of particles and can be either i for ions or e for electrons. The ion distribution function 
fi evolves according to a Vlasov equation and the electron distribution function fe follows a 
Vlasov–Fokker–Planck equation. The coupling occurs through the Poisson equation that relates 
the electric field to the densities. The equations of the model, written in physical units, are the 
following

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tfi + v · ∇xfi + q

mi

(−∇xφ + v ∧ Bext) · ∇vfi = 0,

∂tfe + v · ∇xfe − q

me

(−∇xφ + v ∧ Bext) · ∇vfe = 1

tcol
∇v · (vfe + kBθ

me

∇vfe),

− ε0�xφ = q(ni − ne),

(1.1)

where tcol is the characteristic time between two collisions, kB is the Boltzmann constant, θ is 
the average electron temperature and ε0 is the dielectric constant. The Poisson equation involves 
the macroscopic densities

nα =
∫
R3

fαdv, ∀α ∈ {i, e}.

As mentioned before the typical time scales of ions and electrons largely differ due to the 
smallness of the mass ratio me/mi . In applications involving magnetic confinement fusion, ions 
are the particles of interest and approximations are made on the electron distribution function 
fe in order to simplify the model. A common reduction supposes that the macroscopic electron 
density is given by the Maxwell–Boltzmann density

nMB(t, x) = C(t)e
qφ(t,x)

kB θ ,

where C(t) is a normalization function. The derivation of the latter from (1.1), with Bext = 0, is 
discussed in [6] and obtained in [8] for a one species Vlasov–Poisson–Fokker–Planck model. To 
our knowledge, the case of a magnetized plasma has never been treated before. We stress that the 
presence of a strong magnetic field modifies even formal computations.
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The goal of the present paper is to derive a fluid equation for electrons, when the mass ratio 
tends to 0. The evolution of their dynamic shall obey an equation on the macroscopic density. In 
the next paragraph we write the system in a consistent dimensionless form to receive the fluid 
model in the asymptotic regime of massless electrons.

1.2. Scaling

We denote by L the characteristic length of the system, t0 the characteristic time and Vα the 
thermal velocity for the species α ∈ {i, e}. For any other physical quantity G, we denote by Ḡ the 
characteristic value of G and G′ the dimensionless quantity associated to G so that G = ḠG′. 
We assume that the plasma is globally neutral, which means that

n̄i = n̄e =: N,

and that the characteristic temperature (or kinetic energy) of each species are equal. A plasma 
satisfying the latter hypothesis is called a hot plasma [4] and satisfies with our notation

miV
2
i = meV

2
e = kBθ.

The new unknowns of the system are then defined by the following relations

fα(t, x, v) = N

V 3
α

f ′
α

(
t

t0
,
x

L
,

v

Vα

)
, nα(t, x) = Nn′

α

(
t

t0
,
x

L

)
,

φ(t, x) = φ̄φ′
(

t

t0
,
x

L

)
.

The dimensional analysis of (1.1) introduces several important physical constants of the sys-
tem, namely, for each species α ∈ {i, e}

λD =
√

ε0kBθ

q2N
, t(α)

p = λD

Vα

, t(α)
c = mα

qB̄ext
, r

(α)
L = Vαt(α)

c ,

which are respectively the Debye length, the plasma time, the cyclotron time and the Larmor 
radius. More details on these constants can be found in the physics literature (see [4,40]). We 
mention that the first two are typical scales of the electrostatic effects while the last two are 
related to magnetic phenomena. Since the goal is to perform a model reduction for the electron 
dynamic, we choose a scaling relative to the typical ion time scale. In particular, it means that we 
choose

t0 = L

Vi

.

From some of the original physical constants and characteristic quantities arise dimensionless 
parameters of the system, namely

δ = λD
, η = qφ̄

, μ = φ̄

¯ , ε =
√

me
.

L kBθ LViBext mi
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In a tokamak plasma these parameters would all be small. Dealing with the asymptotic δ → 0
is called the quasineutral limit and has been first investigated for the Vlasov–Poisson system by 
Brenier and Grenier in [11,32,10] and developed recently by Han-Kwan, Hauray and Rousset 
in [34,36,35]. The second parameter η is called the coupling parameter, for it measures the im-
portance of the electrostatic effects with respect to the thermal agitation. The third parameter 
μ compares the Coulomb (electric) and the Laplace (magnetic) forces. The limit μ → 0 corre-
sponds to the case of a strong magnetic field and has been studied for single-species plasma by 
Frenod and Sonnendrucker in [26] and Golse and Saint-Raymond in [29,44]. This asymptotic 
is called the gyrokinetic or drift-kinetic approximation in the mathematics literature. The last 
parameter ε, quantifying the mass ratio, is the main concern of this paper. We are interested in 
the limit of massless electrons, namely ε → 0. The dimensionless equations write

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tf
′
i + v · ∇xf

′
i − η∇xφ

′ · ∇vf
′
i + η

μ
(v ∧ Bext) · ∇vf

′
i = 0,

∂tf
′
e + 1

ε
v · ∇xf

′
e + η

ε
∇xφ

′ · ∇vf
′
e − η

με2
(v ∧ Bext) · ∇vf

′
e = t0

tcol
∇v · (vf ′

e + ∇vf
′
e)

− ηδ2�xφ
ε = n′

i − n′
e.

(1.2)

The link between the different time scales and dimensionless parameters follows from the 
previous relations and writes

t ip = 1

ε2
tep = δt0, t ic = 1

ε
tec = μ

η
t0.

Finally we consider the regime where

t0

tcol
= 1

ε2
,

which means that the ratio between collision time and the observation time is of the same order 
than the mass ratio. This can be derived considering that the Knudsen number, namely the ratio 
between the mean free path of the particles and the observation length L is of order ε. More de-
tails on this part of the scaling can be found in the paper of the physicists Petit and Darrozes [42]
and in the work of Degond and Lucquin [18,19,16] and more recently Graille, Magin, Massot 
and Giovangigli [31,27,28]. This makes the collision the leading order term with the magnetic 
field in the electron equation. In its analysis, the resulting scaling slightly differs from the usual 
parabolic or hydrodynamic scaling of Vlasov–Poisson–Fokker–Planck since the magnetic field 
introduces fast oscillations when ε tends to zero and it is a priori not clear that the latter can be 
controlled by the dissipation effect due to collisions.

By taking weaker collisions, say t0/tcol = 1/ε, one formally derives a Maxwell–Boltzmann 
density in the direction parallel to the magnetic field and a guiding center model in the per-
pendicular plane when ε → 0. This limit model features interesting and well-known physical 
phenomena. Its derivation and analysis will be investigated in future work.
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1.3. The mathematical model

From now on, we keep δ, η, μ fixed and thus, for writing convenience, we assume that δ = η =
μ = 1. The rescaled two species (Vlasov)–(Vlasov–Fokker–Planck)–(Poisson) kinetic system 
with external magnetic field writes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tf
ε
i + v · ∇xf

ε
i − ∇xφ

ε · ∇vf
ε
i + (v ∧ B) · ∇vf

ε
i = 0,

ε∂tf
ε
e + v · ∇xf

ε
e + ∇xφ

ε · ∇vf
ε
e − 1

ε
(v ∧ B) · ∇vf

ε
e = 1

ε
LI (f

ε
e ),

− �xφ
ε = nε

i − nε
e,

(1.3)

where we have dropped primes and marked the dependency on ε with an exponent. The Fokker–
Planck operator on the right-hand side of the second equation of (1.3) is defined by

LI : f �→ ∇v · (vf + ∇vf ).

The external magnetic field is of the form

B(t, x) = (b1 b2 b3)
	 ,

in the canonical Euclidean basis of R3. The magnetic field B is assumed to belong to 
L∞(0, T ; L∞

x ) and to satisfy the Maxwell–Thompson equation ∇x · B = 0. Its effect on the 
particle is given by the Lorentz force, appearing in the kinetic equations as “(v ∧ B) · ∇v”. The 
Cauchy problem is completed with initial conditions on distribution functions

f ε
α (t = 0, x, v) = f in

α (x, v), ∀α ∈ {i, e}.

The Poisson equation can be reformulated using its fundamental solution �, in dimension 3

�(x) = 1

4π |x| . (1.4)

The potential φε is then given by

φε(t, x) = � ∗x nε =
∫
R3

�(x − y)nε(t, y)dy, (1.5)

where nε denotes the total charge density and is given by

nε(t, x) = nε
i (t, x) − nε

e(t, x).

For later use, we also introduce the current density

jε(t, x) = jε
i (t, x) − jε

e (t, x), where ji =
∫

3

vf ε
i dv and je = 1

ε

∫
3

vf ε
e dv,
R R
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and the rescaled uniform Maxwellian, in dimension 3

M(v) = 1

(2π)3/2
e− |v|2

2 . (1.6)

The existence of global weak solutions for the Vlasov–Poisson system, namely the first and 
the last equation of (1.3) with a given electron background nε

e , was first established by Arsenev 
in [1]. DiPerna and Lions improved conditions on the initial data for this result in [22] and 
adapted their renormalization techniques for the Vlasov–Poisson system [21]. Concerning clas-
sical solutions, global existence in dimension 2 was proved by Ukai and Okabe for well-localized 
initial data in [46]. The case of dimension 3 was considered by Bardos and Degond in [3].

The theory for the Vlasov–Poisson–Fokker–Planck system, consisting of last two equations of 
(1.3) with a given ion background nε

i , is also well-known. The existence of global weak solutions 
is proved in [47,12] and results on the existence and uniqueness of smooth solutions were first 
obtained by Degond in [14] and generalized by Bouchut in [7]. Here, we shall consider DiPerna–
Lions renormalized solutions of the Vlasov–Fokker–Planck equation as introduced in [21]. Our 
choice is motivated by two observations. First, the presence of the friction part of the Fokker–
Planck operator precludes any hope for a uniform (in time and in ε) Lp

x,v bound of f ε
e in the 

small ε limit when p > 1. As Poupaud and Soler proved in [43], a uniform in ε bound can be 
obtained for the adequate weighted Lp norm but only on a finite time decreasing with p, which 
is not quite satisfying. On the other hand, knowing merely that f ε

e lies in L1
x,v and that ∇xφ

ε

belongs to L2
x is insufficient to give even a distributional sense to the product f ε

e ∇xφ
ε appearing 

in the electron equation of (1.3). The concept of renormalized solutions proposes to replace the 
direct consideration of the troublesome equation for f ε

e by a family of meaningful equations for 
β(f ε

e ), β ranging through a sufficiently large class of smooth functions.
For the coupled system (1.3), we consider weak solutions of the ion equation and renormalized 

solutions of the electron equation, the electric potential being given by (1.5).

Definition 1.1. We say that a triplet (f ε
i , f ε

e , φε) is a solution on [0, T ) to the Cauchy problem 
(1.3) with initial data f in

i , f in
e if it satisfies

1) f ε
i ∈ L∞(0, T ; L1

x,v ∩L∞
x,v); f

ε
e ∈ L∞(0, T ; L1

x,v); f
ε
α ≥ 0 almost everywhere for α ∈ {i, e},

2) φε ∈ L∞(0, T ; Ḣ 1
x ); ∇v

√
f ε

e ∈ L2(0, T ; L2
x,v),

and, for every ϕ ∈D([0, T ) ×R
6)

3) The mapping t �→ ∫∫
R6 ϕf ε

i dvdx is continuous and the first equation of (1.3) holds in the 
sense of distributions on [0, T ) ×R

6 with the initial condition f in
i .

4) For every function β ∈ C2(R+) satisfying

|β(u)| ≤ C(
√

u + 1), |√uβ ′(u)| ≤ C, |uβ ′′(u)| ≤ C,

for some C > 0, the mapping t �→ ∫∫
R6 ϕβ(f ε

e )dvdx is continuous and β(f ε
e ) satisfies in 

the sense of distributions on [0, T ) ×R
6
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ε∂tβ(f ε
e )+v ·∇xβ(f ε

e )+∇xφ
ε ·∇vβ(f ε

e )− 1

ε
(v∧B) ·∇vβ(f ε

e ) = 1

ε
LI (f

ε
e )β ′(f ε

e ), (1.7)

with the initial condition β(f in
e ).

5) For any λ > 0, θε,λ = √
f ε

e + λM is such that the mapping t �→ ∫∫
R6 ϕθε,λdvdx is continu-

ous and θε,λ satisfies in the sense of distributions on [0, T ) ×R
6

ε∂t θε,λ + v · ∇xθε,λ + ∇xφ
ε · ∇vθε,λ = 1

2εθε,λ

LA(f ε
e ) − λM

2θε,λ

v · ∇xφ
ε, (1.8)

where the Fokker–Planck operator and the term related to the magnetic field are gathered 
within the operator LA which may be written in the following form

LA(f ) = ∇v · (A(t, x)vf + ∇vf ) (1.9)

where the matrix A(t, x) is given by

Av = v + v ∧ B =
⎛
⎝ 1 b3 −b2

−b3 1 b1
b2 −b1 1

⎞
⎠v. (1.10)

Remark 1.2. One readily checks that weak formulations of 3), 4) and 5) are consistent with 
estimates in 1) and 2). We stress that we need to use two types of renormalization for the electron 
Vlasov–Fokker–Planck equation. Actually, points 1) to 4) are sufficient to define a self-consistent 
notion of solution for which we can prove an existence result. The introduction of the additional 
equation (1.8) is inspired by [25]. It comes from a renormalization of the equation satisfied 
by f ε

e /M with the function s �→ √
s + λ. While equation (1.7) provides us with the required 

alternative meaning for the electron equation in (1.3), we shall pass to the limit ε → 0 in (1.8).

1.4. Main result

Our main goal is to prove the convergence of solutions to (1.3) — in the sense of Definition 1.1
— towards weak solutions of the following coupled kinetic-fluid system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tfi + v · ∇xfi − ∇xφ · ∇vfi + (v ∧ B) · ∇vfi = 0,

∂tne + ∇x · je = 0,

je = −D(∇xne − ∇xφne),

− �xφ = ni − ne,

fi(0, ·, ·) = f in
i and ne(0, ·, ·) =

∫
f in

e dv,

(1.11)

where the diffusion matrix is given by

D(t, x) = A−1(t, x) = 1

1 + |B|2

⎛
⎜⎝

1 + b2
1 −b3 + b1b2 b2 + b1b3

b3 + b1b2 1 + b2
2 −b1 + b2b3

−b + b b b + b b 1 + b2

⎞
⎟⎠ .
2 1 3 1 2 3 3
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Since B is essentially bounded, it yields

D ∈ L∞(0, T ;L∞
x ).

Moreover by denoting I3 the identity matrix in dimension 3, one sees that

Re(D) = D + D	

2
≥ 1

1 + |B|2 I3

is uniformly positive definite.

Remark 1.3. Let us denote by E = −∇xφ the electric field. In the strong magnetic field limit, 
namely |B| → ∞, the particles follow the guiding center dynamic (see for example [41,40,4] in 
the physics literature). They are mainly advected along the magnetic field and transport in the 
perpendicular plane, called the electric drift, occurs at the next order in 1/|B|. The corresponding 
parallel and drift velocities are respectively

v‖ = − (E · B)B

|B|2 , vdrift = E ∧ B

|B|2 .

The guiding center dynamic can be recovered from the limit electron equation in (1.11). Indeed, 
note that applying the diffusion matrix to the electric field gives

DE = E − 1

1 + |B|2 E ∧ B + 1

1 + |B|2 (E ∧ B) ∧ B,

= 1

1 + |B|2 [(E · B)B − E ∧ B + E] . (1.12)

Therefore the limit equation for the electrons formally rewrites

∂tne + ∇x ·
[
(v‖ + vdrift + O

(
1/|B|2

)
)ne − D∇xne

]
= 0.

Definition 1.4. A triplet (fi, ne, φ) is called a weak solution on [0, T ) of the Cauchy problem 
(1.11) if it satisfies

1) fi ∈ L∞(0, T ; L1
x,v ∩ L∞

x,v); fi ≥ 0 almost everywhere,
2) ne ∈ L∞(0, T ; L1

x); ne ≥ 0 almost everywhere,
3) φ = � ∗x (

∫
fidv − ne) ∈ L∞(0, T ; Ḣ 1

x ) and ne∇xφ ∈ L1
loc([0, T ) ×R

6),

and for every ϕ ∈D([0, T ) ×R
6), ψ ∈ D([0, T ) ×R

3)

4) The mappings t �→ ∫∫
R6 ϕfidvdx and t �→ ∫

R3 ψnedx are continuous and (1.11) holds in 
the sense of distributions.

Let us state the main result of this paper. We make the following assumptions on the initial 
data
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∀α ∈ {i, e}, f in
α ≥ 0 almost everywhere, (A1)∑

α∈{i,e}

∫∫
R6

f in
α (|x| + |v|2 + | lnf in

α |)dvdx +
∫
R3

∣∣∣∇xφ
in
∣∣∣2

dx < +∞, (A2)

f in
i ∈ L1

x,v ∩ L∞
x,v, f in

e ∈ L1
x,v, (A3)∫∫

f in
i dvdx =

∫∫
f in

e dvdx, (A4)

where φin = � ∗x (
∫

f in
i dv − ∫

f in
e dv).

Remark 1.5. The case of initial data depending on ε may be treated in the same way as soon as 
assumptions (A1) to (A4) are satisfied uniformly in ε. In this case one may pick as limit initial 
condition for (1.11) any accumulation point of the sequence of initial data.

Theorem 1.6. Under assumptions (A1) to (A4), there exists a solution (f ε
i , f ε

e , φε) of (1.3) in 
the sense of Definition 1.1. Moreover, for any such solution, one has, when ε → 0 and up to the 
extraction of a subsequence

f ε
i −→ fi weakly-� in L∞([0, T ) ×R

3 ×R
3),

f ε
e −→ neM strongly in L1(0, T ;L1

x,v),

φε −→ φ strongly in L2(0, T ; Ẇ 1,p
x ) for 1 ≤ p < 2,

and the limit (fi, ne, φ) is a weak solution of (1.11).

The parabolic limit for the Vlasov–Poisson–Fokker–Planck system with a given ion back-
ground has been studied in dimension 2 by Poupaud–Soler in [43] and Goudon in [30]. Mas-
moudi and El Ghani generalized these results in any dimension in [25], using DiPerna–Lions 
renormalized solutions and averaging lemmas. The procedure they follow was introduced by 
Masmoudi and Tayeb to study the diffusion limit of a semi-conductor Boltzmann–Poisson sys-
tem in [37]. Let us point out, here and later, the importance of the latter paper, which provides 
efficient tools to derive a global in time result for our own problem. A recent paper [48] of Wu, 
Lin and Liu treats with this method the case of a multispecies model where several Vlasov–
Fokker–Planck equations are coupled by a Poisson equation on a bounded domain. Let us also 
mention [24], where the author deals with the case of a self-consistent magnetic field in the 
context of a Vlasov–Maxwell–Fokker–Planck system.

Here, we are considering a multispecies model with an external magnetic field. This brings 
some new technical difficulties in the analysis. First, the coupling with a non-collisional kinetic 
equation rather than a fixed background of charged particles makes it harder to recover regular-
ity sufficient to give a distributional sense to the limit problem. Indeed, the regularity given by 
Vlasov–Poisson in dimension three for the ions impacts that of the electrons (see Lemmas 6.1
and 6.2). Besides, by considering a magnetic field of the same order of magnitude than the colli-
sions, it is not clear at all that one can control the fast Larmor oscillations at the limit especially 
in the three dimensional setting. As an example of this difficulty in the non-collisional case of 
Vlasov–Poisson, we refer to the paper of Saint-Raymond [44] where only the two-dimensional 
case can be treated since the dynamic along the magnetic field lines is too fast to be captured 
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at the limit in this scaling. Here, we are able to control the whole dynamic thanks to the dissi-
pative effect of the collisions and the orthogonality between the Lorentz force and the velocity 
field (see Lemma 3.3 and Proposition 4.3). An other proof of the nontrivial effect of the B field 
can be seen with the diffusion matrix of the limit drift-diffusion equation which is anisotropic, 
for it contains the magnetic field effects. Let us mention that such a model was derived in a lin-
ear setting (i.e. with an external electric field) by Ben Abdallah and El Hajj in [5] with a linear 
Boltzmann collision kernel.

In the rest of this paper we detail the proof of Theorem 1.6. The outline is as follows. In 
section 2, we introduce natural estimates associated with (1.3). These estimates will be crucial to 
prove our derivation and the existence of solution which is briefly discussed in Section 3. After 
proving the required compactness of the family of solutions in Section 4, we will take limits in 
equations in Section 5. Eventually, in Section 6, we shall use the algebraic structure of the limit 
system to gain some regularity which will allow us to recover (1.11) in a distributional — rather 
than renormalized — sense.

2. A priori estimates

The study of the asymptotic ε → 0 requires estimates that are uniform with respect to ε. For 
our coupled system, the only natural identities providing such bounds are mass estimates (see 
Lemma 2.2), free energy and entropy inequalities (see Proposition 2.1). Let us introduce kinetic 
energies associated with each species

Kε(t) = Kε
i (t) + Kε

e (t) where Kα = 1

2

∫∫
R6

|v|2f ε
α dvdx ∀α ∈ {i, e}.

The characteristic energy due to electrostatic effects is called electric energy and reads

Eε(t) = 1

2

∫
R3

|∇xφ
ε|2dx = 1

2

∫
R3

φεnεdx,

where the last equality stems from the Poisson equation. Let us also define the entropy of each 
species

Sε
α(t) =

∫∫
R6

f ε
α ln(f ε

α )dvdx ∀α ∈ {i, e}.

The natural energy associated with Vlasov–Fokker–Planck type equations is called the free en-
ergy and writes, for our system

Uε(t) = Eε(t) + Kε(t) + Sε
e (t).

We also introduce the free energy dissipation given by the following non-negative quantity

Dε(t) = 1

ε2

∫∫
R6

1

f ε
e

|vf ε
e + ∇vf

ε
e |2dvdx = 4

ε2

∫∫
R6

∣∣∣∣∣∇v

√
f ε

e

M

∣∣∣∣∣
2

Mdvdx
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Proposition 2.1 (Free energy and entropy estimates). Suppose that (f ε
i , f ε

e , φε) is a smooth 
localized solution of (1.3). One has the following “entropy” estimates, for all ε > 0 and t ∈
[0, T ).

• The free energy satisfies

Uε(t) +
t∫

0

Dε(s)ds = U(0).

• The ion entropy satisfies

Sε
i (t) = Sε

i (0)

Proof. Multiplying the first two equations of (1.3) by |v|2/2 and |v|2/(2ε) respectively, integrat-
ing in v, x and summing the two equations yields, up to an integration by parts,

d

dt
Kε +

∫
∇xφ

ε · jεdx = − 1

ε2

∫∫
v · (vf ε

e + ∇vf
ε
e )dvdx (2.1)

The continuity equation is obtained by integrating the fist two equations of (1.3) with respect 
to v, x and summing the resulting equations after dividing the electron equation by ε. It reads

∂tn
ε + ∇x · jε = 0 (2.2)

Then using (2.2) and the Poisson equation, we can rewrite the second term in (2.1)∫
∇xφ

ε · jεdx = 1

2

d

dt

∫
|∇xφ

ε|2dx (2.3)

Hence we get an energy estimate from (2.1) and (2.3), namely

d

dt
(Kε + Eε) = − 1

ε2

∫∫
v · (vf ε

e + ∇vf
ε
e )dvdx (2.4)

The entropy equations are obtained by multiplying the first two equations of (1.3) by lnf ε
i +1

and lnf ε
e + 1 respectively and integrating in x, v. It yields

d

dt
Sε

i = 0, (2.5)

ε
d

dt
Sε

e = −1

ε

∫∫ ∇vf
ε
e

f ε
e

· (vf ε
e + ∇vf

ε
e )dvdx, (2.6)

where we performed an integration by part of the right-hand side of the second equation. Equa-
tion (2.5) provides the ion entropy estimate. By summing (2.6) divided by ε and (2.4), we obtain 
the announced estimate up to an integration in time. �

The other type of natural a priori estimate for Vlasov-type equations is the conservation of 
Lp norms.



JID:YJDEQ AID:8256 /FLA [m1+; v1.225; Prn:18/02/2016; 13:15] P.13 (1-31)

M. Herda / J. Differential Equations ••• (••••) •••–••• 13
Lemma 2.2 (Lp norms). Suppose that (f ε
i , f ε

e , φε) is a smooth localized solution of (1.3). For 
all ε > 0 and t ∈ [0, T ),

• The distribution function of electrons satisfies

‖f ε
e (t, ·, ·)‖L1

x,v
= ‖f in

e ‖L1
x,v

• The distribution function of ions satisfies

‖f ε
i (t, ·, ·)‖L

p
x,v

= ‖f in
i ‖L

p
x,v

, ∀p ∈ [1,∞]

Proof. Keeping in mind that distribution functions are positive, the integration of the Vlasov–
Fokker–Planck equation in (1.3) with respect to x and v provides the first estimate. Let us 
multiply the ion equation of (1.3) by 

(
f ε

i

)p−1
/p and integrate in x and v to get

d

dt
‖f ε

i ‖p

L
p
x,v

= 0.

Hence ‖f ε
i ‖L

p
x,v

is constant. Letting p go to infinity gives the limit case. �
As we are working on an unbounded domain in space, we need to control space moments of 

the distribution functions to ensure that no mass can be “lost” at infinity. It reduces to controlling 
current densities as shows the following estimate.

Lemma 2.3 (First moment in space). Suppose that (f ε
i , f ε

e , φε) is a smooth localized solution of 
(1.3). For all ε > 0, t ∈ [0, T ) and α ∈ {i, e}

∫∫
R6

|x|f ε
α dvdx =

t∫
0

∫
R3

x

|x| · jε
αdx +

∫∫
R6

|x|f in
α dvdx

Proof. Multiply the first two equations of (1.3) by |x| and integrate in x, v and t to obtain the 
result. �
3. Existence of solutions and uniform in ε estimates

In this section, we give an existence result for (1.3). The a priori estimates of the previous 
section are necessary to build these solutions, by a mollification procedure. Let us mention that 
this result follows from single-species cases. Indeed the coupling between the kinetic equations 
of (1.3) is weak in the sense that, because of the form of the Poisson equation, it is possible to 
isolate the contribution of each species in the electric field ∇xφ

ε . The addition of the magnetic 
field term only cause minor and harmless modifications to usual proofs as it is linear and does 
not alter a priori estimates. For the Vlasov–Poisson part, the theory of Arsenev may be applied. 
We refer to [9, Theorem 1.3 and 1.4] for details. The Vlasov–Poisson–Fokker–Planck part of 
(1.3) may be handled with the DiPerna–Lions theory of renormalized solutions [22,21]. Some 
technical details may also be found in [8] and [37–39] on bounded domains.
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Proposition 3.1. Under assumptions (A1) to (A4), the system (1.3) admits a solution in the sense 
of Definition 1.1. In particular, the solution satisfies the continuity equations in the sense of 
distributions on [0, T ) ×R

6

∂tn
ε
α + ∇x · jε

α = 0, ∀α ∈ {i, e} (3.1)

Moreover, the following estimates hold, uniformly in t ∈ [0, T ), ε > 0 and α ∈ {i, e},

Uε(t) +
t∫

0

Dε(s)ds ≤ U in, (3.2)

Sε
i (t) ≤ Sin

i , (3.3)

‖f ε
e (t, ·, ·)‖L1

x,v
≤ ‖f in

e ‖L1
x,v

, (3.4)

∀p ∈ [1,∞], ‖f ε
e (t, ·, ·)‖L

p
x,v

≤ ‖f in
e ‖L

p
x,v

, (3.5)

∫∫
R6

|x|f ε
α dvdx ≤

t∫
0

∫
R3

x

|x| · jε
αdx +

∫∫
R6

|x|f in
α dvdx, (3.6)

and the distribution functions are non-negative almost everywhere.

From estimates obtained in Proposition 3.1 we infer uniform in ε estimates that will allow 
us to take limits in the following sections. Let us first give a name to the particular solutions 
satisfying these estimates.

Definition 3.2. Any triplet (f ε
i , f ε

e , φε) which is a solution of the system (1.3) in the sense of 
Definition 1.1, associated with initial datum satisfying (A1) to (A4), and itself satisfying esti-
mates of Proposition 3.1 is called from now on a physical solution of (1.3).

Proposition 3.3. A physical solution of (1.3) satisfies the following properties

(a) Control of current densities:

‖jε
i ‖L1

x
≤ C(T ) + Kε

i , (3.7)

‖jε
e ‖L1

x
≤ C(T ) + 1

2
Dε. (3.8)

(b) Uniform bounds on the free energy and moments:

∑
α∈{i,e}

∫∫
R6

f ε
α (|x| + |v|2 + | lnf ε

α |)dvdx +
∫
R3

|∇xφ
ε|2dx +

t∫
0

Dε(s)ds ≤ C(T ) (3.9)
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(c) Consequences of (b):

‖jε
i ‖L1(0,T ;L1

x) + ‖jε
e ‖L1(0,T ;L1

x) + ‖∇v

√
f ε

e ‖L2(0,T ;L2
x,v)

+ 1

ε
‖(v ∧ B) · ∇vf

ε
e ‖L1(0,T ;L1

x,v) ≤ C(T ) (3.10)

for some constant C(T ) independent of ε and t ∈ [0, T )

Proof. (a) First we can control the ion current density by decomposing the velocity space in the 
following way,

‖jε
i ‖L1

x
≤

∫∫
|v|<2

|v|f ε
i dvdx +

∫∫
|v|≥2

|v|f ε
i dvdx

≤ 2‖f in
i ‖L∞(0,T ;L1

x,v) + 1

2

∫∫
R6

|v|2f ε
i dvdx.

We can conclude with (A2).
The electron current density can be controlled by the free energy dissipation. Indeed, follow-

ing the idea in [43, Equation 2.21], it writes

je = 1

ε

∫
(v

√
f ε

e + 2∇v

√
f ε

e )
√

f ε
e dv

and thus

‖jε
e ‖L1

x
≤ 1

2
‖f ε

e ‖L1
x,v

+ 1

2ε2

∫∫
1

f ε
e

|vf ε
e + ∇vf

ε
e |2dvdx

and the desired result follows using (A2).

(b) The key arguments here are the entropy estimates (3.2) and (3.3). Since distribution functions 
are non-negative, we decompose the free energy in the following form

Uε = Kε + Eε + Sε
e,+ − Sε

e,−, (3.11)

where we define, for α ∈ {i, e},

Sε
α,+ =

∫∫
f ε

α ln+ f ε
α dvdx,

Sε
α,− =

∫∫
f ε

α ln− f ε
α dvdx,

with ln+(s) = max{ln(s), 0} and ln−(s) = max{− ln(s), 0} for s > 0. By applying the same argu-
ments as in [43, Lemma 2.3] and estimate (3.6), one can get the following bound on the negative 
part of the entropy
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Sε
e,− ≤ C + 1

2

(
Kε

e + ‖jε
e ‖L1(0,t,L1

x)

)
+ 1

2

∫∫
|x|f in

e dvdx, (3.12)

for some positive constant C. By inequality (3.8) on the electron current density and (3.12)

Sε
e,− ≤ 1

2

⎛
⎝Kε

e +
t∫

0

Dε(s)ds

⎞
⎠ + C(T ).

Now with estimate (3.2) and the decomposition of the free energy (3.11), one can conclude that 
Kε , Eε , 

∫ t

0 Dε(s)ds, Sε
e,− and Sε

e,+ are uniformly bounded in ε and t . Replacing the index e by i, 
inequality (3.12) holds true for the ion related quantities and the bound (3.7) on the ion current 
density and estimate (3.3) on the ions entropy give the boundedness of Sε

i,− and Sε
i,+.

(c) The estimates on current densities follow using (a) and (b). Now, as in [25, Corollary 5.3], 
the following computation

‖∇v

√
f ε

e ‖2
L2(0,T ;L2

x,v)
=

T∫
0

∫∫ (1

4
|v√

f ε
e + 2∇v

√
f ε

e |2 − 1

4
|v|2f ε

e − v
√

f ε
e · ∇v

√
f ε

e

)
dvdxdt

≤ ε2

4
Dε + 1

2

T∫
0

∫∫
(∇v · v)f ε

e dvdxdt

≤ ε2

4
Dε + 3T

2

∫∫
f in

e dvdx,

provides the third bound. Finally we can control the term related to the magnetic field by noticing 
that, since (v ∧ B) · v = 0,

1

ε
‖(v ∧ B) · ∇vf

ε
e ‖L1(0,T ;L1

x,v) = 1

ε

T∫
0

∫∫ ∣∣∣(v ∧ B) · (2∇v

√
f ε

e + v
√

f ε
e )

√
f ε

e

∣∣∣dxdvdt

≤ ‖B‖L∞
t,x

⎛
⎝ 1

ε2

T∫
0

Dεdt + T sup
[0,T )

Kε
e

⎞
⎠ .

We conclude with the estimates in (b). �
Remark 3.4. Actually, the estimate on the ion current density can be largely improved using a 
classical moment lemma [29, Lemma 3.1]. The latter gives that (jε

i )ε is uniformly bounded in 

L∞(0, T ; L5/4
x ).

4. Compactness of the family of solutions

From the estimates of the foregoing section, we can infer some compactness. When ε tends 
to 0, estimates (3.5) and (3.9) give, up to the extraction of a subsequence,
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f ε
i → fi weakly-� in L∞(0, T ;Lp(R6)) for p ∈ (1,∞], (4.1)

and

∇xφ
ε → ∇xφ weakly-� in L∞(0, T ;L2(R3)), (4.2)

where the limit is a gradient because it is irrotational in the sense of distributions.

Lemma 4.1. Families of physical solutions of (1.3) satisfy the following properties

(a)
(
f ε

i

)
ε

and 
(
f ε

e

)
ε

are weakly relatively compact in L1([0, T ) ×R
6).

(b)
(
nε

i

)
ε

and 
(
nε

e

)
ε

are weakly relatively compact in L1([0, T ) ×R
3).

(c) f ε
e − nε

eM → 0 in L1([0, T ) ×R
6) when ε → 0

Proof. The first two assertions follow from the Dunford–Pettis theorem.

(a, b) Let us define W : x �→ e−|x|/(8π), M : (x, v) �→ W(x)M(v) and � : u ≥ 0 �→
u(ln+ u + 1). Note that W and M are of integral 1 and � is a convex, non-negative, increasing 
function satisfying

lim
u→∞

�(u)

u
= +∞.

Let α ∈ {i, e}. One sees that by the Jensen inequality

∫
�(

nε
α

W
)Wdx =

∫
�

(∫
f ε

α

MMdv

)
Wdx

≤
∫∫

�

(
f ε

α

M

)
Mdvdx

=
∫∫

f ε
α ln

(
f ε

α

M

)
dvdx

≤ Sε
α,+ + Sε

α,− + Kε
α +

∫∫
|x|fαdvdx + C

∫∫
f ε

α dvdx,

for some constant C > 0. Because of the uniform estimates (3.5) and (3.9), we hence get by the 
de la Vallée Poussin lemma the equi-integrability of the bounded families

{f ε
α /M}ε ⊂ L1(0, T ;L1(Mdvdx))

and

{nε
α/W }ε ⊂ L1(0, T ;L1(Wdx)).

This yields the announced weak compactness by the Dunford–Pettis theorem.

(c) Using the log-Sobolev inequality (see [33]), we get an upper bound for the relative entropy 
of the electrons with respect to a local Maxwellian
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t∫
0

∫∫
f ε

e ln

(
f ε

e

nεM

)
dvdxds ≤ 2

t∫
0

∫∫ ∣∣∣∣∣∇v

√
f ε

e

M

∣∣∣∣∣
2

Mdvdxds

≤ C(T )ε2,

where the last inequality comes from estimate (3.9). By the Cziszar–Kullback–Pinsker inequality 
(see [13, Theorem 3.1 and Section 4]), we have

t∫
0

(∫∫ ∣∣f ε
e − nε

eM
∣∣dvdx

)2

ds ≤ 2 sup
[0,T )

(∫
nε

edx

) t∫
0

∫∫
f ε

e ln

(
f ε

e

nε
eM

)
dvdxds

≤ C(T )ε2,

which yields the L2(0, T ; L1
x,v) convergence hence the expected result. �

The results of Lemma 4.1 are not sufficient to take limits in equations. We need to gain strong 
compactness to deal with non-linear terms. While there is no hope of doing so with the distri-
bution functions, the particular averaging properties of Vlasov type equations allows us to get 
additional compactness results in space on the macroscopic densities. Indeed, by the disper-
sion property of the v · ∇x transport operator, one gains regularity on velocity averages of the 
distribution function. Besides, time compactness stems from the continuity equations (3.1) and 
the uniform bounds on current densities. We shall apply the following averaging lemma that is 
adapted from the famous DiPerna and Lions results in [23].

Lemma 4.2. Let (hε)ε be a bounded sequence in L2(0, T ; L2
x(L

2
loc,v)) satisfying in the sense of 

distributions

ε∂th
ε + v · ∇xh

ε = hε
0 + ∇v · hε

1

where 
(
hε

0

)
ε
, 
(
hε

1

)
ε

are bounded sequences in L1(0, T ; L1
x(L

1
loc,v)). Then for all ψ ∈ D(R3),

∥∥∥∥
∫

(τyh
ε − hε)ψdv

∥∥∥∥
L1(0,T ;L1

x )

→ 0

when y → 0 uniformly in ε, where τy is the translation of vector y in the x variable.

Proof. We refer to [37, Appendix 2] for a proof. �
Let us highlight that the following result is crucial to the rest of the proof of Theorem 1.6 and 

that in particular, point (b) in Proposition 4.3 depends upon the control of the magnetic leading 
term of the equation by the entropy dissipation.

Proposition 4.3. Families of physical solutions of (1.3) satisfy the following strong compactness 
properties

(a) (∇xφ
ε)ε is relatively compact in L2(0, T ; Lp

loc,x) for 1 ≤ p < 2,

(b)
(
nε

e

)
is relatively compact in L1([0, T ) ×R

3).

ε
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Proof. The result of (a) stems from applying the Aubin–Lions–Simon lemma [45, Theorem 5, 
Corollary 4] to the family of electric fields and the proof can be readily adapted from [37, Propo-
sition 3.3 3)].

(b) Let us define

βδ : u �→ u

1 + δu
.

There exits Cδ > 0 such that, for all u ≥ 0

βδ(u) ≤ min(
1

δ
,u), (1 + √

u)|β ′
δ(u)| ≤ 1 + 1√

δ
, |uβ ′′

δ (u)| ≤ 1

2
.

In particular, one checks that βδ satisfies the requirements of a renormalization function for 
the Vlasov–Fokker–Planck equation and hence (1.7) holds. Now set

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hε = βδ(f
ε
e )

hε
0 = −∇vf

ε
e · vf ε

e + ∇vf
ε
e

ε
β ′′

δ (f ε
e ) + 1

ε
(v ∧ B) · ∇v(βδ(f

ε
e ))

hε
1 = −∇xφ

εβδ(f
ε
e ) + vf ε

e + ∇vf
ε
e

ε
β ′

δ(f
ε
e )

With the estimates of Proposition 3.3, one can show that the sequences (hε)ε , 
(
hε

0

)
ε

and 
(
hε

1

)
ε

satisfy the hypotheses of Lemma 4.2. We refer to [25, Proposition 6.1] for the details. In our case, 
we additionally need to check that the magnetic field term satisfies the L1 bound. Indeed, using 
that (v ∧ B) · v = 0, we have

∥∥∥∥1

ε
(v ∧ B) · ∇v(βδ(f

ε
e ))

∥∥∥∥
L1(0,T ;L1

x,v)

=
∥∥∥∥(v ∧ B)

√
f ε

e · 1

ε
(2∇v

√
f ε

e + v
√

f ε
e )β ′

δ(f
ε
e )

∥∥∥∥
L1(0,T ;L1

x,v)

≤ √
T ‖B‖L∞(0,T ;L∞

x )

∥∥∥|v|2f ε
e

∥∥∥
L∞(0,T ;L1

x,v)

∥∥∥∥∥vf ε
e + ∇vf

ε
e

ε
√

f ε
e

∥∥∥∥∥
L2(0,T ;L2

x,v)

∥∥β ′
δ(f

ε
e )

∥∥
L∞(0,T ;L∞

x,v)
.

Then for any fixed δ and any ψ ∈D(R3)

∥∥∥∥
∫

(τyβδ(f
ε
e ) − βδ(f

ε
e ))ψdv

∥∥∥∥
L1(0,T ;L1

x)

→ 0 (4.3)

when y → 0 uniformly in ε. The L∞(0, T ; L1((1 +|v|2)dvdx) uniform bound on f ε
e from (3.4)

and (3.9) allows us to extend this to ψ(v) ≡ 1. Now, we can also take the limit δ → 0 uniformly 
in ε, using the equi-integrability of the family (f ε

e )ε . Indeed, since, for any u > 0

0 ≤ βδ(u) ≤ u and |βδ(u) − u| ≤ δu2,
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one has

‖f ε
e − βδ(f

ε
e )‖L1([0,T )×R6 ≤ 2

T∫
0

∫∫
f ε

e >M

f ε
e dvdxdt + δ

T∫
0

∫∫
{f ε

e <M}
|f ε

e |2dvdxdt (4.4)

for an arbitrary M > 0. The first term is O(1/ ln(|M|)) because of the uniform bound on the 
entropy Sε

e . Using the uniform bound on the mass, the second term is seen to be O(δM). Take 
M = δ−1/2 to conclude. Therefore, using (4.3) and (4.4), one has∥∥τyn

ε
e − nε

e

∥∥
L1(0,T ;L1

x)
→ 0

when y → 0 uniformly in ε.
Finally, using the continuity equation (3.1), we get a L1(0, T ; W−1,1

x ) bound on ∂tn
ε
e . With 

the uniform L1((1 + |x|)dxdt) estimate (3.6) on nε
e , this gives the relative compactness of the 

sequence. �
Using the results of Lemma 4.1 and Proposition 4.3, we get the following strong convergence 

results concerning the macroscopic density of electrons.

Lemma 4.4. The families of physical solutions of (1.3) satisfy the following properties, up to the 
extraction of a subsequence. There exists ne ∈ L1([0, T ) ×R

3) such that when ε → 0

(a) nε
e → ne in L1(0, T ; L1

x),

(b)
√

nε
e → √

ne in L2(0, T ; L2
x),

(c) f ε
e → neM in L1(0, T ; L1

x,v),

(d) θε,λ = √
f ε

e + λM → √
ne + λ

√
M in L2(0, T ; L2

x,v),

(e) M
θε,λ

→
√

M√
ne+λ

in L2(0, T ; L2
x,v),

(f)
√

nε
eM

θε,λ
→

√
neM√
ne+λ

in L2(0, T ; L2
x,v),

for any λ > 0.

Proof. Properties (a, b, c, d) are straightforward consequences of Lemma 4.1 (c) and Proposi-
tion 4.3 (b). The last two assertions follow from (b), (d) and the L∞ bounds on 

√
M/θε,λ and √

ne/
√

ne + λ. �
5. Taking limits in equation (1.8)

Using the previous compactness results, we can readily take limits in weak formulations of 
the Vlasov equation for ions in (1.3), the continuity equation for electrons (3.1), and the Poisson 
equation in (1.3).

Lemma 5.1. The limits ne ∈ L1([0, T ) × R
3), fi ∈ L∞(0, T ; L1

x,v ∩ L∞
x,v) and ∇xφ ∈

L∞(0, T ; L2
x) defined respectively in Lemma 4.4, (4.1) and (4.2) satisfy in the sense of dis-

tributions,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tfi + v · ∇xfi − ∇xφ · ∇vfi + (v ∧ B) · ∇vfi = 0,

∂tne + ∇x · je = 0,

− �xφ = ni − ne,

nα =
∫

fαdv, ∀α ∈ {i, e},

for any accumulation point je of the family (jε
e )ε .

At this point, we do not know much on limits1 of the electron current density jε
e . Our goal is 

now to characterize them. Let us introduce,

rε
e = 1

ε
√

M
(
√

f ε
e − √

nε
eM), (5.1)

and

Rε
e = 1

2ε
(f ε

e − nε
eM) (5.2)

so that the distribution function of electrons may be written as

f ε
e = nε

eM + 2εrε
e

√
nε

eM + ε2|rε
e |2M

= nε
eM + 2εRε

e . (5.3)

With this in hands, one writes the electron current density as

jε
e = 2

√
nε

e

∫
rε
e Mvdv + ε

∫
|rε

e |2Mvdv

As in [25,24], we aim at taking the limit ε → 0 on the latter and characterize the limit current. 
We first gather some useful estimates on rε

e .

Proposition 5.2. Let (f ε
e )ε be the electron distribution functions of a family of physical solutions 

of (1.3) and define rε
e by (5.1). Then, the following uniform estimates hold

(a) (rε
e )ε is bounded in L2(0, T ; L2(Mdvdx)),

(b) (ε|rε
e |2|v|2M)ε is bounded in L1(0, T ; L1

x,v),

(c) (
√

ε|rε
e |2|v|M)ε is bounded in L1(0, T ; L1

x,v),

(d) (∇vr
ε
e )ε is bounded in L2(0, T ; L2(Mdvdx)).

1 From estimate (3.3), we only know a priori that, up to the extraction of a subsequence, (jε
e )ε converges to a finite 

Radon measure for the weak star topology.
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Proof. Properties (a, b, c) can be readily adapted from [25, Proposition 5.5].

(d) From the definition of rε
e stems

T∫
0

∫∫
|∇vr

ε
e |2Mdvdxdt = 1

ε2

T∫
0

∫∫ ∣∣∣∣∣∇v

√
f ε

e

M

∣∣∣∣∣
2

Mdvdxdt.

The right-hand side is uniformly bounded thanks to estimate (3.9) on the entropy dissipation. �
From now on we consider a subsequence of a family of physical solutions of (1.3) such that 

all convergence properties following from the previous compactness results hold. Let us denote 
by re the weak L2(0, T ; L2(Mdvdx)) limit of 

(
rε
e

)
ε
.

Lemma 5.3. When ε → 0, the family 
(
jε
e

)
ε

satisfies

jε
e → je := 2

√
ne

∫
revMdv weakly in L1(0, T ;L1

x).

Proof. Take the limit in the following expression, coming from (5.3),

jε
e = 2

√
nε

e

∫
vrε

e Mdv + ε

∫
v|rε

e |2Mdv. (5.4)

The first term in the right-hand side converges weakly in L1(0, T ; L1
x,v). Indeed,

√
nε

e → √
ne strongly in L2(0, T ;L2

x),

and since rε
e → re weakly in L2(0, T ; L2(Mdvdx)) and (t, v) �→ v ∈ L2(0, T ; L2(Mdv))

∫
vrε

e Mdv →
∫

vreMdv weakly in L2(0, T ;L2
x).

The second term in the right-hand side of (5.4) goes to 0 in L1(0, T ; L1
x) since we know from 

Proposition 5.2 (c) that (
√

ε|rε
e |2|v|M)ε is bounded in L1(0, T ; L1

x,v). �
Now we focus on the limit of equation (1.8) from Definition 1.1 to derive the last pieces 

of information we need to characterize the limit of the current density je. To do so, we intro-
duce elements of notation associated with the operator LA. We denote by L2

M the Hilbert space 
L2(R3, M−1dv) endowed with the scalar product

〈f,g〉 =
∫
R3

fgM−1dv.

Almost everywhere in t, x,

LA : f �→ ∇v · (A(t, x)vf + ∇vf ) = ∇v · (vf + ∇vf ) + (v ∧ B(t, x)) · ∇vf
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is an unbounded operator on L2
M . On

LA(f ) = ∇v · (M∇v

(
f

M

)
) + (v ∧ B) · ∇v

(
f√
M

)√
M, (5.5)

one sees that the formal adjoint of LA in L2
M is given by

L∗
A(f ) = ∇v · (vf + ∇vf ) − (v ∧ B) · ∇vf = ∇v · (A	vf + ∇vf ) = LA	(f ). (5.6)

Proposition 5.4. The limit density ne and electric field −∇xφ are such that (∇x
√

ne −
1
2∇xφ

√
ne) ∈ L2(0, T ; L2

x). Moreover the limit electron current density je satisfies in the sense 
of distributions

je = −2
√

neA
−1(∇x

√
ne − 1

2
∇xφ

√
ne).

Proof. We know from Lemma 5.3 that

je = 2
√

ne

∫
revMdv.

We will now take the limit in the renormalized equation (1.8) in order to get an additional equa-
tion characterizing re. Let us recall that (1.8) reads

ε∂t θε,λ + v · ∇xθε,λ + ∇xφ
ε · ∇vθε,λ = 1

2εθε,λ

LA(f ε
e ) − λM

2θε,λ

v · ∇xφ
ε.

By the strong convergence of θε,λ from Lemma 4.4 (d) and the weak convergence of ∇xφ
ε from 

(4.2), the left-hand side of equation (1.8) converges to

∇x · (v√
(ne + λ)M) + ∇v · (∇xφ

√
(ne + λ)M)

= v
√

M · (∇x

√
ne + λ − 1

2
∇xφ

√
ne + λ).

The first term of the right-hand side of the renormalized equation (1.8) may be written, using 
(5.2) and the fact that M ∈ KerLA, as

1

2εθε,λ

LA(f ε
e ) = 1

θε,λ

LA(Rε
e ). (5.7)

Now, for any ϕ ∈D([0, T ) ×R
6), one has

I ε =
T∫

0

∫∫
1

θε,λ

LA(Rε
e )ϕdvdxdt := I ε

1 + I ε
2 + I ε

3 ,

with
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I ε
1 :=

T∫
0

∫∫
ϕM

θε,λ

(v ∧ B) · ∇v

(
Rε

e

M

)
dvdxdt,

I ε
2 := −

T∫
0

∫∫ √
M

θε,λ

∇v

(
Rε

e

M

)
· ∇v

(
ϕ√
M

)
Mdvdxdt,

I ε
3 := −

T∫
0

∫∫
∇v

(
Rε

e

M

)
· ∇v

(√
M

θε,λ

)
ϕ
√

Mdvdxdt,

where we have performed an integration by part on the Fokker–Planck part of the operator LA

defined in (5.5) to obtain I ε
2 and I ε

3 . Mark that

∇v

(√
M

θε,λ

)
= −1

2

∇v

(
f ε

e

M

)
(

f ε
e

M
+ λ

)3/2

so that using the definition of Rε
e in (5.2), one has, for some constant C(T ),

|I ε
3 | ≤ 1

ε

T∫
0

∫∫
M

∣∣∣∣∣∇v

√
f ε

e

M

∣∣∣∣∣
2

dvdxdt

∥∥∥∥∥ f ε
e

θ2
ε,λ

∥∥∥∥∥
L∞(0,T ;L∞

x,v)

∥∥∥∥ ϕ

θε,λ

∥∥∥∥
L∞(0,T ;L∞

x,v)

≤ C(T )ε,

by the control on the free energy dissipation provided by estimate (3.9). Hence I ε
3 goes to 0. To 

handle I ε
1 and I ε

2 , we decompose Rε
e according to,

Rε
e

M
= √

nε
er

ε
e + ε

2
|rε

e |2

Doing so, the contribution of the magnetic field becomes

I ε
1 =

T∫
0

∫∫ (√
nε

eM

θε,λ

−
√

neM√
ne + λ

)
ϕ(v ∧ B) · ∇vr

ε
e dvdxdt

−
T∫

0

∫∫ √
ne√

ne + λ
rε
e

√
M(v ∧ B) · ∇vϕdvdxdt

+ ε

T∫
0

∫∫
ϕ

θε,λ

(v ∧ B) · ∇vr
ε
e

√
Mrε

e

√
Mdvdxdt,

after an integration by parts in the second term. The first and third terms of the right-hand side 
go to zero by Lemma 4.4 (f) and 5.2 (a), (d). Therefore
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I ε
1 −→ −

T∫
0

∫∫ √
ne√

ne + λ
re

√
M(v ∧ B) · ∇vϕdvdxdt

=
T∫

0

∫∫ √
ne√

ne + λ
√

M
(v ∧ B) · ∇v(reM)ϕdvdxdt

The contribution of the Fokker–Planck part may be written as

I ε
2 = −

T∫
0

∫∫ (√
nε

eM

θε,λ

−
√

neM√
ne + λ

)√
M∇vr

ε
e · ∇v

(
ϕ√
M

)
dvdxdt

+
T∫

0

∫∫ √
ne√

ne + λ
rε
e ∇v ·

(
M∇v

(
ϕ√
M

))
dvdxdt

− ε

T∫
0

∫∫ √
M

θε,λ

√
Mrε

e

√
M∇vr

ε
e · ∇v

(
ϕ√
M

)
dvdxdt.

As for I ε
1 , the first and third terms go to 0 and therefore

I ε
2 −→

T∫
0

∫∫ √
ne√

ne + λ
√

M
∇v · (M∇v (re)) ϕdvdxdt

We eventually showed that, in the sense of distributions

1

2εθε,λ

LA(f ε
e ) −→

√
ne√

ne + λ
√

M
LA(reM) (5.8)

The convergence of the second term of the right-hand side of the renormalized equation (1.8)
stems from the strong convergence of M/θε,λ from Lemma 4.4 and the weak convergence of 
∇xφ

ε from (4.2). Finally, we receive for any λ > 0

v
√

M ·
(

∇x

√
ne + λ − 1

2
∇xφ

√
ne + λ

)

=
√

ne√
(ne + λ)M

LA(reM) − λM

2
√

(ne + λ)M
v · ∇xφ.

By dominated convergence, one may take the limit λ → 0 to obtain

vM · (∇x

√
ne − 1∇xφ

√
ne) = LA(reM)
2
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in the sense of distributions. Since the left-hand side of the former equality is rapidly decaying in 
v, one may actually multiply the previous equation by v and integrate in the v variable to derive 
in the sense of distributions

(∇x

√
ne − 1

2
∇xφ

√
ne) =

∫
vLA(reM)dv

=
∫

L∗
A(vM)redv

=
∫

[LI (vM) − (v ∧ B) · ∇v(vM)] redv

=
∫

−(v + (v ∧ B))reMdv = −A

∫
revMdv.

Since A(t, x) is invertible one gets the result by combining this identity with the expression of 
je from Lemma 5.3. �
6. Regularity of the limit

Let us summarize what we have proved so far. The triplet (fi, ∇xφ, ne) ∈ L∞(0, T ; L1
x,v ∩

L∞
x,v) × L∞(0, T ; L2

x) × L1(0, T ; L1
x) is such that in the sense of distributions

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tfi + v · ∇xfi − ∇xφ · ∇vfi + (v ∧ B) · ∇vfi = 0,

∂tne + ∇x · je = 0,

(∇x

√
ne − 1

2
∇xφ

√
ne) ∈ L2(0, T ,L2

x)

je = −2
√

neA
−1(∇x

√
ne − 1

2
∇xφ

√
ne)

− �xφ = ni − ne,

with initial data

fi(0, ·, ·) = f in
i and ne(0, ·, ·) =

∫
f in

e dv =: nin
e .

Note that because of uniform bounds on (∂tn
ε
e)ε in L1(0, T ; W−1,1

x ) and on (∂tf
ε
i )ε in 

L1(0, T ; W−1,1
x,v ), we get that, by the Arzela–Ascoli theorem, the limit functions t �→ ∫

neϕdx

and t �→ ∫
fiψdvdx are continuous on [0, T ) for any test functions ϕ and ψ . Thus, we do recover 

the above initial conditions for the limit system. On the other hand, usual arguments based on the 
convexity and lower semi-continuity of the energy and entropy functionals and corresponding 
uniform estimates prove the boundedness of the following quantities, uniformly in t ∈ [0, T )

∫
ne| lnne|dx +

∫
|x|nedx +

∫∫
(|v|2 + |x|)fidvdx ≤ C(T )∫∫

fi | lnfi |dvdx ≤ ‖f in
i lnf in

i ‖L1
x,v
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for some positive constant C(T ). Furthermore, the following mass estimates and global neutrality 
result hold uniformly in t ∈ [0, T )

‖ne‖L1
x
= ‖fi‖L1

x,v
= ‖f in

e ‖L1
x,v

= ‖f in
i ‖L1

x,v
. (6.1)

‖fi‖L
p
x,v

≤ ‖f in
i ‖L

p
x,v

for p ∈ (1,+∞] (6.2)

Equality is verified for the mass estimate thanks to the tightness of the distribution functions 
that comes from the control of space and velocity moments.

The classical moment lemma [29, Lemma 3.1] shows that, by the boundedness of fi in 
L∞(0, T ; L1((1 + |v|2)dvdx) ∩ L∞

x,v), the limit macroscopic ion density has the regularity

ni ∈ L∞(0, T ;L5/3
x ). (6.3)

We may gain some additional regularity on ne using the particular structure of the limit sys-
tem. The procedure we set up is a generalization of Lemma 7.1 in [37]. Here the situation is 
trickier because the ion background ni is not regular enough to reach directly an L2 regularity 
in space for ne in order for the product ne∇xφ to make sense. However one may first gain some 
regularity and conclude by a bootstrap argument in Lemma 6.2.

Lemma 6.1. Let ne ∈ L1([0, T ) ×R
d) be a non-negative function that satisfies

∇x

√
ne + 1

2
E

√
ne = G, (6.4)

∇x · E = ni − ne (6.5)

in the sense of distributions, where G ∈ L2([0, T ) × R
d), E ∈ L2([0, T ) × R

d) and ni ∈
D′([0, T ) ×R

d). Then, for any p ∈ [1, 2] it holds

ni ∈ Lp([0, T ) ×R
d) =⇒ ne ∈ Lp([0, T ) ×R

d)

Proof. Let p ∈ (1, 2]. The first step of the proof is the renormalization of equation (6.4). We 
define hereafter the particular renormalization function we use and which is built to recover in 
the end an Lp bound on ne. Let us define γ ∈ C∞(R+) such that γ (s) = s on [0, 1], γ (s) = 2 for 
s > 3 and 0 ≤ γ ′ ≤ 1. Now set, for δ ∈ (0, 1],

γδ(s) = 1

p − 1

(
1

δ
γ (δs) + 1

)p−1

and γ ′
δ(s) = γ ′(δs)

(
1

δ
γ (δs) + 1

)p−2

.

The derivative of the renormalization function satisfies

∣∣γ ′
δ(s)

∣∣ ≤ 1 and
∣∣sγ ′

δ(s)
∣∣ ≤ 3

δ
. (6.6)

Equation (6.4) implies that ∇x
√

ne ∈ L1
loc([0, T ) × R

d). Let us renormalize equation (6.4) by 
multiplying it by γ ′(√ne)
δ
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∇xγδ(
√

ne) + 1

2
E

√
neγ

′
δ(

√
ne) = Gγ ′

δ(
√

ne).

One can check with (6.6) that every term is square integrable. By taking the L2 norm of the 
equation and expanding we obtain

‖∇xγδ(
√

ne)‖2
L2 + 1

4
‖E√

neγ
′
δ(

√
ne)‖2

L2

+
∫∫

∇xγδ(
√

ne) · E√
neγ

′
δ(

√
ne)dxdt ≤ ‖G‖2

L2 . (6.7)

We want to rewrite the third term as the scalar product of E with a gradient in order to use (6.5). 
Let us define

γ̃δ(s) =
s∫

0

(γ ′
δ(u))2udu. (6.8)

Using (6.8) in the third term of (6.7) and dropping the first two non-negative terms yields

∫∫
E · ∇x γ̃δ(

√
ne)dxdt ≤ ‖G‖2

L2 .

By using equation (6.5), one gets after integrating by parts

∫∫
γ̃δ(

√
ne) (ne − ni) ≤ ‖G‖2

L2 . (6.9)

Let us estimate γ̃δ(
√

ne). For s ∈ [0, 1/δ], one obtains

γ̃δ(s) =
s∫

0

u(u + 1)2p−4du ≤
s∫

0

u2p−3du = s2p−2

2p − 2
,

and

γ̃δ(s) =

⎧⎪⎪⎨
⎪⎪⎩

(s + 1)2p−2 − 1

2p − 2
− (s + 1)2p−3 − 1

2p − 3
if p �= 3

2
,

s − ln(s + 1) if p = 3

2
.

Then, one readily checks that for any p ∈ (1, 2] there exists C1 > 0 such that for any δ ∈ (0, 1]
and s < 1

δ
it holds

γ̃δ(s) ≥ 1

4
s2p−2 − C1

For s > 1/δ, there exists C2 > 0 depending only on p such that
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γ̃δ(s) ≤ γ̃δ(3/δ) ≤
(

1

δ

)2p−2 3∫
0

γ (u)2p−4udu = C2s
2p−2

This provides the following estimates, for any s ≥ 0 and C = max(C1, C2, 1/(2p − 2))

(
1

4
s2p−2 − C

)
1{s≤1/δ}(s) ≤ γ̃δ(s) ≤ Cs2p−2, ∀s ≥ 0. (6.10)

We now use estimate (6.10) in (6.9). First we get rid of the part involving the ion density ni . 
Using Young’s inequality, for any η > 0 there exists some constant Cη > 0 such that

∫∫
γ̃δ(

√
ne)ni ≤ Cη‖ni‖p

Lp + η

∫∫ (
γ̃δ(

√
ne)

) p
p−1 dxdt.

≤ Cη‖ni‖p
Lp + C

1
p−1 η

∫∫
neγ̃δ(

√
ne)dxdt

where we used estimate (6.10) in the second inequality. On the other hand, we have

∫∫
neγ̃δ(

√
ne)dxdt ≥ 1

4

∫∫
{ne≤1/δ2}

n
p
e dxdt − C‖ne‖L1 .

As a result, by taking η sufficiently small, one gets

0 ≤
∫∫

n
p
e 1{ne≤1/δ2}dxdt ≤ C(‖G‖L2 ,‖ni‖Lp ,‖ne‖L1),

uniformly in δ. Taking the monotone limit δ → 0 concludes the proof. �
The regularity of ne that one may establish by the previous proof is limited by the regularity 

of ni . Nevertheless the available regularity of ni is sufficient to provide us with a termwise sense 
for je .

Lemma 6.2. Limiting densities of families of physical solutions satisfy ∇xφ
√

ne ∈ L1(0, T ;
L2

loc,x), 
√

ne ∈ L1(0, T ; H 1
loc,x) and in the sense of distributions

je = −D(∇xne − ∇xφne),

where we recall that D = A−1.

Proof. First by an application of Lemma 6.1 with p = 5/3, we show that the source n in the 
Poisson equation −�xφ = ni − ne =: n lies in L5/3(0, T ; L5/3

x ) ∩ L∞(0, T ; L1
x) and there-

fore, with an L∞(0, T ; L2
x) electric field, it yields ∇xφ = ∇x� ∗x n. Thus, by the Hardy–

Littlewood–Sobolev inequality, ∇xφ ∈ L5/3(0, T ; L15/4
x ). Hence, by the Hölder inequality, the 

product ∇xφ
√

ne is in L10/9(0, T ; L30/17
x ) and since
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∇x

√
ne + 1

2
E

√
ne ∈ L2([0, T ) ×R

3),

this yields 
√

ne ∈ L10/9(0, T ; W 1,30/17
loc,x ). By Sobolev embedding this gives at least 

√
ne ∈

L1(0, T ; L4
loc,x) and since ∇xφ ∈ L∞(0, T ; L2

x), the product ∇xφ
√

ne belongs to L1(0, T ; L2
loc,x)

which yields the results. �
This completes the proof of Theorem 1.6.
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