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Abstract

In this paper, we mainly investigate the weak solutions of the three-dimensional incompressible Euler 
equations with helical symmetry in the whole space when the helical swirl vanishes. Specifically, we es-
tablish the global existence of weak solutions when the initial vorticity lies in L1 ∩ Lp with p > 1. Our 
result extends the previous work [2], where the initial vorticity is compactly supported and belongs to Lp

with p > 4/3. The key ingredient in this paper involves the explicit analysis of Biot–Savart law with helical 
symmetry in domain R2 × [−π, π ] via the theories of singular integral operators and second order elliptic 
equations.
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1. Introduction

The three-dimensional unsteady incompressible Euler equations read as

{
∂tu + u · ∇u + ∇p = 0,

divu = 0,
(1.1)

for (t, x) ∈ R
+×R

3, where the unknowns u = (u1, u2, u3) and p = p(t, x) represent the velocity 
fields and the pressure of the fluid, respectively. The corresponding vorticity, ω = curlu satisfies 
the equation

∂tω + (u · ∇)ω = (ω · ∇)u. (1.2)

As is well known, the global existence of weak solutions to the three-dimensional Euler equa-
tions remains an open problem due to the strong nonlinearity of the vortex stretching term 
(ω · ∇)u in (1.2) in contrast to the global well-posedness of the two-dimensional equations 
when the vortex stretching term vanishes. In fact, there are a number of literatures about global 
well-posedness results of the two-dimensional incompressible Euler equations when the initial 
vorticity ω0 lies in various function spaces (see [22] and references therein). Specifically, when 
ω0 ∈ L1 ∩ L∞, Yudovich [26] proved the global existence and uniqueness of weak solutions. 
Later, the result was improved by Vishik [24] and Yudovich [27] with ω0 in a class slightly 
larger than L∞. If ω0 lies in L1 ∩ Lp with p > 1, the global existence result was proved by 
Diperna–Majda [6]. When ω0 is a finite Radon measure with one sign, the global existence re-
sult was studied by Delort [5], Majda [21], Evans–Müller [9] and Liu–Xin [18] via different 
approaches.

However, when it comes to the three-dimensional case, local well-posedness of classical solu-
tions as studied in [22]. Some global well-posedness results were established when considering 
periodic domains or the solution with some symmetric property. When the domains are periodic, 
recently, based on the method introduced in [16,17], Szekelyhidi [23] and Wiedemann [25] con-
structed the global admissible and L2 weak solutions respectively. If the flow is axisymmetric 
and the swirl component of velocity fields vanishes, the global well-posedness results similar 
to two-dimensional case were extensively studied (see [3,4,13–15,22] and references therein). 
If the swirl component appears, the global well-posedness issue is still open except [11] for 
Navier–Stokes equations with a class of large data.

Another attractive issue for global well-posedness issue in three-dimensional flow is helically 
symmetric case, which means that the flow is invariant under a superposition of a rotation around 
a fixed axis and a simultaneous translation along the rotation axis directions respectively (see 
Section 2 for more details). Under this situation, when the helical swirl vanishes (see (2.12)
below) and x′ lies in bounded domains, the global well-posedness results for smooth/strong so-
lutions corresponding to the initial regular velocity filed/bounded vorticity had been established 
respectively by Dutrifoy [7] and Ettinger–Titi [8]. For the whole space case, when the third com-
ponent ω0 of initial vorticity is compactly supported and belongs to Lp with p > 4

3 , the global 
weak solutions were obtained by Bronzi–Lopes–Lopes in [2]. In addition, to our best knowledge, 
there is no any global well-posedness result when the helical swirl exists in three-dimensional 
case. Along this line, the vanishing viscosity limit for the three-dimensional helically symmetric 
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Navier–Stokes equations has been studied in [12] and the global well-posedness results of the 
Navier–Stokes equations with helical symmetry can be referred to [20].

In this paper we will focus on the global existence of weak solutions to the three-dimensional 
Euler equations with helical symmetry in the whole space when the helical swirl vanishes and 
the initial vorticity belongs to L1 ∩ Lp, p > 1. The motivation comes from the following facts. 
On the one hand, we recall that the helical flow is more close to two-dimensional flow instead of 
three-dimensional flow in some sense (see Lemma 2.1, [19]). On the other hand, as mentioned 
in [22], the global existence of classical weak solutions to Euler equations heavily relies on the 
uniform Lp-estimate of the vorticity, which inherits from the regularity of the initial vorticity. By 
virtue of the compactness method, it is possible to prove the desired result. It is well-known that 
the crucial value of index p is 1 when W 1,p ↪→ L2 compactly in two-dimensional case. There-
fore, we naturally expect to prove the existence of global weak solutions with initial vorticity in 
L1 ∩ Lp, p > 1, which extends the result of [2].

However, the new challenge arises due to the gap between the a priori W 1,p-estimate of the 
velocity fields and the Lp-estimate of its vorticity. One of the useful tools to overcome the gap 
is the Biot–Savart law, which indicates the relation between the velocity fields and its corre-
sponding vorticity, as stated in [22]. But the story becomes more subtle in helically symmetric 
case in comparison with the classical one in Rn, where n = 2, 3 (see [22] for example). Roughly 
speaking, the Biot–Savart law with helical symmetry is related to a Green function split into 
two parts: the first part is same to the classical two-dimensional kernel and the second one is 
a Fourier series along the periodic direction, which delivers the difficulties to occupy the esti-
mates of the velocity fields and especially its gradient. One of the new ingredients in the paper 
is the W 2,p-theory of second order elliptic equations as well as the techniques of the singular 
integral operator in [2], which give more information about a priori estimates of the gradient of 
the velocity fields.

Meanwhile, the other difficulty of this paper lies in the L2 estimate of the velocity fields itself. 
It should be noted that in two-dimensional flow, to guarantee that the energy of the velocity 
field is finite (

∫
R2 |u|2dx < ∞), the velocity must satisfy the strong restriction that 

∫
R2 ωdx = 0

because the decay behavior of the two-dimensional kernel at infinity is like 1
r
, which is not 

square integrable (see Proposition 2.3 of [22]). The standard strategy to explore the difficulty is 
to decompose the velocity fields into an explicit and steady solution, which is constructed by 
the average of vorticity [6,22] and the other part, which is recovered from the vorticity with the 
zero average by classical Biot–Savart law. In this paper, we obtain a L2

loc estimate instead of L2

one of the velocity fields, which is enough to prove the global existence of weak solutions. To 
do that, we verify rigorously the behaviors of the velocity field and its gradient at infinity when 
the corresponding initial vorticity belongs to L1 ∩ Lp (p > 1). In other words, we establish the 
global existence of weak solutions u ∈ L2

loc to the three-dimensional Euler equations with helical 
symmetry directly, avoiding constructing steady helical solutions in comparison to [2] and [22], 
which is another new ingredient in this paper.

The paper is organized as follows. In Section 2, we introduce the mathematical preliminaries 
of helical flow and our main theorem. In Section 3, we make a rigorous analysis of the Biot–
Savart law and obtain the required Lp (p > 1) estimates of the velocity fields and its gradient. 
Furthermore, the construction of the approximate solutions and the proof of the main theorem 
will be stated in Section 4. In Appendix A, two elementary lemmas related to the Biot–Savart law 
are presented. In addition, we establish a key estimate associated with two-dimensional singular 
integral operator in Appendix B.
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2. Mathematical preliminaries and main result

Helical flow means that the flow keeps invariant under a superposition of a rotation around 
the x3-axis and a translation along the rotation axis at the same time. More precisely, let Gk be a 
one-parameter group of isometrics of R3, defined by

Gκ = {Sκ
θ :R3 −→R

3|θ ∈R}, (2.1)

where

Sκ
θ (x) =

⎛⎝ x1 cos θ + x2 sin θ

−x1 sin θ + x2 cos θ

x3 + κθ

⎞⎠ , (2.2)

and κ is a fixed nonzero constant. Then a helical function and a helical vector field are defined 
respectively as follows [8].

Definition 2.1 (Helical function). A scalar function f : R3 −→ R is helical if

f (Sκ
θ (x)) = f (x), ∀ θ ∈R. (2.3)

Namely, it is invariant under the action of Gκ .

Definition 2.2 (Helical vector field). The vector field v : R3 −→ R
3 is helical, if

v(Sκ
θ (x)) = Rθv(x), ∀ θ ∈R, (2.4)

where

Rθ(x) =
⎛⎝ x1 cos θ + x2 sin θ

−x1 sin θ + x2 cos θ

x3

⎞⎠ . (2.5)

It should be noted that Sκ
2π has a translation by 2πκ along x3-direction from (2.3) and (2.4), 

which implies that helical symmetry naturally inherits a periodic boundary condition in the 
x3-direction with period 2πκ . Consequently, to deal with the helical flow in R3, we essentially 
discuss with the flow defined on domain R2 × [−κπ, κπ] with a periodic boundary condition in 
x3-direction. Without loss of generality, we take κ ≡ 1 and S1

θ = Sθ throughout the rest paper. 
Therefore, the effective domain presented in the paper is R2 × [−π, π] instead of R3. In addi-
tion, we denote by Lp

per(R
2 ×[−π, π]) or Lp

per([−π, π]; Lp(R2)) the Lp norm of function f in 
R

2 × [−π, π] with periodicity in x3 direction. In particular, we denote by Lp
c,per(R

2 × [−π, π])
or Lp

per ([−π, π]; Lp
c (R2)) the Lp norm of function f with the compact support in R2 and peri-

odicity in x3-direction.
Now we give the equivalent definitions of a helical function and a helical vector field respec-

tively.
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Lemma 2.1. [Claim 2.3 of [8]] A continuously differentiable function f : R3 −→ R is helical if 
and only if

x2∂x1f − x1∂x2f + ∂x3f = ξ · ∇f = ∂ξf = 0 (2.6)

with ξ = (x2, −x1, 1)T , the tangential direction of the flow along the helices (2.2) at x =
(x1, x2, x3).

Lemma 2.2. [Claim 2.5 of [8]] A continuously differentiable vector field v = (v1, v2, v3)
T :

R
3 −→R

3 is helical if and only if it obeys the following relations

∂ξv1 = v2, (2.7)

∂ξv2 = −v1, (2.8)

∂ξv3 = 0. (2.9)

The following lemma tells that the helical flow can be essentially viewed as an extension of 
the two-dimensional one in some sense (see Lemma 2.1 of [19]), which makes it possible to 
improve the result of [2] to the two-dimensional case [6].

Lemma 2.3. Let v = v(x) (p = p(x)) be a smooth helical vector field (scalar function), then 
there exists a unique w = (w1, w2, w3)(y1, y2) (q = q(y1, y2)) such that

v(x) = (
Rx3 (w)

)
(y(x)), p = p(x) = q(y(x)), (2.10)

with

y(x) =
[

y1(x)

y2(x)

]
=

[
cosx3 − sinx3
sinx3 cosx3

][
x1
x2

]
. (2.11)

Conversely, if v and p are defined through (2.10) for some w = w(y1, y2) and q = q(y1, y2), 
then v is a helical vector field and p is a helical scalar function.

We define a function

η =: u · ξ = x2u1 − x1u2 + u3, (2.12)

called the helical swirl of the velocity field u, similar to the azimuthal component swirl of 
three-dimensional axisymmetric flow ([3,4,13] and references therein). By recalling that the as-
sumption of zero azimuthal component for the axisymmetric flows shows the vorticity stretching 
term vanishing in (1.2), we similarly introduce a geometric requirement that η ≡ 0, which means 
an orthogonality of the velocity fields to the symmetry lines of the group G1. It is remarkable 
that this constraint of zero helical swirl has also been adaptable in [2,7] and [8].

For a helical vector u, which is the solution of (1.1), the corresponding helical swirl η solves

∂tη + u · ∇η = 0. (2.13)
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Evidently, quantity η is conserved from (2.13). Furthermore, under the constraint that η = 0, 
vorticity ω of helical flow has some special form, which will be stated in the following.

Lemma 2.4. (see [8]) Let u be a C2 helical vector field with zero helical swirl, i.e., η = 0. Denote 
ω = ∇ × u = (ω1, ω2, ω3), the vorticity of u, then

ω = ω3ξ . (2.14)

Remark 2.1. Under the helically symmetric assumption, the vorticity equations (1.2) become

∂tω + (u · ∇)ω − ω3Ru = 0, (2.15)

where

R =
⎛⎝ 0 1 0

−1 0 0
0 0 0

⎞⎠ . (2.16)

In particular, the third component ω3 of the vorticity satisfies the scalar transport equation

∂tω3 + u · ∇ω3 = 0. (2.17)

Obviously, the vorticity stretching term in (2.17) vanishes.

Now we are ready to state the definition of weak solutions to the Euler equation, which will 
be helpful to introduce the main theorem.

Definition 2.3 (Weak solutions to the Euler equations). Given T > 0, a vector field u(t, x) ∈
L∞(0, T ; L2

loc,per (R
2 × [−π, π])) with initial data u0 ∈ L2

loc,per (R
2 × [−π, π]) is a weak solu-

tion of Euler equations (1.1) provided that
(i) For any vector field � = �(t, x) ∈ C∞

0 ([0, T ); C∞
0,per (R

2 × [−π, π])) with ∇ · � = 0,

T∫
0

∫
	

(u · �t + u ⊗ u : ∇�)dxdt =
∫
	

u0 · �(0, x)dx. (2.18)

(ii) For any φ ∈ C∞
0 ((0, T ); C∞

0,per (R
2 × [−π, π])),

T∫
0

∫
	

u · ∇φ dx = 0. (2.19)

Eventually, we are in the position to present the main result as follows.
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Theorem 2.5. Given a scalar helical function ω0 ∈ L1
per (R

2 × [−π, π]) ∩ L
p
per (R

2 × [−π, π])
with some p > 1, for any T > 0, there exist weak solutions u = u(t, x) ∈ L∞([0, T ]; W 1,p

loc (R2 ×
[−π, π])) to the three-dimensional Euler equations (1.1) with helical symmetry with the initial 
vorticity ω0 = ω0ξ in the sense of Definition 2.3. Moreover, u · ξ = 0.

3. Biot–Savart law

In this section, we intend to establish the explicit vorticity–velocity formula for the helical 
flow in R2 × [−π, π], which is usually called the Biot–Savart law. It is well known that in 
R

n (n = 2, 3), the velocity field u is represented by

u(x) =
∫
Rn

Kn(x − y)ω(y)dy, x ∈ R
n(n = 2,3), (3.1)

where the kernel K2(x) = 1

2π
(− x2

|x|2 , 
x1

|x|2 ) and K3(x)h = 1

4π

x × h

|x|3 , where h is a three-

dimensional vector. Furthermore, it holds that for ω ∈ Lp(Rn)

‖∇u‖Lp(Rn) ≤ C‖ω‖Lp(Rn), 1 < p < ∞. (3.2)

(3.1) and (3.2) are derived from the fact that the related div-curl problem can be converted into 
a second order elliptic equations via determined potential function with appropriate behavior at 
infinity [22].

When it comes to the helically symmetric case, the related kernel becomes more complicated 
to establish the vorticity–velocity estimate (3.2) in contrast to the whole space case. In addition, 
the loss of the Lp integrability of ω makes it impossible to directly arrive at the estimate of (3.2)
as a result of the special form that ω = ω3ξ with ω3 ∈ L1 ∩ Lp . Other than the result of [2], we 
have the new observation about the properties of the G1 (see (3.18) below) in this paper, which 
helps us to establish the Lp-estimate of the velocity and then obtain its related W 1,p-estimates 
(3.40) directly in virtue of the regularity theory of second order elliptic equations. Specifically, 
for the vorticity field ω = ω3ξ with the helical function

ω3 ∈ L
p
per ([−π,π];Lp(R2)) ∩ L1

per ([−π,π];L1(R2)),

we search for the corresponding helical velocity field u with u · ξ = 0, satisfying⎧⎪⎨⎪⎩
curlu = ω, divu = 0,

|u(x)| = o(|x ′|), as |x′| → ∞,

u(x′, x3 + 2π) = u(x′, x3),

(3.3)

where x′ = (x1, x2) and o(δ) means that o(δ)/δ → 0 when δ → ∞. Here we remark that the 
behavior of u at infinity in (3.3) gets involved in the helical symmetry of ω, which is also a 
different point from the classical case in Rn. For the classical case in Rn, if ω ∈ L1 ∩ Lp (1 <
p < ∞), u converges to zero at infinity, and then the div-curl equation similar to (3.3) has a 
unique solution. In the helically symmetric case the vorticity has the special form of ω = ω3ξ . 
Then when ω3 ∈ Lp (p > 1) with compact support, the velocity field u decays like 1/|x′| when 
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|x′| → ∞ (see Remark 3.3). However, when ω3 ∈ L1 ∩ Lp without compact support and due to 
the special expressions (3.41) of u and ∇� (see (3.33) for example), the behavior of u in (3.3)
should be o(|x ′|) as |x′| → ∞ in our paper (see Lemma 3.3 for more details).

To solve (3.3), we first investigate an auxiliary problem for a given function f as⎧⎪⎨⎪⎩
−
ψ = f,

|∇ψ | → 0, as |x′| → ∞,

ψ(x′, x3 + 2π) = ψ(x).

(3.4)

Based on the theories of Fourier series and elliptic equations, we have the following lemma.

Lemma 3.1. Given f ∈ L1
per ([−π, π]; L1(R2)) ∩ L

p
per ([−π, π]; Lp(R2)) for any p > 1, the 

system (3.4) has a unique solution ψ (up to a constant), with the form

ψ = ψ0 + ψ1

=: − 1

2π

π∫
−π

∫
R2

ln |x′ − y′|f (y′, y3)dy′dy3

+ 1

π

∞∑
n=1

π∫
−π

∫
R2

K0(n|x′ − y′|) cos(n(x3 − y3))f (y′, y3)dy′dy3,

(3.5)

where K0(z) =
∞∫

0

cos(zt)√
1 + t2

dt (z > 0), the modified Bessel function of the second kind. Moreover, 

for 1 < r ≤ p

‖∇2ψ‖Lr
per ([−π,π];Lr (R2)) � ‖f ‖Lr

per ([−π,π];Lr (R2)), (3.6)

‖∇ψ‖L
p
per ([−π,π];Lq(R2)) � ‖f ‖L1

per ([−π,π];L1(R2)) + ‖f ‖L
p
per ([−π,π];Lp(R2)),

where q =

⎧⎪⎨⎪⎩
2p

2−p
1 < p < 2,

3p
3−p

2 ≤ p < 3,

p + 3, p ≥ 3.

Furthermore, here and in the following, “�” means less and 

equal C (a constant may dependent on p or q) times.

Proof. The proof is divided into three steps. Without loss of generality, we assume f ∈
C∞

c,per (R
2 × [−π, π]). For the general case, one can treat by the standard density argument.

Step 1. Existence of ψ .

First, we employ the Fourier series extension on the function f with respect to x3-variable

f (x) = f0(x
′) +

∞∑(
f 1

n (x′) cos(nx3) + f 2
n (x′) sin(nx3)

)
, (3.7)
n=1
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where

(
f0, f

1
n , f 2

n

)
(x′) = 1

π

π∫
−π

f (x′, x3)(1/2, cos(nx3), sin(nx3))dx3. (3.8)

Similarly, ψ could be extended as

ψ = ψ0 + ψ1 =: ψ0(x′) +
∞∑

n=1

(
ψ1

n(x′) cos(nx3) + ψ2
n(x′) sin(nx3)

)
, (3.9)

where ψ0 and ψi
n (i = 1, 2) satisfy

{−
x′ψ0 = f0(x
′),

∇x′ψ0 → 0 as |x′| → ∞,
(3.10)

and {−
x′ψi
n + n2ψi

n = f i
n(x′),

∇x′ψi
n → 0 as |x′| → ∞,

(3.11)

respectively.
Up to a constant, system (3.10) has a unique solution

ψ0(x′) = −
∫
R2

G0(x
′ − y′)f0(y

′)dy′, (3.12)

with G0(x
′) = 1

2π
ln |x′|, where G0(x

′) is the fundamental solution of the two-dimensional 

Laplacian equation.
Applying the Fourier transformation to x′-variable in (3.11), we yield

ψ̂ i
n(ξ) = f̂ i

n(ξ)

n2 + |ξ |2 . (3.13)

Then the inverse transformation gives that

ψi
n(x

′) = K0(n|x′|) ∗ f i
n(x′) (n ≥ 1, i = 1,2) (3.14)

with K0(z) =
∞∫

0

cos(zτ )√
1 + τ 2

dτ (z ≥ 0), the modified Bessel function of the second kind. Substi-

tuting the expression (3.8) into (3.14), one has
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ψ1
n(x′) = 1

π

π∫
−π

∫
R2

K0(n|x′ − y′|) cos(ny3)f (y′, y3)dy, (3.15)

and

ψ2
n(x′) = 1

π

π∫
−π

∫
R2

K0(n|x′ − y′|) sin(ny3)f (y′, y3)dy. (3.16)

Then taking (3.15) and (3.16) back to (3.9), we arrive that

ψ1(x) =
π∫

−π

∫
R2

G1(x − y)f (y)dy, (3.17)

with

G1(x) = 1

π

+∞∑
n=1

K0(n|x′|) cos(nx3). (3.18)

Therefore, (3.5) is verified in view of (3.12) and (3.17).

Step 2. Estimates of ψ0.

For ψ0 defined in (3.12), utilizing Lemma B.1 in Appendix B, we have,

‖∇2ψ0‖Lr(R2) � ‖f0‖Lr(R2), ‖∇ψ0‖Lq(R2) �
∑

l=1,p

‖f0‖Ll(R2). (3.19)

Noting that f0(x
′) = 1

2π

π∫
−π

f (x′, y3)dy3 and ψ0 is independent of x3, it holds from (3.19) that

‖∇2ψ0‖Lr
per ([−π,π];Lr (R2)) � ‖f ‖Lr

per ([−π,π];Lr (R2)),

‖∇ψ0‖L
p
per ([−π,π];Lq(R2)) �

∑
l=1,p

‖f ‖Ll
per ([−π,π];Ll(R2)),

(3.20)

where r and p are given as the assumption of the Lemma.

Step 3. Estimates of ψ1.

By (3.17), the generalized Young inequality for 1 < r ≤ p gives that

‖ψ1‖Lr
per ([−π,π];Lr (R2)) � ‖G1‖L1

per ([−π,π];L1(R2))‖f ‖Lr
per ([−π,π];Lr (R2)). (3.21)

It follows from (P1)–(P2) in Appendix A that
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‖G1‖L1
per ([−π,π];L1(R2)) � 1. (3.22)

Combining (3.21) with (3.22), we get

‖ψ1‖Lr
per ([−π,π];Lr (R2)) � ‖f ‖Lr

per ([−π,π];Lr (R2)). (3.23)

Since ψ1 satisfies the equation

−
ψ1 = f − f0, (3.24)

according to the interior estimate technique for second order elliptic equation (Theorem 9.11 of 
[10]), together with (3.23) and the technique of the regional coverage of domain (for the details, 
see Remark 3.2), we obtain for all 1 < r ≤ p

‖ψ1‖W 2,r ([−π,π]×R2) � ‖ψ1‖Lr
per ([−π,π];Lr (R2)) + ‖f − f0‖Lr

per ([−π,π];Lr (R2))

� ‖f ‖Lr
per ([−π,π];Lr (R2)). (3.25)

With the help of Sobolev inequality (see Proposition 10.7 in [22]), (3.25) implies that

‖∇ψ1‖L
p
per ([−π,π];Lq(R2))

� ‖f ‖L1
per ([−π,π];L1(R2)) + ‖f ‖L

p
per ([−π,π];Lp(R2)). (3.26)

Then estimate (3.6) is available together with (3.5), (3.20), (3.25) and (3.26). �
Remark 3.1. For f ∈ L

p
c,per (R

2 × [−π, π]), ψ defined in (3.5) occupies the decay estimates

|∇x′ψ | ≤ C

|x′| , |∇2
x′ψ | ≤ C

|x′|2 as |x′| → ∞, (3.27)

where the constant C depends on the compact support of f . In fact, (3.27) follows from that

|∇x′G0(x
′)| � 1

|x′| , |∇xG1(x)| � 1

|x′|2 as |x′| → ∞,

|∇2
x′G0(x

′)| � 1

|x′|2 , |∇2
xG1(x)| � 1

|x′|3 as |x′| → ∞,

(3.28)

where the estimates of G0 and G1 come from (3.12) and the rigorous equation (A.4) and (A.7), 
respectively.

Remark 3.2. (The technique of the regional coverage of domain.) For integers i, j and a param-
eter λ > 0, defining

	λ
ij = [i − λ, i + λ] × [j − λ, j + λ],

using Theorem 9.11 of [10] to the equation (3.24), it yields
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‖ψ1‖
W 2,r ([−π,π]×	

1/2
ij )

� ‖ψ1‖Lr([−2π,2π];Lr (	1
ij )) + ‖f − f0‖Lr([−2π,2π];Lr (	1

ij ))

� ‖ψ1‖Lr
per ([π,π];Lr (	1

ij )) + ‖f − f0‖Lr([−π,π];Lr (	1
ij )).

(3.29)

Summing up i, j from −∞ to ∞ in (3.29) obtains (3.25).

Now, we turn back to consider the related system to (3.4) with ω = ω3ξ⎧⎪⎨⎪⎩
−
� = ω,

|∇�| = o(|x′|), as |x′| → ∞,

�(x′, x3 + 2π) = �(x).

(3.30)

From the analysis of Lemma 3.1, we deduce the following conclusions.

Lemma 3.2. For ω = ω3ξ with ω3 ∈ L1
per ([−π, π]; L1(R2)) ∩ L

p
per([−π, π]; Lp(R2)) for any 

p > 1, system (3.30) has a solution � = (ψ1, ψ2, ψ3) such that for any M > 0

‖∇2�‖Lr
per ([−π,π];Lr (BM(0)))) + ‖∇�‖L

p
per ([−π,π];Lq(BM(0)))) (3.31)

≤ C(M)
∑

l=1,p

‖ω3‖Ll
per

([−π,π];Ll(R2)
),

where r and q defined in Lemma 3.1.

Proof. Based on the idea of Lemma 3.1, we similarly define � = (ψ1, ψ2, ψ3) as

� =: �0 + �1 =
π∫

−π

G0(x
′) ∗ (ξω3)(x

′, y3)dy3 + G1(x) ∗ (ξω3)(x). (3.32)

Noticing that ξ = (x2, −x1, 1)t , ψ3 satisfies the similar system to (3.4) and the corresponding 
estimate of (3.6), which therefore meets (3.31). Next, we focus on the desired estimates of ψ1
and ψ2. In fact, we will only discuss with ψ1 for convenience since ψ2 can be treated in the same 
way.

Similar to Lemma 3.1, we decompose ψ1 into two parts ψ0
1 and ψ1

1 , i.e., ψ1 = ψ0
1 +ψ1

1 . Then 
direct calculations to ψ0

1 leads to

∇x′ψ0
1 =

π∫
−π

∫
R2

∇x′G0(x
′ − y′)(y2ω3)(y

′, y3)dy′dy3

=
π∫

−π

∫
R2

∇x′G0(x
′ − y′)(y2 − x2)ω3(y

′, y3)dy′dy3

+ x2

π∫
−π

∫
R2

∇x′G0(x
′ − y′)ω3(y

′, y3)dy′dy3

= J + x J .

(3.33)
1 2 2
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It follows from the definition of J1 in (3.33) that

|∇x′J1(x
′)| �

π∫
−π

∫
R2

1

|x′ − y′| |ω3(y
′, y3)|dy′dy3.

Combing this with the proof process of (B.2) in Lemma B.1 that

‖∇x′J1(x
′)‖Lq(R2) �

∑
l=1,p

‖ω3‖Ll
per ([−π,π]×R2). (3.34)

The estimate of J2 is very similar to that of ∇x′ψ0 in (3.12). Therefore,

‖∇J2‖Lr
per ([−π,π];Lr (R2)) � ‖ω3‖Lr

per ([−π,π];Lr (R2)),

‖J2‖L
p
per ([−π,π];Lq(R2)) �

∑
l=1,p

‖ω3‖Ll
per ([−π,π];Ll(R2)).

(3.35)

Then it follows from (3.33)–(3.35) that1

‖∇2ψ0
1 ‖Lr

per ([−π,π];Lr (BM(0))) ≤ C(M)
∑

l=1,p

‖ω3‖Ll
per ([−π,π];Ll(R2)). (3.36)

As for ψ1
1 , it can be rewritten as

∇x′ψ1
1 =

π∫
−π

∫
R2

∇x′G1(x − y)(y2 − x2)ω3(y)dy

+ x2

π∫
−π

∫
R2

∇x′G1(x − y)ω3(y)dy (3.37)

= J3 + x2J4.

Due to (P3) in Lemma A.2, we know that ∇x′G1(x)x2 ∈ W 1,1([−π, π] ×R
2) with

‖J3‖W 1,r (R2×[−π,π]) ≤ C
∑

l=1,p

‖ω3‖Ll
per ([−π,π];Ll(R2)). (3.38)

Similar to estimate (3.25), we obtain

1 For the readers’ interest, we point out that based on (3.30) and (3.33), one can also use Lp theory of second order 
elliptic equation to obtain this estimate (3.36) (see Theorem 14.1′ and the note below it in Page 700 of [1]).
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‖J4‖W 1,r (R2×[−π,π]) ≤ C‖ω3‖Lr
per ([−π,π];Lr (R2))

≤ C
∑

l=1,p

‖ω3‖Ll
per ([−π,π];Ll(R2)). (3.39)

Taking (3.34), (3.35) into (3.33), and (3.38), (3.39) into (3.37), ψ1 satisfies (3.31). Then we 
complete the proof of Lemma 3.2. �

Next we will state the Biot–Savart law with helical symmetry in R2 ×[−π, π]. The main idea 
of the proof is also adaptable to the general case.

Lemma 3.3. (The Biot–Savart law) Under the assumptions of Lemma 3.2 and ω = ω3ξ with 
ω3 being helical and ξ(x) = (x2, −x1, 1), the system (3.3) has a unique solution u, which is a 
helical vector fields without helical swirl. Moreover, for any M > 0

‖∇u‖L
p
per ([−π,π];Lp(BM(0))) + ‖u‖L

p
per ([−π,π];Lp(BM(0)))

≤ C(M)
∑

l=1,p

‖ω3‖Ll
per ([−π,π];Ll(R2)). (3.40)

Proof. The proof can be divided into the following steps.

Step 1. Existence of u.

As shown in Lemma 3.2, for given ω, there exists the � satisfying (3.30). Define

u =: ∇ × � +
⎛⎜⎝0,0,− 1

2π

π∫
−π

∫
R2

ω3(y)dy

⎞⎟⎠ . (3.41)

Then we easily verify that u is a solution of (3.3) and satisfies estimate (3.40). It should be 
mentioned that the second constant vector defined in (3.41) ensures the cancellation of the terms 
related to G0 kernel in u · ξ .

In particular, u = (u1, u2, u3) in (3.41) has an explicit expression as

u1 = 1

2π

π∫
−π

∫
R2

x2 − y2

|x′ − y′|2 ω3(y)dy

+ 1

π

∞∑
n=1

π∫
−π

∫
R2

n(x2 − y2)

|x′ − y′| K ′
0(n|x′ − y′|) cos(n(x3 − y3))ω3(y)dy

− 1

π

∞∑
n=1

π∫ ∫
2

nK0(n|x′ − y′|) sin(n(x3 − y3))y1ω3(y)dy,

(3.42)
−π R
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u2 = − 1

2π

π∫
−π

∫
R2

x1 − y1

|x′ − y′|2 ω3(y)dy

− 1

π

∞∑
n=1

π∫
−π

∫
R2

n(x1 − y1)

|x′ − y′| K ′
0(n|x′ − y′|) cos(n(x3 − y3))ω3(y)dy

− 1

π

∞∑
n=1

π∫
−π

∫
R2

nK0(n|x′ − y′|) sin(n(x3 − y3))y2ω3(y)dy,

(3.43)

and

u3 = − 1

2π

π∫
−π

∫
R2

(x1 − y1)x1 + (x2 − y2)x2

|x′ − y′|2 ω3(y)dy

− 1

π

∞∑
n=1

π∫
−π

∫
R2

n(x1 − y1)

|x′ − y′| K ′
0(n|x′ − y′|) cos(n(x3 − y3))y1ω3(y)dy

− 1

π

∞∑
n=1

π∫
−π

∫
R2

n(x2 − y2)

|x′ − y′| K ′
0(n|x′ − y′|) cos(n(x3 − y3))y2ω3(y)dy.

(3.44)

Step 2. Vanishing helical swirl of u.

In this step, we will focus on the property that u · ξ = 0. First, a direct verification tells that

−
(ξ · u) = −
u · ξ − 2∇ui · ∇ξ i = curlω · ξ − 2ω3 ≡ 0. (3.45)

Furthermore, it comes from (3.42)–(3.44) that

π(ξ · u)

=
π∫

−π

∫
R2

∞∑
n=1

nK ′
0(n|x′ − y′|)|x′ − y′| cos(n(x3 − y3))ω3(y)dy

+ x1

π∫
−π

∫
R2

∞∑
n=1

nK0(n|x′ − y′|)(y2 − x2) sin(n(x3 − y3))ω3(y)dy

− x2

π∫
−π

∫
R2

∞∑
n=1

nK0(n|x′ − y′|)(y1 − x1) sin(n(x3 − y3))ω3(y)dy

=: J5 + x1J6 + x2J7. (3.46)
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Due to (A.11) in Appendix A, we have

7∑
i=5

‖Ji‖L
p
per ([−π,π];Lp(R2)) � ‖ω3‖L

p
per ([−π,π];Lp(R2)). (3.47)

Then according to Lp interior estimate theory of elliptic equation (see Theorem 9.19 of [10]) and 
Sobolev inequality, it is shown from (3.45)–(3.47) that η = ξ · u satisfies

‖η‖L∞(B1(x
′)×[−π,π]) � ‖η‖W [3/p]+1,p(B1(x

′)×[−π,π])

� ‖η‖L
p
per (B2(x

′)×[−π,π])

� (1 + |x′|)
7∑

i=5

‖Ji‖L
p
per (B2(x

′)×[−π,π]).

Combing this with (3.47) implies that η = o(|x′|) as |x′| → ∞ and then it follows from (3.45)
and (3.47) that η satisfies

⎧⎪⎪⎨⎪⎪⎩
−
η = 0,

η = o(|x′|), as |x′| → ∞,

η ∈ L
p
per ([−π,π];Lp

loc(R
2)).

(3.48)

By the help of Lemma A.1, we have the conclusion that η is a constant in (3.48). Then integrating 
both sides of (3.46) on Q = [−1, 1]2 × [−π, π], we derive that∫

Q

ηdx = 0, (3.49)

which implies that η = 0, i.e., the velocity field u given in (3.41) has zero helical swirl.

Step 3. Helical property of u.

In this step, we say that u in (3.41) is helical. According to Definition 2.2, for any θ ∈R, it is 
enough to verify that

⎧⎪⎪⎨⎪⎪⎩
u1(Sθ (x)) = u1(x) cos θ + u2(x) sin θ,

u2(Sθ (x)) = −u1(x) sin θ + u2(x) cos θ,

u3(Sθ (x)) = u3(x).

(3.50)

The verification of (3.50) is very standard, therefore we only state the proof that u1 is helical for 
the convenience.

For any θ ∈ R, the following fact holds
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⎧⎪⎪⎨⎪⎪⎩
∂2Gi(x − y) cos θ − ∂1Gi(x − y) sin θ

= ∂2Gi(Sθ (x) − Sθ (y)) (i = 0,1),

∂3G1(x − y) = ∂3G1(Sθ (x) − Sθ (y)).

(3.51)

By mean of (3.51) and the property that ω3 is a helical function, a direct computation shows

u1(x) cos θ + u2(x) sin θ

=
1∑

i=0

(∂2Gi(x) cos θ − ∂1Gi(x) sin θ) ∗ ω3 + ∂3 (G1(x) ∗ ((x1 cos θ + x2 sin θ)ω3(x)))

=
1∑

i=0

∫
R2×[−π,π]

∂2Gi(Sθ (x) − Sθ (y))ω3(Sθ (y))dy (3.52)

+
∫

R2×[−π,π]
∂3G1(Sθ (x) − Sθ (y))(y1 cos θ + y2 sin θ)ω3(Sθ (y))dy

=
1∑

i=0

∫
R2×[−π,π]

∂2Gi(Sθ (x) − y)ω3(y)dy +
∫

R2×[−π,π]
∂3G1(Sθ (x) − y)y1ω3(y)dy

= u1(Sθ (x)),

which ensure that u given in (3.41) (or see (3.42)–(3.44) for its explicit form) is a helical vector 
field.

Step 4. Uniqueness of u.

Based on Step 1–Step 3, the uniqueness of u is reduced to prove the following system⎧⎪⎨⎪⎩
−
u = 0, ξ · u = 0,

|u| = o(|x ′|), as |x′| → ∞,

u(x′, x3 + 2π) = u(x),

(3.53)

only has a trivial solution in Lp
per([−π, π]; Lp

loc(R
2)). Due to the conclusion of Lemma A.1, we 

obtain that solution u of system (3.53) is a constant, i.e.,

u = (c1, c2, c3)

for some constant ci (i = 1, 2, 3). Moreover, the property of zero helical swirl of u tells us that

ξ · u = c1x2 − c2x1 + c3 = 0, x′ ∈ R
2,

which furthermore infers that ci = 0 (i = 1, 2, 3). Therefore, u ≡ 0, which ends the proof of 
Lemma 3.3. �
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Remark 3.3. Under the assumption that ω3 is compactly supported, the velocity field u con-
structed in (3.41) has the decay property at infinity from Remark 3.1

|u| ≤ C

|x′| , |∇x′u| ≤ C

|x′|2 as |x′| → ∞.

4. Proof of main theorem

In this section, we will state the proof of Theorem 2.5, which is divided into Proposition 4.1
and Proposition 4.2. Our strategy begins with designing an approximate helical solutions of (1.1)
without helical swirl for which we can easily prove a global existence of weak solutions and also 
an analogous energy estimate that is independent of the regularization parameter, which strongly 
depend on the two-dimensional property of helical flow and the Biot–Savart law with helical 
symmetry.

Before the construction of approximate solutions, we recall some notations about mollifier. 
Given any radial function ρ1(|x′|) ∈ C∞

c (R2) satisfying that ρ1 ≥ 0 and 
∫
R2 ρ1(x

′)dx′ = 1, and 
a nonnegative periodic smooth function ρ2(x3) in [−π, π] with 

∫ π

−π
ρ2(x3)dx = 1, we define 

ωε
0 = ρε ∗ω0, where ρε(x) = ε−3ρ(x

ε
) and ρ(x) = ρ1(x

′)ρ2(x3). According to Definition 2.1, ωε
0

is a helical function in terms of the fact that ω0 is a helical function. Furthermore, uε
0, recovered 

from its vorticity ωε
0 =: ωε

0ξ by Biot–Savart law is a helical velocity fields without helical swirl. 
Then we correspondingly construct the approximate solutions of (1.1) with initial data uε

0 as 
follows.

Proposition 4.1. Let ω0 ∈ L1
per ([−π, π] ×R

2) ∩ L
p
per ([−π, π] ×R

2) for some p > 1 and ωε
0 =

ρε ∗ ω0. Then for any T > 0 there exists a smooth helical solution uε ∈ L∞(0, T ; W 1,p
loc,per (R

2 ×
[−π, π])) of (1.1) without helical swirl when initial data uε

0 ∈ W
1,p
loc,per (R

2 × [−π, π]), which is 
mentioned above.

Proof of Proposition 4.1. For convenience, we always assume that ωε
0 has the compact support 

about x′ variable. Otherwise, we introduce a cut-off function χ defined on a ball in R2. Then we 
redefine ωε

0 = ρε ∗ (χω0) with compact support.
For each ε > 0, we define uε

0 = ∇ × (G ∗ (ξωε
0)). Then the helical vector uε

0 ∈ C∞
c (R2 ×

[−π, π]) and uε
0 · ξ = 0 in terms of the Biot–Savart law. It is mentioned that the idea to construct 

the approximate solutions uε ∈ C∞(R2 × [−π, π]) with initial data uε
0 is very routine, which 

has been explicitly stated in [22] and Theorem 3.11 of [2]. We skip it here for simplicity. In 
addition, it holds that the initial data uε

0 ∈ W
1,p
loc,per (R

2 × [−π, π]) with the energy estimates for 
any M > 0

‖uε
0‖W 1,p(BM(0)×[−π,π]) ≤ C(M)‖ω0‖Lp(R2×[−π,π]),

where C is a constant independent of ε, due to the Biot–Savart law in Lemma 3.3. Correspond-
ingly, we derive that uε ∈ L∞(0, T ; W 1,p

loc,per (R
2 × [−π, π]) for any T > 0. Recalling that uε

0 is 
a helical vector field, we obviously reduce that uε is also a helical vector due to the invariance 
of Euler equations under the rotation and translation transformations and the uniqueness of solu-



Q. Jiu et al. / J. Differential Equations 262 (2017) 5179–5205 5197
tions. In addition, we easily verify that uε · ξ = 0 according to the facts that uε
0 · ξ = 0 and that η

is conserved from (2.13). �
Now we are ready to prove Theorem 2.5. It remains to prove the L2 strong convergence of 

the approximate sequence {uε} constructed in Proposition 4.1, which is the key point to prove 
the existence of weak solutions in the sense of Definition 2.3. We invoke the two-dimensional 
property of uε , that solutions can be transformed to two-dimensional vector fields wε with three 
components according to Lemma 2.3. That is, we have

Proposition 4.2. Let BR × [−π, π] = {(x1, x2, x3) ∈ R
3|

√
x2

1 + x2
2 ≤ R, −π ≤ x3 ≤ π} for any 

R > 0. Given the helical approximate-solution sequence uε , stated in Proposition 4.1, there exists 
a limit u of a subsequence of uε (still denote by uε for simplicity), which is a weak solution for 
the Euler equations with helical symmetry in the sense of Definition 2.3, such that

‖uε − u‖L∞(0,T ;L2(BR×[−π,π])) → 0 as ε → 0, (4.1)

with

u · ξ = 0, divu = 0. (4.2)

Proof of Proposition 4.2. By the statement of Proposition 4.1, it holds that uε ∈ L∞(0, T ;
W

1,p
loc (R2 × [−π, π])). Utilizing the equation of uε , it holds that ∂tuε ∈ L∞(0, T ; H−1

loc (R2 ×
[−π, π])). Based on the two-dimensional property of Lemma 2.3, there exists the corresponding 
vector fields wε ∈ L∞(0, T ; W 1,p

loc (R2) by virtue of (2.10). Then direct computations indicate that 
each component of ∇yw

ε is a composition of the components of ∂x1uε, ∂x2 uε and the trigonomet-
ric functions about x3 according to the formulae of (2.10) and (2.11). Without loss of generality, 
we take the expression of ∂y1w

ε
1 for instance, i.e.,

∂y1w
ε
1 = ∂x1u

ε
1 cos2 x3 − ∂x1u

ε
2 cosx3 sinx3 − ∂x2u

ε
1 cosx3 sinx3 + ∂x2u

ε
2 sin2 x3.

Therefore, it easily deduced that for R > 0,

‖∇yw
ε‖L∞(0,T ;Lp(BR)) ≤ C‖∇x′uε‖L∞(0,T ;Lp(BR×[−π,π])),

where C is a generic constant and ∇x′ = (∂x1 , ∂x2)
t . Moreover,

‖wε‖L∞(0,T ;Lp(BR)) ≤ C‖uε‖L∞(0,T ;Lp(BR×[−π,π])).

That is, {wε} is uniformly bounded in L∞([0, T ]; W 1,p(BR)). Similarly, ∂tw
ε is also uni-

formly bounded in L∞(0, T ; H−1(BR)). By the Aubin–Lions compactness theorem and the 
two-dimensional compact embedding W 1,p(BR) ↪→ ↪→ L2(BR) for p > 1, there exists a limit 
w ∈ L2(0, T ; L2(BR)) with ‖wε − w‖L2(0,T ;L2(BR)) → 0 as ε → 0. Again, by Lemma 2.3, we 
recover a helical vector u from w by virtue of (2.10). Especially, direct calculations tell us 
that

‖uε − u‖L2(0,T ;L2(B ×(−π,π))) ≤ C‖wε − w‖L2(0,T ;L2(B )) → 0 (4.3)

R R
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as ε → 0, which implies that for � ∈ C∞
c ([0, T ); C∞

0,per (R
2 × [−π, π])),∫ ∫

R2×[−π,π]
�t · uεdxdt →

∫ ∫
R2×[−π,π]

�t · udxdt as ε → 0. (4.4)

Then the decomposition∫ ∫
R2×[−π,π]

(∇� : uε ⊗ uε − ∇� : u ⊗ u)dxdt

=
∫ ∫

R2×[−π,π]
∇� : (uε − u) ⊗ uεdxdt

+
∫ ∫

R2×[−π,π]
∇� : u ⊗ (uε − u)dxdt (4.5)

together with (4.3) shows∫ ∫
R2×[−π,π]

∇� : uε ⊗ uεdxdt →
∫ ∫

R2×[−π,π]
∇� : u ⊗ udxdt as ε → 0,

which together with (4.4) implies that u is a weak solution of the Euler equation in the 
sense of Definition 2.3. It is also holds that u · ξ = 0 from the property of no helical swirl 
of uε . �
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Appendix A. Two elementary lemmas

In this section, we will present two elementary lemmas which are very helpful to investigate 
the Biot–Savart law in Section 3. We begin with the following system⎧⎪⎪⎨⎪⎪⎩

−
u = 0,

|u| = o(|x ′|) as |x ′| → ∞,

u(x′, x3 + 2π) = u(x′, x3).

(A.1)

Lemma A.1. If u ∈ L
p
per ([−π, π]; Lp

loc(R
2))(p > 1) is the solution to system (A.1), u is a con-

stant.
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Proof. The lemma can be viewed as a conclusion of the generalized Liouville Theorem. For the 
readers’ convenience, we give a proof here.

Since u ∈ L
p
per([−π, π]; Lp

loc(R
2)) is the solution of (A.1), we improve the regularity of u, 

i.e., u ∈ C∞
per ([−π, π]; C∞(R2)) via the elliptic theory (see Theorem 9.19 of [10]). Then by 

means of Theorem 2.10 of [10], it holds that for any x0 ∈R
3 and R > 0,

|∇u|(x0) ≤ 3

R
sup

|x−x0|=R

|u|.

Then according to the fact that u = o(|x|) as |x| → ∞ (u = o(|x ′|) as |x′| → ∞ and u is periodic 
in x3 direction), we have ∇u ≡ 0 by taking limit R → ∞ in the above inequality. This further 
indicates that u is a constant. The proof is complete. �

In the following part, we pay more attention to the properties of the function G1 given in 
(3.18).

Lemma A.2. For G1(x) given in (3.18), it holds that

(P 1). ‖G1(x
′, ·)‖L1([−π,π]) � 1

|x′| ;

(P 2). |G1(x)| � 1
|x′|k , k ≥ 3;

(P 3). ‖∇x′(G1(x))x‖W 1,1(R2×[−π,π]) � 1.

Proof. First, we prove (P 1). Using integration by parts, we easily have

K0(n|x′|) = 1

n|x′|
∞∫

0

t sin(n|x′|t)
(1 + t2)

3
2

dt. (A.2)

Then we rewrite the form of G1(x) as

G1(x) = 1

π |x′|
∞∑

n=1

∞∫
0

t

(1 + t2)
3
2

sin(n|x′|t)
n

cos(nx3)dt. (A.3)

Utilizing the orthogonal property of the bases {cos(nx3)} in L2[−π, π] and the Parseval equality, 
it follows from (A.3) that

‖G1(x
′, ·)‖L1[−π,π] � ‖G1(x

′, ·)‖L2[−π,π] � 1

|x′|
∞∫

0

t

(1 + t2)
3
2

dt � 1

|x′| ,

which guarantee inequality (P1).
For (P 2), we rewrite kernel K0(n|x′|) on account of integration by parts as
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K0(n|x′|) = 1

n|x′|
∞∫

0

t

(1 + t2)
3
2

sin(n|x′|t)dt

= 1

n2|x′|2
∞∫

0

1 − 2t2

(1 + t2)
5
2

cos(n|x′|t)dt

= 1

n3|x′|3
∞∫

0

9t − 6t3

(1 + t2)
7
2

sin(n|x′|t)dt.

(A.4)

Direct calculations indicate that

|K0(n|x′|)| � 1

nk|x′|k , k ≥ 3. (A.5)

Substituting (A.5) into (3.18), (P 2) holds true since

|G1(x)| �
+∞∑
n=1

1

nk|x′|k � 1

|x′|k , k ≥ 3. (A.6)

For (P 3), we use ∂x1G1(x)x2 as an example since the other terms of ∇x′G1(x)x can be coped 
with in the same way. First,

∂x1G1(x)x2 = 1

π

+∞∑
n=1

nx1x2

|x′| K ′
0(n|x′|) cos(nx3),

∂x1

(
∂x1G1(x)x2

)
= 1

π

+∞∑
n=1

(
nx3

2

|x′|3 K ′
0(n|x′|) cos(nx3) + n2x2

1x2

|x′|2 K ′′
0 (n|x′|) cos(nx3)

)
,

∂x2

(
∂x1G1(x)x2

)
= 1

π

+∞∑
n=1

(
nx3

1

|x′|3 K ′
0(n|x′|) cos(nx3) + n2x1x

2
2

|x′|2 K ′′
0 (n|x′|) cos(nx3)

)
,

∂x3

(
∂x1G1(x)x2

) = − 1

π

+∞∑
n=1

n2x1x2

|x′| K ′
0(n|x′|) sin(nx3). (A.7)

Since K0(z) = 1

z

∞∫
t

(1 + t2)
3
2

sin(zt)dt , we derive that
0
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z2K ′
0(z) = −

∞∫
0

t

(1 + t2)
3
2

sin(zt)dt −
∞∫

0

t (2 − t2)

(1 + t2)
5
2

sin(zt)dt,

z3K ′′
0 (z) = − 2z2K ′

0(z) +
∞∫

0

t (2 − t2)

(1 + t2)
5
2

sin(zt)dt

+
∞∫

0

4t − 10t3 + t5

(1 + t2)
7
2

sin(zt)dt.

(A.8)

Here, we only show the crucial estimate ‖∂x3(∂x1G1(x)x2)‖L1(R2×[−π,π]) since other terms can 
be treated in the same way.

It follows from the first equality in (A.8) by integration by parts that

z2K ′
0(z) = −

∞∫
0

t

(1 + t2)
3
2

sin(zt)dt −
∞∫

0

t (2 − t2)

(1 + t2)
5
2

sin(zt)dt

= 1

z

∞∫
0

3 − 12t2

(1 + t2)
7
2

cos(zt)dt.

This implies that there exists a generic constant C, such that

|z2K ′
0(z)| ≤ C, |z3K ′

0(z)| ≤ C. (A.9)

Similarly, one also has

|z4K ′
0(z)| ≤ C. (A.10)

Then it follows from the fourth equality in (A.7) that

‖∂x3(∂x1G1(x)x2)‖L1(R2×[−π,π])

�
∫
R2

‖∂x3(∂x1G1(x)x2)‖L1([−π,π])

�
∫
R2

‖∂x3(∂x1G1(x)x2)‖L2([−π,π])

�
∫
R2

1

|x′|

( ∞∑
n=1

(n2|x′|2K ′
0(n|x′|))2

)1/2

dx′.

Here we use the fact that {sin(nx3)} are orthogonal in the sense of L2([−π, π]). Thus, with 
(A.9)–(A.10), one has
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‖∂x3(∂x1G1(x)x2)‖L1(R2×[−π,π])

�
∫

B1(0)

1

|x′|

( ∞∑
n=1

(n2|x′|2K ′
0(n|x′|)) 3

2

)1/2

dx′ +
∫

R2\B1(0)

1

|x′|3 dx′

�
∫

B1(0)

1

|x′| 7
4

dx′ +
∫

R2\B1(0)

1

|x′|3 dx′

�
1∫

0

1

r3/4
dr +

∞∫
1

1

r2
dr

� C.

Thus we complete the proof of (P3). �
Remark A.1. According to (P1)–(P2) and (A.8), we can also obtain that

‖
∞∑

n=1

nK ′
0(x

′)|x′| cos(nx3)‖L1(R2×[−π,π]) ≤ C,

‖
∞∑

n=1

nK0(n|x′|)xi‖L1(R2×[−π,π]) ≤ C, i = 1,2.

(A.11)

Appendix B. Sobolev type estimate

In this section, we establish a kind of Sobolev type estimate for Newton potential, which is 
stated in the following lemma:

Lemma B.1. If f ∈ ⋂
l=1,p

Ll(R2) for p > 1 and u(x) =
∫
R2

ln |x − y|f (y)dy, then one has

‖∇2u‖Lp(R2) � ‖f ‖Lp(R2). (B.1)

Moreover,

‖∇u‖Lq(R2) � ‖f ‖Lp(R2) + ‖f ‖L1(R2), (B.2)

with q = 2p
2−p

when 1 < p < 2 and 2 < q < +∞ when p ≥ 2.

Proof. We only prove (B.2) since (B.1) is the standard result of the singular integral operator 
theory (see Theorem 9.9 in [10]). In addition, we only need to prove (B.2) for the case 1 < p < 2
since the case of p ≥ 2 can be reduced to the case 1 < p < 2 in the following way: If (B.2) stands 
for 1 < p < 2, then for any 2 < q < +∞, there exists 1 < q0 < 2 with q = 2q0 , such that
2−q0
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‖∇u‖Lq(R2) � ‖f ‖Lq0 (R2) + ‖f ‖L1(R2)

� ‖f ‖λ
L1(R2)

‖f ‖1−λ

Lp(R2)
+ ‖f ‖L1(R2)

� ‖f ‖Lp(R2) + ‖f ‖L1(R2).

Here the last two inequalities come from the interpolation inequality (see Lemma 10.5 in [22]) 
with 1/q0 = λ + (1 − λ)/p and the Young inequality.

To derive the estimate (B.2) for the case 1 < p < 2, we first prove that

‖∇u‖Lq1 (R2) ≤ C(q1)
(‖f ‖L1(R2) + ‖f ‖Lp(R2)

)
, (B.3)

for q1 = 2p
2−p+δ

> 2 with a fixed constant δ satisfying 0 < δ < min{p, 2(p − 1)}. Second, we 
set �(x) be a smooth radial symmetric function, such that 0 ≤ � ≤ 1 with � = 1, |x| ≤ 1 and 
� = 0, |x| ≥ 2. Then

|∇u|(x) ≤
∫
R2

�(x − y)

|x − y| |f (y)|dy +
∫
R2

1 − �(x − y)

|x − y| |f (y)|dy

:= I1(x) + I2(x).

(B.4)

Since

�(x)

|x| ∈ Ll1(R2),
1 − �(x)

|x| ∈ Ll2(R2),

with l1 = 2p
p+δ

∈ (1, 2) and l2 = 2p
2−p+δ

∈ (2, +∞), then it follows from (B.4) and the Young 
inequality that

‖∇u‖Lq1 (R2) ≤ ‖I1‖Lq1 (R2) + ‖I2‖Lq1 (R2) ≤ C(q1)
(‖f ‖Lp(R2) + ‖f ‖L1(R2)

)
,

which completes the estimate (B.3).
Next, we prove the estimate (B.2). Since 1 < p < 2 < q1, then for each m ∈N, it follows from 

(B.1) and (B.3) that

�(x/m)∇u(x) ∈ W
1,p

0 (R2). (B.5)

Then it is derived from the Sobolev embedding theorem (see Proposition 10.7 in [21]) that

‖�(x/m)∇u‖Lq(R2) � ‖�(x/m)∇2u‖Lp(R2) + 1

m
‖�′(x/m)∇u‖Lp(R2)

� ‖∇2u‖Lp(R2) + 1

m
‖∇u‖Lp(m≤|x|≤2m).

(B.6)

Here, the last inequality comes from the support of �′(x/m).
In addition, (B.6) with (B.1) and (B.3) yields
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‖�(x/m)∇u‖Lq(R2) � ‖f ‖Lp(R2) + 1

m
‖∇u‖Lq1 (R2)m

2/l3

� (1 + m2/l3−1)
(‖f ‖Lp(R2) + ‖f ‖L1(R2)

)
,

(B.7)

with 1
p

= 1
q1

+ 1
l3

. Thus, l3 = 2p
p−δ

> 2 and it follows from (B.7) that for each m ∈N,

‖�(x/m)∇u‖Lq(R2) ≤ C
(‖f ‖Lp(R2) + ‖f ‖L1(R2)

)
, (B.8)

where C is an universal positive constant, independent of m and �. Thus the estimate (B.2) is 
proved by taking limit in the left side of (B.8) as m → +∞. �
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